SEMINAR ON CONTINUITY IN SEMILATTICES (SCS) | NAME: | Karl H. Hofmann | DATE | M | D | Y | | |-------------|-----------------|------|---|----|----|--| | | | | 2 | 29 | 80 | | TOPIC: CL-projective limits of distributive continuous lattices are distributive REFERENCES: Compendium IV-3 Gaskill, H.S. , Classes of semilattices associated with an equational lattices, Can. J. Math. 25 (1973), 332, 338 Hofmann, K.H. and J. Thayer, Approximately finite dimensional C*-algebras, Dissert.Math. 1980, to appear. Hofmann, K.H. et al. SCS 51 (30-5-79) and SCS 52 (11-6-79) The spectral theory of C*-algebras led us to consider the category <u>HL</u> of continuous Heyting algebras with <u>CL</u> -morphisms as maps. Thus <u>HL</u> is a full subcategory of <u>CL</u>. The category <u>HL</u> is clearly closed in <u>CL</u> under the formation of arbitrary products, but it just as clearly fails to be closed under the simplest forms of finite limits, namely, subobjects: The non-distributive five element lattice is obviously a subobject of 3^2 , where 3 is the 3-element chain. Thus $\underline{\text{HL}}$ is not complete in $\underline{\text{CL}}$. I believe it has escaped our attention that nevertheless $\underline{\text{HL}}$ is closed in $\underline{\text{CL}}$ under the formation of projective limits. I want to point this out here and state: THEOREM. Within the category \underline{CL} of continuous lattices and maps perserving arbitrary infs and directed sups, the full subcategory \underline{HL} of all continuous Heyting algebras is closed under the formation of (arbitrary products and) projective limits. Proof. a) The category \underline{S} of all semilattices with identity and identity preserving morphisms has the property that the full subcategory \underline{S}^d of distributive semilattices is closed under the formation of direct limits in \underline{S} . This was shown by Gaskill,loc.cit., and I gave an independent proof in the paper on AFC*-algebras. By the duality of the category \underline{S} with the category \underline{AL} of algebraic lattices and \underline{CL} -maps (Compendium p.184) and the fact that an algebraic lattice is an algebraic Heyting algebra iff the sup-subsemilattice K(L) is a distributive semilattice this observation shows that the assertion of the theorem holds for algebraic lattices. (In fact in the AFC*-paper it is pointed out, among other things, that an algebraic lattice is a Heyting algebra iff in \underline{AL} it is a projective limit of finite distributive lattices.) b) The ideal functor Id: $\underline{CL} \longrightarrow \underline{AL}$ preserves projective limits by Theorem IV-3.23 on p.221 of the compendium. Now let $(L_j,f_j,j_k;j_k,\epsilon,J)$ be an inverse system in \underline{HL} , and set $L=\lim_j L_j$ in \underline{CL} . We must show that L is distributive. Now (Id L_j , Id f_{jk} , $j,k\in J$) is an inverse system in \underline{AL} . Since all L_j are distributive, so are the Id L_j . By part a) above, $\lim_j Id L_j$ is distributive. But since Id preserves projective limits we have $Id L\cong \lim_j Id L_j$. Thus Id L and therefore L is distributive. Q.e.d. In the light of the functorial spectral theory on \underline{HL} which was detailed in the SCS-memo of 30-5-79 of myself and Watkins, where we show the equivalence of \underline{HL} with the category \underline{LOC} of locally quasicompact sober spaces and proper multivalued maps mapping points to closed sets, it is then clear that the category \underline{LOC} has projective limits. The techniques given in that memo suffice to calculate them explicitly once one knows the theorem above.