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Section 1. The category CD. )

I must begin with a deflnltlon of the category of completely distribu-
tive lattices, and T want to use this occasion for proselytizing

for them and to propagandize the demand for a complete exposition of
everything known about cdmpletély distributive lattices and their
natural maps. The writing of a monogréph would now be timely, inte-
resting and rewarding. (I might even do it myself, but not alone.

I gues I am looking .for takers.)

1.1. DEFINITION. The objects of the category CD of completely

distributive lattices are complete lattices in which the identity

(_Ef-i) nfiey S“pJeJ ;5% SWPgg I Infia g oa; £(h)
holds for all families (aij)ie 1,jed] " The morphisms of CD

are the maps preserving all infs and all sups. O

REﬁARKS. The identity (éd) is called complete distributivity.lt
.always hoids simultaneously with its opposite identity. Completely
‘distributive lattices therefore share with iany other classical objects of
lattice theory the feature of being preserved under the passage
1—>1? to the opposite lattice which is so strikingly absent in
the more general continuous lattices. - -

The choice of morphisms is dictated by {cd): The operations
{(infinitary, to be sure) entering ianto the deflnlng equation must '
be preserved This choice of morphisms makes the category CD, in

the wgrds of the 01d Testament, a full subcategory of INFnSUP.
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The category CD is obviously a variety which is closed under forma;
tion of arbitrary products, subalgebras and quotients. Cartesian products are
the categorical preducts; equalizers are formed as in the category of sets.
The category is also cocomplete, but one mist fight off the temptation to
believe that the coproduct of,say, two CD~objects is the cartesian
product with any of the obvious injections as coprojections. It looks
suspiciously as though this was the case, but a closer.inspection reveals
that neither of these injections will preserve both 0 and 1 while every
LD morphism must respect them. Coproducts are more complicated. Mde about
that later. , -

That free objects exist is perhaps not obviousg, considering,
as J.D.Lawson pointed out, that the category of complete lattices has

no free objects. But they do exist and we will analyze their structure.

Let us record a few quick throughts concerning the definition.

1.2, PROPOSTTION. 1) Let £: L—=>M be a monotone map between CD ~gbjects.
R LA =

Then the following statements are equivalent

(1), £ is a CD -morphism.
(2) £ has an upper adjoint g: M—->L and a lower adjoint d:M——p1..

ii) If (1) and (2) are satisfied, then the following
statements hold: | ‘
(a) g preserves Spec, and g|Spec M: ( Spec M, 2) —>(Spec L, =)
preserves directed sups (i.e. is Scott continuous)
(b) d preserves Cospec, and d]Cospec M: Cospec M ——-s Cospec L
preserves directed sups (i.e. is Scott continuous), where

Cospec-carries the induced order. -

1ii) The.following two conditions are equivalent:
(3) £ preserves Spec.

(4) d preserves finiteinfs, i.e. d is a cHa-map.

Under these circumstances, f|Spec LiSpecL,) }—>(SpecM,> ) is upper (Dadjoitof gspech.
' iv) The following two conditions are equivalent:
1

(5) £ preserves Cospec.

T A(8) g preserves finite.sups. ju

Since the insights of Lawson and Hoffmann we appreciate the fact
that on the object level there is a bijection between CD-objects and : : 
continuous posets. What sort of maps one should consider on the

continuous poset level has begun to crystallize only recently, for




instance in Jaime Nino's dissertation. We saw in 1.2.a (and b) that the
adjoints of CD-maps produce Scott continuocus ﬁaps on the spectra Gnd
cospectra). But not every Scott continuous map between coﬁtinuqus posets
arises in this fashion. Indeed let g:T—=S be a Scott continuous map
between continuous posets.-if we let L= 6(S) and T = 6Y(T) be the
respective Scott topologies, then L and M are CD-objects and the

map f£i:l——aM giﬁen by f£(U) = g_1(U) is at any rate a cHa-map.By
1;2.i, this f is a CD-morphism iff it has a lower adjoint.

