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TOPIC On the shloop

For Keimel only. On handwritten notes from the Darmatadt seminar.
REFERENCE Keimel to elaborate .Further reference: Scoti i-3g-Th ,pp6,7T

DEFINT#TON 1 . Let S be a sup-semilattice. A shloop _< is a transitive,
gntisymmetric relation on 3 satisfying the following axioms:
AXIOM 0. 0~ 0.
AXIOM 1. (Wa,0) a2 g<b=> a<b.
axToM 2. {(Wa,b) (a<b~c or agblc)=> alc.
ol aRTON 3 (Mavb b —adb > —a-pr= b
._--r_lL =
axToM 4. (TNPERPOL)  (Wa,0) a< o => (A x) a<x<b.
NOTATION 2. For X & E_wraﬁe JnX-{% £5: there is an x e X with s+ x}. Write
LEMNA 3.2 )AXIOM 3 ie Sabivatens—s each of the following l-lﬂc—\'ir‘ﬁc?
axIom 3+ %za,b,x,y) (a< b and x<y) => aVx< bVy. -
w3y
axzon 3" (Wa) +Fa is a cofilter .
(If S is a lattice, then a cofiltez is a lattice ideal. )
E.';a--fp-&: - fa @ SHMUP
LEMMA 4 (Expanded Gierz-Keimelj. Let L & CL and k:l—L

a kernel function, i.e. a function satisfying
(1) (¥ xy) x<y=> k(x) < k(y) ,G8XVx) k(x) < x, (i.e. x<1).
(1iii) fmmmmmp K = k.
Then
(1) T = k(L) is a complete lattice and k is left adjoint to the

inclusion function T %&—> L .

(I1) The following conditions are eguivalent:

(1) (¥ D) D updirected in L => sup; k(D) = k{aupﬂ D).

(2) f\?f;);’s T» t = SU‘PL{_S e T : 8 <L -:j - EupL{ .],,tﬂ'[‘:l.

. (3) g = <« [(mx D).
. (4) T eCL
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(5) The inclusion T —3L i23 in Eéép
)

(6) k e CL.

DEFINITION 5. For a sup-semilatticéd S EE® and a shloop ~ set

P, S - §I€s: I is a cofilter such that (Va)ae I=>Fb) (b eI
and a< b)
Write P, S5 = PS.
,

<
Note PS5 = kSDP)f\ by HMS-Duality,hence is a Z - and thus a CL-object.

5 e CL, and Its4I: PS—E, 5 is

PROPOSITION. 6. Fore ach shlna?/ P,

a kernel operator.

Note. Tn PS we have I < J iff (J aed) IS Ja if (FaeT) Ic fa
(Observe J =|J){4a: a € J} for J e PS)

We now introduce the shloop calegory

DEFINITION 7. We define a category INE¢ as follews:
(a) Objects: Pairs (L ,<) of a complete lattice together with a shleop.
(b) Morphisms: 9:{L.ﬂf}'—-§(L',-q '} are INF-morphisms g:L—2>L'
whose right adjoint d:L' ——2>L satisfies
(Y xy) x<'y = dlx) < aly).
.1:51. .
is a

REMARK 8. There dxm forgetful functorg

| f:cL —— ;ER{ given by St+—=> (5,¢<) .

(§e use the following Lemma: Let g:5—>T be in INF and d the right
adjoint.Then (1) below implies (2):

(1) g preserves sups of updirected sets.

(2) (Fx,y) =<y => d(x) << dly).

If,however, T € CL , then (1) and (2) are eguivalent.
Remark. ATLAS contains a parallel statement with CS5 in place of INF and

¥y £ int Tx in place of x << ¥ (see ATLAS 1.19))

THEOREM 9. The assignment (L,~¢ e E(L= INF, —»CL 1is functorial
:CL

and is in fact the left adjoint of | |
is sp—ads: (L, < ) — ('P{ 5@_1: g: L,y }—>(5,<¢) , 5 ¢ CL 1is

ang IHE{ -morphism, then kmumixme the unique g': P, L ~——>8 g determined

-——>INF; . The front adjunetio

by the adjunction is given by g'(I) = sup gfI}g
-
Proof. It suffices to verify the universal property./lf the fill-in g'

oy mtht i exists,it must have the form deseribed in the theorem,and that function
LA L e, =l e el E : ; - :

e e

5¢3;w-mL%J indeed satisfies g{x) = g'{ x). One must show that g' € CL .



