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At the Bremen Conference, Alan Day mentioned that semilattices also have
injective hulls and that there may be a connection between the Zariski topology on
semilattices and essential extensions. And indeed, he was right, and we will discuss
this matter in these notes.

1. Injective Hulls of Semila.ttices.

Let S be a semilattice. We say that § is injective, if it is injective in the
category of all semilattices with semilattice homomorphisms as morphisms. The
following definitions and results are taken from [5] and {1]:

1.1. Proposition. A semilattice S is injective if and only if § is a complete
Brouwerian lattice {i.e. & distributive complete meet-continuous lattice). [ -

Let § and T be semilattice and let i : § — T be an embedding. If for every
semilattice homomorphism g : T — L the composition goi is injective if and only'if g
is injective, then T is called an essential extension of §. Every semilattice S admits
a maximal essential extension and this maximal essential extension happens to be
injective. We will denote this maximal essential extension by D(S); this semilattice

D(8) is called the injective hull of S. The injective hull of a semilattice S can be
constructed in the following way:

Asubset AC S is called admissible if and only if the following two conditions
hold:
(a) The supremum sup A exists in §.
(b) For every element s € § the supremum sup{A A s) exists in S and we have
sup(A A 8) = s A sup A. :

A subset M C S is called a D-ideal if and only if
(¢} M is a lower set.
(d) If A € M is an admissible subset, then sup A € M.

Let D(S) be the set of all D-ideals of §. Then D(5) is a complete lattice
(where the infima agree with set theoretical intersections); this lattice turns out be
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be Brouwerian.

1.2. Proposstion. Under the canonical embedding

ig: 8§ = D(S)
81+ |8
the semilattice P(S) becbmes the injective hull of §. Moreover, the:embedding f :

S — T is an essential embedding if and only if there is an embedding ¢ : ' — D(S)
such that ¢g =go f. |l

2. Essential Extensions a.nd the Zariski-Topology.

Let S be a semilattice and let p and g be semilattice polynomialsin one varlable
with constants from §. We define

.[P =gls = {z € § | plz) = q(z}}.

The Zariski-topology (Z-topology) on-S is the coarsest topology making zll sets of
the form [p = g|s closed, where p and g ranges over all semilattice polynomials in
one variable with constants from §. Recall from [3] that the following sets form a
subbase for the closed sets of the Z-topology:

-

aAz<bls={zeS|arz<b}
ta={z€8 |a<z}

2.1. Proposition. Let S be a semilattice and let 2,5 € § be given. Then
e Az < bls is a D-ideal, i.e. we have [a A 2z < b] € D(.S')

Proof. Let M C [a Az < bls be an admissible set. Then for every
m € M we have a Am < b. Since M is admissible, this implies ia A: supM =
sup(M A a) < b, i.e. supME[a/\z < blg. [

Next, we show that conversely every D-ideal is closed in the Z-topology. We
will even show a stronger result, namely that the sets of the form [a Az < blg
order generate D(S). We will start with a lemma:

- 2.2 Lemma. Let § be a semilattice and let M C § be D-ideal. If zy €
8\ M, then there are elements a,b € S such that for all elements m &€ M we have
mAea<b<a< zg



‘Proof. Since zo € M, and since M is a D-ideal, either the set jzo N M
is not admissible or this set has not supremum z9. In the first case, there is an
element bg € § such that 4 A ({zo N M) = {{bo A zo) N M has not by A zp has
-its supremum. In the second case, we can find such an element by, too, namely
2y = by. Hence in either case we can state:

There are elements by, b € § such that for all elements m € M we have
mAby Azg < b <bgA 2.

Hence, the elements b and a = bp A 2o have the required properties. ||

7 2.8. Proposition. Let S be a semilattice and let M C § be a D-ideal. If
Zp € S\ M, then there are elements a,b € § such that zp & [a A z < blg and
MClaAz <bls.

Proof. It we pick the elements a,b € § as stated in Lemma [2.2), then
a < zp implies a Azg = a > b, hence zg € {a Az < b|s. Clearly,c Az < b for
alme M implies M Ca Az < blg. | : | :

2.4. Proposition. Let § be a semilattice. Then the D-ideals of § are exactly
the intersections of sets of the form [e A z < blg, a,6 € S. Espec1ally, all D-ideals
are closed lower sets in the Zariski-topology. [

For the following result, note that the Z-topology on every semilattice which
happens to be a Brouwerian lattice is ,equa.l to the interval topology.

