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In his recent Memo 1-9-83, R.-E.Hoffmann refers to a private communication
on my part which thereby ceased to be private. I had no particular desire to rush
a memo about it; but in order to understand his memo fully,the SCS had better be
informed on the content of my thoughts as they were presented in the communication
to which Rudolf refers.

In his paper[H1],~he makes some very interesting discoveries about the
pseudo—spectrum of a continuous lattice; indeed I consider the theory of the pseudo-
spectrum incomplete without them, and it amazes me that the ones among them,which I
consider most important,were not made a long time ago. My comments have the purpose
to show that these results can be derived from the basic theory byldirect'methods.

I think that my presentation should be compared Withrﬂﬂ;'perhdps such a comparison

retroactively explains my desire to find a direct route to Hoffmann's discoveries.

The spectrum Spec L of a continuous distributive lattice L or, as I will

say more succinctly, a continuoug frame L, is the set of all primes with the hull

kernel topology (o’SPEC L. (Recall that we have ceased to consider 1 as a prime.)

The pseudo-spectrum qTL of a continuous framel is the set of all pseudo—priﬁes,

i.e. elements p with - p = sup P for a prime ideal P. (After R.-E.Hoffmann, Essentially
complete TD—spaces 1T, Math.Z. 179 (1982),73-90, this concept has been elucidated,too:
L itself. is not a prime ideal; thus 1 may or may not be in qu.) Prior torHil'the
pseudospectrum was not at all considered as bndowed with a topology which e%tends
that of the spectrum. One of the important points hnﬁ%lis, that such a topology
exists, that it is quasicompact with a whole row of additional desirable properties.

In this sense, 1yl-wi11 be a compactification of Spec L. In fact it was not even clear



clear to me at all that.a locally quasicompact topological space should have any
‘decent, let alome natural quasicompactification with good prope.rties. Only much
finer topologies had been considered onw‘L 'before, namely, -K]'qj‘L , and to some
extent this was simply a consequence of the fact that ‘";L'= cly Spec L. (This

was fully clarified by R.-E.Hoffman in his Math.Z.paper,loc.cit.) Thus this memo
is concerned with a direct approach to the pseudo~spectral theory of continuous

frames. The terminology is that of [¢] and JHM].

1. The lower topology.on Lawson closed subsets,

In this section, L js a continuous lattice and C a A-closed subset.

1'.1'._1_@_@_{& . (C, w}C) is locally quasicompact and quasicompact-Tb.

Proof. Since C is A -compact and eogA clearly (C,wlC) is quasicompact. Now let

U be an @ -neighborhood of ce€ C in C. Then there are finitely many points X1;';"Xn
of L such that the set V(x1,...,xn) =C \ (fx1u...07xn) is an @ -neighborhood of

c in C contained in U. (See [C1, p.142; 1.1)By the continuity of L we find points

Y € %, with yk#c , k= 1,...,n. Then <c & V(y1,..'.,yn) e CN\ (fyqu...u fyn) c |
‘\J’(x1 yous ,xn) ¢ U. But then C\ (fy1 V... ufyn) 1s an & -neighborhood of ce C
which is contained in U and is A-closed in C, hence 3.—compact,' and thus, a fortiori,
ew ~quasicompact. This shows that (C,e]C) is locally quasicompact. Since es is a

T -topology, the Lemma is proved.#

1.2, LEMMA. Let Q be a saturated subset of (C,@lC) (cf. [C] , P.258)., Then Q= CnlQ,
and the following statements are equivalent:

(1) Q is & —quasicompact.

(2) }Q is & -closed.

(3) §Q is A -compact.

(4) Q 1is A -compact.
Proof. By definition, @ is saturated iff G = Cn n{er: Q& U} . If we set §= :
n{UEto : Qe U]; then S us a lower set since all Uew are lower sets, The relation QE§
then implies $Q&€S. If =xX€L \ $Q, then U=L\txew with Q& L\%x =1,
but x¢ U. Hence x € 8. Thus -.§J0 = S and Q = Ca Q.

The equivalence of (2) and (3) is clear since . (L,A ) is compact and a lower
set is 6 -closed iff it is A -closed (cf. Ic]l.p. 144 ). The implication (3) = (4)
follows since C is A~-compact and Q = Ca J-Q.Trivially, (4) = (1). It remains to
show that (1) implies (2). Let D€ }Q be directed and set d = sup D. For ¢ € D we
have fq a Q # @ ; thus {fqaQ: qeD} is a filterbasis of @s~closed subsets of Q.

