SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

NAME: John Isbell	Date	М	D	Y	
		11	22	81	
TOPIC: Sober quotients				<u> </u>	

It is not easy to guarantee that a T quotient space of a sober space is sober. For instance, it the quotient map $X \longrightarrow Y$ is two-to-one, that is not enough. (Construct ω , with open set = upper set, by sticking together adjacent 2's. If you want it exactly two-to-one, add a 1.)

LEMMA. If $S \subset X$, if X is sober, and if the quotient space Y of X in which S is pinched to a point is T_O , then Y is sober.

Proof. Let f:X Y be the quotient map. If C Y is irreducible closed, $f^{-1}(C)$ is closed; and if it is irreducible, it has a dense point which gives a dense point of C. So suppose $f^{-1}(C)$ or educible, having two disjoint, non-empty relatively open sets. It can't have two such sets that are f-saturated, for their images would be disjoint relatively open. (This depends on C being closed, so $f f^{-1}(C)$ is a quotient map.) In particular, $S \in C$, $S \subset f^{-1}(C)$. If $f^{-1}(C) \subset S$, then C has a dense point, viz., S.

If not, we have a non-empty relatively open $W = f^{-1}(C) \setminus S^-$. There are not two disjoint relatively open sets meeting W, since subsets of W are f- saturated. Hence W is irreducible closed and has a dense point w. Now W meets S; otherwise W, S would be f-saturated closed proper subsets covering $f^{-1}(C)$, and $f(W^-)$, $f(S^-)$ would reduce C. Then in C, $\{f(W)\}$ contains $f(W^-)$, S, S; This is all of C.