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0, Introduction.

Banascheski's paper on essential hulls is, next to Scott!'s seminal article on
continuous la ttices, one of the very early sources of their theory (B)s since it
intmduces features relating to continuous posets which are at the focus of more
current research long before the concept of a mntinuous poset congeled it has,
in recent years, spawned a whole line of research (4).

The objective . . of this memo is a review of Banaschewski's paper and its
principal results. The revéiw may be timely for the following reamnse: (i) We now
have a well developed theory of continuous lattices and standard sources (C). (ii) The
original article (B) is not easily readable in all places, and the Corollary 2 to
Proposition 3, on which many results in A) are based,is false{DNiii) The basic ideas
of (B) are important and visble and it might be useful to take stock of what the
precise status is.

The basis of our discussion here will be in the framework of contimious and
algebraic lattices. At a later stage, we merge into the language of filters which
Banaschewski uses to construct the essential hull of a space. R.-E.Hoffmann has
given alternative consetructions A2).

1+« Sup-closed subsets in continuous lattices.

We fix a continuous lattice L. From the theory of Galois connections (Cype18 ££.)
we know that there is a crjponical bijection between the set of sup-closed subsets A
of L and the set of kernel operators k: I~—>L; indeed each kernel operator k |
determines a sup-closed subset A = k(L), and from each sup-closed subset A we
obtain a kernel opegator k via k(x) = sup( Jxa A) = max(| x o &) The two operations
invert each other. All of this requires the completeness, but not the continuity
of L, Our ohjective is to find explicit eriteria for the continuity of A if L
is continuous. We know from C, p.63, Theorem 2,14 that A is continuous whenever the
associated kernel operator k is continuous relative to the Scott topology (cf.C,p.112).



The converse may fail, as shows the example ks [0,1]—> [0,1] with Xk(x)= x for x=1

or x £ 1/2 and with k(x)= 1/2 else. 0

‘1L

However, there are cases, when the continuity of k is necessary and sufficient for

the continuity of 4.

Tele LEMMA., Let ksI—>L be a kernel operator on a e ntinuous lattice and 4 = k(L).
Suppose that L is the smallest subset of L containing A and being closed under
arbitrary infs and directed sups (i.e. A generates L as a CL- algebra). Then the
following are equivﬂbnt:

(1) k is continuous, (2) & is continuous.8nd topologically embedded in L.

Remarks., i) Here and in the following, contimuity of a map between pozeis always
refers to the Scott topologies,unless noted otherwise. ii) A special case of Lemma 17

is implicit in Proposition 3 of (B).

Proof. We only have to prove (2) = (1)s Thus suppose that A is continuous. Then
A is a continuous retract of L, since A is injective (with its Scott topology) in
the category of T ~spaces and is embedded into the space XL = (1, 6(L)), where

6(L) is the Scott topology. (See C,p.121 £f,) Thus there is a continuous
projection operator pL —3>L with p(L)= A (ef. €,p.21, Definition 3%.8.i). Nextwe
define I, = fx e L: p(x) ¢ x} (see €, p.22, Lemms 3.,11and p.63, Theorem 2.14).
Now I, is closed in L under infs and diremted sups (C,pe63,locecit,).For a € A
we have p(a)= a,hence a & Lk' Since A Cl-generates L by hypothesis, we lave Lk=L’
l.¢e B is a kernel operator with p(L) = 4 = k(4). Then =x > k(x)} implies p(x) > plk(x)
= k(x), and likewise x > p(x) implies k(x) > k{x)., Thus k=p and k is continuous. {J

We record the following observation:
1e2. EXERCISE. If A is sup~closed in a continuous lattice L, then the following
statements are equivalent:
(1) A is continuous and topologically embedded in L.
(2) Foreach a & A and x & L the relation =x <<L a implies the existence of
abeld with x < <<L )

For all a,b & A the relation a <<A b is always a consequence of a <<L Py, but if
(1) and (2) hold, then the converse is also true.i] (CfeC,p.181,Corollary 1.7

We omit the {simple)proof and now concentrate on the continuity of a kernel operator,

1e3. LEMMA, Let k be a kervd operator on a continuous latticé, Then the following
statements are eguivalent:

(1) % is continuowus.

