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In Chapter 1V, Sections 3 and 4, the COMPENDIUM discusses self functorns of zhe
categony INFT and its complete subcategonies, nolably the categories CL and AL of conlinuous
and afgebraic Lattices with Scott continuous maps preserving arbitrary infs. In paniticulan
we investigate there when such a self functon preseives profective Limits, and how the
Scott construcition applies Zo it in onden to create objects which are stable under the
application of the functor. Sevenal examples are given.

This nepont adds some more relevani self functons to which the genenal theory applies.
The "inst is the functor which associates with a continuous fattice the Lattice of Scoti-
conuwnuous closure operatorns. It is not entinely obgffous in which way this assignment is-
functonial on CL,because the standard method, by which this functorlalily 4is achieved in
the case of Scott's function space functon does nol apply here. However, by identifying
our functon with the functor which associates with a continuous Latiice the Ratilice of all
Lawson closed closure systems on the Lattice {in the onden opposite Lo that of coniainment)
we obtain functoniolity. The next sLight problem is thati the supposedly convenient suffdicient
conditions given in COMPENDIUM 1V-3.13 which guarantee that a sekf funclor preserves
projective Limits, do not directly apply To this functon. (That,in any case, {8 one excuse
why this functor is not now Listed {n the COMPENDIUM even in the exercises.) Howeven, a sligh:
modification of TV-3.13 will tuwn out fo be adequate o deal with the situation. ALL of
this is explained in Section 1 of Lthis Report. : '

The principal topic, however, of Lesten W. Jones, Jn.' dissertation i the blending of
continuous Lattice theory with cHa theony- to "fgname” continuous Lattfice theony, as it wene.
In #his context the helevant category 4is CH, the category of conlinuous Heyiing algebras
with CL-monphisms whos Lowen adjoints are Heyting algebra homomonphisms. We know grom Lhe
COMPENDIUM and " The spectral theony" that CH-monphisms are charactenized as those CL-monphisr
between continuous Heyting algebras which respect spectra. The categony CH is equivalent Zo Z
catenony of Locally quasicompact dcber spaces and proper maps (in the sense explained in
"Th, spectral theory ". In the theony of ctla’s, the so called modal operatons play a role.
In Section 2 of this nepont we intnoduce Zthe self functon of CH which associates with a
continuous Heyting algebna L the continuous Heyting algebra of all Scoit contlimous modal

operators; a modal operator on a Heyting algebra is a closure operaion preserving finite
infs. The self functon on CH in question is identified with the functor M which associates
with a continuous Heyting algebra L the poset M(L) of all Lawson closed subsemilattices of L
whose spectrum is contained in that of L. We discuss the spectum of ML) %o the extent

we hnow it at this time, and we show that ' the map min: M{L}—sl 48 an isomonphism if and
only if L has a T, spectrum. Thus the modal operaton gunctor Lé stationany on continuous Heyi
afgebras iff the Spectrum 4s T,; the abstract parallel is that the modal operator functor i
stationany on a cHa if§ it 4is Boolean. , , o o

In Section 3 we give an abstract of an analysis of the Scott function space funton on
continuous Heyting algebras,i.e. the category CH, and how the Scotd projective Limit con-
stuction thansbates into the categony of Locally quasicompact sober spaces.In particular,
we caleulate the spectrum of Funet™L  for a continuous Heyting algebra L.



1) Scott continuous closure operators-

another functor to which the Scott preojective

1imit process applies.

<

For ths purposes of this-report we taksé for grantéd what 1s
said in the compendium about the connectlion between closure operators
and closure systems. We also refer to SCS Memo Mislove 12-8-76.

we use the following notation:

1.1.DEFINITION. Iet L be a complete lattice. Then c(L) denotes the
poset of all closure . operators J:L—>I, which are Scott continuocus;
the order ‘is defined pointwise. We denote with c(1.) the poset of all
pesets ACL which are closed under arbitrary infs and directed
sups, and we give C(L) the opposite order of that which 1s induced

by containment. Thus if A,B < C(L), then the if 3 aBS1s just

-AB = (ab: a € A,b © B} with ab = inf{a,b}.