2.5. Theorem. The embedding 15 : § — D(S ) is a topological embedding for
the Z-topologies on § and D(S).

Proof.  Since D(S) is a Brouwerian lattice, the Z-topology on D(S) is the
interval topology.

First of all, we show that the mapping ¢s is continuous. Thus; let M € D(S)
be any D-ideal of S. Then

isz) <M &l CM 0
SzeEM, o

hence ig! ({N € D(S) | N C M}) = M, and this set is closed by Proposition (2.4).
Moreover, o '
is(ﬂ?) 2 M oM g iz : (2)
= zeftm|me M},
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and this set is closed in the Z-topology of 5, too.

It remains to check that the embedding g is open onto its image. Let M =
[e Az < bls. Then, by (1), M = i3 (| M). If z € § is given, then, by (2), we have
tz = ig1 ({M € D(S) | 1z C M}). Hence the relative topology on S inherited
from the interval topology on D{S) is as least as fine as the Z-topolegy. |

From this last result and from proposition (1.2) we conclude:

2.6. Theorem. Let S and T be semilattices and let f : § — T be an essential
embedding. Then [ is 2 topologlcal embedding for the Z-topologies on § and T,
respectwely i

We now study some properties of the closure operatbr in the Z-topology:

£2.7. Proposstion. Let S be a semilattice a.nd let AC S. Then A is: admissible
and z = supg A if and only if i3(z) = sup(g) is(A).

The proof of (2.7) follows immediately from the meet-continuity of D(S) and
the definition of admissibility. []

2.8. Proposition. Let S be a semilattice and let A C § be a lower set. Then
the closure of A in the Z-topology is a lower set, too.

Proof. This statement is true for meet-continuous lattices in the interval
topology and hence for arbitrary semilattices by (2.5). || :

For the next result, recaH that an ideal of a semilattice is an directed lower set.
The set of all ideals of § will be denoted by Id(S). Note that Id(S) is a semilattice

~under N (see [2, p.8, Exercise 1.15]). Also, in order to avoid confusion, we will
- denote suprema taken in § by supg and suprema taken in D(S) by supp(g)-

2.9. Proposition. Let S be a semilattice and let / C § be an ideal of §. Then
the closure T of [ in the Z-topology is given by '

I={ze §||zNIis admissible and has supremum z}.

Moreover, I is a D-ideal.

Proof. Let ig{l) be the image of I in D(S). Furthermore, let ig(I)~ be the
closure of ig(I) in the Z-topology of D(S). Then I = i3! (ig(I)~) by (2.5). Let
A = supp(gyis(I) € D(S). Since on D(S) the Z-topology and the interval topology
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agree, | A is ciosed in the Z-topology on D{S). Hence, we conclude that

is(f)” C A

Now let z € I. Then
ig(z) = lz C A,

therefore the meet-continuity of D(S) yields

lz = sup ps)(}z N is(1))
= sup p(s)(¢s(iz N I)).

From (2.7) we obtain that |z N I is admissible and has supremum z. This verifies

I C {z € 8|lzN [is admissible and has supremum z}.

Conversely, assume that |z N [ is admissible and has supremum z. Using {2.7)
again, we obtain

‘iz = sup p(g)(is{lz N I)).
Since the intersection of two ideals is again an ideal, ¢g(lz N I) is directed and

hence converges to its supremum in the interval topology. Hence [z N I converges
to z in the Z-topology by (2.5). This proves the other inclusion.

It remains to show that 7 is a D-ideal. First, note that 7 is a lower set by
(2.8). Let M C I be an admissible subset and let z = supg M. We have to
show that ¢ € I. By (2.7), is(z) = supp(g) is(M) C supp(s)is(I) and therefore
i5(z) = supp(sy{és(z) N is(I)) by the meet-continuity of D(S) Proposition (2.7)

now yields that [z N [ is admissible and has supremum z. Thus z € 1 by the part
of the proposition we already proved. |

For the following result, recall from (2.4) that every element A € D(S) is a
subset A C § which is closed in the Z-topology.