Let us pause for a moment and consider the situation more generally
on the level of general topolegy. If g:Y——X is a continuocus map between
topological spaces, we generate a cHa-map f:0(X)—=0(Y) via £(U) = g_1(U).
The map £ has a lower adjoint d:0(Y)—0(X) iff every open set V of Y
determines an open set d(V) in X so that d(V) ¢ U‘for an open set U of X
iff Vg £(U) = g'1(U) iff g(V) € U. Thus d(V) = ﬂ{er(x): g ¢ U}
= sat g(V) where the saturation sat A of a subset A of X is the intersection
of the filter of (opeﬁ) neighborhdods of A. We have in fact shown the
following
1.3. LEMMA. The cHa-map O(g):O(X)———}O(Y) induced by a continuous function
g:¥—sX wvia . 0O(g)(U) = 3_1(U) has a lower adjoint if and only if the

saturation sat g(V) is open in X for each open set V in Y. {3

REMARK, If X is T1 this occurs precisely when g is open.

1 space.)

For easy reference we choose the following nomenclature: ' '

(Indeed sat &#=A for all sets A in a ‘T

1.4. DEFINITION . Aifuﬁction g:Y—X between topological spaces is called
quasi-open iff sat g(V) is open in X for each open set V in Y. O

Since the Scott continuous and quasi-open maps between continuous rposets
are precisely those arising from CD-morphisms by restri”cting adjoints to
spectra we deéla;e:. 5 ' ) .
1;5. DEFINITION. A map between up-complete pbsets g:T—=5 is called a
comorphism iff it is Scott continuous and Scott quasi-open,i.e. iff it
preserves directed shés and Th(V) is Scott open in § for each Scott open
set Vin 7, O ' '
' We then have the following remark: _ _ _
H.6.PRDPOSITION. The category CD of completel& distributive lattices is dualljf -

equivalent to the category of continuous posets and comorphisms between them. []

We recall an ancient knowledge of the striptures of the old covenant:
If -F: 5—T is an upper 'adjoint of c:T——5, then F is Scott continuocus
iff F-1V is Scott open:for each Scott open_ set V; but F—IV = Tc(V), and so

F is Scott continuous iff ¢ is Scott quasi-open.



In particular, if F is an INF-map between complete lattices then it is in

fact an INFT ~map iff its upper adjoint is a comorphism. This leads us to the
following definition: '
1.7.DEFINITION. A map F: S———*T between up—comp lete posets is called a morphism
}ggn%taggslg %gggg gg%g%g&oﬁs?h-—*ﬁ which is a comorphism,iff it has a lower ad-

From the old testament we know that a map F: S-~»beetween continuous
lattlces is a morphism in the sense of 1.7 iff it is a CL -morphism,i. e.,
an’ INF - morphism. We may think of a morphlsm between up-complete posets
as the pair (F,c) of adjoint maps. The category of contlnuous posets and
morphisms between them centains CL as a full subcategory and is a bit
smaller than the dual categor§ of the category of continuous posets and

comorphisms between them. To be a bit more precise:

i.8. PROPOSITICN.- The subecategory ERSpec of CD with the same objects as
CD and all CD -morphisms between them which preserve spectra is equivalent

to the category of all continuous posets and all morphisms between them.

The functor which implements the equivalence simply. asscciates with
a CD-object its spectrum and with a Spec-preserving morphism its restriction

to the spectra. Recall that a CD-morphism £:L—>M is a CD

Spec~morphism

iff the lower adjoint d of £ is a cHa-map (see 1.2.iii.)

I point to these relations between completely distributive lattices
and continuous posets in order to advocate the feasibility of a systematic
collection of information on completely distributive lattices, accepting
as given the current interest in continuous semilattices and posets and
their applications. ‘The case for completely distributive lattices does
not rest on their rich:structure and symmetry alone but in their hierarchical
position within a whole chain of classes of posets that have caught our
attention. It is not untypical for conditions iin lattice theory that the

chain is closed. This is illustrated in the following Ermé —-diagram

_J

CONTINUOUS POSETS I

1CONTINUOUS SEMILATTICESI

I
CONTINUOU ngTTICES

]

COMPLETELY DISTRIBUTIVE
. LATTICES




Section 2. Freedom.

