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The study of the monoid, under direct sums, of all HmoEONmJHma.
types of countable Boolean algebras has led to the notion of a refine-
ment monoid [M, D1), ef. [K]: ) . N

A commutative monold M = {M;+,0) 1is called a refinement monoid

" provided that
{(RM1} x+y =0 only for x =y =0 (x, ¥y € M}, -
(RMZ) - M has the refinement property, that 1s, whenever L X, = & Yy
‘ for Xy wu €M AM‘A n, j < m) then there are wpu EM ‘
with X = nu I and y. = n» 15 ’

: i
A homomorphism h : M —> N between commutative monoids is said no‘

be a V-homomorphism if hi{x) = Y ty, (x €M, ¥, mu ‘€ N) 1implies
X = xa+.xm and raxbv =¥y for some Xqr Xy € M, and hix) = 0
only for x = 0 (x-€ M). Observe that a <a:05050ﬂv:wn Hammm of a
refinement monoid 1is mmm»: a ﬂomh:mamaﬁ Eono»m.

PROPOSITION 1. A semilattice L = Arm+~ou with zero is distri-
butive (in the sense of [G; p. 99]) if L. is a refinement monoid. - -

It is zmww known that the category 0m distributive semilattices
with zero and homomorphisms =m<Hsm the vﬂovmnn% that mﬂmluammmm of
prime filters are always prime filters is dually equivalent to ﬂ:m‘
category of Stone spaces (sober T o -Spaces 7m<wum a base of nosmmon
sets) w:& mnnosmww continucus vavwaam {pre- Hammmm of noaﬁmon ovm:
sets are compact-open); see [G; II.5].

Let DSL be the category of &Hmnnwucﬁwcm mmswwmﬁnpomm with zero
mwm.<lroaoaon©3wm5m.
spaces with suitable ‘morphisms so that PSL  and -

We want to supply the nmnmmon< STS of Stone
Umnoam ma:HI

. mvmomm is given by setting

—D -
valent categories: First; let us call a subset U of a space X
almost omm: if ﬁrmnmypm a smallest open set, say m. containing U,

_and ‘U is a strict subset of O Aw. e,, the inclusion.map from U

wsno. U is strict in the sense of [C; V.5.8]}. HNote that, for.

instance, every space is almost open in lts sobrification. Of course,

.open sets are mHEOmﬁ.omms. Now suppose that X and Y are Stone

spaces, then mor(X,¥} consists of all no:nwsnm:m.Hd:nwwoum.mnoa
Thus, all

Probably, the con-

X into Y mapping open sets u:no almost open sets,.
continuous~open mapplings are morphisms in ST7S.,
verse is false. :osmcmh~ I have no nOﬂnﬂmﬂmmeme.

PROPOSITION 2. DSL and STS are eguivalent categories.

Proof. Let Lir Ly € obj{PSL}) and h € Eoﬁnﬁd.rwu. Then the
mmmoehmﬁmm mapping £ "‘xardv.lllv xﬁrw_
£ (P) = +h(P) . Conversely, if

and f € Bonaxd.x )}  then vm : rhx ) —> Lix, }
denotes nﬁm mmawwmnnwom,

between the prime filter

X, X, € ovummqmu
' is defined by . : (c) = £(c) . where L{X)
‘of compact~open w:dmmnm of a Stone space X. It is not mwmmpocwm

to show that in fact. f, € aohax.h ) /X (Ly)) and’ he € Eonﬁrﬁx ) LX,) ).
esm remainder of the ﬂnoom is muawwmﬁ as in the case of the @Hm<po=mww
mentioned duality,

osmmnpos.b.. Is m«mﬁw distributive semilattice L ‘with zero

a V-homomorphlc image of some om:mnmwpnmn Boolean lattice? (Note
nrmw the converse is ov<bosm } )

In [D2] it has been shown that the answer is GOmwnH<m s:ma L

is a lattice or has not more than »L many elements. Moreover, if
it will turn out that the morphlsms 0m 57TS are not necessarily
continucus~open then the following question mﬂpmmm“.

Question B, IS every Stone space X the image of a locally .,

compact, zero-dimensional Hausdorff space under a continuous-open

‘mapping?

At present, I only have an affirmative result when X is

first countable and in addtion ‘L{X} is a lattice or -|L(X)] < R, .




