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REFERENCE  B¥E%% ..d KEIMEL , A Lemma on Primes... Notably l.4.

We quote an amplified version of a Lemma in GK (1.4)

LEMMA A. Let LeCL and k:L—L a kernel function ,i.e. a function satisfying
(1) (¥ xy) x2£y2 k(x)€k(y) ,(11) k21 , (1ii) Kom k. _
Then (I) T = k(L) 1s a complete lattice and ihe corestriction k:lL—=T 1s left
adjoint %o the inclusiocn faonctiony

(II ) The following conditions are equivalenti:

(iv) k € Cont where Cont is the category of smmpisiw continuous
lattices with Scott continucus functions. In other words,

( % D) D up-directed in L $ sup, k(D) = k(sup, D).

(1) (¥t) teTs t=sup (8eT:s f-:_Lt'Q - supL{gtn;r}

{2y &&= f.f.LL{T » T). : |

1 !

|
(3) TegoL - '|

|
(4) The inclusion T—¥L is in CL°F ||
. |
(5) kefth. _ |

|
NUTATION « For L € CL we write ker {1‘]£[L~+ !L](: Cont(S,S)) for the set
of all functions k satisfying (i) - (iv) (hence also (1)-(5). [8ee. SeorT, ,E»-Iﬂ
Cur aim is, inter alia, to give'an alternative pooof as Scott's result that

- g o T
[S=>T] € CL . The category of posSets and order preserving maps 1is called Poset.

EiErirz] Instead of Poset(S,T) we will write (5-3T).

LEMMA 1. Let Se¢Poset , T € CL , then (5—>T)&CL relative to the structure induce

from TS.
Proaf, (S=T) is closed in 7°  in the CL —ﬁraduct topology, and clearly o cL.
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,T & CL . Define ki(5=1) —3(5—=1) by

DI TMITION 2. Let

. k{f){a)} = sup £f(ds) - BuUP. . - £(x).
Urebe that k is well defined: x & y will alwayrs imply k(£)(x) < k()(¥)t1)
PROPOSITION 3. Let 5,7 € CL . Then K & ker(5—>T), and k perserves

Procr. (i) Suppese £ ©£g in (S-»T).From Def.2 it is clear that k(f) £ k().
ii} Let s & S. Then £ k(£)(s) = sup f£(ks) & sup £({ s) = £(s). -

e . Dren - X ) ; -
(iii) Let s & S. Then k ) = BUP. . & k(£)(8) = SopmonEn  SUP, sz Py 0 f(_,r]

-

= sup L T(y) = k(f)(s) since for all <=5 there is an x with yecx &5 .
THyees wees

(1v') Les Dfe(5->1) and set h = sup &b Iin (S=>T).& We claim that
sup k(o ) = k(h). Let s &€ 5. Tax Now [sup k(B )](s) = sup k(§)(s)
feD

= Sup . Sup

By . ces & (x) = sup. sup § (x)= SUP_, . o n(s)= k(b)(s).U

xrLes a el

PROPOSITION 4. Under the yx hypotheses of Prop.3, oo

k(5>1) = [S5->T] .
Proof. a) Let fg (S-%T). Show that x(f) e Cont. Let D €S be up-directed
ang let & = sup D. Glearly, sup k(£)(D) £ k(£)(&). Now let x&< k(£)(s)=

sup £(;s).By definition of << there is an m s'<<swith x2 £(s').
Tut s'¢< s= sup D itself implies the existence ol some d e with s'<< d.

Thus =% i.k[f]{d] < sup k(£)(D) .

v) Let f ¢ [8—»T]. Then Marommmort  k(f)(s) = sup £(dps)

= f(s) since ¥ preserves sups of up-directed sets. 0O

COROLLARY' 5. [S—>T] € CL (SCOTT).

Proof. From LEIA 4, Propositions 3,4. 1T

We now further investigate the kernel function k on (S—>-T). So far we
wnow that it preserves arbitrary sups (hence has a left adjoint I i
which we will investigate presently) and tha® iis corestricilon
ks (53D )—=[S-»T] is a CL -map which 1s left adjoint to the inclusion mad
[S-——‘L‘E—‘r{:ﬂ—b—’i‘}. We need to understand clearly the ~relation on (S-7T).

