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In-[KaﬁJ aﬁa‘[Hom] ’ K.H. Hofmann studied. the following categories:

notation | objects” morphisms

MON ‘arbitrary posets monotone maps

U up-complete. posets ' Scott céntinuous maps

GAL" . arbitrary posets 'Galois maps (i.e. upper adjoints)
up - ii- upwcompléte posets.. .. |Scott continuous Galois maps

CP | contiﬁuous posets Ty "

~.CL .continuous lattices | "

SUP complete lattices Sup—preserving maps

INF complete lattices inf-preserving maps
- CD completely.distri- ‘complete homomorphisms

butive lattices F(i.e. sup- and inf-preserving maps)

: ; :
" These categories are related by the' following hierarchy:

SUP &,
CD "—--->CL ==y CP c==UP MON ( C—==> means

C\Ac..-—"?_'—“
— ;|:1\]'F°"===E‘r GRL - full subcategory)



For each up-complete poset P let T(P) denote the complete lattice
of all Scott closed subsets of P . We can make T functorial by

lifting any gj-morphism £f : P —>Q to a SUP-morphism
T(f) : T(P) —> T(Q) , ArH—> £(A)

where  denotes the closure with respect to the Scott topology. .

It is easy to see that the maps

T]P : P _>T(P) r X > X

are g-—morphisms, and the following diagram commutes:

£

npl an . | LI
T(P) > 7(Q) |
T(£) | L

Let us recall some further facts from [Kah] .

LEMMA. np has a Lower adfoint (4L.e. ny 44 a UP - morphism)

P
L4 P L4 a complete Latitice.

THEOREM 1. Fok'each_ggf=m0nphibm'g {rnom an up-compﬁaie poset P inta
_d7aqmﬁ£aze£g di@tnibuzéuem£aitice.M%, there-exiszts a unique comp&azaw
homombnphiam.g*-:ijP) %f> M Auch,ihat.gg.=&g*np . Hence the nes-
thiction of T 2o CL. 48 Legt adjodini to Zhe forngetful guncior from
CD o gg ; the unit of the adjunction is given by np .

Indeed, it is easy to see that g is Scott continuous iff g* has

" an upper adjoint, and if 4 : M —> P is the lower adjoint of g &
- then the map | '

d

*

M —> T(P) , ml%—> d(im)
is the lower adjoint of g% , where
in=N{A=4A<M:ms VA}

is Raney's "long way below set" (¢cf. [Kah, 2.6] ).'

For these conclusions, it is not necessary to assume that P be
a complete lattice. But helas, in view of the Lemma, the above
universal property does not provide a left adjoint for the for-
getful functor from CD to CP . Kah conjectured that one might
"tinker with the morphisms and imprové the situation, but not
very much can be done" (loc;.cit.). '

What can be done will be sketched on the following pages.




Flrst of all, we must disappoint the reader who expects a
satlsfactory solutlon of the stated adjunction problem.,

insurmountable barriers are raised by the following

'DILEMMA. There i no category C whose objects axe the continuous
poseits and whose morphisms are ceatain monotone maps, such that
(1) cD 4is a subcategory of C .

(2) The {fongetful functor grom CD Io C has a fLefz adjoint with

gront adjunct¢on np 2 P —> T(P) ; X > ¥x .

(ITn paxticular, §or each cpntinuoué'pobei P, A8 @ C~- morphism).

Np
In spite of this Dllemma, lt is p0551ble to weaken the morphlsm
:concept in 'such a manner that each Np becomes a "pseudomorphlsm

and for each "pseudomorphlsm" g from an up-complete poset P into

a completely distributive lattice M, the map
g* : T(P) —> M, AF—> \Vg(a)

becomes a complete homemorphism.

" In order to define the réquired kind of maps, we single out
a few.typical properties.of Galois maps.- Let us call a map ¢
between posets P and Q quaAicﬂo#ad if A € T(P) implies +g(Aa) € T(Q)
{cf. the notion of - “qua51open" 1n [Kah] ). Further, we say g is

a paaudo- Gaﬂo&b map prov1ded that
 9(Y+) = g(Y)+ for all Y € P ,

where Y{ and Y’ denote the sets of all lower resp. upper bounds

of ¥ . Finally, g is called a weak Galodis map if
§(¥) =g(¥), forallYEFP.
The position of these properties is analyzed in a

TRILEMMA. (1) The Galois maps are precisely the quasiclosed weak
Galois maps. . '

{2) Every weahk Galols map is a paaudo— Galodls map.

(3} Eueng pseudo - Galois map pneéenueé all ex&ét&ng LnﬁLma

Now, by a. pseudomorphism we mean a Scott continuous pseudo-
Galeis map, and by a weak monph&&m a Scott contlnuous weak Galois
map. According to the Trilemma, every (UP- )morphlsm is a weak
morphism, and every weak morphism is a pseudomorphlsm. Suitable
counterexamples.show that none of these implications can be
inverted. However, for maps between complete lattices all three

notions coincide. Our main theorem states that pseudomorphisms



have the same universal property as (UP-)morphisms, and they have
the advantage that the natural embeddings np are always pseudo-

morphisms (while np7fails to be a morphism unless P is complete).