If. © = Q is ou-quasmompac¥ t?lls filterbasis has a non-empty intersection

n{an.Q: q€ D}= an{fq : qu} = Qafd. Thus de Q. This proves (2).#

1.3. LEMMA (C, edl€) is super—sober. (See [C],p.310; 1.10)
Proof. Let ?be an ultrafilter on C. Then x--11m33“ ex1sts since € is ‘A -compact.



Since eweA,then x is also anes-limit point of .?:.',and then all points of Tx are

limit points of & , since all_ & —open sets are lower sets. Now let v be a limit
point of F . We claim vy€ Tx“;na tl"‘lzg:eby finish the proof. Assume not. Then,by the
continuity of L there is a u& x with. y¢ tu. since x = Iimz?' , there is an Fe F
with Feg fu. But L \fu is an @ -open neighborhoed of the limit point y of & , hence
there is a Ge¥F with ¢e L\%u . But then F.; G = ?u a {L\fu) = @ and this is

a contradiction. # |

1.4. REMARK. The set Q{C,eo]C) of saturated quasicompact subsets of (C,wlC)

is closed under.arbitrary intersections (and, of course, finite unions). In the

opposite order to that of containment, Q(C,GJC) is a continuous frame.

Proof. By Lemmas 1.1, and 1,3, the assertion follows from[mM], p.238; 4.8. A simple

direct proof -that Q(C,w|C) is closed under intersections follows from Lemma 1.3.#
Shallwe summarize?

1.5. THEOREM. If a Lawson closed subset C of a continuous lattice is endowed with
the topology elC induced from the lower topology, then the resulting space is
locally quasicompact, quasicompact super gsober. The set Q(C,ealC) of saturated
compact subsets is closed under intersections {(and is in fact a frame in the
order which is opposite to containment). Its patch topology is compact.f

(For a reminder of the patch topolegy see [C],261 or, better,[HM],p.236 and p.238.)

|
2. The pseudo-spectrum of a continuous frame.

2.1. DEFINITION. The pseudo-spectrum 'l[J‘L of a continuous frame L is the set of

all pseudo-primes of L endowed with the tb_polo.gy ml!P‘L induced from the lower topology.

2.2, THEOREM. The pseudo-spectrum YL of a continuous frame L is a quasicompact,
locally quasicompact,-éuper sober .space containing,the spectrum Spec L as a.deﬁse
subspace. ‘When equipped with the patch topelogy, 1”bLiis compact‘(Tz) and the
subset Spec L is still dense.

Proof. Since 'll/‘L is the J-closure of Spec L, this all follows from “Theorem 1.5.#

In [H{I, R.~E.H, proves that the set 1}}‘514 ,somehow,. carries a quasicompact,
locally quasicompact, super sober topology. extending that of Spec. L (see [H,f], 4.11,
p. 112), In[Hz] he shows that it is equal to e.:l'lpL by a self-contained argument.

In which way is 'l’l" a functor?

2.3.THEOREM. The assignment.LH-‘l[l‘L is a contravariant functor from the category
CF  of continuous frames and ‘frame maps presering <& to the category QP of
quasicompact,. locally quasicompact, super sober spaces and perfect maps which
o the function gl'trLz: 74[‘1;2 ———+1,II‘L1 ,

where g:L-z-—-i-L1 is the upper adjoint of d.

- associates with a CF —mo_rphisfn d:L

Proof. Since d is a frame map preserving the way below relation, g is a CL-map



preserving spectra. (See [C], pp.180 and 188, or [HLD Thus g(‘quz) = g(cla(Spec LZ)) :
¢ cly g(Spec L2) (since g is A -continuous) g cl,_S'pec L1. (since g preserves spectra)

=1LrL . Thus tlt(d) = g[lP‘Lz: 'll/‘Lz-——--nr'lfJ'L1 1s Wej_l defined. If d1:L1———-+L2 and

d2 L2~~~—---~-:rL3 are CF -maps with upper adjoints By28,s respectively, then g

upper adjoint of d

18y 18 the

Zdlf Hence our definition yields a contravariant functor. 7

We recall that a map is called perfect iff it is continuous and the inverse image
of a quasicompact saturated set is quasicompact. If Q is saturated quasicompact
in 'II/‘L1, then Q 3Q n‘W‘L and §Q is A -closed by Lemma 1.2. The inverse
image "\,lf‘(d) (Q) (Q)n‘\lrL = g_'1 (,],Q)n\.P'LZ is now quasicompact saturated
in 'lp"L by Lemma 1.2 since g is & -continuous. Thus 'u}‘(d) = ngLz is perfect.#