2.10. Proposition. Let § be a semilattice.
(i)} For every ideal I € Id(5) we have I == sup{ig(z) | z € I}.
(i) The mapping
~ 1 Id(8) = D(S5)
| I—T
preserves finite intersections, i.e. is a semilattice homomorphism.
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Proof.  (i): Let A == supp(g)is(l) € D(S). We have to show that A =71. We

already saw in the proof of (2.9) that |z C A for every z € I. This shows I C A.
Conversely, let z € A. Then }z C A and hence the same arguments as the once

~ used in the proof of (2.9) §h9w that [z N I is admissible and has supremum z. By

(2.9), this shows that z € I. This verifies the inclusion A C 1.

(ii} Let 7 and J be two ideals of S. Then the meet-continuity of D(S) and the
fact that 1g preserves finite infima yield

sup p(s)(¢s(D)) N-sup p(s)(is(F)) = sup psy{és(=) | = € I} N sup p(9){is(y) [y € I}
- =supps){is(z Ay} |z€lye J}
= sup p(s){is(z) |z €N J}
== sup p(s)(¢s(I N J)).

Therefore, (ii) is a consequence of i). |

The proof of this proposition would be much easier if we could assure that the
closure of an ideal is again an ideal. However, this is not the case as the following
example shows: example shows:

2.11. Ezample. Consider the following subsemilattice S of the unit square
0,1 X [0,1]:

S={(z,y)€0,1]X[0,1}]{z=00ory=00rz=1y <'1}.

Then the unit square is an essential extension of S, hence the Zstopology on §

~ agrees with the ordinary Euclidean topology. Moreover,

I'=25\{(1,0),(0,1)}

is a directed lower set of §, hence an ideal. Note that [ is dense in.§,i.e. I = §.
However, § itself is not directed (the elements (1,0} and (0, 1) do not have an upper
bound in S5). Therefore, S is not an ideal of §. This shows that the closure of an
ideal does not have to be an ideal.

3. Semilattices for which the Z-Topology is Hausdorf.

For distributive lattices L, the lattice version of the Z-topology:is Hausdorff if
and only if L admits an essential extension which is ccmpletely distributive. We will
prove a similar result here for semilattices. We will show that for a semilattice §,
the Z-topology on'§ is Hausdorff if and only if § admits an essential extension p{S)
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which is 3 continuous semilaitice (i.e. a continuous lattice without largesi element
1) such that on p(S) the Lawson topology and the Z-topology agree. Examples
for such semilattices are semilattices of finite breadth (see Theorem (3.10)) and
hypercontinuous lattices (see Theorem (3.11)).

3.1. Definition. Let S be a semilattice. By p(S) we denote the smallest
subsemilattice p(S) C D(S) such that
(1) is(8) C o(5). |
(2) p(S) is the smallest subsemilattice of D(S) which satisfies (1) and at the
same time is closed in P(S) under the formation of directed suprema and
arbitrary non-empty infima. |

Note that p{S) is always an essential extension of §. It is clear that p(S) is
always a meet-continuous complete semilattice (i.e. infima of non-empty sets and
suprema of directed sets always exist). We will now show that the Z-topology on
p(S) is Hausdorff if and only if the Z-topology on § is Hausdorfl.

3.2 Proposition. Let S be a semilattice. Then p(S) is the smallest subset
of D(S) which is closed under the formation of directed suprema and {non-empty)
filtered infima.

Proof.  Since P{S) is meet-continuous and since :5{S)} is closed under finite
infima, the smallest subset containing i5(S) closed under the formation of directed

suprema and (non-empty) filtered infima is a subsemilattice again and hence agrees
with p(5). |

3.8. Proposition. Let S be asemilattice. Then the Z-topology on § is Hausdorff
if and only if for every pair of elements zq,y € § such that zp < yp there is a
finite set F C F and finitely many elements ay,b;,...,a8n, bn € § such that
(1) zo ¢ tF.
@yl Az hlsU...Ula. Az < buls.
B)S=1FUlet Az <bisU...U[a, Az < b,ls.