Tn the following we allow curselfesa slight deviation from Scott's notatlon.
vl

NOTATION 6. Let 5,0 GPosey, fsmwcxf (s,%) € 3 =T . Then {2} €(5->T) is

Gefined by ({)(x) =t if s &% and = 0 otheriize. If SeCL , then

=327 is defined by [:](x) e t if 5 ¢¢ x and = 0 otherwise.

54
|
[ A

Wote that f=x [:] e [s=>T] if §,T €LL .

. Lét P g ST be finite. Then :
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) s (ay1) €7 ) -

-

s (s,8) e P 3

f—-,

(') = sup {

".‘.I

rl*i.:._,u;_u 1L.

‘i‘.
- o
4 =

Llie$s Nore notation: For f,g¢ (S—T) we write €< g i

s} ¢< s} for all s & 3. (This is the'pointwise way below relation”
<< g ¥

L3 7.  Let fe (5—D). The basic neighborhotds of T in (5 —T) in ihe

Scott tovology are obiained by taking any finite set F £ 5 x T such that

(F) €<, f and considering W(F) = iﬁéis‘-"?) : (F) ""‘:1:#’3]J .

Praof. Firstly, we note the
SUBLGHA. (F) <<, g iff (¥ (s,t)e F) © <<g(s).

Proof of the Sunlarma.. () x:c.P g iff {J'f' x) SUP(S 1y e 1_,.‘“)(:5 ) << g(=}

08 (¥ x)( F (s,t) € ) ()(x) ¢ <g(x). This clearly implies (wrcfsy et Yot e

1
satisfied. Take x e s, {q,:]e F. Case 1: 56 < x . Then {t]{;:} = t £<g(s) & glx).

ase 2 . 54 x . Then ($)(x) = 0 << g(x).Hence the forgmer condition follows..

(]

“This proves the sublemma, ' : )

Tvidently T eW(F), and by the definition of “the Ecurtﬂpclogy, the fémily

" .
of sets W(F) = (5,8)C F {g : te«g(s) 3 is a basis for th.i:': 'i'.npnlu:{_;':.r-'-r:'-
; I
. . |
Note that inf W(F) dominates (F). We follow an idea of Scott |in
nroving _ o ||
Limpin &, If £&(5>7) then £ = su.pil::} -14’-.*‘{5.)’1 |

Proof. 4 is clear. To prove the reversf,let © 4% f(x). Then (§ }(x]:h t £<f(x);

3

hence foemip t = (i}(x} < sup Eh{_ij{x} s ecs(s)). U |
g

. |
PROPOSITION &. Let 5,T% CL , f,g3 ¢ (5—=T). Then the following st::.‘criﬂnts are
equivalent: (1) f <& g « (2) There is a finite F& 5 x T witn ;c{"lj 4L g

(3) Taere are finite F,GC 5K T such that £4 (F)4<(c) L& |
Proof. The equivalence of (1) and (2) follows from Lemmas T and &. T‘nlie equi-
valence of of (2) and (3) is simple CL —calculus ( the interpolation pro=
perty of ¢¢ ). [ ' |

LEgia 10, k(3) = [$] - '

= . 5 ) |
Proof. Let x & S. Then v:(:‘h’) (x) = Sl?pucc.x {(TV(u). Now let mss==mm s €4 X.
Then (-j\.j = % whence sup (%)(n) = t. Now let s £ # x.Then for any u

uaLX ‘tﬂ" o
with u 4<x with have s £ u,hence {_t]l{uj = 0 and S0 sup, . t]{u] = 0. U

Since k preserves sups we have
COROLLARY 11. Let S,7< CL , f,g & [S-5T]. Then the following statements arc

cquivalent: ( 1) f4<g . (2) There is a finite F § ST with f & [F] << &,




(3) Taere are finite subsets F,G € §X T such that f< [l<=[Cl< C «

WA 10 . (Scots) If fe [S—T], thea £ = ou (] : £(s} ) .
frooar. Uoe Lemma 8 and apply k, recall Lemma 1 ﬁ.‘;. 0

PEUPOSITICN 13. Let §,T & CL , f,6 & (5-——T). Then f<< g implies

k{1) << k{g).

