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1. Locally convex semilattices.

We consider semilattices which we tentarively call locally convex; in order

not to commit ourselves roo such we will simply speak of L semilattices,

1. 1.DEFINITION . An k-semilattice is a semilatrice § with identiry § and with
a topology 0{S) which is linked with the semilattice structure as follows:

i) All U € 0(S) are upper sets.

ii) 0{S) has a basis of filters (i.e. 0(S)n Filt § is a basis of 0(5)}).
A morphism of L -semilattices is a continuous semilattice morphism preserving

identities.

Of course L denotes the category of L —semilattices and L-semilattice

e ephisms, O

1.2.EXAMPLES, 1. Every semilattice with identity is an L-semilattice w.r.t. the

indiscrete topology. This is not a particulalrly interesting one, and all the
more interesting L-semilattices will have a Holnovo:mw. but for the moment we
do not demand this. '

2. Every semilattice with identity is an .—h|mm5m.~mnnmnm w.r.t.
the Alexandroff-discrete topology o¢{5) which consists of all uper sets. .
This gives the finmest L-semilattice structure which a semilattice with identity
can carry. In particular, che distinguished semilattice 2 =[0,1] has one and only
n:.“.anmESmnnmnm structure, We denote (5, o(S)) with AS.

3. Let § be any up-complete semilsttice and let ¢@{S) be the topelogy
gencrated by all Scott open filters. Then (S, ¢(S)) is an L-semilattice. If §
is continuous, then u&mu = ©(5) and the topology %Amv is T . We denote Am.ﬂnm:
with $5.0

i.3. REMARK, The assignment A is a functor from the category of all semilattices
with ideptity into L, and ¢ is a functor from the category of up.cemplete
sermilattices and Scott continuous semilartice morphisms preserving identities into

L. Both are left adjoints for the respective grounding functors. (]

Now let S be an L-semilattice. We consider the ser §* = L(5,2) and observe

e S s s . .
that it is a subset of u_ _. It is closed in the algebraic lattice 2

pointwise multiplication and pointwise directed mcvm.dmmomwmo_omm of 2

generated by open filters, and hence so is the induced topology on S* .,

LX)

Thus if we equip S* with the pointwise inf and the induced topelagy from the -

Scoutt topology of 2 5 y then 5% is an L-semilattice. The tcpology on S* is called *-

topology.if fi5——T is a morphism of L-semilattices, then the morphism [*:T*—5%

of semilattices with identity which we define by f*(x) = o £ Is continuous

s
w.r.t. the *-topologies. Hence #*:L——, is a contravariant {unctor. i M

1.4, REMARK. The category L is selfadjoint on the right via the functor *.
Specifically, there is a natural isomorphism L(S,T#)= L(T,8%) vhich is
implemented as follows:If f:S—-+T* 1is an arbitrary L-morphise from S to T* , the -
the morphism £': T S* given by £°(£){s)=f{s}(1) is che unique one r.:.mn_a

s 5, cu

, | m/"/. Hm;

T#* *

makes the diagram

comnutative, where Mm is the front adjunction which is given by &nm:M vu\anmv

] mE.Hm s+, [}

This is fairly routine. Our interest will of course concentrate on specific
properties of the dual S* and on conditions on S vhich would ensure thar 75

is an isomorphism. In this case we would say that § had duality.

1.5, EXAMPLES. 1. If § is an L-semilattice far which ¢(8) is indiscrete, then

S$* is singleton.

2. If §is am arbitrary semilattice with 1, then (aA5)*, the dual
of § w.r.t. the Alexandroff discrete topology is siwply Hom(S,2), the character-
semilattice of S in the sense of =3m|@5.:m@¢ (Compendium p.184: S-AL-duality),
and S* may be canonically identified with Filt S, the semilattice of all
filters.

3. 1f § is an up-complete semilattice,.then (pS)* is the
Lawson dual of § which may be identified with the semilattice OFilr 5 of all

(Scott-)open filters.(Compendium p.191.} 00

We have seen in these examples and in many circumstances that it is essential
to our intuition to have a geowetric interpretation of the dual 5% as a semilaitice

of filters. This is what we discuss next.

1.6.PROPOSITION. Let § be an Lesemilartice and OFilt § = 0(S)n Filt §. Then the
assignment \A*|€vx. (1):s% — OFilt 5 is an mmoaop.u:mm.a whose inverse
is given by Fr—» Sy, where €p is the characteristic function of F.

1f h:$*—»0Filt S is this isomorphism,then for any element s &€ §
ve have mipols) = {FEOFilt 51 x € T} € OFil orile s

G .

k% —— OFilt OFilc §

RPN




Proof straightforward.

¥.1.DEFINITION. We will often identify S* and OFilt § under the n

of Proposition 1.6. The set r*ﬂmamu is called the polar of s in 5%= QFiit §
and is written s°. The polar topology on S* iz the topology gemerated by all
polars mo. s€ 5.0

1.8. PROPOSITION. The polar topology agrees on 5* with the topology established
on the dual 5% as the topology induced from N—m_ .. )

Proof. The topology onm 8% = L(§,2) is generated by the sets U(s) = {x€ 5¥%:
()= 1] . Bur hu(s)) = s°. 0 '

v .

The dual of an L-semilattice is in many respects better behaved than the original
semilattice.
1.9.PROFOSITION, The dual S* of an L-semilattice $ is up-complete and its topology
is ._.a. )
Proof. A directed sup of open filters is a directed union of cpen filters and is,
therefore an open filter. Thus OFilt § is up-complete. If F & G, then there is
an s€ G\ F and then G&s” and Fég g%, Thus the polar. topology is .no.a

1.10,PROPOSITION. Let S be an L-semilattice. Then the m.o:osm...m statements are

equivalent: ,
(4}] &m"wlllvm»a is injective,

(2} The characters in. L(5,2) separate the points of 8.

(3} The open filters of S separate nrm.ﬂomsnm.w.m.. if s4tin s,
then there is an open filter F with s€F and t& F.
(4) The topology 0(S) is T, -

(5) {s)” = ds for all a€ §.
Proof. (1) @ (2) is standard; Injectivity of g means that .mmnmvu %mﬁnu

implies s= t; but »mnuuu aﬂnnu means Hﬂmuu.ﬁnnv for u:.ﬂm L(5,2).

(2) & (3) is clear from Propositien 1.6.

