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The Compendium touches upkn completely distributive
lattices in varlous places. As people get more and more interested
in continuous posets, completely distributive lattices will atbract
more attention in view of the close relation between the two.

The Compendium says almost nothing on completely distribu-
tive algebraic lattlces; perhaps the authors of the compendium
considered them too special to merit special attention, But in the
same vein, they correspond bijectively to the algebraic posets
via their spectral and -co-spectral theory. These have been studied
-in the context of programming,notably by Plotkin., ¥ Completely
distributive algebraic lattices also appear to play a role in the
domalns of algorithms of Nolin. Of course, there is a literature on
these lattices, but it seems anyhow reasonable to revisit them in the
light of continuous lattice theory. I offer some remarks in the followj
ing (and possibly in a subsequent ) memo. ‘

" My original motivatinn stems from my desperate efforts to
understand Nolin's domainsg of algorithms as axlomatized in the thése
of Nalt-Abdallah,but I have not succeeded with that. However, I think
that before one can settle that issue in a way satisfactory to the
SCS semilnar, one would have to cover some of the theory T want to
discuss. . ! |

Let me remark that I have a terminological difficulty., A
goodshort name 1s wanted for completely distributive algebralc lattices,
This name is too long. The loglcians have called them Kripke'models,
we have also called. them distributive bil-algebraig lattices. In the
meantime I callthem baHats (Q;-g;gebraic Heyting glgebras).



1. Complete irreducibles revisited.

In view of what I want to m® say later, I propose to take
a second look at complete irreducilbles which are Intrduced on
p. 92 {of the"@ompendium"- all references which are not specified
are made to the "Compendium"). In an earlier version we alsoc W&
kxk talked about "complete primes”,but then we gave up on them,
seemlngly because we had no real need for them.,

I think that the need will arise in the near future. A lot
of thinking will go into more spectral theory and notably into
the study of continuous posets. We have a pretty good ldea that
studying continuous posets means studying completely distributive
lattices and vice versa-thanks to JB.Lawson's theorem (p.241,p.265)
and to Hyphen-Hoffmannts advocating continuous posets 1n general
fopology. I have the impressiong that in the @ompendium completely
distributive lattices are generally treated as an rather narrow
special case of continuous lattices and as a matter of historg,by
and large. It would not surprise me i1f the connection between
continuous posets and completely distributive lattices would lead
to a renaissanée of completely distributive lattlces. For the
moment, the precise correspondence between completely distributive
lattlices and continuous posets in its full functorial aspects
1s still a project for the future; Jaime NiRfo is likely to have
something to say about that Xk in his dissertation.

If we look at completely distributive algebraic lattices we notice
th&t they are not even mentioned in the compendium (or are they?).
The compendium apparently treats them even more as a curiosity than
completely distributive lattices themselves. Once agailn, the
literature has much information on these, but nothing of substance
appears to be on record on their relation to continuous poset theory.
They relate,of course, to algebraic posets. These have been looked
at by Plotkin in the context of certaln programming situations; this
topic does not seem to be cleaned out either. The domains of algorithms
by Nolin are based on completely distributive algebraic lattices, and
Batbedat's studies on monogenetic spaces have led him up against
completely distributive algebraic lattices,too. I therefore think
that a few things here and there should be addressed by SCS when it
comes to ‘completely distributive lattices,respectively, c.d.algebraic '
lattices. I wart to make a few observations which pertain to the
latter and which make reference to the forthcoming ThEse d' Etat



of Areski Nait-Abdallah.

1,1LEMMA. Let I, be a complete lattice and p € L. Then the following
statements are equlvalent:
(1) There is a (unique)element p™ > p sueh that {p

(p} v 1p™.
¥

(2) p < 1 and for each subset X C L the relation p éz; X

implies p « X,

Also the following statéments are equivalent:
(I) There is a(unique) element p* { p such that L = &p u Ap*,

(IT) p < 1 and for each subset X C I the relation égﬂ‘x <p
implies p < 4X.