Proof.  Assume first of all that the Z-topology is Hausdorff and let zg, 40 €
S be given such that zp < yo. Then we can separate zg and yy by disjoint
open neighborhoods. Translating this into closed subsets of § amd taking into
account that set of the form e and [a A z < b]g form a subbase for the closed

sets, we therefore can find elements ay,581,...,8m,bm, .. .0n, b, € § and finite subset
Fy,Fs C S such that

()re Elar Az <bisU...Ulam Az < bpls U TH.
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(b)) Yo € [ams+1 A2 S bmr]sU.. Ul A2 < bals U 1F2.
()S=1FUthoU[as Az<blsU...U[an Az < bsls.

- Since z¢ < yo, the elements e;1,b;,...,8,,0p € § and the finite set F =
Fy U Fy C § satisfy (1) - (3) of the proposition.

In order to prove the converse, let z;,y1 € S be given and assume that z; 7 y;.
‘Without loss of generality we may assume that z; € y;. Let y5 .= y; and let
%9 = ; Ayy. Then zy < yo and hence we may find a finite set F C S and
elements ay, b1,. .., an, bn € S such that (1) - {3) hold. Then, since sets of the form
[a A ¢ < b]g are lower sets and since g9 < z;, properties (1) - {3) also hold with z,
and gy instead of g and yo. Hence

U=5\(la Az < bilsU...Uan Az < bals)

and

V=S_\TF

are disjoint neighborhoods of z; and y respectively: i

_ 8.4. Theorem. Let S be a semilattice. Then the Z-topology on .5 is Hausdorff

if and only if the Z-topology on p(S) is Hausdorf.

Proof.  If the Z-topology on (§) is Hausdorff, then the Z-topology on S is
Hausdorfl by (2.8).

Conversely, assume that the Z-topology on § is Hausdorff. Let Xy, Y € p(5)
and assume that X C ¥y, Xo 5% ¥y. We would like to verify (3.2) with the elements
X, and Yp. Since XYy C § are D-ideals, this means that there is an element
y1 € § such that y; € ¥y \ Xp. By Lemma (2.2) we can find elements ¢, b € § such
that h

mAeSh<el for all m € X,.

Since the Z-topology on § is Haus.dorﬁ,'we can apply (3.2) in order to find a finite
subset F' C S and elements a1, 5,...8,, 6, € 5 such that

(1) 8¢ 1F,

2aglag Az <bjsU...Ules Az < bgls,

@B S§=tFUfasAz<b]sU...U[en Az < byls.

Now let G = F \ Xy. Then G is still a finite set. Moreover, let

di=ga;Aa forall1 < i < n.

Then ﬁe_have



(') b ¢ 1G,
(2’)GE[GA2S b]sU[a']_ ANz ébl]su...U[a:‘Az < bnls-
¥) S =1C Ula A < U [d < bils U-. U [d < bals.

Here, (1') and (2') are obvious. To verify (3'), let 4 € §. Consider the element
a A u and assume that

eAuglanz < bs (1)
and
eAugla; Az <bis foralll <i < n. {2
Then we conclude that
aAugle; Az < bils forall1 <7< n.

Since S=1FUfas Az <bhi]sU...Ulen A 2 < by]s, we conclude thata Au €

tF. We would like to show that in fact aANu€ TG’ Let f € Fsuchthat f < e Au

and assume that f € X,. By the choice of a and b, this would imply thata A f < 4.

Since f < a A u < g, this would imply f = f A ¢ < b, contradicting 8. 1F.
Therefore, statements (1) and {2) above imply '

aAuclG.

Finally, note that a Au € [a. Az < blg is equivalent to u € [a A z < bls and
aAu Efa;AaAz <b]5 is equivalent to u € [a; Aa A z < b;lg. Hence (3)
follows.

In the next step, we show that

(1") Xo ¢ 1ig(@); : _

(2N Y glis(e)nX C is(b)]p(s) U [gs(a)) N X C i5(bn)los) U
U [‘S( ) nx < "'S(bn)]p{S);

(3" o(5) = T%s(G) U fis(a) N X C ig(b)a(s) U lis(ah) N X Cis(ba)lps) U
U fis(a},) N X Cig(ba))a9)-

In order to verify (1), sssume that we had X € 1ig(G). Then i5(g) C X, for
a certain g € G and therefore g € Xg N G 3£ @, contradicting the choice of G.
Next, assume that (2") does not hold, i.e. that

Yp € [35(“') NXCc ‘S(b)] sy UV Es(e)) N X Cis(b n)lo(sy U
U Bs(el) N X Cisb )]F(S)‘
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Then either Yo N is(a) C is{d) or Yo N is(a}) C C z,g(o ) orsome I £ ¢ £ n. Inthe

first case, this would imply
¢ €lys N la
CYinlea
=Y Nis(a),
- ‘iS(b)
ie.a<b<a,a contradlctmn Hence there has to be a number ie{l,..
that
Yy Nigla ) C ig(bi).