We show a sublemma L
SUSLEMMA. For I ¢ P and g:(L,<) —>(5,<<) , Se CL one has
sup g(I) = sup g[:,LE}. (Gicz )

Proof. > clear. < : Show {\/t) t < sup g(I) = o suph( 4, I). put if

t << sup g(I) then there is an s & I with % @{E{sj ,whence d(t) & dg(s)

< s eI, and so d(t) e ds Iy¥hence t < gi(t) ¢ g( 4nI).Thus t < sup PGSO
P S. Show g' I_:Lnfg }2 int g'(?].

all T e £ we have t< g'(1)=

sup g(I).Hence there is an s € I with ¢ £ g[sI] ,whence d{t) < 81 € Ts
Thus 4{t) € ﬁﬂ?,whence t € gd(t) € g(nﬁz').ﬂo t £ sup gl m?}

= sup gf+ﬂ:}}= g {inf L ). D

Show that g' preserves sups of updirect d seta: Let gg P_d\S bhe up-
directed. Then sup J5= sz . Now g'(sup,f) = g‘fu_g} a su;;é{ UC)}
= sup g{U {I: Te :D}] = sup U {g(I]:Isﬁ} = SL“PIEEF\-) sup gl1) =

SUDL >y g' (I).

Show that g' preserves infs: Let =

Let t << inf g'{gj,then fhexsyiz for

. @ Tiret we must show that s : (L, ) -——>::P_f, S§<<) is in _I_I'_mi._{ .

We first note that this map has the right adjoint If{—s sup L.Then we
repall I=<&J iff IE,};.& for some & € J which implies sup I £ a.

By the definition of E,S we find a b & J with a2 < b, whence a= b < sup J,
and so sup I < sup J. ﬂ

(The following is new; Darmstadt check! )

THEOREM 10. Let L be a complete lattice. The assignment which assignse
to each shloop < on L the kernel operator I -verI uf—PL onto Iy L

an order isomorphism
is x bBijessien/from the set of all shloops on L onto the set of all
kernel operators on PL satisfying the eguivalent conditions of Lemma 4.
The shloep belonging to a kernel operator k is given by x £ y 1iff
X E k(¢y]. Moreover, if x <,y =2 x<.,y , then thnere is a xernel

= L]

morphism P.¢,L —>Py 5L given by IH-L-EI .
Proof., I =x 4!23 =7 X< then I & R4~2L by detinition implies I € P*#L

Moreover, the identity map (L, < 1} — (L, £ 2] is a morphism in INF , ,
hence there is a undgue mzm CL-morphism I: P 1L—-—} Pe 2L such that
i'“.i,.,ls]l = ,.i._zs. Tse I :U {_«Lﬁ:s £ I} for L& P"‘"‘IL and the fact that
f preserves up-dir ected sups to show that f£(I) -nl«EI . "Urder isomorr-
phism into" should not pose any problems. If k is a kernel operator on
PL satisfying the conditions of Lemma 4, then define xf y iff x € kI:vL:.-":
Verify the Axioms in Definition 1. E.g.INTERFOL: Let a € k(yb).By 4(1I)(2.
we have ki$b) = J {IEi::'. k: Iedx , x & }ca}}i‘or some x . Hence