By way of summary, we record what we know and take for granted:

1.2.PROPOSITION.1)The map J]—> J(L): . (L) —> C(L) is a well-
defined poset isomorphism with A L——> 3yt c(r) —> c(L) ,
3 (x) = inf(fx e A) as inverse. 7

2) If L is continuous, then c¢(L) and C(L) are
continuous. : '
3) If S,TSCL and f:Sf—}T 'is in CL , then
for each A G C(S) we have f(A) € C(T), and if we define
c(f): ¢(s)—>c(T) by c{f)(a) = £(a), then C(f) 1s a CL-map.
Morecover, C: CL >CL 1s a functor.

_ giveh bv. - _
L), The Jower adjoint of C(f) Ts/c(fy4a) =t U

Remark. 4) shows that C(f) preserves arbitmry infs; the preservatlon
of directed sups amounts to the preservation of the intersection of
. a filter basis of (Lawson) compact sets under the application of a
(Lawson) continuows function. This 1s the most convenient way to

ascertain 3). -

Now we have a self Tfunctor C of CL , and we adress the question
whether it preserves projective 1imits and thereby qualifies for
Scott's construction as it is outlined in Compendium ¥ - 4. Compendium




IV - 3 gilves sufficlent conditions for a self functor of INF] and

1ts relevant complete Subcategorles to preserve projective limits.

We verify these conditions. Before we do thils note that the 1sémorphic
functor ¢ 1s less convenient to handle: It 1s probably worth noticing
that ¢(f)(J) is not, as one might expect after some experience with
Scott's construction, £jf , but is glven by c(J)(t) = inf(dtn £(3(S))
only if f is surjectivé‘do th%“two functions c(Jj and fjf' agree,

We now inspect Compendium IV -313 and see to which degree it is
applicable in the present situation. :

First let g:L—>S be in CL. Then C(g)” c(g)(A) = g ig(a) for
all A € C(L) by 1.1.4, Similar‘}y, if h: T—>L is in CL , then
c(h)c(n)A (B) = hh™(B) =nh(E)N B for all B € C(L).

Recall that the kernel relation ker g of g 1s given by (x,y) € kerm
1ff g(x) = g(y). If this relation holds, then also £g(x)= éé(y).
Conversely, if this latter relation holds, then g(x) = gBg(x)=ggz(y)
= g(y) by Compendium I . 0-3./{ . Thus ker g = ker £g. Now
gnlg(A) is the saturation of A w.r.t. ker g; hence

(1) C(g)/\c(g)gﬁ)=ker ¢ -saturation of A, for ail A © cC(L).

Next we claim that h('lI:.) IR SR L = h‘ﬁ(LT): Indeed the right
side 1s triviglly in the left; however, if x € h(i), then x = h(y)
for some y ©!: and then x = h(y) = Hfn(y) = Wff(x) .- - by 0 -3.1¢ .
This shows:

L
(11)  c(n)e(m)™(B) = bfi( )a B, for all B & C(L).

Let us take stock of the situation. We want to apply IV -3.13, and we do not
seem to be able to do exactly that since we have difficulty defining the map 7T
or else te show that certain cidadidates satisfy (Al). The essence of conditions
(A2) and (A3) is that (Fg)™ (Fg) , and (Fg) (Fg™ depend only on gg,respectively,
gg. This we know to-be true for the functor C by (i) and (ii) above. But where do

we go from here? .
Firstly we notice, that the function T in IV - 3.13 dis never applied to 4

anything but Scott continuous maps L—>L  of the form Tg or gg with g€ INF',

and these are precisely the Scott continuous kernel operators and closure operators,
respectively.(See 0-3.8 ff and various places in I-2, IV-1 Exercises.) We denoted

the set of Scott continuous closure operators c(L) above and clos(L) in the Compendium;
in the Compendium we write ker (L) for the Scott continuous kernel operators. (See

also Hofmann and Mislove.:" The lattice of kermel operators...", Math.Z.154 (1977),

