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A continuous poset whose compactification is not a continuous poset,
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The square is the injective hull of a discontinuous CL-compact poset.
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We propose a simple example of a continuous poset which may help to

illustrate a number of phenomena of a slightly delicate nature as they arise
in the context of the injecwve hull and the CL-compactification.

EXAMPLE. We let L be the square [0,1]? with its usual order structure, and we
define subsets PC CC L as follows: ‘

i) €= 1L \ hole , where hole = {_(x,_y): 0< x,vy < 1/2}.

ii) P
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L \ HOLE , where HOLE = {(x,y): 0 <x,y <1/2}.
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Clearly, P = C,where the closure is taken in the natural,i.e. the CL-topology.

We go through the various properties of the examples before us.

. P is a continuous poset. Its CL-topology is locally .conmected and connecte\a.

The proof proceeds by inspection. The way-below relation is that induced

from L. The CL-topology is that induced from the CL-topology of L.

Note

2. C is not a continuous poset.

that the CL-topology is locally compact in all but two points.

Proof. We consider the point x = (1/2,17/2). We cobserve J.x ={ye C: Pr,¥, PT, ¥

£
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1/2}, and *x = {ye lx: (p'r:1 vy = 0 and PT, vy < 1/2) or (przy = ) and
Pr, ¥ < 1/2)}. Then x = sup éx (which is predided by the general theory

to which we will come: back later), BUT *x is not directed.
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3. L is a continuous (and indeed a completely distributive ) lattice.

(What else is new?)

4. L is the topology=~induced injective hull of P and of C.

" Proof. We have to recall some background at this stage. There are several ways to un-

derstand this claim. Fxrstly, one may refer to a recent characterlzatlon theorem
due to Reh ([Reh ], p. 15, TEROREM 1.7
THEQREM. Suppose that a continuous poset P is contained in a complete lattice L
and that the order of P is the induced one. Then L is the injective hull of P iff
(i) P is sup-dense in L (i.e. P order cogenerates L)
(ii)} P is closed in L under the formation of directed sups.
(1ii) The way below relation Af P is induced by the way below relation of L.

(iv) The gLrsubalgebra;generated in L by P is L.

(In lieu of (iii) one may also write ({cf.loc. cit. Lemma 1.7 on p. 11):

(iii') If x W,y in P then x <§Ly.)

The conditions (i)-(iy) ere satisfied for P in L..Bb Lemma 2,p.235 applies .to PC CZL.
This proves claim 4. - _ .
It is imstructive to . consider P as embedded into the completely distributive
lattice T(P) of all S;Btt closed sets under xt+4x. Then  A(P), the
topology -induced injective hull of Reh is concretely realized in T&) from
the imagesof P (whichiis the cospectrum of (X)) as follows:

(a) First form the smallestA;ubsemﬂbttte containing S.

(b) Add all filtered infs and 1.

(c) Add all directed sups.

(See "Reh,, 5.4,p. 32, as well as Khh and HM.)
It is clear in our example that step (a) already fills the HOLE in P and thus

yields L, which is already a continuous lattice, hence will not be enlarged by

steps (b) and (c).
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5. C is the CL -compactification of P,

Proof. According to the-.definition,due te Reh [Reh1-,p.20, Section 2.3] '

the CL-compactification of a 'continuous poset P is its closure in the inject.

L of P with respect to the CL-topology. In our example, the CL-topology of L is

the natural topology of the square. It is then clear that C is the CL—compactifica-

tion of P .

6. P is a continuous poset (with locally connected CL-topology) whose CL -compactifi-

cation-is not a continuous poset.

It should be clear that, in the construction of 1 = D,i]’ the unit interval
[0,1]may be replaced by a suitable totally ordered algebraic lattice as long as
the element replacing 1/2 in [0,1] is neither isolated from below nor from

above. We can therefore state

7. There exist algebraic posets whose CL-compactificationsare not algebraic

posets {and not even continuous posets).

8. The space C with its Scott topology is a To-space with an injective hull.

which is not a continuous poset (relative to the specialisation order)

There are simpler examples for this phenomenon. The boundary.of the square will
do.

9. The space C with its Scott topology is a To-space with an injective hull
and C contains a point x (viz, x = (1/2,1/2)) with a neighborhood W “such
that for no point w € W the point x is in the interior of 1w .

(In the terminolbgy of Bb pp.239 and 240 there is no open neighborhood V of x
such that Wn f:)V £ d.) ' o .
Proof. Indeed the set W =. C\(&xf- (= {ﬁu,v)e C: (if u= 0 then v> 1/2) and
(if v = 0 then u > 1/2i})is such a neighborhood.

sober .
We summarize: For a space X let AX be the essential hull in the sense of Bb.