Mwww Mww MMw“MﬂMmmﬂmﬂo”wmwmmnn that OFilt 5 is a basis for _m.nwu. v]
1.11.DEFIRITION, An L-semilattice ‘is called separated, if the equivalent
conditions of 1.10 are satisfied, and the full subcategory in L of a1l separated

L-semilattices will be called SL. B

1.12. PROPOSITION. Let § be an up-compléte L-semilattice. Consider the

following two conditions:
(1} The set IRR S of irreducibles scparate the points of S
(i.e. wn.m% t, then there is a pe1RR S with s&p and tg p).

i (2) 5 is separated.
Then (2) implies (1), and if S is a distributive semilattice, then (1) and (2)
are equivalent if O(S) = ¢ (S).

wn%uwn .hmv"o (1) Suppcse s £ t.Since 5 is separated, there is an open filter U
G

* I 3 . I3 - I ! Ty
ntaining S,but not coertaining t. Since § is up-complete,by Zorn's Lemma

there is a maximal elemertpabove t in S\ U.This p is irreducible (Compendium p.79),

(1) (2). Suppose that § is mmmnnmvcnme‘m.Aom.noavmn.“._mzs p-77) Then every irreduc—
ible is prime. Thus if s § t we find a prime p with s§p and t € p. Then U= m/ew
is a Scott-open filter, hence a ¢(S)-open £ilter. This shows that m&mu is 1,.49

Recall: Condition (1) in Propasition 1.12 is équivalent to

(1') The set IRR S order generates 5. (Cf.Compendium p.70)

1.43.BREMARK, Lgt S be an L-semilattice and R the equivalence relation

,?x.%u : For all FEOFilt S we have x€F iff y€ F}. Then R is a congruence,
and ia fact the kernel congruzace of Pg+ The quoticnt semilattice S/R is the
universal Ho..aconmm:n of 8 and the assignment S+>5/R is a left adjoint of

the inclusion functor of SL into L. R

2. Couplete Heyting algebras with encugh primes and coprimes.

2,1.DEFINITION. Let L be a cka {complete Heyting algebra). Then cHa has enough
primes iff Spec L separates the points,i.e. order gemerates L. Likewise we say that

r—.mmmno.._wrno—.nm_.__mwmmmnom.umnrumcmn rcu onmmnlncmnsmnunmmr. :r:mmn.uo:m__
primes and coprimes, we gay that L is bigenerated.[] T

N..N.E. Let S be a separzted L- semilatvice, Then 0(S) is a cHa with enough
primes and coprimes, i.e. O(3) is bigenerated.
Proof. a) For each s € 5 the open set 53fs} = SN }s is in Spec 0(S) as is
the case for all topelogical spaces. Every open set is the intersection of these,
whence Spec 0(3) order genarztes Q{S).

b} The u_.,ooh.\ Compendiva I-1,11 u._cm\ applies to show that Ug 0(5) is a
n&mﬁ_mam iff Ye OFilt S.By 1.1.ii this means that Cospec 0{5) is order copenerating.!

2.3,DEFINITION, We let bHa denote the category of bigenerated complete Heyting alge-
bras with morphisms which preserve

i) arbitrary sups,

[

i finite infs,

)
.iii) Cespecs.

2.4 ,RFMARK., If d:l——M is a uu._... hetween bla-algebras preserving arbitrary sups,
and if g:M—» L i3 its upper :djoint, then d is a bHa wap iff g preserves finite
sups and Specs.

Proof. See Compendium p.188. 3

Mm.mmqw.ﬁmj_. The umumm._..ugn S+ 0(3) is a contravariant [unctor 0:L—~=blla

Proof. This is clear from 2.2.

It is,of course, understood, that © act: on L-semilatiices as ¢- topolegical spaces.

N s ;




Conversely, we make the following observation:

N.m.wwowomwﬁoz.ﬁmn_..vmmcmmmsmnunmmnosvwmnm ._._mu.nu...,mmdwmvwm.
Suppose n.rmn S is an order generating m...w.mmn of Spec Tarmm7nwm%~m_mwa in L

under finite sups. Then ,with the hull-kernel topology, 8 isa separated
L-semilattice such that O(S) is iscmorphic to L under the map xi—~ S tx:L—0(5).
Moreover, the map qi— S\ 1q: Cospec L ——+ OFilt § is an isomorphism which
identifies Cospec L with the dual 5* of S,

Proof. By the spectral theory of continuous distributive lattices by Hfomann and
Lavson we know that x++ §~tx: L-——0(S} is an isomorphism of Heyting algebras
and that the hull-kernel topology consists precisely of the secs SN\ %x , x5 L.
Since L is bigenerared, Cospec L order cogenerates L and this means that- the

tull kernel topology on S has a ba-is of sets § \Ntq , q¢ Cospec L, and all of
these are opea filters in (S, » ) w.r.t. the hull kernel topology. Thus § = (5,2 )
is an L-semigtoup, and it is cearly separated since the hull-kermel topalogy is .h.o.
In oxrder to complete the proof we have to show that whenever S\tq is a Filter

on (S, » ) then q € Cospec. But by 2.2, S\tq is a coprime of 0(S), and by

what we saw bafore  xr+ S\tx: L —>0(5) is an isomorphism. Wence q& Cospec L. T[]

Thus the bigenerated Heyting algebras provide another way of looking at
separated L-semilactices, and in fact a way which simeltancously exhibits the

dual S* in the same picture.

3
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We continue the train of thought in Proposition 2.6 a bit further.

2.7.FROPOSITION. Under the conditions of Propesition 2.6, the *wtopalogy on the .

dual S* corresponds te the cospectral topology on Cospec L. IF sé 5, then the
polar corresponds to the set {qe€ Cospec L: q £ m.w« cohull s. The map

o . . . .
x 3 Cospec LN\Jx: L ﬁlvomnamvmn L) ¥ 0(5*) is an isomorphism of Heyting algebras.

Proof. From the definitions it follows mm—.mnm;. that for s€ §, the ._q.o_m-. s°
consists of all these filters S$\%q containing s. The set of coprimes g which
is 50 deterzined is precisely the cohull Cospec L \§5 . iAlso,br the spéctral
theery of Hofmamn and Lawson, =%+ Cospec L ~4x: L°F -—# 0(Cospec L) is an iso-

morphism of Heyting algebras, where O(Cospec L)} is the cospectral topology (the

B e e DR

hull-kernel n. ology w.r.t. L°") on Cospac L. Since every element o.m,ﬁ is an
inf of elements s ¢ S, then every open set in O(Cospec L) is a union of open
‘.mmnm of the form Cospec L | s which correspond to the polars. Thus the ooﬂ.mn,n..ﬂ
topology on Cospec L corresponds to the polar topology under the isotorphism
Cospec L «» 5% . I , .
The symmetry of bigenaratzd Heyting algebras now allows us to identify Spec L H
as the bidual of 5 and hence as its sobrification.
u.m.nzmo,wmz. Let L be a bigenerated Heyting algebra and S an order geaerating
subset of Spec L which is closed under Finite sups. Then Spec L is :;.n:nm:u._
wmc:_cﬂur.-n to the bidual 5%*% of the semigroup (5,2 )} and the inclusion map
corresponds to the front adjunction.
Proof. Frum Propositions 2,6 and 2.7 we know that Spec L may be identified

with the dual {(Cospec L)* of Cospec L under the isomovphism

pi— Cospec LN |p: Spec L —» OFilt Cospec L. Moreover, Cospec L may be
identified with 5%, so that Spec L is naturally iscmorphic to the bidual of S*,
The fromt adjunction _mm"m...iv %% by 1.7 ‘may be describved in terms of the

polar mllvmn. The open filters of Cospec L correspend to the eliments of

Spec L under the map pt+— Cospec L\}p. The open filter on Cospec L corresponding
to s thus is Cospee L N} s which is precisely that set of coprimes which correspn
to.the polar s” under the Em:n.u.mmn..__nmo: of coprimes and open filters of 5. Thus

the £ir ont adjunction is equivalent to the inclusion map $ — Spec L.