175-188.) We have made the following
1.3.0BSERVATION . Corollary IV-3.13 of the Compendium remains intact for a function

T(: closL A ker L ————?-CFL under otherwise unchanged conditions.{]




Now we first define 7 on ker L . We take C(L) for the lattice C of IV-3.13,

and we notice that for fé& ker L , the set f_lf(A) = ker f -saturation of A
is in C(L) for all A€ C(L); reason: each f ker L is of the form fg with some

g& CL  (0-3.10 and I-2) and f_lf(A) = g_lg(A). Thus we may define
T ker L. —>c@®® | wn@a = £,

Then IV-3.13 (A2} is satisfied by (i) above.We now verify (Al).
- : ’

Let £ = sup £, in ker L with a directed family fj in ker L. Fix A& C(L). We

J

must show that
-1 - - -1
£ f(a) = sup fjlfj(A) in C(L), i.e. £ 1f(A) =m fjlfj(A),

We deompose each fj into %\jgj where gJ‘,: L—>f (L) is the corestriction of f and

2. : f(L}—>» L is the inclusion; similarly we write f = Eg.

Now let ‘x €& fJ"lfJ(A); we must show that x < f_lf(A); the
other inciusion is clear. Now for each J there 1s an a.j C A with
£4(x) = £,(a;), 1.e. witha < fj_lfj(x). The filterbasis of
the compact semilatticesl f -lfJ (x) A A thus has a nonempty

J .
intersection ; let a € A be an element in it . Then :E‘J(x) = fj(a)

>

for all j . We pass to the sup and obtain f(x) = f(a). Thus
X < f'lf(A) as was claimed.

Next we define X on clos(L). We define

| L
7T : clos(L) -——a-c(L)c(L) > Jr{£)(a) = f(a)n A .
Since f(L) « ¢(L) , this function is well defined; it satisfles
Tv-3.13 (A3) by(ii) above. We note that it satisfies (A1):

By 1.2.1 , the funetion f }—> £(L) is an isomorphism from clos L
to'C(L); hence a directed set f, with supremeum f gives a filter-
basis of compact semilattices fJ(L-) with intersection f(L). Thus
n(sup £,)(A) =) £4(L)n & = sup T(£y)(R) |

"~ We now have the hypothet;s of IV-3.13 in the modification of
1.3 above satisfied, and therefore have prové‘d\the followling

result:

> CL preserves poojectlve

1.4. THEOREM. The functor C:CL
limits and the injectivity and surjectivity of morphisms.

Proof. IV-3.13 and 1.3 above.




This completes the discussion of the functor C in the spirit
of Compendium IV -3; we now turn to Sott's construction as
expounded in IV -4. We first notice that there 18 a natural

surmorphism my 2 c(L)—>L:

1.5. Proposition. The-function m, : c(L)—> L gilven by mL(A)=

min A 1s a natural Cl-morphigh whose lower adjoint is given by

xl——%-fk. In particular, every continuous lattice 1s in a
functorial fashion a C-algebra (L,mL) (see IV- 4.3).

The proof of these facts 1s straightfomrard. []

Now we can apply the Scholium IV -%.9 and obtain

1.6.THEOREM. There 1s a functorial retraction from the category
EEC of C-algebras over CL to the full subcategory CL g of
C-algebras (L,p) for which p:C(L)—>L is an isomorphism. This
retraction is in fact a right reflectlon and associates with

a giyen C-algebra (L,p) a C-algebra (Ei,ﬁ D) such that there

> e
1s a quotient map p':(CL,p}) —> (L,p).
There is a functorial construction whereby every continuous lattice

L is a quotient of a continuous lattice CL which is naturally
Isomorphic to the lattice of 1ts 8cott continuous closure operators.

If L is an algebraic lattice, then TL is an algebraic lattice,too,

There 1s nothing to prove with all of the work done in IV-4.9;
we should point out that the functor C maps AL into AL , and as
a conseguence EL € AL 1f L « AL

2) Scott continuous modal operators.