(2) k(x) = sup k(§x) for all x e L.

(3) a sup k(&a) for all a & A (=k(L)).
Remark. The way below relation << refers to L unless otherwise specified.

ll
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Proof. (1) <=>(2) :See C,p.112,Proposition 2.1, (1) <=>(5); the implication (1)=>(5)
uses only the continuity of the domain 3, and a simple modifiéation-of' the proof
of (5)=>(4) shows (5) =>(1) without the hypothesis that the range T be continuous.
In other words, the equivalence of (1,2,3,5) holds whenever S is continmous and T
is complete.
(2)=>(3): Trivial since k(a)= a for a £ A.
(3)=>(2): Let x £ L and set a = k(x) ¢ A, Then a
£ sup k(\\iﬁx) (since a = k(x) £ x) < (x) = a. Thus k(x)

sup k(&) (vy (3))
sup k(\@,’x). 0

!

Now suppose that G 1s an arbitrary subset of the contimuous lattiice L and let
A be the set {x e Lt x = eup ({xnG)} oo which is sup-generated by G

Let k be the kernel operator associated with A.
1efe LEMMA, The following statements are equivalent:

(1) k is continuous.

2) a= sup(gan G for all a & A,
3 g = sup({gn G for all g & G.
Proofe (2) # (1)s By 1.2 we kmow $an G =<y &Y =

& oup-fra—< o Thne—a-—supy e —y—iverA—ieoomimous—iiso Y2n ¢ kla),
whence a = sup (Lan G) < sup k(;l’a) £ a. Thus a = sup k(&j,/a), whence k ig
continuous by 143

(1)  (2): If k is continuous, then A is continuous. Let a & A and suppose
x << &. We find : - an x' € L with x < x'" << a by the interpolation
property (C p.46), and then we find a b & & with 'S b << a by 1.2, Now b=sup(}b n G)

by hypothesis.Since x << D $here ils g finite set F_c_\l,"bn G sucht that x £ sup F.

Since sup F << a we conclude FC¥an G. Thus x  sup F & sup(‘\k an @) < a.
3ince x << a was arbitrary and a = sup 42 as L is conitinuous we conclude
sup({, an G) = a. Y
(2) = (3) is trivial.
3) »(2): a-= sup(klﬁha.n G) = sup Jge G: gla} = S8 fER b (by (3))
gla IK<g

= sup {h e Gt h<{g { a for some g e G} < sup@a & G) < &, whence a = sup(\\f; an @)+ [J

1¢5. _}L_‘IVH%EAO Let L be a complete lattice and suppose that L is inf-generated by G
(ivee x = inf ($xnG) for all x e L. et 4 = fx e Lz x = sup( x N G)). Then
the complete lattice A is inf-generated by G WITHIN A ,i.e. x = ian(/\"x aG)
for all x & A.

Proaf . Let k:l—>L be the kernel operator associated with . A, Let getl—>4 be the
coreatriction of kj; then g is upper adjoint to the inclusion d:i——>L,hence
preserves infs. Now et x € A. By hypothesis, x = inf(Tx A @), whence x = k{x)

= g(x) = inf, g(Pxn6) =inf, (Txae). O



We are ready for the principal Theorem of this section:

1.6. THEOREM, Let G be a subset of a continuous lattice L and let A denote
the subset {x € L: x = sup(}xnG)} which is sup-generated by G. Consider the
following conditions:

(1) A is a continuous lattice in its own right and is embedded in L weTet.