Consider the two statements:
(0 AX is injective (i.e. X has an injective hull)
(2) X is a continuous poset in its specialisation order and its topology

H
is the Scott *opology for this poset structure.
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Then we have the following facts:
FACT i. {(2) implies (1)
FACT ii. (1) does not imply (2).

We also consider the following statements:

(I} X has an injective hull. (€ (1) above).

(IT) For each point x in X and each open neighborhood W of x there is an
open neighborheod V of x such that for some weg W the relation

ve tw holds.

The we have the following facts:

FACT 1i. (I1) implies {(I)

FACT ii. (I) does not imply (II).
Concerning this summary, cf.[?ehé]’p.150 Theorem 3.4 and p.154, Theorem 3.14,
and {Bb] p.240 Corollary 2.

What are the positive results which we have in the context of our discussion?
Firstly, we owe to Reh the following Theorem which is not hard to prove once
one has the general characterisation theory for injective hul%s of continuous

posets developed in the first chapter of Re‘n1

THEOREM. 1If S is a continuous semilattice, thenthe ngcompaqpification C is
a continuous lattice and agrees with the topology-induced injective hull L of S.

[Reh1],p.24, Theorem 3.3 .

Secondly, -
we - - repeat the necessity portion of Reh's characterisation theorem lReh1}p,15,1.7:

COROLLARY. If a continuous lattice L contains a continuous poset P such that L is
the injective hull 6f P, then P is closed under directed sups and inherits the
way below relation and L is generated by P in each of two ways: L is the

set of all L~sups of P,and L is'the set of directed sups in L of the set S of
all L-infs of P.

This corollary controls quite sharply the continuous posets, of which L can

be the injective hull. Let us illustrate this in the following result:

THEQRFM A - Let L be a continuous lattice and P& L a continuous poset such that
L is .the injective hull of P. Thén we have the following conclusions:
(i)} The CL-compactification P in L is inf-dense in L (i.e. P order generates L,

i.e. every element of L is an inf of elements in P).
(ii)  IRR L\{fjc?

(iii) If L happens to be completely distributive, then P contains both

Spec L and Cospec L. ; _
(iv) TFor each point x€P we have x = suplx (in P).




Proof. By Reh's characterisation theorem, P topologically penerates L in the
sense of the Compendiump. 243, Definition 2.3. Then (i) and (ii) follow
from Compenditm p.244 , Propositisn 2.4. In ocder to prove (iii), assume that
L is complétely distributive. Then the Lawson topologies of L and 1P agree
{Compendium p.318). By Reh's characterlsatlon theorem, P is order generating
in L p; then Compendium p.243, Theorem 2.1 applies to L °P and shows that

Cospec L is in P. Concerning (iv) we recall that x = supJ;Lx,x‘= sup ({¥n P)fordecx

We conclude x = sup xa P), whence (iv).O
Remarks. QRecall that 0 and 1 may or may not _be in P. 11) From (i) we recover once
more that L is the MacNeille completion of P (see[Reh 5.6 on p.39).

We illustrate . A in the following example:

EXAMPLE , Let P be a continuous poset in the squareI=[0,1]2 such that

L is the iﬁjective hull of P. Then P contains the boundary of the square L.
Proof. Wé have Spec L v Cospec L w{0,1} = boundary 1. . Apply the preceding
Corollary. _

Remark. In this particular instance, ome notlces without diffieulty dlrectly

extent, goisibly. for O)
that P itself must contain the lower half of the boundary. {i.e., Cospec L)

CONSEQUENCE. 1If P is a continuous poset in the square L ,1]2 such that

N0
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L is the topology-induced injective hull of P, then P i Sontained in the
~

~
boundary,of the square.
Proof. ,If P were contained in the boundary, then P would be contained in it.
The Sieceding result then shows that P would be equal to the boundary, and since
- P is up-complete,we conclude B‘sKO Dj}cP, and thus P is not a con-—
We will prove below the following |tinuous poset. i
CLATM." The square L = ﬂ),ﬂ 2 is the essential hull of its boundary (with |
the Scott topology).
This example is of interest for the following reason: Since there 1s mo obvious
necessary condition on a sober space X to have an injective hull one might be .

tempted to .conjecture that a sober space X with an injective hull might At least

have to be an essential extension of a continuous poset (in its Scott topelogy).

Howeve{, the CLAIM shows that this is false, too.This follows from the CONSEQUENCE

above. ' {

Now we establish the CLAIM. We have very little in the line of general theory
which would allow us to conclude this right away; se we have to establish the Claim:
from scratch. But that process also is a good exercise and illustration of Bb's
and Reh's theory of essential hulls.

We let L be the sguare fO,ﬂ ? and B the boundary. ;

LEMMA . TLet M be the poset in the plane consisting of all (x,y) with
0 x,y< 2 and -lgx - yx1 or x=y= 2 . Let u° be M with an 1solated

0 attached. Then the lattice T(B) of Scott closed sets of the boundary is _ ‘

isomorphic to M°.