In this case, we obtain

eAa;€lyiNlacnle

= g N ld}

C Yo N is(da})

C ig(b:)

= {b;,
ie. ¢ € [e; Az < bis, contradicting (2). Hence we verified (2").
Finally, we have to verify (3"). Let

. Tzs(G’) U Eis(a) N X C 25(lys) U is(ay) N X C is{bn)]p(s)

.- U [is(e,) N X Cig(b ]],,(s;

., n} such

We have to show that p(5) C 4. We will do this by using (3.2): Note that the
meet-continuity of p(S) implies that A is-closed under directed suprenra and non-
empty filtered infima. Moreover, by (3'), the image 5(5) of § underig is contained

in A(S). Hence, by (3.2}, p(§) C A.
An application of (3.3) now finishes the proof of the theorem. [

If S is meet-continuous itself, then all the sets of the form [a A z < b]g are

Scott-closed in S. Hence we can state (see also [3]):

8.5. Proposition. If § is an up-complete meet-continuous semilattice, then
the Lawson-topology on § is equal to or finer than the Z-topology.!Especially, the

Z-topology is quasicompact. [
The last proposition immediately yields
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8.6. Proposition. Let S be complete meet-continuous semilattice such that
the Z-topology is Hausdorfl. Then the Z-topology and the Lawson topology agree.
Especially, the Z-topology is compact. [

The next result follows from (3.4) and (3.8):

8.7. Corollary. Let S be a semilattice and assume that the Z-topology on §
is Hausdorffl. Then the Z-topology is actually completely regular. 'Moreover, the
continuous semilattice homomorphisms into the unit interval separate the points of
S and § is a topological semilattice in the Z-topology. ||

We will now list some properties which insure that the Z-topology of a semilat-
_tice is Hausdorff. The first such property is finite breadth. We need some prepara-
tions: If S is a semilattice, then we denote by Id(S) the semilattice:of all ideals of
S (an ideal being an up-directed lower set of ).

8.8. Proposition. Let S be a semilattice of finite breadth n. Then Id(S) has
also breadth n. ‘

Proof. [n the case of lattices, this theorem is well known: The ideal lattice
of a lattice L is a2 homomorphic image of sublattice of an ultrapower of L. The fact
that the ideal lattice of L has breadth n, too, now follows from mode!l Lheoreticzl
considerations. I’m sure that (3.8) is also well known in the case where § is merely
a semilattice, but since I could not find any references, T will present a proof here:

Since S is a subsemilattice of Id(S) under the embedding s — [ : § — Id(S),
the breadth of Id(S) is at least n. Conversely, we have to show that the breadth
of 1d(S) is at most n. Therefore, let Iy,...In € [d(S) be an irredundant family of
ideals. We have to show that m < n. In order to do this, we will pick a family of
elements z; € I;, 1 < ¢ < m, which is irredundant. '

First, recall that Iy, ..., I, is irredundant if and only if

Ln e N LanlgyN..In€I; for every ¢ € {1,...,m}.
Hence for every number 7 € {1,...,m} we can pick an element
a€NLnN..NEy NLa N N IR\ L

Then a; € I; whenever ¢ £ 7. Since all the I;’s are ideals, hence directed, we can
find elements b; such that

e; < b;€l; for evefy i £ 7.
The elements b4, ..., b, then form an irredundant set. Indeed, if we had
by A oAby Al AL A, < b
11



for some 7 € {1,...,m}, then, since a; < b; whenever ¢ # j, we would obtain
a; < b; € I;, contradicting the choice of a;. [

3.9. Proposition. Let S be a semilattice of finite breadth n. Then p(8) also
has breadth .

Proof. For every subset H C p(S5) let -

¥ = {supD | D C H is directed },
H- ={iaf F | F C H is filtered }.