2.1DEFINITION. let L be a cHa. Then a modal operator %s on L 1s
a closure operator c:L——I, preserving finite infs,

2.2.0BSERVETIEON., Ieft c:L——>1I. be a closure operator on a cHa.




et LA,
N

" be tre canonical decomposit;on.

e
Then the following datements are equivalent:

(1) ¢ 1s a modal operator.

(2) 4 preserves finite infs,i.e. d is a morphism
of Heyting algebras.

These conditlons 1imply

(3) spee ¢(L) < Spec>L_.

If Spec c¢(L) is order generating in e¢{L) , then all ~ . three

conditions are equivalent.

Proof. (1) <=> {2): Since the inclusion map g is an upper adjoint,
¢{L) is inf-closed in L. Thus c preserve finite 1nfs %ff d preserves
finite infs. As a lower adjoint, the corestriction 4 will always

preserve areltrary sups.
(2) =(3) (and conversely Aif the primes separate the mx points

of ¢{L)) follows from IV-1l..

Under the representation which identifles closure operators
with their images in L (the so-called closure systems), the
modal operators correspond'to inf-closed subsets which are Heytlng:
algebras in their own right and for which the canonical retraction
preserves finite products. In the case of contlnuouslatfices L
this may be expressed in a simpler fashion: In this case we know
that c¢(L) is a continuous lattice and so the primes separate on c(L).
Thus the modal opératorS'On a continuous Heyting algebra correspond
to the closure systems which are Heyting algebras and whose spectrum

is contained In the spectrum of L.

_ However, jnxxxzxxinxxhxxxxxzxmkaxiixxzxxxzimxuxgxmpzrxxmxﬁiin
distributive :

the context of continuous lattices the relevant--theory is that

of Scott continuous modal operators; this is anqQlogous to the

study of arbitrary closure operators on arbltrary continuous lattices

where the relevant contributions come from the assumption of Scott
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continuity . The theory of modal operators on cHa's is amply worked
out in apbropriate sources (see e.g. Simmons, " A Framework for
Topology"). We concentrate here on Scott continuous modal operators
On a continuous Heyting algebra for which the <<-relation is
multiplicative; i.e., a << x and b <<y implies ab << xy.

2.3. DEFINITION. Let L be a“continuous Heyting algebra . Then

m(L) denotes the poset of all modal operators j:L +-L which

are Scott continuous; the order is defined pointwise. We denote
with M(L)} the poset of all posets A € L which are closed under
arbitrary infs and directed sups (i.e., subalgebras in the sense

of I-2) and which are Heyting algebras in their own right satisfying
Spec A € Spec L; the order on M(L) is that induced from C(L).

The following information is not too hard to establish:

2.4. PROPOSITION. 1) The map jh}—» j(L) : m(L) —% M(L) is
a well-defined poset isomorphism with A} jA:'M(L) — m(L)
as its inverse, where jA is defined as in 1.2.

- 2) If the <<-relation is multiplicative,
then m(L) and M(L) are continuous Heyting algebras.

' 3} If S and T are in CH* , the category of
continuous Heyting algebras and CL-maps preserving the spectrum, and
if £: 8 = T is in CH*, then for each A in M(S) we have f(A)
is in M(T), and if we define M(f): M(S) -+ M(T) by M(f)(A) = £(A)
then M(f) is a CH* -mép. Moreover, M: CH* - CH* is a functor.

4) The lower adjoint of M(£f) is given by
M(EP (A) = £71(a).
Proof. We discuss a portion of 2) and 3) only; the remainder is
straightforward. .
2) Recall from 1I-2.16 that there is a Scott continuous kernel
operator k : (L,L) + (L,L) whose image is [th L] and is defined
by k(£f)(x) = supf(&x) for all £ in (L,L) and x in L. We show
that when the << -relation is multiplicative the restriction of




k to J(L) , the continuous Heyting algebra of modal operators,

carries J(L) to M(L). Therefore, M(L) is a continuous lattice
and a Heyting subalgebra of J(L) since finite infs are the same

in J(L) and M(L). .

