SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

NAME:	Rudolf-E. Hoffmann	DATE	M	D	У
			1	9	83

TOPIC: The trace of the weak toplogy and of the \(\Gamma\)-topology of L \(^{cp}\)
coincide on the pseudo-meet-prime elements of a
continuous lattice L

REFERENCES: The Fell compactification revisited. Preprint.

(Preliminary version in : "Continuous Lattices and Related Topics", pp. 68- 141. Mathematik Arbeitspapiere Nr. 27, Universität Bremen, 1982)

and literature quoted there

This is a <u>partial</u> response to a private communication in which Karl H. Hofmann attempts to delineate a somewhat different approach to some of the results of my paper mentioned above (employing - implicitly - to some extent the apparatus of $[HL_2]$ and [HM]).

Recall that, in a 1, A-semilattice L,

 $a \longmapsto b \quad (\text{ "a is } \underline{\text{relatively }}\underline{\text{meet-prime }}\underline{\text{below }}b")$ for a, b \(\epsilon L \) iff whenever \(\inf \{x_1, \ldots, x_n\} \leq a \) for \(x_1, \ldots, x_n \) \(\leq L \) \((n \in N), \text{ the set of natural numbers including o), then } \(x_1 \leq b \) for some \(i \in N, \quad o \leq i \leq n. \) The sets

 $\Gamma^*(x) := \{y \in L \mid x \mapsto y\}$,

with x ranging through L, form a (sub-)basis (cf. $[H_8]$ 1.3(ii)) of the <u>closed</u> sets of the Γ^* -topology (the <u> Γ -topology</u> of L^{op} , cf. $[H_3]$ §3, $[H_8]$). The sets

 $\uparrow_{x} := \{ y \in L \mid x \leq y \} \quad (x \in L)$

form a subbasis of the closed sets of the lower topology $\omega_{\rm L}$ of L (= the weak topology of L op).

An element p of a complete lattice L is called

- 1) meet-prime iff ppp,
- 2) pseudo-meet-prime iff $p = \sup P$ for a prime ideal P of L,
- 3) a χ^{*} -element (i.e. a χ^{*} -element of L^{op}) iff $\uparrow p$ is closed in (L, Γ^{*}) iff $p = \sup\{x \in L \mid x \mapsto p\}$ ($[H_8]$ 1.5, 2.7).

Every meet-prime element is pseudo-meet-prime. Every pseudo-meet-prime element is a γ^{\star} -element ([H₈]3.4). In a distributive complete lattice, every γ^{\star} -element is a supremum of pseudo-meet-prime elements.([H₂]3.6).

Endowing the set

7×.

of pseudo-meet-prime elements of a <code>distributive</code> continuous lattice I with the trace τ of ω_L , Karl H. Hofmann sketches a proof for

υο(ψ*L, τ) ≅ Filt₆L

which closely parallels my result

DO(ψ^{*}L) ≅ Filt_cL

where $\psi^{\star}L$ carries the trace of the Γ^{\star} -topology of L (see Corollary 4.10 of my paper). From a comparison one may be inclined to infer (note that one cunnot!) that them topologies coincide on $\psi^{\star}L$.

Indeed, arguments very similar to those used in the proof of theorem 4.9 of my paper provide a "direct proof" of this (which "is bound to exist").

PROPOSITION:

For a continuous lattice L (not necessarily distributive), the weak topology ω_L of L^{op} and the Γ^{\pm} -topology of L have the same trace on the set $\psi^{\pm}L$ of pseudo-meet-prime elements of L. For every $x \in L$, we have

 $\psi^{\star}L \cap \uparrow x = \psi^{\star}L \cap \{\Gamma^{\star}(y) \mid y \in L, y \ll x\}$.

:,00t.

Since the $\int_{-\infty}^{x}$ -topology of L is always weaker than ω_{L} ([H₃]3.3), the above formula suffices to establish the assertion.

(a) Let $z \in \bigcap \{ \Gamma^{x}(y) \mid y \in L, y << x \}$. Then $z \in \Gamma^{x}(y)$, i.e. $y \vdash z$

for every yell with year. Thus yez for every such y. Since L is a continuous lattice, it results that

 $x = \sup\{y \in L \mid y \ll x\} \le z,$

eograph

 $\bigcap \{\bigcap^*(y) \mid y \in I, y \ll x\} \leq \uparrow x$.

(b) Now let $z \in \psi^{\frac{1}{2}} L \cap \Upsilon x$ and let $y \in L$ with $y \ll x$. Then $z = \sup P$

for some prime ideal P of L. However, $x \le \sup P$ implies $y \in P$, since y << x. On the other hand, since P is a prime, ideal, $y \in P$

and $z = \sup P \text{ imply } y_1 - z_1 \cdot e_1$.

z ∈ [*(y

for every $y \in L$ with $y \ll x$. Thus

 $\psi^{\sharp}L \cap \{x \leq \bigcap \{ \bigcap^{\sharp}(y) \mid y \in L, \ y \ll x \}$ This completes the proof.

REMARK 1:

For every complete lattice L, the Γ^{\pm} -topology and ω_L have the same trace on Spec $^{\pm}$ L, the set of meet-prime elements of L (cf. $[{\rm H_3}]$ 3.7).

REMARK 2:

It is an open question whether the above proposition holds for all complete lattices L. It is also unknown whether it extends to $\gamma^{\star}L$, the set of γ^{\star} -elements of L (i.e. γ -elements of L^{OP}). The latter extension is known to be true for completely distributive complete lattices L - cf. $[H_0]$ 5.5. (A revised draft of $[H_0]$, entitled "The injective hull and the CL-compactification of a continuous poset" will be distributed in a Seminarbericht, fernuniversität Hagen.)

Rudolf-E. Hoffmann Fachbereich Mathematik Universität Bremen D-2800 Bremen Federal Rep c of Germany