the Bcott topologies,

(2) g = sup (ign G) for all g& 6.
Then (2) = (1) and if the smallest subset of L,which contdins A and is closed
under arbitraryrinfs and directed sups, is L, then both conditions are equivalent.
Proof. By 1.1, conditions (1) is equivalent to the continuity of the kernel
operator k associated with A, provided that T is the smallest subset of L
containing L and being closed under infs and directed sups. By 1.4, the continuity c
of k is equivalent to (2). Since (1) follows from the continuity of k in

general, the Theorem is proved. O

1.7. REMARK. If in addition to the hypotheses of 1.6, the set G inf-generates L,
then ¢ inf-generates A within A, i.e. a .= 'ian( Ta n G) for all ag A. In this
case, G is both meet and join demse in A.
Troof. lemma 1.5 O
1.8, COROLLARY, Suppose that G is a subset of an algebraic lattice and A is
defined as in 1.6. Then of the following conditions,(2) = (1):

(1) A is a continuous lattice and is topologically embedded,

(2) g = sup {he G: there is a c € K(L) such that hgcg g} for all g€ G.

If 1. is the smallest subset of I containing A which is closed under infs and
directed sups, then both conditions are equivalent. Remark 1.7 applies to

this special case.

Proof. The equivalence of conditions 1.6(2) and 1.8(2) is an immediate consequence

of C p.86, Proposition 4.5. 13

Notice that in 1.6 and 1.8 the continuity of A is determined solely by the
way by which the generating set G of A is embedded into L.

2. élgebraic lattices.

2.1. DEFINITION. Let L be an algebraic lattice. We say that a subset G of L

is K-generating provided that the following conditions are satisfied:

where Trr L
(1) G ¢ Irr L (the set of completely irreducible elements of L,

cef. €, p.92, Definition 4.19)



(23 For all c¢X(L) we have ¢ = i’nf(T’kﬂ G).

Notice that (2) is equivalent to

(2') If ¢,e'& R(L}) and ¢ .?_f ¢' , then there is a g& G with c_,-g g
and c'« 8.

2.2. LEMMA, Let L be an algebraic lattice and G a K-generating subet. Then L

is the smallest subset of L containing G and being closed under arbitrary infs and
directed sups. In particular,thé;inf*semilattice generated by G is CL-dense in L.
Proof. Let L' be the smallest aubset of L containing G which is closed under

infs and directed sups., (C£.C, p.60, Definition 2.6 ff.).

By condition 2.1 (2) it follows that R(L)& t! Since L is algebraic, for

each x& L we have x = sup (Jx n K(L)) and J}x n K(L) is directed

(see C,p.85 ,4.3 and 4.4). Hence x g L'. Thus L' = L, The remainder follows
from C,p.146, Theorem 1.11.0

2.3. REMARK. ¥or a subset G of Irr L in an algebraic lattice L, the following
statements are equivalent: =

(1) G = Irr L.

(2) x= inf(fxm~ ¢) for all xg L.
Proof, C, p.93, Theorem 4.23. {1

In particular, if G is a K-generating set which is properly smaller than Irr L,
then for at least one Xx€L we must have x< inf(Txn G), and vice versa.

~

2.4 NOTATION. For a K~generating subset G in an algebraic lattice L we write
AG) = fxe 1: x = sup(dxa G).

Then A{G) is a sup-closed lattice in L which is a complete lattice in

its own right. [J

2.5. THEOREM. Let L be an algebraic lattice and G a K-generating subset (2.1).
Then the following statements are equivalent:
(1) %(G) is a continuous lattice and is %topologically embedded w.r.t.
he Scott topologies.
(2) For each gé& G we have g = sup {qe‘ G: qgcs g for some ¢ € K(L)} .
3) (Ve 6, reIrrl) g & r=(dqe G, cek@)) g« r and qgcge.
(4) For each gg G and each ¢ @ K(L) with cx g there are finitely many

p1,...,pn_€G, and 2 d €K(L) such that c-spiv...\/pn_-s d < g.

Proof. By 1.8 we know that (1) a;ld (2) are e_quﬁ._va_.l_ent. ‘(2) 2 (3) : Let g&G

and r& Irr L with g =X r . Since g is the sup of all ¢ & G with gqgecg g

for some ¢ there must be one of these q with q & r . Conversely (3) = (2);
i



let g & G and set g' = sup {qGG: q< c< g*for some ceK(L)}. Assume g'# g.