To see how this works, suppose j is in J(L), then we must
show that k(j) is a closure gperator since I- 2.16 makes it clear
that k(j) is Scott-continuous:

i) For the inflationary property, x < k(j)(x):
If y is in ¥x, then y < j(y) < j(x) so

x = sup ¥x = sup {y |ye¥x } < sup 1j(y) |ye§*/?c}= supj (¥x)= k(j)(

ii) For the idempotency, k(j)2 = k(j): |
k(k(3)) () = sup(¥k(3)(x)) = k() (x), since y = sup¥y.

1ii) Now if the <<-relation is multiplicative,'we show k(j) is a
modal operator for a modal operator j.
' We calculate

k(i) (xy) = sup j(¥xy) = sup j(¥x ¥y) = sup j(¥xIi(¥y).
But by 0-4.2 this sup becomes '
sup F(¥x)I(¥y) = sup F(Yxsup F(¥Y) = k() () k() (x) -

3) We must show that for A in M(S) we have £(A) in M(T).

From 1.2 we know that £(A) is in C(T); it remains to show that

Spec £(A) =Spec T. Let q be in Spec f(A), We consider the
restriction and corestriction g: A +f(A) of £. This is a
surjective CL-map, and there is an a in A with g(a) = q. Then

by THE NEW LEMMA (see SCS Hofmann Watkins 5-30-79) there is a
~prime p in Spec A with a < p and g(p) < q. Then q = f(a) <£(p) <q.
Thus g(p) =. gq. But Spéc ASSpec S since AeM(S), and so pe Spec S.
Now q = g(p) = £(p). But ¥(Spec S) & Spec T since f e CH*. Thus

q £Spec T as was to be shown. []

It seems reasonable to expect m(L) and M(L) to be continuous :
Heyting algebras without the added restriction of << being multipli-

cative but a proof is lacking at present.




2.5.LEMMA. The restriction np:M(L)—-> L of the CL-morphism

m;:C(L) —> L (given by n;(A) = min 4) is a CH-morphism.

Proof. We show that the adjoint of ng preserves finite infs:
But (fx)(fy) = fxy by distributivity, which proves the assertion.[]

It now follows that n; maps Spec M(1L.) into Spec L. We now
determine Spec M(L).

2.6.LEMMA. Iet A @ M{(L). Then A G Spec M(L) if A = [a,1)
with a € Spec L; and if A @ Sepz Spec M(L), then min A € Spec L.

Proof. Since M(L) is distributive, A & Spec M(L) 1ff :a = min A }
and A is irreducible in M(L), iff BC = A implies B=A or C = A
for B,¢ « M(L). Clearly fa,1) is irreducible. Now assume that

A is irreducible. ILet muxm a < a' & A.Wﬂr
P-4 h] '.-.- Ly - X .!_

—3 Ao K

m P |
L5 =

—l T

If a = mindwere nd irreducible, then a = bec for some b,c > a, and
thus A = (AnTo){(Anfc) with A $+ An%tp , AnTe, and this
is impossible, since An fb, Aa tec < M(L). Hence a € Spec L. ]

At this moment we do not yet know an example of a continuous
ner Heyting algebra S such that 1) O € Spec S, 2) S has more than

2 points, 3) S < IRR M(S).
‘Iet us look at the hull-kernel topology on Spec M(L) The closed
sets are precisely the hulls.Hence:

2.7. LEMMA. The closed sets in Spec M(L) are precisely ‘the
sets given via an arbitrary B € M(L) through

h(B) = { A & Spec M(L): &4 C B].

Since all A < Spec M(L) with A = (min A,1) = max nL ; are maximal

in Spee M(L) ,their singleton closures are singleton, and XRex
all closed singletons in Spec M(L) are so obtained.f]

L
For a cHa denote with Max L C Spec L the set of all

maximal elements in Spec L; this set hay be empty. It conslsts
precisely of those elements in Spec L whose hulls are singleton.




in The hull kernel topology, Max L 1s always a Ty space. ¥Exraym
retedx In general it will not be sober. We have noted:

Max
2.8.0bservation. nLl Max M(L):y/M(L)—> Spec L is a bijective

continuous map from a Tl—space onto Spec L.