Proof. If £ <= g, then there is a finite set F with £ (F) <=~ 2.
(Prop.9). I we show k(F) << k(g) we are done. Since Kk preserves =ups
\PTOD. }] it is no loss of generality to assume T = (s } Ey the Sublemmz

in Leomma T f<< g then means % <vg(s). We claim that [ J{] << wlg) (%)
tor all x. For this we must show that S<&X implies t::-:,k(.r_.;} {x).

Zut s<<x implies g(s) £ sup g($ x) = k(g)(x) , and the hypothesis tergls)
then furnishes the claim. [J :

)

COROLLARY. 14. The left adjoint f—f :[5=3T] —= [a——; )¢ of ine
corestriciion of k is a CL —embedding. Thus [s=>T] lE a ﬂﬂ' rc*ra.ct of (5—T).
Froof. As a lefi adjoint of a g surjection,it is an mf preserving
injectiong. Since k respecis << yits left adjoint is a CL-morphism

(see ATLAS). [ . .

Fig

He finally identify

PIOPOSITION 15. Let f&[S—»T] . Then J ¥ & (S=1) is defined by
¥(s) = inf £( ..n-t:‘Ts}n 1nf{ (# x): s<<xj.

Proof. Let g & (3—=>T) .We must show that E: &g iff £ k{g). If
Tz k(z) ; let x<< v, then by assunpiion g g(x) < £(v) which shows I > ge
converc-c__;, assume I “r g. Take any w<<x,then g(u] = “{u} < £(x). Seo

g :,1. }ﬂ:-g}. 1l s

PROPOSISTION 16. Let S, T&€ CL . Then the E=r map  r:(5-21)—»{5-T)
given oy r(f) = k[f]v is a CL retraction onio the set of all
fe(5=T)  with

(%) "2(s) = inf £(int Ts) @ dnf ___  f(x)fer olf cE g,

lloreover, im r ¥ [3->T].
Proof.It follews from the preceding that r is a CL-retraction onto 2 sub-
obiject of (5=T) which is isomorphis to im k & [S—T].Remains to ideniify

the image of r. If £ im ¥, then £ 23 tor some §e[s>T].Then inf_ A=)

T wY o= i is) = & sely ,SUPPOSE

= inf__ inf __ ;.rg{ 7) = inf, ;..-j"l:z"j (5} fi{s). Conversely ,suppose

that © satisfies (*). We claim £ = k(f]\" , and since f <k (£} (vy
L

adjunction theory) we have to show that x(£)Y (x) < £(x) for an

)

rox. Lot

inf ) we take an arbitrary

ace k(£)Y (x). Since T CL and f(x) £

y with x<s y,and we must show tnat a £ £(y). From a < k(£ } (x) we now |

ave s« k(f){y) = sup, ey £(s). So there is an sgg y with a g fi{s).But
£(s)< f(y) implying ‘i:.h.u claim. [
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Wwe note thit the elements of ES--uij_'__J in {5—T) aro charactorized
in & dual fashion by what have done before:
COMOLLARY 17. Let S,T & CL. Then a map f&(5—T) is in [5—T] < {(5-»1)

-

11

I-I-|l

[.”#T } ©{s) a sup f{&s) = sup - f{x:.'/ for all s £.5. |

Proof. We recall sup ff\.{,s} = k(f) (s). Thus (¥*) is equivaleni 'i;!!c

et k(f} = £, and since k is a retractionm,this is equivalent to ."dl im Ik
-_-..[5-—}T] (Prc-p.:l:l.[] |
Une may consider Corollary 17 as a characterisation of the Scott c!{_)utir:uuuz

Fa

: ; |
ps among the monotone maps S—aT fﬁecall that X(L) iz the set of ?mn-ua.c:'b

=
[

elements ¢ of L,i.e. elements characterized by © < c.

We make a few comments on the compact clements in (S—T) and |S-—-}I"J
?mPDsITm;ﬁ 15. Let S,T &€ CL and fé&(S—f). Then the following are
&quivalent: |
(1) fe K(5—1) {2) EZ:] iy ==|;I'} for some finite set P 5 =T m.!::h that

(5,5} F implies + < X{T7). |

. ' . |
Proof, (1) =5 {2): GSuppose foe f. Then by PrD;aS;_tinn G,thers is & f:il_ni‘ce

set <€ 5 w T such that f é{{}:l <= f, whence f=(G)<= (C). We define

F = H,u(s}] W (s,t') & G for some t' and

t(s) = max #": (e t“]l cF with & 3" < s‘}j .