We know from Lemma 2.2 that every separated L-semigroup is obtained as one of the
senigroups § in the Theorem (with 1. = 0(8}.). Thus we inmediately have a numhur

of corollaries which directly irpinge on the duality of L-semigroups,

2.9.CORDLLARY. Let S be an Hl,mm_ﬂmm-‘o:_._. Then we have the following conclusions:
(i) S* is sober in the *-~topology.
{ii) g i8—n 5% is the scbrification of §.
(i%1) S has duvalivy iff it is scber.

Proof, First we observe that it is ne loss of generality to assume that 5 is

separated: The natural quotient S —=»35/R of 1,13 “induces an isomcrphism

(8/R)* —» S* since every character y:5-—2 mmnnonw.n:gamr $— 3/R, since
2is qr.:ﬁ thus have a cormutative diagram
s
 S—
=
) —r L) P
Tsm




Moreover, the sobrification of § will always factor through mhlm\w_mmammw

sober Spaces are .HD. Thus,from here on out we will assume that § is separated.

By Proposition 2.6 we know that S* is isomorphic to Cospec L where L = 0(S),
But spectra (hence cospectra) of complete Heyting algebras are sober, This shows
(i). Next we know from the spectral theory of HRofmann and Lawson, that

for each order gemerating subspace 5 in Spec L of a complete Heyting algebra L,

the inclusion map 5 -~ Spec L is the sobrification map. Thus {ii) follows Erom 2.8,

But {iii) is now an immediate consequence of (ii}. [

Our Propusition 2.9 'overlaps Propesition 1.10 of R.-E.Hoffman’s in [3) .
2.10.COROLLARY. If S is an L-..migroup , then S* has duality, i.e. Nw»”mwlm**w

is an isvmorphism.

Proaf, Immediate from 2.9. {

It may be useful to record a resum@:

2.11. S5CHOLTUM. Let S be an L- semilatctice.
A) The following statements are equivalent:
{1) s is sober. : !
{2) 5 is a duval (i.e. has & pre-dual,i.e, is of the form T# for some
L-semilattice T)

(3} S has duality (i.e. anmi S*% is an isomorphism). '

B) The duals in the category L (i.e. the objects satisfying (1),{2),(3) above :
span a full subcategory DL of L and **:'L ——= DL is a left reflection

(i.e. is left adjoint to the inclusion).

Proof. A) is just a summary of previous results.

B) Suppose that T is in DL and £: § — T is a morphism. Then there is a

commtative diagram s
§ ———= G¥%

R

T— 3 T#x

it 4
in vhich ﬂm. is an isomorphism. Thus mv.w f%#* is the required unique wap
E':5%h— T with £f=i' wm . Altermatively, we could have just as well invoked
the fact that the sobrification is a left reflection, (]

we wish to poiet out now that Example 1.2.3 has a much more gencral background.

2.12.PROPOSITION. Let K be the category of all semilattices with i together

witi a topology and morphisms being continuous semilattice maps preserving identities.

(¥ stands for "sothing links topology and semilattice structure’) For § in X we

let w-ﬁ.mv dencze the torolopy gemerated by OFilt § = Filt 5 0(5), and set

rhe

e

43
tr

wzn adjunction mmnmlxvm is the identity map which induces an isomorphism
Jgti(Psyr s sx

Proof. Lef S be in E and T in L, and let f: S— T be an N-morphism. The no_.uw,r,.,

|— . H
U is an open

of T is gencrated by OFile T; if @ is an Gﬂn.z filter of T then f
filter of S,hence is a mamber of anv. Thus f faectors through .wm. Thus nv is a
left reflection, as asserted. Since 2 is in L it follows that every character

:5— 2 factors through j,, hence j* is bijective. O
X $ 5

Some additional inormation on *:

2.13.PROPOSITION. Let £:5—=T be a surjective morphism of N ~semigroups.

Then f#*:T*—— S* 1is an embedding.

Proof. Wa know that f* is injective as a consequence of the surjectivity of £, and
we know Lhat it is continuous. We must show that is is relatively open, For this
purpose we show that for any element t €T and any s€S with £(s)= t (such s

exists since f is surjective!) we have

{a) s%hi(oFilt £) =(oFilt £) (%)

Take an open filter F in the left side of (a). Then s € F = £7'¢ for some open
filter G on T..Thent€(s) € G ,i.e. Cet®. Thus F =f ¢ € (OFilt £)(c).

Mext take an open filter F in the right side of (a). This means F = f 'G with
t€ G,Then s = f(t) € F,i,e. Fe€ mo..c:n also F = £ €€ im (OFilt f).

Thus (a} is established.[J

2.14 COROLLARY. Let 5 and T be two

"~ L-semilattices. Then ony injective
morphism £:5—-+T yhich induce: a surjective dual [*:T*—-5*% and for which T is
seber, is an embedding. )

Proof. By m.__.ﬂ._..“.n ——— T#%  ig an isomorphism. The man D75 ~=5%% i35 an
ecbedding since S is separited,t2ing injected into a sober space. By 2.13,

frk: Sk*——p T*%  is zn embedd

-z, The commutative diagram

L

§ bt

s T.n
[T T — I )
2.

proves the claim,

v




3. - On the projective limit of sober spaces

R.-E.Hoffmann points out {47 ~that products of._ sober. spaces are
sober. We will show in this section that projective limits of sober spaces
are sober. o

One might surmise that in fact a stronger statement is true,namely, that
the sobrification function X ®X: TOP — SOB from the, category of topological
spaces to the category of sober spaces preserves projective limits. The following
exanple shows that this is not the case:

Ve let X_, u* 0,1,.... be the set W = £0,1,2,...4 with the
Scott topology. Then 8

¥ = N oo} with a maximal element attached and

with the Scott topology. The maps of the inverse system of the Ns are generated

by the maps mﬁi_.zn X — K:t._. n= 1,2,... given by mnn__._..?u =0 forx=20

and by £, =nuv = x+1 ,othervise. Then lim ¥ is the singleton {0} with

,
the limit maps m: given by m=ﬁ3 = 0, However, lim wxn ‘n~o_ @} with the limit
naps sending 0 to 0 .and @ to .

This example also illustrates the fact, that the functor 0:TOP ——» cHaP

does not transform projective limits into direct limits. [J

In the proof we need a few factg, vhose proof we leave tp the reader:

3.2. LEMMA. For any continuous function F:X—-»Y and any subset A £ X we have
(A =6a) .0
3.3. LEMMA,  Let X be a space, A a subset of X and f: X—— Y a continuous
_function.t

i) 1f A is irreducible (i.e. cannot be the union of two proper closed(i, 4)
subsats of A) , then A  is irreducible. '

ii) 1f A is irredudble, then £{A) is irreducible. 0O
3.4, LEMMA . Let X be the projective limit of an inverse system X, of spaces in TOP

J
and let £,.:X— xu. be the limit maps. Then for any subset A of ALwe ° .~

3

|u3m|_ -.
» .m.mﬁm.w.pvvﬁ_

Now we prove the following propesition:

3.5. PROPOSITION. Projective limits of sober spaces are sober,

Procf. Let X = lim x._. for a projective system of sober spaces, and let m..._".l.vxh.

be the limit maps. We take an irrcducible ¢losed set A in ¥ and show the existence

of an a€ X with A = {a} .