(In fact, Propositioﬁ'2.5 in "The spectral Theory of Distributive
Continuous Lattices,Homann-Lawson Trans.Amer.Math.Soc.246;(1978),p.

289 shows:
2.9.REMARK. For a cHa L a set_A C Max L 1s closed an Irreducible

1ff A = =3 1x » Max I, for some x & Spec L, such that
x = inf fx A Max L. |

In particular, if Max L is order generatling, then
A C Max L is closed irreducible iff x££ it is a hull of an element
in Spec L. Consequently,in this case, Max L is sober iff Spec L
= Max L, and 1f L 1s a continuous Heyting algebra, this then means
that Max I is locally qQuasicompact sober and Tl.)' '

' The functor M: gg?L—>-g§f 1s a self functor to which . ‘te—
wxteh the Scott process along the lines of Seetion 1 above appliles
as will be shown in Joneg's Dissertation. X At this point we would
1ike to obsdrve, however, that M fixes L (up to isomorphism)iff
Spec I, is Tl' More precisely: -

2.10.THEOREM. Iet L be a continuous Heyting algebra. Then the
following statements are equivalent:

(1) Spec L is T., i.e. Spec L. = Max L , i.e. Spec L is

1
and antichain in L.
(2) n : M(L) ——> L is an isomorphism.

Proof.(2) =>(1). By (2) the function induced by n on the spectra

> Spec L. By 2.8 thils means
Spec _

Max M(L) = Spec M(L) , and thus Max L = £pzze I . This is (1).

gives an isomorphism  Spec M(L)

(1) => (2): 1Iet A < Spec M(L), and set a = min A (< Spec L).(See 2.6
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(1) implies that a is maximal in Spec L; since L 1s continuous
and thus Spec L is order generating in I, this means that a

1s maximal in L\{1}, i.e. is a co-atom. But then A C fa = (a,1],
and thus A ={a,1]}. It follows that nL# Spec M(L): Spec M(L)-—>
Spec L 1s bijective. A closed set of Spec M(L) according to 2.7

is of the form -

h(B) = {{a,1}: a € Spec L. , a € B) = {{a,1}: a @ Spec B}.
Now let b @ B and suppose that b { q &« Spec L. Then, by the
NEW LEMMA , there 1s a p< Spec B C Spec L with b { p < Q.
However, by BZ® (1) we conclude p=q,i.e. q € Spec B. Thus
Spec 4B = Spec B, and thus 4B = B = 4b , where b= min B.

Hence

h(B) = { {a,1}: a < h(b)].
It follows that nLI Spec M(L): Spec M(L)})——> Spec L 1is a
homeomorphism, and thus ng 3 Es=g M(L)—> & L 1is an isomorphism
by Hofmann-Lawson .

By a theorem known in framed circles (i.e, among people who
look at cHa's for somg reason or another), the assignment which
assoclates with a cHa the cHa of modal operators TEErmxr=s 1is
Stationary precisely when L is a Boolea'amlgebra. The previous
theorem is the "continuous" analog of this theorem.

The dissertation of Bill - Jones will have more on the matter.

3) A study of Scottt!s function space construction
for continuous Heyting algebras: A preview.

Jones' dissertatlion will contain information on the functor
Funct: CL > CL , Funct L = [L—>L]{see IV -3,%) when

‘restricted to the category CH . Since this category is equivalent

to the category of locally quasicompact sober spaces and proper maps,
the question is hbw the 1imit construction translates into the
category of spaces vlia the spec-functor. This wlll be completely
elucidated in Jones' dissertation. As a first step the 1somorphism

gated for 1ts functorlal properties. Thils information will be
specialiced to the bi-functor (S,T) ——>[S—>T], and from there
to the Scott functor Funct I = [L—1)] . '

[Xx,=1L] ¥ X % Spec L given in the Compendium will be investi-