Since clearly g'= g we have g == g' and thus, since Irr L is order generat-
ing , there is an re Irr L with g'< r and g €% 1.By (3) we find 2a q¢& G
and a ¢ K(L) such that ¢ $ r and g=cgg. By the definition of g’

this q satisfies q=g'ss r, and this is a contradiction.

(2) & {4): let cgg with ¢ @ K(L) and g& G. Since cex=c, whence cez< g, from (2)
we obtain a finite sequence of elements pjsdjsg » j= 1,...,n with pj e G,

dj e K1) and ¢ = P, V...V P - If we set. d = d1v...vdn, then d @ K(L),
since K(L) is closed under finite sups, and condition (4) is satisfied.

(4) =(2): Assume (4) and take an arbitrary g€ G and an arbitrary ceK(L)

with cg p. Let py and d be as in (4). Then ¢ & PVee VP sup {qe G : q=eg g
for some eéK(L)} &£ g. Since g = sup(dgn K(L)) by the definition of and alge-
braic lattice (cf.C, p.85,Definition 4.4), conditions (2) follows. {J

So far we considered ;\(G) as a lattice in its order structure. There
are, of course, numerous.possibilities of endowing A(B) with a topology.

in the light of later applications we make the following convention:

2,6,CONVENTION. Unless sﬁ»ecified‘_ otherwise, we consider on A(G) the topology
induced from the Scott topology of L,i.e. the topology generated by the
sets Ten AMG) , c¢€ K(L) as basic sets. In accordance with the notation

in C we denote this topology with o(L)!| A(G).

The Scott topology 6(A(G)) of the complete lattice A(G) is at least
as fine as (L) ] A(G), but it may be properly finer . The two topologies agree
if for each Ug &(A(G)) the set fLU is in &(L). By C, p.181,

Corollary 1.7 this is the case iff the kernel operator associated with  A(G)

is continuous.We therefore emphasize the following

complement to Theorem 2.5:

2.7. COMPLEMENT TO THEOREM 2.5, The conditions of Theorem 2.5 .

imply éach of the following:
(5) s(x(e)) = 6w A(G),i.e. the topology of A(G) is the Scott topolo-
gy (of A(G)).

(6} For Ea,be' A(B) we have a <X (G)b 1ff a<<Lb iff there is a cEK{(L)

with ascg be o ) o
(Proof see C, p.181, Corollary 1.7).i; Condition (5) is a irivial consequence

of (1). 0

2.8.COMPLEMENT TO THEOREM 2.5. If , in Theorem 2.5 we have G = Irr L, then
G is both inf - and sup - dense in A(G).

Proof. This follows from 1.7. [J




3. Algebraic lattices and general topology.

Let X be an arbitrary T -space, then 0(X) is a complete Heyting algebra
with X as spectrum. We can form the complete Heyting algebraT=Filt 0(X) of
filters on 0(X). Then L is in fact an aigebraic Heyting algebra with
an isomorphism O fU: 0X)—3 K(L)P , where 10 ={ver: pev} is
the principal filter generated by U in L.Indeed L is arithmetic (ef.C,p.86,def.46).
The topology &(L) is generated by the basic sets f(tm < L.

3.1 LEMMA. For each x£€ X , the neighborhood filter 2Z¢(x) is an element
of Irr L.

Proof. This will follow from

3.2. LEMMA., Let Y C X be a closed irreducible set. Then the filter
F(Y) = {Ué 0(X): Un Y#+@} is completely prime ~ :in L.

Proof. Among all filters on 0(X) which do not contain X N\ Y there is a
unique largest one,namely, F(Y). Thus F(¥) is maximal in L\M{ $(X\1)).

Hence F(Y) € Irr L by C, p.92,Proposition 4.21.. petter still: If p =max L k

with an algebraic lattice L' and a k K(L) with a prime k in K(L)OP, then p is
completely prime.[} ) -
Indeed if x € X, then F({x} ) = 2£(x), and thus 3.1 follows from 3.2. 0

We denote the set of all neighborhood filters Z(x) with G.

3.3. LEMMA. (Banaschewski). The function - 2x): ¥—> (G, K(L)}G)
is a homeomorphism.

Proof. See B.