We recall from the old testament that we denote with (L) the Scott
topology of a poset L. It will be convenient for us to relize the

opposite lattice @(L)?? concretely:

2.1. NOTATION. For a poset let _x(L) be the complete lattice of all
Scott closed subsets of L. I

Thus A&:EE(L) iff YA = A and sup D € A for every directed set D G A
with a sup. (We will consider up—complete posets anyway.) Clearly, ICL)&" &) P,

2.2. DEFINITION. 1If L is a pbset and M a complete lattice, then for
any function g:L——M we define g*: K‘.(L)—>M by g*(A) = sup g(a).

2.3, PROPOSITION. Let gt:L-—>M be a Scott continuous map between

. .posets such that M is a ’ complete lattice ~. Then
g&: K‘(L) —M , g*(4) = sup g(4),

has an upper adjoint

WM ML), u@ =g (m).

Proof. Since g is Scott continuous, the function u is well-defined. Now let
AGX(D and m £ M. Then g*(A) ¢ m iff sup g(A) g m iff (Yag A) gla)gm
iff (Va€h) a€ g '(bm iff AC g '(dm = ulm.Q

2.4, COROLLARY. Under the circumstances of 2.3, the function g* is in SUP . O

REMARK. 1If L is just a set, and 2" the lattice of all subsets of L, then
for any function g:L —¥ into a complete lattice, the. functions g*:ZL——z-M
and u: M———>2L are well defined by the formulae given in 2.3 and g* is a lower
adjoint of u by the same proof. In particular, the extentiom g* still

preserves arbitrary sups.

2'?5_.PROPOSITION. Let _"g:L—-—e-M be a map between posets with a lower
adjoint and suppose that M is completely distributive. Then g#: ‘r(L)———bﬂ.is
in INF . ra :

REMARK., The claim persists for the extension g*: A(L)—.rM to the lattice

~ A(L) of all lower sets A = JA of L. '

‘Proof. Let. {Aj:je J} be a family in A(L). Since g* is monotone, the
relation - - R ' Lo i
i * . CA.) inf,.g*{A.) .= inf, s A,
(1) g (OJEJ ;) <€ ;8% (A je g sup 8(a)
is automatic, and we must prove the reverse inequality,

By complete-distributivity of M we have (see 1.1.(::&))

J

(ii)- infje_ 3 Sup _.g.(Aj) = Sup(a'l'c)keJ infjeJ g(aj), (aﬁt)ke €—|—|_JAk .
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Now let d:M—-——)L be a lower adjoint of g. Then, setting m = 1nf €3 g(aj),
we.note m £ g(a ) for all j€J, and this is equivalent to d(m) € aJ for

all je J. Since AJ =} A} for all _]’WE derive d(m) €’ AJ for all j€ J,i.e.

d (m) Qmj el AJ.. In particular mggdm) e-g(mjeJAj , w’negce

ng(a) m € sup g(mjeJ 3 = 3*(Ojc_ 3

Hence

for all (ak)ke 3 e J’Aj'

Py e B8 (e 4y

which, in view of (ii) is the required revers inequality to (i). Q0

As a spin~off we recover (?) the following characterisation of completely

distributive lattices:

2.6. COROLLARY. " Let M be a complete lattice. Then the following conditions
are equivalent:
(1) M is completely distributive.

{2) For any family Aj of lower sets in M we have

sup ij JAj =infj€Jsup Aj.
{3) The functiom id* : A (M) —M , id*(A) = sup A, preserves all
infs. ' :
(3') The function id* : A(M) —sM .is in INF o~ SUP.
'(4) The function id* : A(M) —M has a lower adjoint.
(5) For each me€ M we have m = sup m (where x<&x ¥y iff for any

subset P of M the relation v < sup P implies x g p for some p& ?P).

Proof. (1) & (2) : Apply 2.4 to id:iM—s.

(2) = (1) : Exercise from 1.1.

- {2) & (3) : By definition.of id*.

- (3 ¢-'>-(3") Due to the fact that the functlon id* is always in SUP
(see Remark following 2.4).

(3) & ) : Re_call the - theory . of the Wunderwaffe'adjoint'.