Firstly, by Lemma 3.3, mm;vt is a closed irreducible set in z.m for all j. Since

x.m wmmewmn.smnw_.m..bus a € X, with mmgvl n .mm.mw ... ,_

Secondly we claim that there is .m__n a€ X with m.w__.pu a. for all j. For a proof o_m

3
this claim we have to show that f£..2, = a, for all i< j. But now we have

ij"j i
.mmww = Amw A) = ﬁmm..._mu._»u = nmwmammbv ) ?u.. Lenma 3.2) = nm.—.w_..m.mw )
nﬁmwmww T (by Lenma 3.2) , and since the dense point in a singleton ¢losure in
a sober spase is unique, the claim a;= m:.um and thus the exisrence of the

wanted'a is established. +

Thirdly, we finish the proof by showing A = hmw.. . According to Lesmma 3.4,
we have A= Du.mu.-:m..._.c; , but this is equal to Du.w.;._:nh._l )

e =1 - -1 -
={ ).f. f.a = K. E.({a ) (by Lemma 3.2); and by Lemma
My eal D =570 EUa1DT) Gy 3 ;

3.4 again the last expression is equal to .mmml . A

"CORDLLARY 3.6. The category DL eof L -semilattices with duality is closed in L

under the formation of projective limits.

Proof. This is a consequence of 2.9.ii and 3.5 above

.




b.ZOHumru:nvmmmzmnmnmmnosﬂﬂmnm :mwnmwnmmwnmm.
We need more information on bigenerated Heyting alge . We start with a

more general situation.

e Erud i

4.0, LEMMA. Let L be a lattice which is order cogenerated by Ps Cospec L. Let

p€ Spec L. Then
(i) U =PN\4p is a filter on P:

(ii) tr = L\{p.

Proof. (i} Clearly U is an upper set in P, Let a,b& U. Thena,b € Lp and so

ad & ip, since p is prime. Because of ab = sup T.v n P, there mwust be a g & P

with ¢ & Jp and q € abga and b, But q¢ PN §p = .

(i1} Since U = P\{p, clearly fUC LN dp. Now let x &€ LN\ }p. Since x
sup $xn P, there is a q€P with q @Jp , and qg x. But q& P~§p = U, and
sox g tu. 0

4,2 . LEMMA,-Tnder the hypotheses of Lemma 2.15, P\4p = P N\}p' implies p=p'
for any p,p'€ Spec L.

Froof. Suppose p # p', say p & _.u.. Since p = sup lpo P, there is a q€ P
with ¢ & p' but q ' p. This is a contradiction to P\}p = P\{p'. O

This leads us to the following observation:

4.¥.PROPOSITION. On any complete lattice which is order cogenerated by its

cospecttum Cospec L, there is a canonical injection of up-complete posets

._ﬂrimnan L, >» ) ——> OFilt(Cospec L , = ), .nr:b = (Cospec LI\ } p.
This injection is Scott continuous.

Froof, Lemmas 2.15 and 2.16 show that qﬂr is well-defined and injective. If
ﬁv.w is a filtered family of primes, then p = inf vu. exists in'Spec L, and Jp
,15. ?..597.5«qu:.,F.Unw%dwﬁ.rm

The m:mmnmos is when is T surjectiva? Whenever U is an open filter in P=
Cospec _... we consider the set 1U. For any filcter F on P, its upper set TF in L
is a prime filrer, i.e. LNMF is an ideal. Thus if U . Scott open in L,
thent p= max L4V is a prime in L and ,:._..AE has a chance to be the required U.

ke formilize that as follows:

4.4 _PROPOSITION. Let L be a complete laltice which is cogenerated by its cospectrum.

Then the following conditions arte cquivalent:

(1) ..A—. is an isomorphism of posets.

(2} For each Scott open filter U in Cospec L the set tU is Scott open in L.

(3} The funceion U= @nACospec L maps the set of Scott open prime

filters of L onto the set of Scott open filters of Cospec L.

Moreover, if these conditions are satisfied, then :._..l_ncv = max L\, TU.

{7

e

Prooi. Since {F is a prime filter of L for every filter of P= Cospec L,it is
) . - felfoing |
n_.mmnn:mnSuwav:mmnuu.amawum:.n_._mnGvuvamv“m.m-.mnﬁmmmnwwfm:anvm clain:

If U and V are open prime filters of L then UaP = Va P implies U = V,Indced ye sb
more accurately that for an open prime filter U and a prime filter V with UNV/# 0 -

f.\.m...vﬂomm that UNV #8, say xe U % V.Since x = sup |xnP and since’ U is open,

there is a finite subset F& [xaP with sup FeV; since U is prime,there is

a ge F with q € U; but since qgx we cannot have q& V; thus g€ (P \ U) n (P \ V).
Thus condition. (3} in facr is equivalent to .

(3') The function Uk UnP maps the set of open prime filtersof L bijectively cai
the set of open filters of P.

If this condition is satisfied, the for every open filter U of P there is one .

and only one prime ‘filter w' ..i... Lwith U= U'a P. Clearly 4U¢g U'. Since U’ is

an open prime filter and #1U is a prime filter, the argument above shows that

U =1 since UNWP= U= TUAQP.

This (2) and (3) are equivalent.

For each open prime filter U' of L the set L\t is a closed ideal,whose maximal

element is a prime p, and cenversely, if p & Spec L, :ﬁ: L\ §p is an open prime

filter. Thus prs L\ §p : (Spec L, > )=—> (open prime filters of L,E}

is an order isomorphism. In view of this fact, (1} and (3') are clearly

equivalent,and if these conditions are satisfied, then :.._..;n:v H.“ﬂ/._rc

follows.

4.5 . DEFINITION. We say that a complete latetice L is m:.o:,w:. cogenerated iff
it is cogenevated by its cospectrum and the equivalent conditions of Proposition

4.4+ are satisfied.

4.6 REMARK. If § is an L-semigroup. Then 0(S) is strongly cogenerated iff

the following conditien is satisfied:
1f F is a filterbasis on § whose members are open [ilters of § and which
is Scott open in the semilattice of open filters on 5, then the filter ¢ of

J-
open sets generated by 7~ on S is Scott open in 0(5).

4.7 -COROLLARY. Suppose that § is an rlmmSmmn.oEu. Then the following conditions
are equivalent: ’
(1) 0(S) is strongly cogenerated (seey,5 /).