(III) P € Wi R K(LOP) N Spec L.

Remark. The unlon occurring in (I) is clearly disJoint as a consequence
of p* ¢ Jp . |

x

Proof. (1l)k <=>(2) 1s used widely in I-4 and (I)<=>(II) is Just

as easy to see, '

(I) and (II) => (IIT): p< Spec I i1s clear from (IT). Condition
(I) tells us that TLop p = Jp 1s  &(1°P)-open in 1.°P,

whence p & K(L°P).(See p .85,I-4.2.)

(IIT) =>(I): From p € Spec L we know that I, \ ‘Lp is a filter,
and from p € K(I°®) we derive that L\ ¢p = L~ 4 opP 18
L

E?(LOP) ~c¢losed in L°p, and hence, after the preceding, 18 a. .
Seott closed ideal in I°P, Hence 1t has a maximal element p*/in 1°P,
This yields (I). [J

1.2,DEFINITION. a) An element p € L satisfying (1) and (2) in 1.1
is called completely irreducible (p.92, I~ %4,19) and the set of
all complete irreducibles is called Irr L.

b) An element p € L 8atisfying (I),(II) and (III)
is called = completely prime. The set K(I°P) A Spee L. of all
complete primes will be abbreviated ©6*(L), and the set @I- :
K(L) ~n Spec 1°P of all gomplete coprimes will be abbreviated 6,(L).(

1.3.Notatlpn. If pe ©,(L) then there is a unique element ©*(IfR)

which we will again call p® such that L 4 is the dijoint union of
Jpﬁ and tp. O



1.4 PROPOSITION. The functifns pl—> pt: 0%(L) UG, (L)->6%(L)ue, (L)
1s an involution mapping ©*(L) bijectively onto 6,(L)(and vice versa).
Proof.Clear.[] '

Thus complete primes and complete coprimes appear togetheg,or not
at all. Nait Abdallah calls complete coprimes "éléments atomiques"
They combine the properties of being compact witkk and being » coprime,

When are complete irreducibles completely primem ?

1.5. PROPOSITION. Let L be a complete lattice. Then ©*(L) C Irrfl L

and p+ =DV ﬁ*. If LOp is a cHa (i.e., 1f L is Join-continuous
and distributive(p.31,0-4,3)) then O0%(L) = Irr L ,and Eﬁ p°=(p*%ﬁypp),

‘Proof. Firstly, if p € e*(L), the element p$ =PV po satisfies the
requirements of 1.1(1), , |
Secondly, suppose that LOp 1s a cHa., Then the element
*_o F - + -
p*=(p =100 p) is exactly max, op (x| xz\Lop P Sop P } =

min (x| x v p > pt) and this is clearly mig[g]x i p} .
(One may of course use join*continuié?fggﬁaérkﬁg 1.1(II) from
'-1-.1(22fl but this would still leave you with the task of determining

* uvatlionally given +
P~ as anfunction’of p and @ p’ (and thus of p).)

In order to have complete symmetry such as is indicated by 1.4
they right class of lattieds for the ©% -8, theory 1s that of
all I which are cHa's such that T°P is also a cHa,in other words
the class of meet and Join continuous distributive lattices. .
E¥E=xdmgsxkxts] In this class we have Irr [ = ofL) and Irr(LOP)ze*(L).
This EX® brings us near completely distributive lattices,but not
quite., We have continuous lattices whieh are Join continuous but
which are notcompletely distributive (see/316 rf. ,pp329 rr.).

Recall that a set X €L is order generating iff x = inf(TxruX)

for all x (p.70,3.8).The following must be on record somewhere,but
I do not know where.

1.6.THEOREM, Let L be a compdete lattice. Then the following are
equivalent:

(1) o%(L) 1s order generating.