SUBLEMA . () = (G).
Proof of the Sublemma. Note (G} = {rf( :I; : (S,t}:;. F} . LB

Eﬁm;’—“?"r;-'c'“ﬁ.rrva—g"ﬁ“rr_-“vr_‘t:?:"‘_ﬁ"'r‘"—-ﬁ'ﬁ'_';ﬁun ider (ﬂ‘jll: :I for any (u,'t}é_ F.

Inﬁeed’(*ﬁf.}(s} = max I{",](s]: (s*,%') ¢ F{= max {t' : (s',t')C P and
s' 2 s}a = t(s) = -max {£(s') : s < s} = max f(:&s,}}{s] : (s',t') € Ff=

=(G)(s) . This shows (F)={C).{]

We'now observe that for (s,t)€F we have (F)(s) = t. From (F)= (G)=feg £

Wae have () -C‘.?:P[F}, nence 1t =(F)(s }-f_‘q (F)(s) = ,.,.:L e, t g K{N.

(2) 3 (1) + If +€K(T) ,then +<<.t , whence (ij{cpff‘} and so
Je= (%) . Sinee K(S—T) is a sup—subsemilattice of (S—»T) ,(2)= (1)

COROLLARY 19. .Let S5,T€ CL , f €& E} [:S—J-T“' « Then the fDlle..Ii{; are equival-
ent: (1) f‘E—l{_[S—-—,-:-TI (2) EZE5Q £ = LFJ for some finite FE 5 %
t&K(T) for (s,t)e F.

Pitoot. By LA A (2) ,for any LECL and any keKer(S) one has K(k{)) <x{L).

T

with

I I happens to respect <=, then we conclude k(K(L)) = £{k(L)). By
Pron.l3 this is the case for L= (5—') and the kernel funciiocn k of Del.2.

Henee by Prop.4 we have K[S—»0] = k(K(5—>T)). In view of Lemma 10, the

Corollary now follows from Prof. l8. D'
Pt el 'h.— J _.. l[:’} i 80 e K5y .




ST

liec:éll that the catcéor;,r & of compact zoro dimensional scmilottices
cad continuous scmilatiice morphlsms ig isomorphic to the category |of
{complete) algebraic latiices and maps presering all infs and sup of supdirecie
sets.(See HS Duality). ' | |
PROPOSITICN 20. Let 5,T € CL. Tnen the. following statemenis are eq'J.liva'.lcnt:

- | |
(1) rcz. (2 Tez . () (>Nez (& [s50]cz. |

Proof. (1)3(2)=(3) is clear (Conzider the CL-topologies). {3}-_;.{4}:53,'{ Prop.l,
lc preserves sups, and after Pmp.l}, k preserves compact. elements.

(4)% (1) : T is a CL-retract of [s=3T] under the map fi21(0).[] :I

. |
Scott raised the quas‘tion whether ker(S) was in CL for any 2 CL-object

We wisn tc: comment on this question. Trae inclusion map ker(S}-—;—[S-&-& pro-

sorves Bups, so that ker 5 is a complete lattice in 11.5 owIL rlgnu,arn:: we

L

know <from Lemma A that ker(S)e CL if £f

(£} For all zcknr S we have f a mp{g;f_ie‘ 5: g ..Q({H]f}



Luda 20 . f;.:[if = %i‘j[ﬂ. bj N

Pmof.ij E;’][J]{xj = [;’j(vj [if uex x,and = O otherwise] = b[if w<oc % and
a<= v, and = 0 otherwise :|
o

ii) [LiJ (v)hﬂx} = E;’:[{v} [ if uckx , and = O otherwise ]

= L[ if u« * and a<€v , and = 0 otherwise] , []
LEMA Z2 . Let FGSS = S be finite. Then thers is some H £ 5 % § finite
such that [F][c] = [H].