This theorem is first proved by R.-E.Hoffmann in [H 1, pp.124-133, Theorem 6.8,
If L is a continuous frame, then OGpI) is a contlnuous frame by 2.2 whlch

has the additional properties that 1 (=¥'L) is compact and that &« is multiplicative.
(See [HL] ,p.302 , or &IMI, 4.8.). If ¥ 1is a continuous framewith compact identity

and multiplicative way-below relation, then W* = Specy (cf. [HT_],or R.-E.Hoffmann,
Math.Z.loc.cit.). Hence 'VO(\U‘L) = 8pec OOVL) = 'l’/‘L under the standard/ isomorphisms

si-nce‘lrL is sober. This shows

2.4.PROPOSITION. The functions pi—s L \ fp : YL~ WOYL and U+ inf L\ U:
YOYL —»WYL  are mutually inverse homeomorphisms.#

The two continuous frames L and €= O'I.U'L are linked through a pair of adjoint
maps d:L—¥ ¥, d(x) = YPL\Px , and g: L~ L, g(U) = inf(qu\ U). Indeed
d(x) & U iff YL\ Uefx iff x € inf(Y'L \ U) = g(U). An element U is in Spec &
if U = L\{p}" = L\%p for some p dp’L Since"q.{'L ig inf-dense in L, we have g(U)=p.
Thus g maps Specf 'l]/'}e bijectively onto 'lp‘L If x€ vy in L then by the lnterpolatlon
property ther is a z€ L with xgzdey, whence YL\ ¥x YL \ *z g LN{y. Now WL\?Z -
is - quasicompact by Lemma %.2, whence d(x) = ’q)‘L\‘l‘x «VL \ ¥y = d(y). Thus d pre~ -

serves <€ , whence g is @ -continuous,i.e. a CL-morphism. We have made the following

remark: .
2.5,PROPOSITION, The function gL'01ll‘L———+ L, gL(U) = inf.(ql‘L\ U), is a surjective
Cl-ma be_t/ Sontinuous frames which maps Spec Ol{I‘L homeomorphically onto‘qJ“L relative

to both ¢v and A .
It lower adjoint d is rarely a frame map: Since g Preserves spectra iff ']VL-

Spec L, its lower adjoint d is a frame map iff it is an isomorphism.

The basic information contained in the theorems easily translates into general
topology statements. If X is a locally quasicompact sober space, then fX= ‘llJ‘O(X) |
is a quasicompact,locally quasicompact, super sober space into which.X is densely
embedded. The functor 0 from the category of locally quasicompact spaces and perfect

~ maps goes contravariantly into the category CF, whence X b3 fX is a functor from

this category into its full subcategory QP.

1)

One must bear in mind Memo 1-9-83 in this context.



3. The pseudo-spectrum and duality.

In HL it was shown that in a continuous frame L the function - Q> L\.I,Q Q(Spec L)
~—3 OFilt L from the contlnuous semllatt:l_ce Q{Spec L) of all quas:.compact saturated
sets of Spec L under & onto the Lawson dual of L consisting of all Scott open
filters was an isomorphism, With & = O(\I/‘L) we thus obtain an . isomorphism
Q(‘L[J‘L) = OFilt ¥, and since Q(WL) is a frame by 1.1, in particular, the Lawson
dual of & is a frame. R.-E.Hoffmann discovered a remarkable. frame which serves

as an isomorphic characterisation of Q(‘[p'L).

3.1. LEMMA. For a filter U in a continuous frame L and a pseudo—prime pev)'l_., the
following conditions are equivalent:

(1) pe € -interior U .

(2) There is a u €& U with ueep.

3 pefuv.

(4) pn U # 8.

(5) For all prime ideals P we have psup P 3 Pn U # ¢.

Proof. In any continuous lattice L, the sets Tx » x €& L form a basis for & . Hence

(1) 3 (2) . The equivalences (2) & (3) @ (4) are trivial. (2) = (5): let ue U, and
u&kp sup P for some prime ideal P. Then there is an x€ P with ug x by the definit-
ion of & . Hence x€ UaP. Not(4) = Not(5): 1If the idealép and the fiitei: U

are disjoint, then in the frame L there is a prime ideal P with §PE P and Pn U = §;

evidently p = supgp & sup‘ P.#

We now define %x(U) = WL\?U . By Lemma 3.1, T(UY = YLn W) is
A -closed, hence is a member of Q('L[I‘L).‘by Lemma 1.2. Since L is a frame, '
= ﬂ{L\ P: P is a prime ideal of L with Un P = @} =
L\U{P: P is a prime ideal of L with Un P = 0}2 LN 4(U) by Lemma 3.1, Since
Jm () is & -closed, we have I \¢m(U)€ & -interior U = tv . By the definition

of w(U), we obtain IX(U) = J.(‘l[I‘L \fn e \%U, since _?U is an upper set, Hence:

3.2, LEMMA. VYor any filter U in a continuous frame, ?_U = L \Jmu). #

Now let Q& Q('UI‘L); then for any prime ideal P of L we.have P € }Q iff sup P€ Q;
let P be the set of all of these P. Then LNUJP is the filter e (Q) generated By
L~ 4 Q. For a pseudo-prime p we have pé€ ?u(Q) iff for all prime ideals P the
relation pg sup P implies Pn w(Q) # @ (cf Lemma 3.1) iff P A ®(Q) = @, i. e.',
reP ;implies P$ SUPL'P;& iff Pé {Q. ThUS Woe(Q: According to Lemma 3.2, we have
. ?D((Q) L \.],vroc(o) Thus & (Q) is generated by ?«(Q). If U is an arbitrary filter,
then % (U) is" the filter generated by LN\¢w(U),i.e., by ?U according to Lemma 3.2.

7 In order to formulate what we have just shown, we record R.-E.Hoffmann's

definition:



' +4.1, LEMMA, If L is a continuous frame and U& Filt L, then U= V{Ve OFilt L: -

3.3. DEFINITION (R.~E.Hoffmann). For any complete lattice L we denote with FiltsL
the poset of all filters U which are generated by their Scott interior.#
If L is a continuous lattice, then U€&Tilt L is in Fi.ltaL iff U is generated
by ?U. ' '

Our discussion showed the following result:
3.4. THEQREM. For any continuous frame. L. the function of: Q('-\[J‘L) _ Filte (1)
is an isomorphism betweeen continuous frames with inverse % , where w(Q)= filter

generated by LAYQ and () = 'IP‘L’\ U. In particular, Filtd.. (L) is a frame.#
Since Q('I,F‘L) is the Lawson dual of O(W'lrL) . it follows that OFilt O(Q'L) ] 'F_‘iltsL,
and, as a consequence of Lawson duality, OQ}/L) = OFilt FiltéL. I '

At jthis point, my once private communication to R.-E.Hoffmann ended. His proof of

the isomorphism O@L) = (Filt Filt L, which is his result, is different:[,] ,410, p.112.
te ; 2

I want to add a few comments in this memo . T:*"irstly., the content of Section 1
above 1is nothing new in sofar as it is just a self-entaied discussion in a special case
of information contained in the Compendium, [C],pp. '312-313, 1.16-1.19, Thus in lieu
of the material im Section 1 (with the possible exception of Lemma 1.2) a reference

to Il would suffice. But since spectral theory is so central, maybe a direct presiéntar

tion in the spirit of the classical spectral theory with & may be in order.
Secondly, ‘Hof fmand s paper contains important information which is not contain

in the memo above. I will comment on some of it below:

4, Filtb.L as the injective hull gf_ the Lawson dual OFilt L of L.

By the definition of Filt L in 3.3 it is evident that OFilt L is a subsemilattice

of the continuous frame Filto. L.

Proof. If vé‘?U, then there is a u€ U with u#« v, Since OFilt L is a basis of 0"“
Icl,p.107, 1.14), there is a V € OFilt L with veEVE $.. But then uginf V. Thug"*
?Ug U{ve QFilt L : inf V& U} . Since ?U generates U by definition of Filt, L,

the assertion follows.f

4.2. LEMMA. (1], 2.2) In Filtg L we have: UK V iff inf U€ V.

Proof. Since directed sups in Filt L are unions, inf U€ V implies U« V. If

U« V , then by Lemma 4.1 and the definition of &, there are open filters
F1"."’Fn € O0Filt L. with inf st V for k= 1,...,nand Ug F1v...v\Fn.

But then inf U > inf(F1\r ...an) = inf F1 A ...A inf Fne V , since V is a filter.

Hence inf Ue& V.

4.3, LEMMA. If U,V,W€Filty L and U.<< v, W$ V, then there is an Fe OFilt_L with
UKF and W& F. '



Proof. Since U« V, by Lemma 4.2 we have inf U & V, and since W * V there is a
w€ W\ V. Now. L\%w is a Scott open neighborhood of inf U, and since OFilt L is
a basis for & ' (loc.cit.) there is an F g OFilt T with inf U€ F and w¢ F. This

F is the desired one.#

4.4, LEMMA. Let H be a continuous lattice and S a subgemilattice containing. 1 and
sétisfying‘ the following condition

(*) . Whenever ﬁx\‘l‘y £ @, then S a (?x\Ty) # 0.
Then § is A-dense in L.
 Proof. We claim .