(2) The open filters on 5* and the Scott ocpen filters on $* azree,

Proof. We let L = 0(S); then 5 may be identified with an ordder generating subset
of Spec L = L** and S$* mav be identified with Cospee L. The open filters of S*

correspond bijectively to tie elements p& Spec L via .a‘_." Spec L —CFilc*Cospec i




where Ofilt* Cospec L is the semilattice of *-open filters on Cospec L = S*.

Now condition (1) is equivalent to
(1" LIY Spec L —» OFile"Cospec L .is bijective
by 4.4 and . 4.5, and (2) is equivalent to

. @D OFilt* Cospec L = OFilt® Cospec L.
But now it is clear that (1') and (2') are equivalent. [J

Let us remark that amang all filters F of L the ones of the form L\ }p for

& prime p are precisely the .nnavﬂmna:_. prime filters.

4.8'~ DEFINITION. Let L be a lattice and F a filter. A p€ Spec L is called a limit
point of P iff L =]pw F, and lim F is the set of all limit points.

4.9 » LEMMA, For a lattice L and a filter F the following statements are equivalent:

(1) F is completely prime (i.e. max L\F exists in Spec L and F = 1\lp .)

(2) 1lim ¥ has a smallest element. A

. {3 lim F is filtered. . ' . :
proof. (1% (371575 0e3E Frothefs d2:228 L8R Fabitt)*E By is erivial. 1¢ (3 ”
holds , then inf lim F is a prime _u.. The following Leuma shows that pé€ lim F. 5S¢ (2)3&3¢3)

(1} # (&) is elear. I1f (4) is satisfied, then (in view 0f4.10" below) lim F is a clowed
rreducihle 4.10. LEMA. 1lim F is hull-kernel closed. :

““nmw Proof. let peg {lim F) . We must show L~Lp€ F. Let %x ¢k .p ; then, since .
‘nce pe€ (lia F) there is a q&lim F such that x % q. ‘But lgu F =1, vhencé x& F.[]
ttisfies ’ .

0.0 These concepts allow us yet another equivalent formulation of the conditions in

.4 .

%.11.PROPOSITION. 1ef L be a complete lattice which is cogenerated by its cospectrum

Then the equivalent conditions of 4.4 are also equivalent to

(i) For each open filter U on Cospec L and each-ug€l there is a
PE lim $U  with :uﬁm.

Preof. Since Cospec cogenerates L, condition (4) above is equivalent to conditon
(4) of Lemma 4,9 - Thus (4) above is m..#cmcm.._m._n to the condition that for
all open filters U of Cospec L the filter U is completaly prime,aud.this is

equivalent to {1} of 4_5 . 0

4. 1. CORMLARY, Assume that,under the conditions of 4.11, S is an order generating
subset of Spec L. Then (4) in 4,11 is also equivalent to

14"} For each open filter U on Cospec L and each ugU there is a

pefiin 4U) s with uwip. g

- ! - E R ———— T B s

14
We obta sufficient conditions for the validity of (1}-(4) io 4.4 and &4.11.

These conditions will play an important role in the next section.

4.13. DEFINITION. We say that an element 3 in & poset § = Cospec L (for

a distributive lattice L) has rhe vefinement property, if s = sup X in L
for a set X§ 5 entails the existence of a directed set Dg [Xn5 with .
s = sup D.D ! M
4.14. PROPOSITION, Let L be a complete lattice which is cogenmerated by its cospe:
rum. Then conditions {1)=(4) of 4.4 and 4.11, and, in case Spec L contains an or
der. generating subset $, condition (4') of 4.12 are satisfied provided that

the following hypothesis holds:

(r) Every point of Cospec L has the raefinement property. .

Proof. We verify (4'). Suppose that (47) does not hold. Then there is an open
filter U of Cospec L and a ug U such that for all p € Sn 1im U one has
u M‘,v. i.8. that Salim f0 € tu , In other words, (S Tu) n lie 10 = @,
Thus no x& S Tu can be a limit point of U; hence there is a v, .ﬁ ® with :xf.n
we may assume _._umn u, We ¢laim that mcv.m:u" x€ 5\1u} = u, for othervise
one would find a y € S\tu with sup u, £ yi then in particular _._u.. < vy, which
is impossible. )

By (r) there is . a directed set wm,—u?x" xe S\fu} with sup u.u. uE u.

Since U is open, there is a d<€ D with d& U; then there is an x€ 5\ tu with

dg u_, which implies u € U, a contradiction.[}

X

4.16. LEMMA. Suppose that UE OFilt S has a countable basis (i.e. a countable
subset C with # = {C}. Then U has the refimement property in OFilt § =
Cospec S . )

Proof. We may assume that C = An_._" n = _.m.....w with €t = €, Let

NN be a cellection of open filters with U = _J2¢ . For each n we pick a ::
with ¢ @ U and set V = D?su 6 & o} . Then vV, is a filter; we show that
it is open: Let B be a directed set with sup D€ v Then sup D& U and since
U is open, there is ad€ D withde U = C ;—n_». Hence there is an N such that
nzm d. For each k with n € k< N there is a ..._xm D with mwm. U, , since :w is
open. As D is mm...mnnma.. we find an eg B with d £ e and uw..m e for all k

with n gk < N. Thene U withng kX< N iammansﬂ v for m 2 K.

3 .
Hence @ € V. This shows that V_ is open , Now we have V o V and
l n n . n n+l

U= e EUY, & V. Clearly veld -0

We will utilize this Lewma in Section 7.




5. buality for up-complete semilattices. Q

. R
w._.._..ﬁ:z:—o?:_mnm:onmt_..nr m.nrmnmnwmonu—.umm:c__.lnosvm»nmu.na:mnnmnmm

with identity and Seott continuous ident ity preserving semilattice morphisas.

For S in U we define

§"= 0(S,2) with the semilattice structure induced from 2
OFilt § = Filt S n 6(5), O

Notz that 57 is well-defined since U($5,2) is multiplicafi vely closed in 2 s

Isy

5.2. PROPOSITION. i.For § in U , the funciien A— N.L:vnm-llvom.:n s

is an isomorphism of semilattices,
ii. 8" is up-complete and “:) —=Y is a contravariant functor

which is an adjoint on the right. The front adjunction €. § — 5" is

t
H]
definad by nwﬁm:\Hv = {(s) (resp., by Sr-s s%:8 —» OFilt & defined by

s = {FeoOFilt 5: se F}).

Proof. Exercise. a
We would like to see how * and * relate.
5.3.REMARK.  Let S be an up-complete semilattice. Then $*is the underlying

semilattice of (5, FsnN*Q

Here Wamu is the filter topolopy associated with the Scott topology o (5),i.e.
the topology generated by OFilt 8. We will denore the L -semilattice (S, ﬂﬁm:

by Ps.

5.4.PROPOSITION. Let S be an up-complete poset. Then the following conditions

are equivalent:
(1) The equivalent conditions of 1.10 hold for ﬁm Ll

(2) £5:5 —> 57" is injective.