Proof

We define £: M°— T(B) as follows:

i) If 0 is the isolated zero of Mo, then

£(0) = §. Also £(2,2) = B.
ii) If 0gx,y<g 1, then f(x,y)=

LB(X’O) v &B(O ,y)-

iii) Suppose that 0K x¥ y< 1 and that y = 1

implies x< 1. Then

f(i+x,y) = 13(1,X)u JrB(O,y)-

iv) Suppose that the same conditions hold

/ ) ‘ as in iii) . Then ' .1x
i a f(y,1+x) = J'B(X,I)U L-B(Y,O) “

l(‘;“.\ '
: . . W) If 0€ x,y< 1, then f(1+x,1+y) =

J«_B(x,ﬂu LB(T,y)-

Then f is the required isomorphism.

Pau .
te) 1 The function bl—»fﬁ(lb):B —> M° mape B

[
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onto the boundary of M under the preservation

of order and of all existing infs,
The filters of open sets on B are the
ideals of T'(B), hence of M°(up to

natural identification). The neighberhood

‘/|(§,n W) : filter of (x%,0) in B corfesponds to the

L > ideal {(u,v)EM : u<cx} y {0} , and the
 neighborhood filter of (1,x) in B

corresponds to the ideal

{(u,v)é M : uc t+x Y040}

) There are two corresponding cases for the
/ (w.’! v3 points on the other hemisphere of the
1 / boundary. The join filters in the sense of

Bb correspond to the joins of any two of

the four types of ideals. We sketch one:

;.—_:z_ ideal corresponding tolfx,0)

o ke

sup ideal corresponding
to the join of Z{(x,0) y
and T/ a. v i

N




~4

Each of the occurrimg joini. ideals is uniquely characterized by its sup in M.
We see that the space of sup-ideals is represented by the following

subpset of M, in the induced order:

— neighborhood filter of (1,1)

(1)
!
neighborhood filter :

of (0,0) — - -

As Reh has pointed out, a join filter of open sets may be represented by an element
in T(B), nemely, its set of limit points. A point b€ B is a limit point of
a filter F of open sets iff U(b)e F (where U(b) is the filter of open neighborhoods

of b. We dencte with lim F the set of limit points of F. Example:

\

= U) v
K uee

lim F = }polc

(x,0)
0,y

b
c

B

A precise inspection of the situation shows that the space of limit sets of all

join filters in T'(B) is

\

(2)

The posets in both (1) and (2) are both order isomorphic to the square- which is
what we had to show.




It is interesting to observe how the square is embedded into

M = T (B) as the injective hull L=A(B) of B. It is closed under infs,but
' not under directed sups. Thus it is not embedded as a CL -subalgebra.
Moreover, the embedding 1s such that x< 4 implies x<& o~ but if x« y tholds

on one of the feelers, then x<<My » but mnot x<<Ly. (This phenomenon is
only possible since L is not closed under directed sups in M - see{Rehﬂ,p.12,
1.2.b.) . The Scott topology of TE(B) does not induce the Scott topology
~ of the Reh-embedded essential hull L, but the Scott topology does induce
the Bb-embedded essential hull L (see (2),resp. (1)). This phenomenon
illustrates the difficulties one has in explicitly describing the Reh-~
embedded essential hull L in - the lattice of Scott closed sets. This is
the reason why Reh had to "transpoxrt" the Scott topology from the Bb-
embedded essential hull rather than to say explicitly which of the -
standard topolegies on the lattice 6f closed sets might induce the

essential hull topology.

These remarks are also relevant to Reh's'apprqach to the Fell
compactification of a continuous poset— which is none other than the

CL-compactification (see Reh, pp.35 ff.) For a continuous poset P, Reh

considers the lattice \qRP)tof Scott closed sets (in Reh called "A(X)}"™)
and shows that the injective hull L of P is both Scott— and CL-embedded
in T'(P). The example of the boundary B of the square L above shows that
this fails in the ahsence of continuity of P; the reason is that T
is continuous iff (as a complete lattice order cogenerated by its
cospectrum) Y@ is completely distributive iff P is
continvous -(We assumerhere that P is at any rate sober in its Scott
topology which we know is not necessarily the case even for complete
lattices (Johnsten-Isbell).) How the continuity of 7T(P) is utilized
was shown in ¥Khh SCS 11-24~81 and can be found in Re.h1 in various places,
such as e.g. p.36,37;5.3. Thus, while the CL-compactificatiom of a
continuous poset may be readily formed within T(P) as a CL-closure this
may be doubtful in the general case, although the examples in this memo
de not clear¥;?égunteréxamples for this possibility.

There is almost no limit to one'’s imagination in playing with the

square, Here are some variations to the theme discussed in this memo:

:
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