Firstly, we show

(C) If H is a subsemilattice of p(S), and if the breadth of H is finite and equal
to n, then the breadth of the subsemilattices H™ and H~ are also equal
to n.

Let us consider H* first. In this case, we argue as follows: Consider the
mapping
: sup : Td(H) — »(S)

A s4p )

Since p(S) is meet-continuous, this mapping preserves finite infima. Moreover, since
H and therefore Id(H) have breadth n, the breadth of the image of the semilattice
homomorphism is at most n. Since HT is the image of this mapping, the breadth of
H+ isno larger than n. On the other hand, H is a subsemilattice of H* . Therefore
the breadth of H™ is equal to n.

‘ Next, let us consider H~ . Assume that ay,...,a,, € H~ are irredundant. We
' have to show that m < n. Slnce the ay,..., a2, are irreduixda.nt, we know that

0.1./\...'/\ By A Gy /\.../\ami ag

- for every 7 € {1,...,m}. Every element a; is a filtered infimum of elements of H.
Therefore, for every 1 < ¢ < m we can pick an element b; € H such that a; < b;
and '

ay A.../\a,-_l Atdivi A...Atm £ be.

Now assume that there would be an ¢ such that

bi AL ADi /\b:+1f\ A by £ b
12



Then we also would have

@A NGy Ait Ao AB S A Abcr Abir AL A by
' < b,

contradicting the choice of the b;. Hence the elements b,,...,b,,:€ H form an
irredundant set. Since the breadth of H is n, this yields m < n and therefore the
breadth of H~ is a most n. The fact that H is a subsemilattice of A™ shows that
the breadth of H™ is exactly n.

The next statement is obvious:

(D)If H;, i € I, is an up—directéd set of subsemilattices of p(S),:and if ‘the
breadth of each I; is equal to n, then the subsemllattme User H: has
breadth =, too.

We now define inductively for every ordinal < less than ‘Ip(S )| + 1 semilattices
H: by | RS |

. Hg =1is(S);
Hiy = H.'_+ ) :
H;=|J B; ifiisalimit ordinal .
i<i

Then, by {C) and (D), the breadth of all the semilattices H; is equal to n. For
a certain ordinal ¢ we have finally to arrive at H; = H;41, which means that H;

is closed under directed suprema and fillered infima. For this ¢ we have J; = p(3) .
by (3.2). Thus, p(8) has breadth n. |

‘We now can conclude

8.10. Theorem., If Sis a semllattlce of finite breadth, then the Z- topology on
S is Hausdorff. '

Proof.  The semilattice p(S) has finite breadth by (3.9). Hence, by [3], the
Z-topology and the Lawson-topology agree on p(L). Since 2 meet-continwous lattice
of finite breadth is actually continuous by [8], the Z-topology on p{S) is'Hausdorf.
Hence § is Hausdorff in its Z-topology by (3.5). [l

9.11. Theorem. If S is a semilattice which admits an essential extension which
is hypercontinuous, then the Z-topology on § is Hausdorff.
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Proof.  On a hypercontinuous lattice, the Lawson topology agrees with the
interval topology. Since the interval topology is always finer than or equal to the
. Z-topology {(note that e = [a A £ = z|g), this implies that the Z-topology is

‘Hausdorff. Theorem (3.11) now follows from (3.4). |

The last two results suggest that it may be worthwhile to study continuous
lattices for which the Z-topology is Hausdorff and hence agrees with the Lawson-
topology. In order to have a preliminary name for those continuous lattices, let us
call 3 semilattice S strang.,y.caﬂtinuo us if ‘

(1) § is meet-continuous, up-complete and complete.
(2) The Z-topology on § is Hausdorff.

Clearly, every such strongly continuous lattice is continuous. From (3.10) and
(3.11) we may deduce that every hypercontinuous lattice and every continuous lat-
tice of finite breadth is strongly continuous. Moreover, if § is a meet-continuous dis--
tributive lattice, then the Z-topology and the interval topology agree. Hence a dis-
tributive lattice is strongly continuous if and only if it hypercontinuous. What else
can we say? Is there a equational characterization of strongly continuous lattices?
Do these strongly continuous lattices in some sense form ‘one-point compactifications’
.of semilattices for which the Z-topology is Hausdorfi in the same sense as completely
distributive lattices do for distributive lattices (see [4])?
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