(4) @ (5) : Sketch: The lower adjoint of id*,if it exists, must
be the function s:M—3 PL(M)V given by s{m) —n{AE A(M): m < sup A}
llTh:i.s function ca1.1,l of coursé, Be always deflngd‘; it is the desired adjoint

“iff m o= ic_i*(s(m)) = sup s(m) for all m. Take'it from here.D

Our principal aim was information on the operation *. We collect the ™~

essence from 2.3 and 2.5:

2.7. THEOREM. Let g:L—>M be a map between posets with a lower adjoint

and assume that M is a completely distributiverlattice. Then

: A(L)——>M ., gk(A) = sup g(a), is in SUP N INF.
If g is Scott contlnuous, then g¥: r(L)———-)M is in SUP A INF . QO




2.8.CORQLLARY . Let g: L——> M be a morphism of up—complete posets in the
sense of Defimnition 1.7. If M is a completely distributive lattice, them

| g*: (L) — M | '
is a worphism from _]:E'.“gﬂ . O

2.9. LEMMA, Lét S be an up-compléte posét. Then the function
ng: S—> J8), I?S(S) = ls,
is Scott continuous, and the following statements are equivalent:
(1 g is a morphism of up-complete posets 4 la 1.7
(i.e. s has a lower adjoint).

(2) S is a complete lattice. -

Proof. Since S is up-complete, ?S preserves directed sups, hence is
Scott continuous.  Condition (1) says precisely that for each A€ J(S)
there is a smallest element a € S such that A¢ Ja,i.e. that each
Ag r(S) has a sup. An arbitrary subset of §, however, has a sup iff its
~Scott closure has a sup and the two agree. Hence {1} and (2) are

equivalent. 0

2.10. LEMMA . Let £:5—>T be a morphism of up-complete posets in the
sense of 1.7. Define J(£): J(s)— T by . J(£)(a) = (JEA)) .
Then J(f) has the upper adjoint BF® J‘E_1 @) (T} —> 7(8), whence it
is in SUP. Furthermore, we have | a‘(f) = (JZTf)* and PZTf =.'J‘T(f3'112§, and these
conclusions held:
(i) If T is a complete lattice, then J(f)e SUP A INF.
(ii) If 8§ 1is a complete lattice, then for every SUP n INF -morphlsm
F: J‘(S) — J‘(T) the map g= F?S: 5 r(T) is a morphism of up-
complete posets such that g% = F.

s - ?S
P__iagram: - § — r(S) -
1
- T T)—T(T) .

Proof. We have A € £ 'B for A€ yS) and BeNT) iff £(A) € B iff
(J f(A)) & B , since B is Scott continuous. This pro{res the first claim.

Furthermore we have  F(£)(A) = (VE(A)~ - (U{ma). ac s} ) -
sup {(?Tf)(a)- ag A} = sup (QTf)(A) = (?Tf)*(A) Also, Q_Tf(s)

= Jf(s) = d £(}s), since £ is monotone, and this set is closed as pr1nc1pal .

. ideal, Thus it agrees with (L £Ws))™ a’(f%s) | ' '
If T is a complete lattice, then Y- is a morphlsm by 2.9, and so

fQT is a morphism, whence J'(f) = (flz,r)* is in SUP » INF by 2. 8.

If S is a complete lattice, and F is as in (ii), then g— FQS ; a




morphism of up-complete posets, since Si:s one by 2.9. Also g*(A)
sup g(A) = sup Fy (&) = ¥( sup p(4)) = F ((Ufla: ac A" = FA)
F(a). O | | : |

2.11. 'NOTATION. . Let CP denote the category of continuous posets with
ﬁlorphisms in the senée of 1.7 between them. The category CL is then a
full subcategory of CP and the category CL of continuous iattices
and CL -morphisms contains the category CD as a sv.;bcategory which is not
full. The forgetful functor from €CD. to CL and to CP will be
denoted | 1.