ae I= k(I) € x(lx) for some I and x. m
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We should now be prepared to inspect for 2 CL-object 5 the totality
ker(3) of kernel operators gsatisfying the egquivalent conditions of Lemma 4 .
If k € ker (3), then 4-(II)-(1) means that x 18 continuous in the sense of
Scott. If Cont denotes tne category of emmpiExx continucus latiices with
Seott contiruous functions, then ker(S) € Cont(S,S) = [ﬁ-)ﬂl [where we
sse Scott's terminology). We know from Scott that [s-> 5] € CL .Further-
more we observe that the inclusion ker(S) € Lﬁ-)S] preserves Sups
where supps of functions are galculated pointwise. (To check e.g. xxii
g 4 -{iii} 1let &4 £ ker(S5), k = sup A. Then k(k(s)) = SUPg_, f{supgaﬂgis}]
2 Supp af (£(s)) = sup ek fs) = x(s) > k(k(s)).)The inclusion map
ker({5) ===» 5->S thus has a left adjoint
E:o—>§]~ﬂbker{5] , Yf) = sup {reker(s): k< £l
It is my impression that this function is not generally in Cont so that
it is not likely that one could show ker(S) € CL via Lemma 4. Judging
from Scott p.103,line 1 and p.111 ,Definition 3 I think that fd{g in
[5.>§ iff there is a finite set P ¢ S sucht tnat f(s)= O fors {F and
£(s) << g(s) for s & F. This seems to be rare for anything having
more properiies than Just'being Scott continuous. L

i
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It is of course possible that the internal <{ -relation of ker(S) is

not the induced one (and indeed if ker(S) is not in CL ,this must be the
case) Typical samples of elements in lker (S) are the following:

(a) Far s € 5 set k(t) = st. (o) For ce& K(S) set k(fe) = {b}, K{I(c}j={0}.

/
(e} i patin

Farrimdexlengzxdisgr For every collection

b E of disjoint intervals on the interval
4 f one may faoricate an element of ker (I).
| & ' (Use e.g. the o mponents of the complement
| ‘;;‘* | ' of the Cantor set.) Une may also read the
. | . picture as the graph of an element in

l{.e.l:“ I:“' lq -2 .-L ) = I AT Lcase.
\ A= o = L4 I 1

X b

1; SopMs 1Mposs 2 L0 AaphroXir '3.-t'E- t'lll‘-" E::*-'—"I'EJ‘E _ﬂr{)m t:e JI'D'“ b..}r .JrPE l'.t:'l

lbarnel OpPeraiorS.
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In any case ker(S) is a complete lattice and is sap-closed in E"w—)‘ﬂ

COROLLARY 11 . The shloops on a complete lattice form themselves a
complete lattice. f]

It remains open whether or under what circumstances this lattice is

continuous.

Now let L be a complete lattice and <" a relation satisfying
axzoms o-gf 2.

DEFINITION 12. Define ¥ ER as follows: For x,y € L we have x <%y
iff there is a subset C< L with the following properties:
(i) C is ~§ - totally ordered. _
(i) € is <~ ormder dense (/£ A<b i C;’; fore v o me C 103 fls @44 b)

(iii) min C = x , max C = y . [

LEMMA 13. Suppose that < satisfies AXIUMS ¢ O -2 . Then the following

are equivvalent
(1) x<*y.

(2) There is 2 function f@,ﬂn@ —=L such that p < g implies
f{p}-{ f{g) and £(0) = x and £(1) =y . ]
CEMARK" e bexe. o — 2 ¥ é’é < Seatipes TMNTERPOL. |
PROPOSITION 14. Let L be a complete lattice and =" a relation satisfying
MIGMS 0,1,2. Then <* also satisfies these ax10ms plus AXIOM 4 (INTERPOL).
) L e s
Further, pf==md <™ satisfiy AXIOMS 3,3!',%y 3" m respectively

In particular,if < satisfies 0,1,2,3, then <*is a shloop. ]j
Eed Noch ne Kategorier

REVROVFPTONTG] DEFINITION 15 . Let Compl be the category SXEN of

) , : : . . L
complete lattices with inf-morphisms (arbitrary infs!) presering sups
!

o updirected sets.
Wote Compl = INF.

PROPOSITION 16. There is a functor W: Compl —3 INF »  given by
WLy = (5, <<F).