(*%) Whenever F \%y # @ for some Fe OFilt L, then S n(F \ty) # §.

Indeed,let. fe FN\ty. Since L is continuous,there is an xe F with x<cy (  see

BCl, p.104, 1.10 ). By (%) we find an s€& S with x<¢s, y< 8. Sinc then sé F, con-
dition (#%) is proved. Now we claim

(#%%) Whenever f‘\('fy1 fyn) # § for Fe OFilt L and v € L, then

Sn (F N\ (1y1n...n‘l‘yn) £ .

Proof: By (%%) we f‘ind elements ske— Sn (F \fyk) for k = 1,...,n. But then
S =8, ee. 8 is in Sn F since S is a semilattice and T a filter, and s{ETyV. n“'yn.
This shows (¥#%), o , ,

Finally, the sets F \ (Jt‘yrin...nfyﬁ) 4 F & 0Filt L, Yyseers¥, € L together with ‘
the sets ?x , X€ L form a basis for A . Then by (#%*) and since 1 & S we know 'fthat .
S is A-dense in L.# '

4
i
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4.5. PROPOSITION., For a continuous frame L, the semilattice OFilt L is sup-dense

and A ~dense in FiltF L.

Proof. Lemma 4.1 shows that OFilt L is sup-dense in Filt L. Lemma 4.3 shows that
condition (%) of Lemma 4.4 is satisfied for H = Filt L and § = OFilt L. Then by
. Lemma 4.4, OFilt L is A-dense in Filtg L.d¥ |

Now we turm to J.D.tawson, Obtaining the To—essential hull,.in "Continuousr
Lattices and their Representations” , Proceedings of the Workshop on Continuous:
Lattices July 1982 in Bremen, Marcel Dekker 1983/84 and find as Corollary 8 the
following result _
4.6. PROPOSITION. If H is a continuous lattice and X a subset which is sup-dense
and not contained in a proper A~closed subsemilattice with identity inside H, then

(i,§) is the essential (hence injective) hull of (X,e|X). ¥
As a consequence of Propositions 4.5 and 4.6 we obtain

4.7. THEOREM (R.-E.Hoffmann,[Hﬂ , Theorem 2.5). Filtg L is the injective hull of
O0Filt 'L (relative to. the Scott topology.on Filtg L and the induced topology on OFilt D).

" R.-E.H.'s proof of 4.5 is even shorter,combining 4.3 ‘and 4.4. But 4.4 may be .
of independent use as a sufficient (and necessary) condition for ‘A —density of a

subsemilattice in a continuous lattice.



If we follows H1 in abbreviating OFilt by D and injective hull by I, then
the formula OGVL) = D(Filt L) after 3.4 above by 4.7 yields Hoffmann's formula

OW'L = DIDL.

5. The gamma~spectrum of a continuous lattice.

The gamma spectrum of a continuous frame L is the set Gam(L) = fx€&L:x = su'p(txn%)}j

Its elements are also called gammarelements (cf. R.-E.Hoffmann, Math.Z, 179 ,loc.cit.;

and SCS-memo 1-9-83). The gamma-spectrum is a complete lattice and the MacNeille
completion of IFTL) since -is inf-and sup~dense in Gam(L). R.~-E.H. defines a
topology for the gamma~spectrum, the so called gamma topology. In SCS-memo 1-9-83
he proves that " *}it-induces.on-thEapseuddspectrum \VTL) the topology of HP(L),

viz. cony(L). The gamma-spectrum is the essential hull of Spec (L}’ (and then also

Of’qKL))- The pseudo-spectrum is one topic, the gammawspectruﬁ another, presumably
bigger one (since the gamma-spectrum is bigger than the pseudo-spectrum). But the
topic of this memoc was that, if one wants. to talk about the pseudo-spectrum and its
interesting properties, one can do so without knowing much about the gamma spectrﬁmr
I do know the gamma-spectrum reasonably well, since I refereed R,-E.H.MZ.179 and .
recommended publication; :¢I.d6 recommend reading it for the internal interest of

the gammawspectrum. That I do not recommend basing-the theory of the pseudo—spectrum

on the gamma-spectrum ~ig-a separate storyw. i