After 1.8, the categdfies CP  and —CBSpec are equivalent. O
2.12. THEOREM. -Let S be a continuous posét, M a completely distributive
lattice, and g: S~—— {M| a CP-morphism. Then there is a unique
b %nofphism g*: X(S);)M “such that g = [g*‘)z g The funection X gy =

(g g*): CP (5,[M]) ——> CD(y(s), M)
is a natural injection.

The map 728: S5— B‘(S) is a Scott continu_gué map; it is a CP -morphism

iff S is a continuous lattice. In this case, DLSM is a natural isomorphism.

Proof. The function g* is a CD-map by 2.8. We have g% Qs(s) = g*{ ] s)
= sup glie)=
l ]

. with g 'ZS
subalgebra containine im QS = Cospec F(S). Since X(S), as a completely

g(s) since g is monotone. If g': X(S)—bM is any SUP -morphisr

g*lzs, “then the equalizer of g' and g* in J‘(S) is a SUP -

distributive lattice, is order cogenerated by its cospectrum, this equalizer
is all of r(S). Hence g' = g*¥ . Since g* determines its restriction to

the cospectrum, thne g* determines g uniquely. Thus & o is injective. It
is _glqarly natural By 2. 9 ?S is a CP-morphism iff S is 2 continuous
lattlce If,in thls case, we identify M w1th X(Cospec M) (which we may!)

then 201 shows that o(. is surjective. O

L4

This Theorem callk for a commentary. By the skin of our teth it fails to
show that the forgetful functor | [:CD ——> CP has a left'adjoint!:. The
standard universal property is satisfied. Only a very close lock shows that
the adjunction will generally fail dueto the fact that the candidate for
the front adjunction 75 is not always a morphism in CP. In fact it is ome
if an only if S is a continuous lattice, Perhaps one can tinker with the
‘morphisms a bit and improve the situatiom, but I do not think that very
much can be done. At ‘any rate, the universal property we proved in 2.12
suffices to show that the forgetful functor | |:cp —CL has a left -

-adjoint:




2.13, THEOREM . The forgetful functor { |: CD—— CL has the functor

3‘: CL ——=>CD as left adjoint which associlates with each continuous lattice
L the completely dlstrlbut:.ve lattice r(L) of all Scott closed sets under
7 inclusion and with a CL -morphism £: § —T the map E(f) given by
x(f)(A) (.Lgﬂ'-\)) = g(a) (where ( ') is Scott-closure).
A completely distributive lattice M is free (over CP)
iff Cospec M is a continuous lattice in which case Cospec M is the freely

generating continuous lattice. 0

At this point all the free constructions over the category of compact
spaces and, finally, over sets fall out. The category CL has the grounding
functor A_C_Ii———)’ COMP  in the category of compact spaces and continuous
maps which associa;es'ﬁith'a continuous lattice the underlying space im the
Lawson-topology and with a EL_ -morphism the induced continuous map {see
the old testament}. The old scrptures also provide the information that
there is a left adjoint 1 ': coMp —-> CL which associates with a compact
Hausdorff space X the CL -object "X of all closed subsets with vrespect
to reverse contaimment (so that T°X = 0(X)), and with ['(£)(a) = £(4), thus (£

is upper (1) adjoint to the map Bhl— f_1B for any continuous map f: X—¥.
This gives,via composition of adjoints, the following result:

2.14. COROLLARY. The grounding functor /\: CD ——> COMP  which associates -
with a completely distributive lattice the underlying space with the Lawson -
(and indeed interval-) topoclogy has the functor X i—> YK as left

adjoint. The front adjunction is  Yy: X—» T.(FX) s Yy () = {a=a" ¢ X:xg A}

(If one interprets the free object as {(O(X)), then the front adjunction
assoclates with an xXx€ X the set {Ue0(X): x¢ U} = 0(x)\ U(x) where
U(x) is the filter of open neighborhoods of x.) [

" The category COMP “is grounded in the category .SET of sets by the
-functor‘which associates with a compact space X the underlying set. Its left
adjoint B: SET -——p COMP associates with a set its Cech-Stone compactifi-
cation. We recall .that [(BR) = 0(8X) = 2%, As a consequence we have now

i

identified the free completely distributive lattice tout court:

2.15. THEOREM. The free completely distributive lattice over a set X is
J‘(ZX'). The froant adjunction 1is x— J{age X: x§ A} : 2> J(ZX)

As a functor, the free construction X I———)X(Zx) transforms a function
f:X——sY between sets to the CcD -morphlsm J(Z = {B € 2°: f (B)C
for some AEQ} (2 y— 0’(2 Y. a
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The free bounded distributive lattice over a set X is the sublattice
generated in R(ZX) by the principal ideals,.(See literature on distributive
lattices}e.gu Balbes and Dwinger.) This is a sublattice of the free
completely distributive lattice 1(2X) over X and is sup-demse in it. For
finite X the two agree. The free completely distributive lattice over
a set X is quite large: '

2.16. COROLLARY. If X is an infinite set, then the cardinality of the

(zcard X)

free completely distributive lattice over X is 2 D

Let us pause for some comments on the almost free construction
QS:S———¢ F(S) for continuous posets. We recall that Rudolf-E. Hoffmaan

identified the largest essential extension e :X —— £(X) of a To—space

as a subspace of the lattice of all closed seﬁs. C(X) of X as

£(X)= fA€C(X): A is a convergence set ,i.e. the set of limit points

of a filter of open sets} < C(X), and ex(x)_= ﬁx}_ . I do not exactly know
~how the topolegy is constructed on ¢(X) in terms of the lattice C(X),

since Hoffmann weasels around that,too, by tfgnsporting a topology which
Banaschewskl introduced in a different construction. I would not be too
surprised if it were the topology induced from the upper  topology of C(X);

at any rate that topology will make e, an embedding., The lattice £(X)

i X
is closed in C(¥) under arbitrary infs and directed sups,hence is an 'LEET
—subalgebra of C(X).

The construction QS s 2 y(S) is a special case of xibﬂ?} X — Cc(X)

N for a continuous poset S
Thus £(8) is an INF' -subalgebra, and hence a CL —subalgebra of J (s)4

since J(S) is completely distributive, hence continuous. The relevant topology
on H(S) is the Scott topology which agrees here with the upper topology. It
induces on £(S) the Scott topology . " which is the topology for the
essential extention according to the Banaschewski-Hoffmann theory.

~- The members of the family of all CL -subalgebras contain"ing im ng =
Cospec K(S) all share the property of being sup-generated by im.?s; each such
member T is characterized by the lower adjoint dy: r{s)——a T to the CL -
1nc1u510n:&£ ~—4&(S), and by the Scott continuous closutre operator kT TdT
which induces the identity on Cospec xcs) Now let T be a CL -algebra
contalnlng Cospec F(S) and being contained in &(S). Then dTIQ(S) £(8)—>T

) ig the lower adjoint of the inclusion T-~9 £(S), and (dTIG(S)) ES.S“—"i$
is an embedding for the Scott topologies. Since.es is essential, idTla(S) is
an embedding which is the case iff T = &(S). It follows that g(S) is the

smallest member of the family in question.
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Thus

2.17. PROPOSITION. . For a completely distributive lattice M , the smallest

CL -subobject L containing the cospectrum S = Cospec M of M is the essential

hull of S when S and L are given the Scott topologies (both of which are

induced by the Scott topology of M). And all esseantial hullsiof continuous

posets are so obtained. Further, M is free over $ (as a CD-object is free
over CP ) iff S=L. QO

The example of the ordinary square M=[O,1:|2 is instructive in this regard,

because it shows the substantial difference between ILSE(S) and M I(S).‘It

also shows that there are millions of CL-objects between g£(S) and 3(5), in

every one of which § is sup-dense in the induced order.

The category EQ contains a full subcategory AD of all algebraic

completely distributive lattices. The ebjects were discussed in an earlier

meme under the name of baHa'bialgebraic Heyting algebras).We should observe

at
1is
is

is

this point that the free competely distributive lattice 7{2X)
algebraic. Indeed, an element - AE JA(S) for a continuous poset §.
compact iff A = LF with a finite set FEK(S). It follows that X(S)

algebraic iff § is an algebraic poset. Since ZX is algebraic, it follows

that 5(2X) is algebraic.