Proof. We have [F][c¢] = (sup [i]}f sup [3]:‘

sup {if",_—i']?v}b l: (ap)erF, {_u'V} €G = [H] for

& {(u :Eijiv}h} : (#40)F , (u,v}c:'rG} , by LEMMA 21 . 7

=TT TLTA

F = [ ¥~ SN
vt s hipcre (v

PROPOSITION 23. Let 8¢ CL and F £ 5w 5 finite. Then thers is a

natural number n= n(F) and a finite set F' = F'(F) € S x S such thas

() [ - [r] [EEEgEE—w] (ul) [m]2-[#].
—— e

- iy
Proof. Let X be the finite set [F](S). [P

d

¥ < X lience by the Tiniteness of is a najural
— -

. #
ch % V ' Let us define
e J:§-+/1& nx/ff‘]{ﬁ}é/&)///
wles o frmite.Ynengé  [EPTNa) LR - [sTHROEY () e ¢ n(T L
:C*ézr‘;.‘ftu,ﬂ i [PT (x)/= [P n(_s}f_j By Lemma 22 (and induction) thEFe IS some finite-

e
wohel eda |
Tipps i ’;(rd""'.'

|
e F rlﬁ_ﬂ‘ o f
e L I f o II

5 el .r'Lul'l-\'-'--'fl |

,? L E'fh ] _"”5. Eér]

Eh

e LT gy = rl.r .

sev F'@ 5 x5 such that [F]" « [F'] . Then £i% (i) and (ii) are
clear, md_}i-ii;,is:@mw{-ﬁ:}. [:l lI
CORVLLARL 24. Let S€ CL . For £ &ker (S) the following statapents
are equivalent: i I

-

I:l]l f = sup tgéker 5z g{g :."3 = sup{é-:’"n ker S}- | :

(2) £ = sup {,:F] € ker 5: F& 5 x § finite , [Pl :“]'.'. I
Proof. Trivially (2}5 (1) . In Srdcr to prove (1) (2) , let g<x .
Yy Corollary 11 , fnere is 2 finite GE 5 » § such that g« [¢] <«
Let I = g aEEc;lf‘d:ing to Prop.23. Then £ = gnm) < (&]
and [Fleker S by I‘-‘r*t.‘a]:_:r.EE..4{]E ' |

|-

= X we have y:[F]{x) e

|
T.

13
|
§
b

1



The following is an observation which i3 dual to one made by Ucott.

Ll -

fidng PROPOSITION 25. Let S& CL 'and f€ ker 5 . Set f'a sup{ie ker Sigez i
'] -EA’.-'"-'.“} .‘J'f..i‘:)

‘For cach g«< f we have '-—'—H/ 3 g(8) & CL . Let ?gﬁ-—rlgﬂ be the

cerestriction of g . Now suppose g h <g . Then z(5) [y h(s) 3 let
'ﬁpgli:.hisj —= z{3) be its left adjoint, whi;h is in CL. 2z For each g-iri

there is a commuiative diagra:n ’

> f'l:S:ll

\ ..F “= Coresf 12

EEE}

Thus there is a natural morphism g)‘-:f' {5}—} gl%mﬁq-\f (g(s), o gh}'

 Tnis map is an isomorphism.

Proof.~. The relation g(5)< n(s) is proved by Scott (p.1l21). Hence the
inverse system (g(S), P 1 €S h<<f ) is well defined as is itc & limit

in CL, All maps P Bre surjective, hencs so are all '}hg. It follows that
"{ﬁ\ iz surjective, We must show that l}é separates points. Suppose that

s,t& 5 are such that  £(s) f £(t). We then find an a& 5 with

2 af f(s) tut =z« f(t). Going back to the definition of f' as the
~
cher 5
sup of the up-directed set of all g with g 1 we flnd a g=x 1 in ker 3

such that a.‘é. g(t). Then g(s) < £(s) implies zf=f af g(s). Thus
g(s) £ g(t), wnich implies thxzx that ?’,-{f{sj) # :}fn{f{tj}.[]

COROLLARY '26. If the conditions of Corollary 24 are all satisfied, then
£(s) z.
Proof. We apply Prop. 25 to conditiom (2) in {}oroll 24 and conclude that

£(S) is profinite, hence in Z.[]

LEGW 27 . Let fE& ker S such that £(S)& Z . Then

= Sup {[z] o0& K{f{S)}}

BV ERTRAT “-Idm . G- P :
Proof. , f(s) = sup "'.,L (2 s) 1 ce K{I(S}-U . But [cj{s} =ciif c<s
and=0 otherwise é} sinca c<K(£(5)) & K(8) ,because the inclusion