Note that these conditions say that the Scott open Eilters separate the points.{

5.5.PROPOSITION . Let S be an up-complete semilattice. Then the identity
funceion wmuﬁm ul._@wf is continuous and induces an embedding

i gsrsn—— R”v..m._:_..
Proof,. The topology cm@o..wm is generated by the polars s° (where we identifyf¥* and
OFilt §). These polars are Scott open filters on OFile § = $*, Hence they z-e open
on Auawsu = (5°, $(57)). The remainder then follows from 243..0

We say that an up~complete semilattice S has duality iff mm"maivm»»mm an

isomorphism.

5.6. THEOREM. For an up-complete poset S, the following conditions are equivalent:
(1) S has duality,
i P ay Wy - " .
. (2) Gm is scber and Hm.nvﬁm ) i@wW is a homeomorphisr.

Proof. We consider the following commutative diagram

—— ﬁm»»

&
mi ig "_ |
ﬁnv%*» — Rva* . .

. s
We know that the right vertical arrow is a bijection and the lower horizontal ome ..

i

n_,u_unaam:w by 3.5. The other 1wo arrows are injective precisely whan the open flters

separate peints en §.

If S has duality, then the top horizontal arrow is an isomorphism, hence the
diagonal _..mynan mvu mm»@&mv is bijective. Hence mw» must be surjective and
hence an isomorphism, whence Mem iz an isomorphism,too, This means that ﬂm

is sober by 2.9. We have to show that ig is open: If we take a Scott open Filter

on 5% ,then since _..m» is surjective, this filter is also *-opén. Hence mm is

open since the open filters generate the respective topologies.

Conversely, suppose that condition (2) is satisfied. Since 6m is sober, the
left vertical arrow is an isomovphism by 2.9. Since mw is an isomorphism, then
the lower horizimtal arrow is an isomorphism, Thus the diagonal is an

isomorphism, and since fgu is bijective, it follows that nm must be bijective. [

We have actually shown the following additional information.
5.7. REMARK. 1If the conditions of Theorem 5.6 are satisfied, then
igas s — Rvmd.»

is a homeomarphism, i.e. the *-topology and the filter topology agree on Aum... a

It is perhaps useful to isolate oace more the condition involving

5.8.PROPOSITION. Let S be an up-complete poset. Then the following conditions
are equivalent, where L = .wmmu"
1) mm" avhm-u ——2 (PS)* is a homecomorphism.

(2) On Cospec L the cospectral topology asrees with the filter
. topolegy associated with the Seott topolopgy of Cospec L.
.“uu. The open filter of A_ﬂmvm and the Scott open filters of §°
agree.

(%) ajwv is strongly cogenerated (see 4.3°),
3)

ig is surjective. .
Proof. Under the identificatlon of Aﬁmv* with Cospec L, the *~-topology

corresponds to the cospectral topology (induced by the uwpper topology v (1)),

Then (§) ¢ (2) is clear.(3) is a translation of (2).ind (3Y & (4) is 4,7 .
(3) i: equivalent to (5) (see diagram in 3.6), n
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6.Duality of projective limits of up-complete semilatrices

[

5.9.COROLLARY. Let S be an up—complete poset,Then (13-{5) of §.8 are also equivalent to We recall the important diagram from the proof of S5.6: . ~

(6) Eg:5 —=» 8" is the sobrification map of (S with the specialisation order :

considered on its domain and codomain. 6.1.RECALL. For an up-complete mm_..,_h%anma U we have a commutative diagram . ‘
Proof. Recall thar (5) is equivalent te (5'): mmu» is a homeomorphism, The equivalence em Jr‘nmuhm.sivﬁz»-
of (6) and (5) is then clear from the diagram in 5.6.0¢ ’ ]

[ Let us observe some functorial aspects of the assipnment .mTi.mAmu. : Cv‘ . . Mﬂm mm;

_ a_x.:j#l.@m-:
5.11 PROPOSITION, “The assignuent mrl_ﬂc.b is a contravariant functor - 3 .
. | '
[ bHa (see 2.3) in which i mm: is bijective and mmx an embedding.
) -1 . mmmn an isomorphism iff (s is sober. Tn this case, &g is an isomorphism

(with ﬁam:qv =f ¥V for f£:5—=T as usual), If §"is identified with Cospec p(s}, .
then §* becomes identified with wﬁmu_ncwvmn T for f: Tin .0 iff Hm» is surjective,and for this we have the 7 equivalent conditions of

L §—> 2

5.8,5.9 and 5,10.01

3 .10, COROLLARY. Let 5 be an up-complete poset. Then (1)-(6) of 5.8 and5 .9 are In this section we will consider an inverse system m.m of U-objects with
also equivalent to the following condition: their projective limit § = 1im m.m in U . The limit maps are denotes m.w“mlv m.w
(M) Let NNrm an Scott cpen filter on OFilt § and let VeZ¢ . Then U contains ) 6.2.DEFINITION. TfTdims. is the projective limit of the inverse system @S,
a limit point of Q - . X .a
in L , then the unique morphism S—* T in the diagram

Proof. We apply4 42 with L = @(S).Then condition (4') of4.12 i i
. ¢ ) is equivalent s =lim 5,) — :_sﬂmu. =T

to condition (7) above. Them4 J2 proves the ¢laim. {] : / \\
. ' [0 ¥ 8.
. . . 3 ]
S,
L | . | P57 s,

with the limit maps g, :T—y m.m will be denoted w1 Ps ——T.

This morphism will play a crucial role, as we see in the following theorem:

6.3.THEOREM. Llet § = lim m.w be a projective limit in U m_.i, suppose that the
following two conditions are satisfied:

i} g, t §,—— 5."" is an isomorphism far all j (i.e. all §. have duality}.
mw 3 ] j B

ii)  o¢ "nv:ma muv — H...:inv m.wu is an isomorphism.

H.m.___ the filter topology associated with the Scott topology of lim wm
A Y . ' . o

is the limit topology of the filter topologies of the w..._.

Then m.m"mllv 8% is an isomorphism, i.e. S has duality.

wneam.z.wm_..é:n:um:aﬁcﬂ.sodmno m;.w T..ca_..uzmr:oanrmn mm-&.mm ¥ is bijevr...
j i )
. vhence wm * is surjective,hence an isomorphism. Then wnmun_ ts muecessarily bijecti.-
- 3 3
Now we can apply Theorem 3.6 and conclude that

yda




7 iim ®s : lim Avm ——{lim (S, )**  is an isomorphism. Hypothesis ii
then tells us that

- . i
Mﬂﬁ:a m%"ﬂx:s mh.v Ia.lw&.x:s mmv *ummmnmmosow_u_.:..ma.

From diagram (1), applied to 5= 1lim 8, we observe that,in order to prove the

]
claim we have to'show that .
(1) i lim w.ﬂ» : aﬂv:a mwuwallv @Cma.mmu-u» is surjective.

is surjective. In order to prove this claim, we consider the diagram

1
(P rin 55w —lim m.T|o (Plrim s ) .
. ﬁv.?: 1 /am»nvf .
(11) * |3 Anvm Yrk g .w — Eum.mr )%
o \v \\4 .
Qin gbs )y — Lin( s, 2)%)

vhere Hu is the natural map given by the limit. Also Y is induced by the limit, and .

since ig ¥ ﬂum YRE ﬂum ")* is an isomorphism .,it follows that i

w is an puo_?uun_;mn. n.uo.

