	SEMINAR	ON	CONTINUITY	IN	SEMILATTICES	(SCS)	···			
					DATE	M	D	Y		
	NAME(S)		Rudolf-E.Hoffmann			Sept.		10	81	
<u></u>	TOPIC		The CL-comp	acti	fication of a	continuo	us pos	set		

REFERENCE

Rudolf-E.Hoffmann, The CL-compactification of a continuous poset, manuscript (to be circulated, I hope soon, via the informal Proceedings of the second workshop on continuous lattices and continuous posets, Bremen, May 8-10,1981)

We give several applications (a),(b),(c),(d) of the following result obtained in an earlier paper: The continuous posets P equipped with their Scott topology op are precisely those sober spaces X which have an injective hull λX , i.e. the maximal essential extension χX of X is an injective T_0 -space (=continuous lattice in its Scott topology). (a) The CL-topology (=Lawson topology) on P is the trace of the CL-topology of X, hence it is completely regular Hausdorff. - (b) The CL-closure C of P in AX, the "CL-compactification" of P, is a continuous poset in its own right and the topology induced from the CL-topology of λX is the intrinsic CL-topology. - (c) For a continuous 1,A-semilattice S, the CL-compactification "coincides" with the injective hull $f:S \xrightarrow{-}L$, induced by the Scott topology on S, and $f:S \longrightarrow L$ is characterized by the following properties: L is a continuous lattice and $f:S \longrightarrow L$ is both a join-dense order-embedding and a dense (topological) embedding with regard to the CL-topologies of S and L, respectively. -The CL-compactification of a continuous poset P "coincides" with the Fell compactification of (P,Gp). - Thus a construction, the maximal essential extension (in the category T_0) which lives in a non-Hausdorff world bears its fruits in the realm of completely regular and compact Hausdorff spaces. -The CL-compactification of an algebraic poset is an algebraic poset, whereas the class of posets with a.c.c. and the class of partially co-well-ordered sets (a.c.c. and no infinite antichain) are not stable under the CL-compactification (providing, incidentally, continuous posets which are, in their CL-topology, not locally compact and not normal, respectively).

Anyone interested in a copy of the manuscript, before the above mentioned Proceedings are distributed, may write to me.

R.-E.Hoffmann
Fachbereich Mathematik
Universität Bremen
2800 Bremen
Federal Republic of Germany