(2) ©4(L) is order generating in ICP (every element is the sup



of complete coprimes. )

(3) L is a completely distributive algebraic lattice,

Remark. For condition (3) we have numerous egulivalent statements
which parallell p.72, I-3. 15 ,pp 317 ff.plus all those skatements
whlch are in the literature,e, g. the following:

(%) The SUPA INF morsphisms I—> 2 separate the points.

Proof. (3)=>(1). By p.93, Irr I is order geneﬁating; by p.72,I-3.15,
the hypotheses of 1.5 are satisfied, and so Irr L = O0%(L),
Next we note that (1) is equivalent to the following

(*) For any palr of elements in L with x* { x there is
a p&o*(D with x < p and x*{ p.

Evidently, thils condition 18 equivalent to
() For any pair of elements in L with x* { x there is
a mmam p* @ 0,(L) with p#* < x* and p* ¢ x,

But this condition 1s equivalent to (2). Thus (1) and (2) are
equivalent. '
(1) => (3): Quick proof: Buy that (3)<=>(4),and note that
(1)>(4) is immediate, B
Proof within the Compendium: From (2) we know
that x = sup(¢xr1 B 6,(L)) < sup ( Jx n K(L)) < x by 1.2b. So
I, is algebraic,hence continuous.By I- 3,15 we know that I is

completely distributive, since Oy (1) ,hence the set of coprimes 1is

order-cogenerating,[] Me: e have i ?%“Pm“d @ L0, O (o euivalbue
I Cied with, (3).
1.10,DEFINITION. The lattices characterized in Theorem 1.9 will

be called bi-algebraic lattices or bizm-algebraic Heyting algebras
(baHa), O S o bnformnczion o these wos grvew i #Ms Duatiry (LNM 335).

1.11.PROPOSITION., Let L be a baHa. Then & Spec L°P 1z an algebraic
poset in the induced order with K{Speec L°P) =o,(L). Dually,

(Spec L, > ) 1s an algebraic poset with K{(Spec L, >)) = e%(L),
Proof.By Lawson duality (p.241) we indicate only the first part

of the proof.By p.24l we need only show K(Spec L°P) = 0, (L).

From 1.2b the containmeri‘_:_ is clear, Let k € K(Spec LOP). Then

Tspec rop k 1s an open filter U in Spec L°P. Then TLk-= 17 1s

an open filter in L by p.24%1,v-1,11. Thus k &€ K(L) A Speec L°P =g (L).



1.12.THEOREM. ILet L be a complete lattice and define

O (L)

g: L-;-zg*‘l') by g(x) = ‘ane*(L) and d: 2 —3> T, by

d(P) = sup P. Then we have the followlng conclusions:

i) (g,d) is a Galois connection.

ii) g is a SUPa INF -map.

i11) The image of g 1s the complete sublattice/of all lower
sets of 0,(L).

1v) The image of d 1s the set (x € L] x = sup(¢xr\9*(L)).

v) g 18 injective iff 4 is surjective iff I. ig a baHa;
in this case g:I—> T 1s an isomorphism with d[T as lnverse.

Proof, i) d(P) < x means sup P < x and this is eguivalent to

P C Jx n 0,(L) = g(x). |

1i) By 1) we know that g 1s an INF.-map., Now let X C L.
Iet p « ©%(L). Then p € g(sup X) 1ff p < sup X Iff p € ‘LX
(by 1.1(II)) iff p < U{in\O*(L)= x € X} = sup g(X).

iii) If P 18 a lower set In 0,(L), then gd(P) = ‘!,sup Pn 6,(L)s
we Just saw that a p € 6,(L) 1s 1in J sup P iff p < ¢P . but

JP a0 (L) =P. So gd(P) =
iv) Clear,
v) Clear from 1.6(1),iv above and p.21 ,0-3.7. []

Of course, the lower sets on 6,(L) are the open sets of an A-
discrete topology. These are the Kripke models. Conversely,

every Kripke model is am baHa, One will notice that in our
tables on pp.268 and 269 (this 1s where they will be in the
book!) the Kripke models appear opposite completely distributive
lattices in which Spec 1P = 0,{L): In these tables we have

a B8 different correspondence between cHa's and spaces,namely,
the one given by Spec and 0, For the Kripke models, the one
1n}.12 is simpler. I leave it to the next man to elaborate on all

of this, Of course there are connections to several papers by
Hyphen-Hoffmann,notably [1979¢].



