

	TT = -	זו עו	3 W	77 - d Ti		DATE	М	D	Y	
NAME(S)	Hofmann	V •U •	und A.	vermer	<u> </u>		10	26	80	

TOPIC On a question of O. Wyler

7. G. Gierz et al.: A Compendium of Continuous Lattices
2. Hofmann K.H. and I. Watkins: A review of a theorem
of Dixmier's, SCS-Memo 49, 11-30-78

3. Wyler O.: On continuous lattices as topological algebras, Preprint

4. --- : Algebraic theories of continuous lattices

In his paper [3,4], 0. Wyler raises the following question: Let L be a lattice with 1; then the ideal lattice Id L is an algebraic lattice with an isolated greatest element. The set Spec Id L of all proper prime ideals is then Lawson-closed, hence compact in the Lawson topology which equals the patch topology. We write $\operatorname{Spec}_p L$ when we consider the spectrum with the patch topology. Let $\Gamma(\operatorname{Spec}_p \operatorname{Id} L)$ be the continuous Lattice of all closed subsets with bespect to union. We define a map $D: \Gamma(\operatorname{Spec}_p \operatorname{Id} L) \longrightarrow \operatorname{Id} L$ by $D(C) = \bigcap C$ for any closed set C of prime ideals. Wyler notes that D is surjective iff L is distributive and asks:

QUESTION. When is D injective?

He observes:

REMARK. If L is a Boolean algebra, then D is injective.

In this Note we want to indicate that, for distributive lattices, the converse also holds.

In the following let S be any complete lattice and Spec S the set of all prime elements $p \neq 1$ of S . There is a natural map from the powerset of Spec S into S:

$$k: \mathcal{L}(Spec S) \longrightarrow S$$

$$A \longmapsto \inf A .$$

Conversely, there is a map from S onto the collection (Spec S) of all hull kernel closed subsets of S:

h:
$$S \longrightarrow \Gamma(Spec S) \subseteq \mathcal{L}(Spec S)$$

 $a \longmapsto \uparrow a \cap Spec S$.

LEMMA 1. k(A) = k(B) iff h(k(A)) = h(k(B)) i.e. iff A and B have the same hull kernel closure.

CONSEQUENCE. Let λ be a topology on Spec S finer than the hull kernel topology and $\sqrt{\lambda}$ (Spec S) the collection of λ -closed sets:

- (1) The restriction of k to Γ_{λ} (Spec S) is injective iff λ coincides with the hull kernel topology.
- (2) If \searrow is T_1 and if the restriction of k to \int_{\searrow} (Spec S) is injective, then the hull kernel topology is T_1 which implies that Spec S is an antichain.

<u>LEMMA</u> 2. Let S be a continuous lattice such that Spec S $v\{1\}$ is Lawson-closed. Then the Lawson topology coinci des with the hull kernel topology on Spec S iff Spec S is an antichain.

Proof. ==> is clear as the Lawson topology is Hausdorff on a continuous lattice. \Leftarrow ==: It suffaces to show that, for every a in S, the Set Spec S\\\\^a\ is \qquad hull kernel closed. For this we let b = inf A where A = Spec S\\\^a\ , and we show that h(b) = A . Indeed, let $p \in$ Spec S be such that $q \geq b$. By THE LEMMA there is an element s in the Lawson-closure of A with $q \geq s$. We have $s \in$ Spec S , as Spec SU\{1\} is Lawson-closed. Thus q = s, as Spec S is supposed to be an antiphain. As S\\\^a\ is Lawson-closed, we finally $q = s \in A$ \\\\^1\._1

In a distributive continuous lattice, Spec SU $\{1\}$ is Lawson-closed iff \ll is multiplicative. Thus we have:

PROPOSITION. For a distributive continuous lattice S, the following are equivalent:

- (1) \ll is multiplicative and every prime is maximal.
- (2) Spec S \cup {1} is compact in the Lawson topology and $k : \Gamma_{\lambda} \text{ (Spec S)} \longrightarrow S$ is injective.
- (3) S = O(X) for some locally compact Hausdorff space X .

COROLLARY. For a distributive lattice L , the following are equivalent:

- (1) D : $\Gamma(\text{Spec}_p \text{Id L}) \longrightarrow \text{Id L}$ is injective.
- (2) L is quajs-Boolean, i.e. every principal ideal of L is Boolean.

Indeed, a distributive lattice is quasi-Boolean iff every prime ideal is maximal.