SEMINAR ON CONTINUITY IN SEMILATTICES (SCS) | | Rudolf-E.Hoffmann | DATE M | D | Y | | |-------------|---------------------------|--------|------|-----|--| |
NAME(S) | | March | _ 11 | '82 | | | TOPIC | The Fell compactification | on ' | | | | REFERENCE Rudolf-E. Hoffmann, The Fell compactification revisited, manuscript Anyone interested in a copy of the manuscript may write to me. Rudolf-E.Hoffmann Universität Bremen Fachbereich Mathematik ## ABSTRACT: The Fell compactification $\underline{H}(X)$ of a locally quasi-compact T_O -space X can be viewed as a compact ordered space. Then $\underline{H}(X)$ corresponds to a quasi-compact, locally quasi-compact super-sober space ψX whose open sets are all the open upper sets of $\underline{H}(X)$. There is an <u>essential</u> extension $X \hookrightarrow \psi X$ in the category \underline{T}_O of T_O -spaces and continuous maps. We show that $$O(\psi X) \cong DID(L)$$ for the distributive continuous lattice L=O(X) - where O(Y) is the lattice of open sets of a space Y, D(P) is the dual of a continuous poset P, and I(P) is the continuous lattice underlying the injective hull of P (endowed with the Scott topology σ_p) in the category T_O . This result relies upon a representation of ID(L) for a continuous 1, \(\Lambda \) -semilattice L, viz. the (continuous) lattice of all those filters of L which are generated by Scott-open subsets of L. For a distributive continuous lattice L, the meet-prime elements of DFilt₆L in their (hull-kernel) topology are (topologically) identified with the pseudo-meet-prime (=weakly meet-prime) elements of L endowed with the Γ -topology of L^{OP} . Furthermore both $\underline{H}(?)$ and $\psi(?)$ are shown to be functorial on the category of locally quasicompact T_0 -spaces and continuous perfect mappings.