2. The "normal" morphisms of Noliln/Nait.

2.1.DEFINITION. (Nolin,Nait). A function f:S—>T between two baHa's
is called normal iff

S
f{x) = sup f(m fowo*(m)) for all x € 8. [

By p.112 ,II-112(5) we know that every normal function is
Scott continuous. In fact we will observe more:

2.2,PROPOSITION. Let S,T be baHa's (Kripke models). Then a function
fi3 >T 1s normal i1ff f & SUP(S,T). s

Proof, 1) Suppose that f is normal and let X C L, Setm = sup X and
defined g as in 1.12. Then we have f(sup X) = f(%) =

sup f($g(\9*(L)) (by 2.1) = sup fg(R) (g by def.of 2)

= sup fg(sup X) = sup £(Ug(X)) (by 1.12% = gup U fg(X) =

SUpy « y Sup fg(x) = SUP, v SUP F(Jxn 0u(m)) = SUp, oy T(x)

(by 1.6(1)) = sup £(X). g
11) ' Suppose that f GESUP(S,T). Then f(x) = £(sup( Jx 0 o%(m))

(by 1.6(1)) = sup f(&xm 0,(B)) since f preserves sups, So f is
normal by 2.1.[]

2.3.COROLLARY/. f:3—>T is normal 1ff 1t has an upper adjoint
y
ir—s. The upper adjoint is co-normal,i.e, ?{m) = inf F(1xn o*(T)).

Proof. The first assertion 1s a consequence of 2.2 and SUP-INF-
DUALITY (p.179, 1.3). Then second assertion is just the dual of 2.2.[]

2.%.PROPOSITION, €ZXB ILet S,T be baHa's and d:S—>T a Twer adjoint
of g:T——>3, Then the following are equivalent:

(1) a(0,(s)) ¢ g(1).

(2) g is normal,

(3) & is a complete lattice map (g € SUPA INF)
Furthermore,the following are equivalent:

(1) glox(r) C ox(s).

(11) d 1s a complete lattice map.

Proof, We know (2)<=>(3) by 2.2, The proof of (I)<=>(II) is dual
to that of (1)<=>(2). |



(1) => (3) (i.e. g preserves sups). Let Y CT. We alwags have

sup g(Y) <gfup Y). Assume that < holds. Then therewould be a

p € 6%(L) such that sup g(¥) < p and p* < g(sup Y). Then
second inequality means d(p*) < sup ¥. By (1) and 1.1(II) there

is a y € Y such that d(p*) <y, 1.e. p* < g(y). Then p* < sup g(Y),
and that contradticts sup g(Y) < p.

(3) =>(1) . Let q € 6%(T) and inf X < g(a). Then d4(inf X) < q.
But d(inf X) = inf d(X) by £$3 (3), and so d(x) < q for some x € X.
This means x < g(q).This shows g{q) « o*(S).(J

Jaime Nitlo will develop a duality theormy between algebraic posets
and baHa's with complete lattice maps as morphisms based on this
set~up.
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2.5, LEMMA.i)ILet X be a topological space obtained from

a continuous poset by taking its Scott topology and let L be

a completely distributive lattice. Then [X,¥L] is a completely
distributive lattice. If X is obtalned from an algebrale poset and

L 1s a baHa, then [X,$ L] is a baHa.

Remark. These condlitlons are also necessary.

Proof, We invoke p.264,V- 5,20 and p.24%1, V-1,10 and p.265,V-5.23,
From V-5.20 we know that Spec [X,2L] = X = Spec L. In the specialil-
sation order; (X x Spec L)is a continuous poset if QX is a continuous
poset and L is a continuous lattice. Then [X, 3 L] is a

completely distributive lattice by V-5.23 in view of the general
spectral theory of continuous lattices. The second part of the

ILemma 1s proved analogously.{]

(Does anyone know an elementary proof for this Lemma?)