'THEOREM 2. The f{oflowing conditions are equivalent for a map g
grom an up-complelte posetf P into a complelely disiributive
Latiice M :
(a) g 44 a pseudomorphdism,
(b) The map g* : T(P) —> M , A —> \/g(A)
is a complete homomorphism,
e} Thene exists a {unique) complete homomorphism F : T(P) —> M
such that g = Frg -

P

v
=

.
P -

T(P)

Hence .there 45 a one-to-one coriespondence between the sef of

all pseudomorphisms g :+ P —> M and thé set of all complete

homomorphisms F : T(P) —> M . '

np*

a pseudomorphism. el
Recall that for a cont&nuaué poset P , the system T(P} is

Notice that is the idgntity on T(P), so Np is cértainly

~a completely distributive lattice. Hence we derive from Theorem 2

the following

FACT. A map § from a continuous poset P into a completely diAtni—:l
butive Lattice M i4 a pseudomorphism iff g¥ Ls a CD- moaphdism.

At first glance, this seems to be precisely what we need for an
adjoint_situation between the functor T:and a forgetful functor-
in the converse direction. The only reason why this adjunction

does not work is a little (but essential)

DEFECT. The composition af ftwo péeudomo&ph&émé is Ain general
not a pseudomorphism.

A simple counterexample is obtained by taking for P a two-
element antichain and considering the composition g of the

pseudomorphisms Np and nT(P),.“Here we have g(P )+ + gKP) t .

Weak morphisms behave better than pseudomorphisms with

respect to composition. In fact, one can show easily:



COMPOSITION. The class 05 weak monphLémA L4 c£o¢ed under compo-
sition. S¢m4£a1£g, ﬁon a weak monph&ém f:P—>0Q and a pseudo-
morphism h : Q —> R Zhe composite map hf is a pseudomorphdism,

Moreover, pseudomorphisms and weak morphisms are related as

follows:

PROPOSITION. Let £ be a map between posets P and Q . Then
{1} £ is Scdti'continuoué L4 4 néf is Scoti continuous.

(2) £ is a weak GalLodis map L64 g f 44 a pseudo - Galodls map.
Hence £ 48 a weak monphLAm &66 nQ is8 a péeudqmonphixm}

f

- j' ._ | _..__l’_? i lné

() — > T(Q)
T(£) = g*

With this'Proposition in hand,fit is not hard to prove:

THEOREM 3..Let f be a.monotone map betwean up aompﬁeia po&eté
P and Q. S '
~{1)f 46 Scott contdinuous Lf4-T(f) pnaaanveé éupnema

{2) T4 T(f) preserves infdima then f s a weak Galois map.
Convensely, if £ is a weak Galols map and Q 44 a continuous
poset then T(£) presenves Anfima. '

. COROLLARY. Fox a map <f : P —> Q whexre P is up-complete and Q

44 continuous, ihe 601£0W¢ng are equ&uaﬂent

fa) £ 48 a weah monphLAm :
(b} T(E) L& a compzata homamomphLAm

“{e) There is a (undque} complefe homcmonphLAm;F such that the -
following diagiam commutes :

P ~> Q

oy ng

ST(P) . ———— T(Q)
14 P.4is akso continuous then each of these conditions is necessalry
and sufpicient forn £ to- be a (CP-)morphism. Hence the functon T
Lnduceé an equivalence between the categonies CP and C :Ospec



Here CD:ospec denotes the category of completely distributive
lattices together with those complete homomorphisms which pre-

serve cospectra (cf. [Xah, 1.8]).

The continuity assumption in Part. (2) of Theorem 3 can be
dropped whenever f is 'a Galois map. More precisely, we can say

 that the functor T preserves adjoints.

CONTRAPOSITION. If £ : P —> Q has a Lowen (resp. upper) adjoint
d Q —> P , zhen T(d) 44 the Lowen (resp. uppen) adjoini of
T({£).

Indeed, if f has a lower adjoint d then by the Trilemma f is

quasiclosed, and consequently -
T(£)(A) = T(A) = v£(A) for all A € T(P). .

From this equation, it follows at once that T(d) is the lower
adjoint of T(f),

The Dilemma can now be restated in a more informative version.

Theorem-Z,‘Theorem 3 and the Proposition have the following

EFFECT. leiZ C be any categony of posets which has CD as a sub-
category. T4 the forgetful functor grom CD to C has a Legl
adjoint with gront adjunction N, : P —> T(P) , x b=> ¥X ,
then C musi be a subcategory of CL .

Conversely, from Theorem 1 we know that any full subcategory of ..

CL has.this universal property.

Finally, we would like to emphasize that most of the pre-
ceding assertions remain valid if the system of all directed
subsets of P is replaced by an arbitrary "subset. system" Z(P)
such that Z - sets are preserved under isotone maps. In this

general setting, the "co-selection”

¥X(P) = { A =+4A : Z € 2(P) and Z c A implies \/Z € A}

plays the rdle of T(P). This approach_leads to a very general
theory which covers almost all known adjunctions, eguivalences
and dualities for posets. For example} one may take for Z(P)
the system of all singletons. For this special choice, ¥{(P) is
the collection of all lower sets, and one obtains most of the
results derived in Section 2 of [Hom]. On the other hand, the
‘results of Section 4 are obtained for X(P) = T(P) .