We now notice that conditien {1} is equivalent to the Ffollawing
. i

o . & fe Bilanpd
() Lics is bijective,

(4) \ is bijective.
(53) The family of maps Aﬁn...v* separates the points of Ae:.a 5.)7)%,
1 3

Indeed (1) € (2) by 6.1, (2} & (3) & (4) from the rectangle in (1I), and

3) & (& is a basic and elementary fact on limits. For the following discussien

ve recall the abbreviation T = lim m.u.. Now we reformilate (5):

(&) For any pair a,b of characters in @T)* , the relations @m.m..:mvu @JJ:&

for all j imply a= b.

In order to undersrand this condition we have to analvze the expression Qmm.:mv.

shich is an element of ﬁ.ﬁvmmsv*. Its definition is given in the diagram

[
-

Y O

ﬂe-. :@7. \

Next we have to be able to evaluate @mmav at a character \Hm. m..._ . mmmm we “

have a similar diagram:

P S

..H.
MG {

Thus . Akvﬁo m.mn %om.
Now we can Hmmu.._..:ﬁm—a the equality n.@m "I (a) = mﬂ.mm:uwaE. as

(*) a £.o m% = b Cﬁo m_.u for all Am m.w-

We now pet a better feeling if we trauslate this statement from characters
into open filters. Tha T” is identified with OFilt T (the semilattéce of  Séotc—opn

mw:m-..mcs .ﬁ. m_.:.n__mn m._ Hm.nmsn-mwna::rcf: m.. then \H becomes replaced by Li-
-1

open filter V = :u and o f. by £, V. r_m then reformulate (6) once
| 1 :

. ]
mwore

(7)  For any pair of characters a,b ¢ (0OFilt T)* , the relations

?w_i = _..,._é for all j and all V€& OFilt s, imply
a{u) = b} for all Ve OFilt T .

Now the family of atl m.l_q. where u ranges through all indices and V through

i ]
all open filters of m. is a basis Bfor a topology on T = lim mu..?._sm:. the basis f.

the limit topology of lim Aum.. . The filter

tupelogy of the Scott ﬁovo—omm ef T= lim mm "is  the topelogy of @ 1. Thus we

can reformulate condition (7) once again:

(8)  If two characters in Auno_u:n Ty* (i. n. two filter torology continuous

characters  of OFilt T) agree 0526

n_..m

basis of c::fvm ) then they agree
basis OFile T of oigr) = w:.v. T = lia s,

How we recall that € QFilt T and n_En therefore o::_,Om Y o(D TV, However,
by Kypothesis ii) of the Theorem we hawe O(lim Qv ) = oFAv,S ¢T.Thus B is also

a basis of ﬁ.__, In particular, every element of oﬂ—_n T is a directed sup of

elements in B, However, a - continmous character on an up=com;lete s-milattice




is Secott continuous.(See 5.5:bijectivity of mmu. Thus the @awmqmnnmnm

nsidered in (8) preserve directed sups, and this condition (8) is satisfiec.

This completes the proof.

1

Assuwe that

i) all mu. have duality (i.e,

for all j)

[
n-.
e

]

(i.e. “._unm.wv uqﬁmwv for atl j)

limit w.r.t. the Scott ropelogies on §
iii) Toe/topolegy on lim S./is penerated by its open f

: j
(i.e. OQLinfs) =pinso) : I

Then S has duality,

Prozf. Immadiate frow the previous Theovem. 1}

6.5.00RDLLARY. Under otherwise unchanged conditions in 6.4, in iieu of ccrnition

iii) the following econdition is sufficient:

iii') The Scort of the limit is the limit of the Scott.
(I.e, @&{Lim mh.v. = 0(lim Mmu.:.

-

Proof. By
(

iii') dwplies (1ii). J

6.6.CCROLLARY. Let S, be an inverse system of contimous semilattices with

N ]

5 = lim mu.. If c:_..am.m.wu = Plim m.wv » then  § has duality, This is satiscied

in particular if 0(lim .mmv = ¢ (lim mmV.

froof, Continuous scmilattices have duality, 2ad their Scoet topolopy is

cenerated by open filters.

6.7. CORDMLARY., Let mu. be an inverse system of continuois semilattices with

R
tawer ad joint m.m mu._lri! S, Then § has duality.
Froof. Let U be Scott open in S, asnd let x & U. Now we know

8 = lim §.. Suppose that each of the Limit maps 5 f

P T e

Let 8. be an inverse system in U and let S = 1im S

t8—+S, has a

]

is an isomorphism

on all 5. che Scott topology is generated by its open filters

.“_._
riters

i} we have 0(1lim Mm% = oA:a%m% < o {lim m%m F{lim m%. Kence

Scutt

in L.

= gup 4.f,x
r J 1]
(cf. Compendium p.20%,3.4), Since U is Scott open and the family mumux is
directed, there is a j with mu.mu_x €& U, But mu. is continuous, whunce -
f.x = su f.x, and so .
3 P ,w i : &

L] ¥ ]

Once more since U is Seott open, there is an elemeat :.d < mmx suchk thatr

(iii) n_:u. & U .
. o
Let V. be an open filter in 3, with Vv_ g Tu, and T xe€ V..
1 3 J 1 ] 1

Now we have X & m.l;. = 4. v. g a4, Tu, o v,

3 J J ] J J =

This proves . & (lim mb.u & 0(lim m“._v. The other inclasion is always true. 1]

The formalism of Compendium p.209 , 3.4 FF. applies and allows the
following Corollary, since it guarantees that a projective limit of an imversse
system o which all bonding maps have lower adjvints las limit maps with
lover adjoints:

of coutinuous semilatii.
6.8. CORULLARY., Let 5 be a projective 1imit in L of an inverse system/in which

all bonding maps have lower adjoints. Then S has duality.

We give a further sufficient condition for duality:

6.9.PROPOSITION. Let S be a projecrive 1
s N

continuous semilactices m.“m and suppose that the following condition is

satisfied for the limit maps m...hum - m._" .

it of an iuverse system of

(*) For each open Filter B of 5 and vich u¢ U there is an index i and an ¢pen
filter ¥, in S, such that f,u cV, and £. 'V, € 1.
| J 1 3 3 k|

Proof. We apply Corollary 6.6: iypattesis {(*) says precisely that ®ilim m.wu

& 0{lim ¥5.}. The other inclusion is always true in the situation t:at 8 = qﬁmi.
. Pl

J

EYrN
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§7. application to general topology.

~
ko

7.1. DEFINITION. & s;ace X is ealled a k-mpace iff it is sober and O(X)

has duality in U,i.e. no?SnoCC — 0{X)*" 4is an isomorphism.