2.6, COREOIJARY. If S and T are baHa's , then [S——f>T].is a baHa.
In particular, the functor EFXEEX Funct of p.218, IV- 3.18 preserves
baHats,

Remark. In the same vein, completely distributive lattices are pre-
served. []



2.7.COROLLARY. Let L be a baHa. Then so is Funet L. (p.232,IV-4.12).
krewfyx Remarkm. The analogous statement holds for completely
distiibutive lattices.
Proof. Completely dlstributive lattices form a complete category
relative to INF~ SUP maps on account of the equational definition
of completely distributive lattices (p.59,I-2.%4). Since AL is
a complete category, we conclude that baHa's form a complete
category relative to INFASUP maps. By p.231,IV- 4,11, the
fixed point construction giving Funet I does not lead outsilde
this category. Hence Funct™ L is a baHa.[)

[85T1 [S—sT]
Iet S,T be baHa's. Define k:[Aa->H]>[h—>A]
by (kf)(x) = g§§§§§§§§§§ Sup f(ixrﬁ 0,(S)). Then k 1s a B Scott-
continuous kernel operator, whose image is SUP(S,T) , the set
of normal maps S—>T,
Proof: Routine. []

R¥YX This shows, that SUP(S,T) is a continuous lattice. We would
l1ike to show that 1t 1is a baHa.

2.9.LEMMA, Let S,T be baHa's. The function
(ps0) F==> s\ p Y onstyr 0x(S)x (1) —> 0%(sUP(s,T))
is a well defined bijection, awsl G*(SUP (5,T)) % oroter geunzading,

Proof., We write p#q = )is\‘4p v constq; i.e. (p#a)(x) =q if x <q
and = 1 otherwise,

Firstly, we show that p#q 1s well-defined,i.e., that p#q is

completely prime in SUP(S,T). Suppose that fj is any family in

SUP(S,T) and that inf fJ < pia.

Case 1. x < p: then inf f.(x) < (p#a)(x) = q, and so there is some &
S 0069 PSS j(x) such that £ x (x) < q.

Case il. x { p: then (p#q)(x) = 1, and thus fj(x) < (p#q)(x)

for all J.

Now we have Qﬁi{?g%@m~

have x < p = fj(p)(x) < fj(p)(p) < aq = (p#a)(x) and also x ¢ p =>

E4 fj(p)(x) < (p#q)(x) by Case ii. Thus f < p#a. This shows that

fj(p)(p) < 4.By monotonicilty we

J(p)



Next we show that ©,(S) # ©%(T) is order -generating in SUP(S,T).

Let £:5—>T be normal. We note that (Fla)#a)(x) = q if x S_?(q)

1ff £(x) <, and =1 if £(x) ¢ a. Thus Pla)#¥a > £ for all q.

Now we set F = inf{ F(a)¥q : q@ < 0%(T)}. Then f < F. Suppose

that there were an x with f(x) < F(x). Then there would be a g& 6*(T)
such that f£(x) < q, but F(x) { q. But £(x) < q implies

F(x) <(f(a}a)(x) = q, a contradiction, Thus f = inf{f(a)}¥ a: q & 6*(T)
Finally, if s € S is arbitrary, then s = sup(Js n o.(s)).

Thus s#q = Iinf {(p#a| p < s, p € 0,(S)}:Indeed if x © S, then

x < s implies (s#q)(x) = g on one hand and /énf fofa) (x)] s >p= QJS)}

< inf (pfa(x)| x® > p <« @R 0,(S)} = g ; however, if x { s , XEB then

(s#a)(x) = 1 on one hand and inf {(p#q)(x)| s > p € 6,(3)} =1
on the other, since s > p and x { s implies x ¢ p, and 50 (p#a)(x)=1.