Proof, In each L e Compl the relation << satisfies AXIONS 0-3,hence
<«® is a shloop. If g:L--->L' is in Compl then x<<y in L' implies
d(x) << d(y) in L ,where d is the rignt adjoint of g EFEH we recall the
Lemma mentioned in REMARK 8!) Thus w< g ¥ means the existence of

a function £: [0,1]n @ —=> L' as in 13-(2).Then fa: [0, Ja @—o>L

is 2 function as in 13-(2), hence d(x) << * d(y) . Thus f is an INF 4
morphism (L,<<* ) (11,<<®). f]

THECREM 17. F. o W: Compl +—> CL 1is the left adjoint of the
grounding functor U : CL — Compl.

Proof. By the Lemma in REMARK 8 ,for S € CL and % L e Compl we have
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Tirther remarks.

There is some evidence that the interpclation axiom should pe strengthened
as follows

axTon 4t . { ¥ a,n) a<o =>(Fx}) aL x<L o and asx . L[]

In any CL -enject the relation << satisfies this stronger interpolation.

taate a chain
DEFINITION 21. Let (L,< ) e INE . A exsim C in L is/strict/, if

x,y &€ O implies that x<y or x =y ©OF ¥ K .
By Zorn's Lemma, eanh strict chain is contained in a maximal one.

Examples of strict chains are {G} ,{D ,t_}~ .

THEORE!

AXIOM 4' .(We do not need AKIOM 3,or 3' or v, ) It Ce L is a maximal

t=3

22, Let (L,~< ) & INE_ and suppose that < satisfies

strict chain, then C is complete (hence in CL ) and there is a surjective
IITF{ morphism rYn:I[L,{ ) ——>(C, <<.) whose m rignt adjoint is
given by ¢ k—» SuUpp {d.s C: d< cj . For c & £ we have lf»{cjz C,i.e.

T -y

Proof. Memo Hotmann 4-19-76 (on chains ...) and memo Carruth 5-28-T6 U
This applies in particular to any S e C8 with < = L o <<"* provided
tnis relation satisfies AAION 4°7.

AXTION 5. l:}?/x,aw,ﬂ veesE ) XA WV ...Va =>E_:ja.‘,...,a'] x$ alvh. .l
; " n 1 n 1 n 1 n
Aand a']"{a' ’J= 1,---;1’1'
PROPOSITION 23. Let (11,,.:] e INE, .Let £:{L,< ) —>(5,«)

we the left reflection into CL . Then £ x <y implies £x)<< £y,
. " Gnd < satisfies AXIOM 5
and if .4 {v x,¥) x4y =>x << f?:qq*fﬁeﬁ'%‘%rs‘esé%ves—m B

i N . = i T - - _
and ma=z shus is a lattice m::rph:.sm'ﬁ‘;s left adjoint kﬂ_ is an

INF, -morphism. Thus, if f is surjective, then it is a retraction in

| —

Proof. We may assume that S = P_{iL,-';"} and (=) = ,.Ls, Let x~ ¥ in L.
Then there is an a & 4,y (namely,a= x) such that 4x ¢ & .This means
£{x) = dx << 4y = #{y) in P,(L,~ ). dow suppose that < is strocnger

it i AR A Ty L ~
than <4. Let X< L pe arbitrary, x = sup X in L. Trivially sup (%) <f(x);
ve must show the converse. For this purpose we take an arbitrary L% f{x)
= &x; we must show I << sup £(X). But I << 4 x means the existence of
some a~¢ X with I € a. By hypothesis, a< x implies a << x = sup L
Jence there zxg is a finite set F € X with & & sup p. Now take any u< a.
Then 1 XHE a.1v...1..r 2, , = {a1,...,rin:’; LBy ALXTIOM 5 there are (':‘aL

Jagd Fet

- 1 - ! 3 , -
aau{ a:l and 1,153.1v...va1n si.2. u E +a.1\,.-"...‘l.,»4\a.n{; SUP__y r{,,\:‘](,“'
whence = 1€ ,{‘a < sup £{X}. |

nemark. AXIOM 5 is satisfied 1n CL .