In this fashion we may lconsider every To—space as a subspace of

(Irr L, © (L)[ Irr L. ) for an arithmetic lattice L.

3.4, LEMMA. The subset G of L is K-generating (2.1).
Proof. Let c& K(L). Then there is a U€0(X) with ¢ = {U. The Lemma follows

since

by ={=): xe v} . I

3.5. CONVENTION. Under the present circumstances we will denote the
complete lattice and topological space A(C)(see 2.4 and 2.6) by AX. 0O

3.6. THEOREM.(Banaschewski), The map xts CA(x)$X — A X is the (unique)
essential hull of X.

Proof. See B. [

We say that X has an injective hull iff the. space ﬂi_ﬂi'sd‘i;{lésjziig(e")i'nlglf
sense of Scott and ¢ iff AX = A(G) 1is a continuous 1attice:‘. A translation of
the conditions of Theorem 2.5 allows us to characterize the spaces X which

have an injective hull.



We need the formalism of the specialisation order, which we record

for the sake of completeness:

3.7. DEFINITION. We associate with a To—space X two transitive relations:
(i) The 'specialisation order < given by x&£ vy iff x¢ {y_}— iff
U e Y.
(ii) The Scott order « given by x~y if yeg int $x , where Tx denotes

the upper set of x w.r.t. the specialisation order.

Following Banaschewski we write for any subset A of X
-r:)(A) =ﬂ{{a}_ ta€ A}=m{&a: a€At= dx€ X: Ue Ux) implies AC UJ.

If V is an open subset of X, then r’o(V) = {xé X: 2U&ctv}=

{xex: V5+x} = ﬂ{+w: we Vi§.
With the specialisation order £ we associate as usual a thrird order:

(iii) The way below relation x<«<y (see C,p.38, Def. 11) [J

The relation x~ y implies =x<Ky, the converse fails even in complete
lattices with the Scott topology {(see C,p.111, Ex.1.25). The equivalence of the

- . £
two relations means that the sets Tx are all open in X,

3.8, THEOREM. Let X be a To-space. Then the following conditions are equivalent:

(1) X has an injective hull.

(2) TFor each =x¢& X, the neighborhood filter zf(x) is the sup in the ﬁilter
lattice Filt 0(X) of all Z((y) with y-{ x.

(3) For each x € X and each completely irreducible filter Z{ not containing
2/((x) there is a point z with 2z & such that for some
open neighborhood V of x we have zg r;(V) (ie. 2 FV)

(4) TFor each point x& X and each open neighborhood W of x there is an
open neighborhood V of x and finitely many points XyseeosX) guch that
X, ,...,an PO(V) and W1n A an W for suitable neighborhoods Wj
of X (i.e., such that W€ 8((}:1) Vu:‘vﬂ{(xn) g v ).

Proof. For two points x and y of X, the following three statements are equivalent:
(i) there is an open set V such that Zx)<tve ¥ (y),
(ii) there is 'an open set V such that XC’;(V) and y& V ,
(iii) x{ y.
Clearly 2.5(1) is equivalent to (1) above. In the light of our preceding remarks,
2.5(2) is equivalent to (2) above. Hence (1) & (2). Condition (3) above is a
translation of 2.5(3), and condition (4) above is a reformulation of 2.5(4)

in the present circumstances. ]

3.9, COMPLEMENT TQ THEOREM 3.8. The conditions of Theorem 3.8 imply each of the

following:



(5) TFor each x& X we have x = sup J.x = sup&x.

(6) The topology.of AX is the Scott topology.

(7) For U VEAX we have Z “g Y iff there is
an open set V€ ) such that 27/¢€ {v.

Proof. Since the specialisation order of X is induced by the order of L
= Filt 0(X), condition (5) is a consequence of (2), considering that

+x < ;l,’vx by a remark following 3.7.
(6Yand (7) follow by 2.7. (]

3.10. COMPLEMENT TQO THEQREM 3.8. Assume, in addition to the hypotheses of
3.8,that every completely irreducible element of Filt 0(X) is a neighborhood
filter of a point. Then the following conditions are equivalent:
(1) X has an injective hull.
(8) Tor each point x € X and each point y with x = §y/ there is
a point z & {y} " and an open neighborhood V of x such that
zE I"o .
(8') For each point x € X and each point y with x ¢ 7y there is
az s y with z < x.