T+2. DEFINITION. For a space X we denote with Q(X)} the semilattice ?.H..? '
finite sups ﬁw.o. unions)}) of all quasicompact saturated sets. ’

We recall that {X) is an up-complete mmawwmﬁmnm.w.m. an

object of U. Moreover:
In a sober space X,
7.3.F4CT,. [/ the function K+ &7{X): DOO:I.V OFi1t¥X} which associates

with a guasicompact et the filter of its open neighborhoods is wel 1-defined

and an isomerphism in U. In any space X, a subset K is quasicompact iff
its neighborhoodfilier of open sets ££{K) is Seott upen, m..mu..amwb element

of OFilt X, For U & O(X)} the setZR-{Keq(X)s KcU} ir an open filter in Q{X)
(w.r.t. the oppesit order!).The map TwIX) 1 O{X)~20Filt Q(X) is an
In this sense, Q(X) is the dusl of 0(X), i.e. O(X)* 5 @{X), and the map

: oalv OFilt (%) 7 g(x)® & Oo(x)** is ep{x).
T. A PROPOSITION.For a sober space X, the [ollowing conditions are equivalent: |

(1) X is a k-space. : . m,
(2) The function T feQ{X):r E ¢ U}: 0{X)}—> OFilt q(X) is surjective. -
(z) = " - t - —> - is bijective.
“{4) If If 4s an open ilter on QfX), then F 1= open, and nS... all ¥ e q(%),
the relation e JJ implies XK e J .
Proof, Since the function in (2) is always injective, (2)&= (3). The
equivalence of (2) and {4) is clear from thed efinitionb, In view of 7,3,
(1) ani (3) are equivalent,

This proposition points out that for a k-space, the semilattice Q[X} of :
quasicozpact saturated sets completely determines O(X}, and since X is !
sober, 0O{X)} completely determires the space X, The guestion,however, is
whether our corcept of a ksspace is coumpatibie with the ¢lassical one for

gerarated spaces.

t:D—>X {proper: continuous and «..,_m is gquasicompact for all K & g(x))

witk a locally quasicompact scber domain D. We say that a subset C of X is

covrred by a test if there is a test map t with Ccim &,

7.6.D FINTTION, We sey that a subset B of (f1) is s basis of Q(X) iff

for ezch K £ Q{X) there are sets K,

€ 3 with K€ K u,.ovK ,
1 n

a4

._< q THHOREM, Let x be a sober sprce o which Q{X) has a basis of subsets af

irmar .re covered by test maps and whose terology is final for all tgst maps.

|

Froof. Claim i): All X & @{X) are covered by test maps. Proof. let K & Q(:

Then X is a k-space,

a
Then X & Ku...uX  with K, ¢ Q(X) covered by testi map ﬁ."uuiw L &

J dJ
We let D be the coproduct of the U...._ {i.e. the disjoint sum space) and
t:D—> X the unigqus map with .......H = t o copr,: Uu%.v X« Then D i loeally

quasicompact and scber, and % covers K.
Claim ii): The done of all teat maps ¥:¥—> X with vertex X is
directed snd is a colimit cone, Froof. Let m."“—w& X ,1=1,2 be test maps.

If Y 1s the coproduci of Jm_ and ._,m and t3 ¥> X the unique map induced by

the t, and nN__ and if ow.“,.,“....lv ¥ are the coprojections then we have

1

a commiative diagram

This shows that the cone 9 dirscted. The hypothesis that the topology of

X is final for this cene is equivalent to the assertion that this gone is a

colimit cone,

Claim iii)s The cocome  0(t):0(X)}—>0(Y) is a projectiive limit
in e¢lin

cone over an inveraly directed dmmwMMImHooﬁ. The fanctors 0r - B0B

w3 ciip%Pand Spec:clig:———7 S0BT

are adjoin® or tie Tight. Hence O
transforzs colimits into limits.

Claim iv) : The inverse system in Claim iii) setisfies condiiion
(") of 6.9. For a proof we establish the following Lemnat
7.8, LB, Let t:Y—3 X be a proger zap between soler emces with ¥
Let f:= c?.,.vaccllvog. Let 77 be an open filter or 0{X) whose inter-

Tor each Ue}f

section im covared by t {i.e. with [1]{ € tY , then/-iere iz mn open
filter _.Mo: o(Y) such thet £(U) ¢ }) and h.u._w.vm i,
Q =Yl such that Ig

Proof. By 7.3 tkere is a suasieomuact saturated set

is the filter of open - vjshto

v




compact in ¥, The its neighborhood filter ) {of open Bets) ias Scott open irn
0{r). If U c }j then QU and s0 +7'Q € t7'0 = £(U), and so £{U) & }).
Furthermore,if ¥ e £71)), then £{¥) ¢ 1) yi.00 t7'Q c t~ 'V and thus

= tt71g e V,1.e. Ve I For the conclusion Q = t£7'9 we wsed Qe 4y,

The proof of the _.H.w.mon.ms now follows from Proposition 6.9.
There is onm. caveat: We have ngargument that the cone” t:¥—>» X of wich
X is & direct limit ° has a small busis or even af{swall) cofinal set. in
fspection of the arguments in the proof of the nain theorem 6.3

show that only universal properties were used and no use’ was maie that

the index category for ti:» J was a swall set.

. weakly
q.w.m_mowomaauou.goosbmhzﬁ mmsmﬂm.omasmwnmnoumhmmmna,..awﬂmnmn

tire conditions of Theorea 7.7 and ia,therefore, a k.space in the sense of Tele

Procf. A space X is call 24 wseakly Hauadorff and compactly generated iff
BMW and Heusdorff - )

all Gompact subsets of X are closed/and a set U in X is open iff

Uan K is open in K for sll compact Hausdorff subspaces K of X.

The collection of all ipclusion maps t:K-— X, K compact Hausdorff K is a

Tamily of test maps satisfying the conditions of 7.7. [}

ifter Proposition 7.9, the classical k-space theory is subsumed

under the k-space thewory proposed in Definition T.1.

T.10. PROPOSITION. Let X be a k-space. Then the following statements are

——

equivalentt

(1} Q(X) iz 2 continuous . semilattice,

{2} X is locally quasiconmpact.
Proof. {2)=»(1) is a result of Nofmann and WMislove [s1. (G)=2(2): 1 (1),
then Q(x)* is a contimmous semilmttice. Since X is a k-space, Q{x)* ¥ o(x).

Trus O(X) is a wntinuous cHa and thus X is locally qugsicompact. {1

26

7.11.PROPOSITION. Let X be a sober space with a countable basis for its :tepolepy
Then the following statements are equivalent: . )
(1) 0(X) has duality .
(2) X is a k~space. { m

(3) ¢o(X) is sober,

-Proof. By Definition 7.1 we have (1) = (2). 1If X has a countable basis for its

topology, then every Scott open filter of 0{X) has a countable basis in the
sense of 4.15; this follows readily from the fact that any Scott open filter
on 0(X) is the neighbothood filter of a quasicompact saturated set. By 4.15,
every Scott open filter has the refinement property, and thus,by 4.14 and 4.12,
the equivalent conditions of 5:8.5.% and 5.10 are satisfied with S = 0(X).

By Theorem 5.6 we :ﬁ: conclude that (1) and (3) are equivalent.q
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