

	- 1.3 rm. 1						DATE M D			Y	Y	
NAME:	Oswa	ld Wyle:	r					9	1	83	•	

TOPIC: Compact ordered spaces and prime Wallman compactifications; Summary of Results

REFERENCES: 1. The COMPENDIUM.

- 2. L. Nachbin, Topology and Order, Princeton 1965.
- 3. O. Wyler, Algebraic theories of continuous lattices, Continuous Lattices, LNM 871 (1981), 390 413.
- 4. O. Wyler, Compact ordered spaces and prime Wallman compactifications. Preprint 1983; to appear in Proceedings of the Toledo Conference on Categorical Topology.

The Wallman compactification of a T_1 space X, defined as the set of maximal closed filters on X, provided with the hull-kernel topology, has abysmal functorial properties. This changes radically if prime closed filters are used.

We have a contravariant functor $\Gamma: \mathtt{TOP}^\mathsf{OP} \longrightarrow \mathtt{LAT}$ which assigns to a space X the lattice of closed sets of X. Adjoint on the right is $\Sigma: \mathtt{LAT}^\mathsf{OP} \longrightarrow \mathtt{TOP}$, with $\Sigma \mathtt{L}$ the set of prime filters in L, provided with the hull-kernel topology for which the sets $a^* = \{\psi \in \Sigma \mathtt{L} : a \in \psi\}$, for $a \in \mathtt{L}$, form a basis of open sets. Maps $f: X \longrightarrow \Sigma \mathtt{L}$ in \mathtt{TOP} and $g: \mathtt{L} \longrightarrow T\!X$ in LAT are adjoint if always $a \in f(x) \iff x \in g(a)$.

An algebra (X,α) for w turns out to be a compact ordered space Z (compact pospace in [1]), where X is Z with the upper topology, i.e. open sets of X are increasing open sets of Z, and the order of Z is the specialization order of X, with $x \leq y$ iff $x \in \operatorname{cl}_X\{y\}$, with $\alpha(\operatorname{cl}_X \phi)$ the limit of ϕ in Z for an ultrafilter ϕ on Z.

In this situation, X is a quasicompact locally quasicompact sober space, and Z has the patch topology for X .

Put C>>A for closed sets A and C of X if C is in every ultrafilter ϕ on X with all limits of ϕ for X in A; this is dual to "way below" for open sets. A topological space X has at most one W-algebra structure, and we have the following theorem.

THEOREM. For a quasicompact and locally quasicompact sober space X, the following statements are logically equivalent.

- (i) X has a W-algebra structure.
- (ii) X has the upper topology for a compact ordered space.
- (iii) The patch topology of X is compact.
- (iv) The intersection of two saturated quasicompact sets in X is always quasicompact.
- (v) If C >> A and C >> B for closed sets in X, then always $C >> A \cup B$.
- (vi) The adherence of an ultrafilter on X is always an irreducible closed set.

The equivalence of (ii) through (vi) is already in [1]. For maps, we have:

THEOREM. If (X,α) and (Y,β) are W-algebras, then the following are logically equivalent for a mapping $f: X \longrightarrow Y$.

- (i) f is a homomorphism of W-algebras.
- (ii) f is a continuous and order preserving map of compact ordered spaces.
- (iii) $f: X \longrightarrow Y$ is continuous, and $f^{-1}(Q)$ is quasicompact in X for every quasicompact saturated subset Q of Y.
- (iv) f is continuous for the given topologies of X and Y, and also continuous for the patch topologies.

If the spaces and maps characterized by these theorems are called <u>spectral spaces</u> and <u>spectral maps</u>, then WX is always a spectral space, with the following

UNIVERSAL PROPERTY. If Y is a spectral space and f: X \longrightarrow Y a continuous map, then there is a unique spectral map f*: WX \longrightarrow Y such that f = f* η_X .