(9) Tor each x' € X we have x =supdx in X. .
Moreover, under these circumstances, (the image of ) X is inf- and sup dense in AX.
Proof. Under the present conditions, (8) is equivalent to 3.8(3), and (8) is

equivalent to (8'),. By 3.9 we know that (1) implies (9) Remains to show that

(9) implies (1). First we observe that the present hypotheses mean that

G =TIrr L for L = Filt 0(X). Thus 2.8 applies and shows that X is inf- and
sup-dense in A X (if we identify X with its image via 3.3 in AX). Lemma 0.3 on

p.9 of A(5) (R.-E.Hoffmann) applies to show that under these circumstances,

the embedding X ~—» AX preserves all existing sups. The inclusion AX —¥ L preserves
sups anyhow. Thus the embedding X —> L preserves all existing sups. But then

condition (9) above implies 3.8(2). (A direct proof of (8') € (9) iz also possile))
1

3.11. REMARK. A sufficient condition that for a To—space X every completely
irreducible filter on 0(X) is a neighborhood filter is that X be sober and Filt OX}
be joini~continuous. and distributive

Proof. If L is an algebraic 1lattice such that L is join-continuousj then

every p€Irr L is uniquely determined by a c(p)€ K(L) such that c(p) =

min I~{p, where c¢(p) is a prime of ®(L)°P ; conversely, every prime c

of K(L)op yields a2 p(c)e Irr L given by p(c) = max L\fc. (See C, p.92,

Proposition 4.21 and LNM 369 (1974) p.60, Corollary 1.15.). Thus if L = Filt 0(X),

the completely irreducible elements of 1. are those filters which are determined

by a prime element U of 0(X) as maximal filters not containing U; since X is

sober, U = X\{x}_ for some % and the maiécmal filter not containing U is & (x). (I
(What we are saying here is that in a join continuous algebraic lattice, every

completely irreducible element is completely prime.)
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Theorem 3.6 replaces the incorrect Corollary 2 to Proposition 3 in Banaschewski's
paper B. The mistake in his proof appears on p.239 ,line 7 from the bottom, where

the unions must be replaced by suprema.

3.12. PROPOSITION. (Banaschewski). A T ~space has an injective hull iff it
is discrete.

Proof. This follows from 3.8(4)

3.13. EXAMPLE. The boundary of the square in its Scott topology has the
square as injective hull. (See D). The open subset of all (x,y) with

y=1 and x>0 , or x= { and y>»0 does not have an injective hull by 3.8. 9
This example shows that Corollary 4 in B on p 240 is false,

The following example is instructive:

3.14. EXAMPLE. Consider the following subset of the square:

The space arising from this set by endowing it with the topology indaced from
the Scott topology of the square we call X. The space XO = XN\ {C} carries
its own Scott topology and was discussed in D. The embedding into the square
X, = {0,112  (with the Scott topology ) is the essential hull of X as was
shown in D. By Banaschewski's Lemma 2 on p. 235 of B we then know that

the embedding of X into X

is the injective hull of X,, since X = X=X

is a sequence of embeddin;s. Thus X has an injectiveihull. (It is instruclive
to verify explicitly the equivalent conditions of 3.SJ We also know from 3.9
that the Scott topology of the square is the topology induced from the Scott-
topology of Filt 0(X). But we observe:

(i) X is not locally gquasicompact at C.

(ii) X 1is sober.

(iii) The Scott topology of X (w.r.t. the specialisation order) is finer than



i

the given topology. It is locally quasicompact sober and quasicompact.
(iv) X'=(X, &(X, <€ )) gbes not have an injective hull.

Proof.i)Each neighborhood of C must contain a neighborhood of the form

g

This allows us to cover any neighborhood with 2 countable ascending sequence

of open sets,none of which covers the meighborhood.