Thus f is the inf of elements B p#q with p € 0,(8) and g  o*(T).

Now ©*SUP(S,T) C Irr(SUP(S,T) C 6,(S) # o*(T) by p.92, I~ 4.20,
Thus the function # is surjective; it is clearly injective.lZEZdl t}

2.10,THEOREM, ILet S and T be baHa's. Then SUP(S,T), the lattice

of namal maps from S to T 1s a baHa,and 0*(SUP(S,T)) is isomorphic
to 0,(S) X o*(T).

Proof, This follows from 1.6 and 2.9, L}

EXERCISE., Verify that the isomorphism of 2.9 and 2,10 respects

the xﬁ%ﬂ%gﬁﬁﬁg poset- and thus the topological structure.

(Hint.: Show that # is decreasing in the first argument, increasing
in the second relative to the induced order structures; in the
second argument and the range, the induced order is opposité to

the algebralc poset (= speclalisation) order. Then use p.265,
V-5.23. [

2,11COROLLARY. If S and T are baHa'a , then so is S@® T.
PTOOf. 2.10 a.nd p.lge,IV—-l.}-i-q-. []

Turn to p.218, IV-3,18 in the case that L is a =k¥=x baHa,If g:S—>T
is a complete lattice morphlsm, then Funct(g)(?)mg§>g preserves
sups for fDG SUP(S S Y; since g preserves gups as a complete

lattice morphism. Thus the functox¥§§£§§§§ygi332$x_;iﬁﬁ




- 10
Funct:INF1 —_ INFT induces a & self functor Sh:f+>_SUP(S,S)sEﬂmfs

on the category of baHa's wlth complete lattlce morphisms. Call
this functor Funet, . The Scholium IV-4.9 on p.230 applies
because of IV-4.11 on p.231, We therefore have the following

2.12., PROPOSITION. If L 1s a baHa, then so is Funct, L. Moreover,
Functb L is'naturally lsomorphic to the space of its normal
semlf- functions. There 1s a commutative diagram

[Funet™ I, —> Funet L] ———EL—> Funet™ I,

(V)]
SUP(Funct™ L, Funet™1.)

SUP(Funct:L, FuneH:L) — 'Functb“’L .[]
Further elucldation of this situation is to be expected in
Jaime Nifio's dissertation,

I conclude this section with some further remarks on the
function # which we have used in the proof 2.9, But first we define
this funetion on a larger domain:

: ) fou.r:hh lalirees
2.13.DEFINITION., Let S,T be {IZEF*s. Define #: 3 x T-——-l; SUP(S,T)
by  (s#t)(x) =t for x < s and = 1 otherwise,
- Note that # is well-defined.

2.14. PROPOSITION. The® function #:5°P x T-;%T) is a SUP-REER

?ap. Tts upper EIRRIEmED adjointa A T oIy SUP (S, T )—> SOpr
5 .
X’ given by  U(f)= (sup f"l(T‘\[l]), f(0)). EX® Moreover, the

function # 1s EXXI=x? an INF-map in each variable separately,
The lower adjoint of a# + 15 f|—=> f{a) , i.e. f < a#x 1irff
£(2) < x, and the lower adjoint of .#b is fl—> P(v), 1.e.

fF<x#b iff '?(b)@zx , Wheve ?.:. %aupp-erqegf'aﬁ,/of. f

Proof. i) s#t < f means (x <8 = t<f(x)) and (x &s => 1< 7(x)),
and this 1s equivalent to f£(%s) ¢ 1t and f(S\\Js) {1}, which means
t < £(0) and 101 - -1

< )23\‘13 sl.e, JSES\f (1) = £7 (TN 1))

i.e. sup f'l(T'\ (1}) < s.

]

i

11) f < a#x means f(Ja) g’&x sl.e. f(a) < x., Secondly,
£ < x#b means £([x) C Jbsl.e. m,i.e. x < Nw). ]

| (x> <b [/
This must be linked with the tensor product 3 la Shmuely ~Bandelt.