{ |

ii) A closed irreducible set is directed w.r.t. the specialisation order. By

inspection we note that all those sets have a maximum.

iii) The point C has a basis of Scott-open neighborhood of the form:

e -

AN

4

e

Now C has a basis of such neighborhoods which are closed in the %o BT the
squibres: these are still quasicompatt w.rets - 6(X, < : . Thus X's=
(X, ¢(X, % )) 1is locally quasicom 8r and quasicompact. The specialisation
order of this s i e natural order of the square and thus agrees with that

-

We show that 3.8(2) is violated.
iv) / The only problemati¢ point is C:. In X' we have (0,y) £ Ciff y.«1/2 § and

(x,0) K C iff x<1/2. We DO NOT HAVE = C'-<{ G But then:¢the sup of all Z¢ (t)

with t~< C is the neighborhood filter of C w.r.t. (X )‘X' which is bigger than Z(0.
We notice the following additional information about this example:
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(v) The point C does not satisfy C <&C even though C is isolated

from below.
This is a subtle point. Suppose we define x <y by the-following relation:
Whenever y = sup D for a directed set D, then x « d for some d & D.
Then C<'C and X' satisfies the following two conditions:
(a) Every set {y : y<' x} is directed for all x.
(b) x = sup{y: y<'x} for all x.

This means that X' is as close to a continuous poset (it is, of course, up-com—

plete!) as can be without being one. {]

The following diagram illustrates the relationship between various classes

of spaces which arise in the present context. The point is that no general

relation exists,

.focrc[&g
?M(M*f’ con paci

However, it is useful to juxtapose com compactness and the property of .
baving an injective hull. This is most conveniently achieved by focussing on
condition 3,8(4) which we repeat for the sake of self sufficiency and comparison:
n
)  (Vxe 0(ViredenN (T veltc)(F x,,....x) ve \/ Ux ety

i=1
On the other hand, a space is core compact (i.e. 0(X) is continuous) iff

) (¥xe (Y ue (3 ve bt IAFH) ueFHctv and F isscorr .

open in O(X).
(cf. C. p.131)
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It follows that a To-space with an injective hull is core compact whenever

a finite sup of neighborhood filters is a Scott open set on 0(X). We recall that
the neighborhood filter of any quasicompact set is Scott open. One conclusion

which one may draw from this observation is the following:

3.14, PROPQSITION. Let X be a To~space satisfying the following conditions:

{i) X has an injective hull.

(i1) The specialisation order turns X into a topological sup-semilattice.
Then X is core compact.
Proof. We claim that (ii) implies that Z{(x1) V ...V Z((xn) = 2((x1v. PV xn): '

The containment € is clear. In order to show the reverse containment let
U be a neighborhood of X, Veeso ¥ X . Since. v is continuous by {(ii), there

are open neighborhoods Uj of Xj with U, nN... N Un = UJI'\/...VUIl c v. {

Another class of spaces which arose in 3,10 and 3.11 is not yet sufficiently
clarified. Let us assumefor simplicity that X is a SOBER space. Then the
set G of neighborhood filters in L = Filt 0(X) is precisely the set of completely
prime elements of L. When is G = Irr L ? This is the case for an algebraic lattice
L,iff the complete lattice characters I——>2 separate the ﬁoints,iff L is
" completely distributive, iff L is join comtinuous.(I think.} The question then
becomes the following: If K is a complete lattice, which conditions on K will

make Id K completely distributive?

The answer is simple: In Hofmann,M¥islove and S%ralka, Lecture Notes in
Mathematics,396 (1974), pp.69 £f.,notably Theorems 1.33 and 1.37 we saw
that an algebraic lattice L is completely distributive iff K(L)dp is
algebraically generated by its prime elements (iees every element in
K(L)°P? ie a finite inf of primes). If LO; Eilt 0{X), then L is
completely distributive iff every open set is a finite intersection of
prime open setg,i.e., every closed set igs the finite union of closed
irreducible sets. Such spaces have been called Noetherian. Thus in the

cagse of Noetherian spaces, 3.10 ard 3.11 apply.