I(S)== 5 respects <= as a cL°?P map (LEMMA A). But £ the coresirictiion

) ic left adjoint to the inclusion, whence c<g 5 iff ¢ & f(s),
G

] - [g] o  f= ] G-[Z]fiﬁjl @ ?{__
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But gn any Z-object.T we clearly have a uunh 1z cc;—I{(-I']?r, and
. . -r"—'—.’_f
J preserves arblirary sups. Tl"'.uﬂ |"'......";:....m .u.pf- ]( } % i oce n{fks}u

=5 mp{[gj__wc%‘{s}h cek(£(s))] ) = i(F(s)) =" 2(2). [

A cempact semigroup is dimensionally stable 1fF it topeological dimension
d.c:lr".i‘m.te. that of all of its quotients. . .
Dilbofial I, Let 5 & CL .- Then the following =iz¥ siatements are

——

(1) ker se CL  (Scott's parlancu:.&'s is 2 continugus latiice).

I (2) S5 is a2 dimensionally stable compact zerodimensional scmilatiice.

P (3) sisa {cn}mnlete} algebraic lattice such that the set K(S)

——

| COnDact elements aoea not contain a,ynm—qezmcr.:tﬂ grder dense
I cham- ) '

E ' (4)° L__,,._df"mmﬁ ker § & Z ( ker 5 is a(complete)algebraic lattice).
i Proef. {1) is equivalent %o {g] preceding Lemma 21. Corollary 11,

PRoposition 25 and Lemma 27 then 'show % that (1) iff

_J° (') Forall f ker § the image £(5) ' 2. [EaEEmEIcfiyinnii=s)
Bvidently, (2) implies -(1'). Convergely suppose that S is not dimensionally
siable. Then there is a CL-surgection §:5—» I = [0y1] . Let d:I—» 3
De its right adjoint and set £{7:5—»5 *, ff= gd. Then I[’r s _,':‘2.: T _ 1
and since g,deCont, then & fCont. Thus fli gker 5 , but f{s) =1, so
(1*) is wviolated. e
The equivalence of ﬁ (2) and (3) is not entirely trivial; it was proved
in DIMENSION RAISING (Hofmann,Mislove, SuI‘a..LICc., Wath.® Z. 135 (1573) 1-36+.

“(4) & (1) is trivial. If (1) -(3) are satisfied, then for each f& ker 5
ol c P L
we have £ = sup {!-2} : cgl{{f[ﬁj}} and all [c] are cgompact in ker § .ij

In znother memo (to emanate from Darmstadi) it is shown that omres
the set of relations —< on a complete laitice L which satisfy 2 few
Zixloms describing basic preperties of =< and ccouring in L letter Trom
Scott to Hofmann of 3-30-T6 ,pp.7-8 (being attributid/is Mike Smytn)
iz order isomorphic to ker PL whore Pu is the Z—ocbject of lattice ideals
of L consldered in ATLAS. Tﬂe gquestiione whether= the totality of — -relai-
ions on 2 complete lattice L is 2 conitinuwous lattice is then answered
inthe following
COROLLARY 28. Let L be a complete lattice. Then ker PL& CL iff L
does not contain any -aon—desensvede orders dense chains,

Proof, We have KPL = (L,v ) , where (L,v ) is the diccrote sup semilattice

underlying L. Sdmee The assertion then follows from THEDREI I D
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OUne might ask the quesiion which Z-objects can occour as ker

BHOPOSITION 29, Let S5 & 2 be dimensionally stable., Then ker 5 iz
dimensionally stable.

A

e e e T
Proof., We must show that ncrfcha:i_n ¢ in K(ker 5) can be order dence,

If feK(ker S), thén f< f and so by Lemma 27 there are
elements © j;esx¢9 such that f <« [cl] WVoses V!—Cn] <= { . Hence
1 n - tc “Cp

£ = sup, [EQJ + « Thus f(S) is finite, If now C is a chain in K(ker 5)
. J

in € is equivalent to f(S)<

Since n{3) is finite, thers are only finitely many g with f£}§£ k. This

shows that C cannot be ordere dense. i

We note in conclusion that ker(S) is isomorphic to the lattice of

of cLF —subob jects of S and thus isomorphic to Cong(S]Dp y the opposite
of the lattice of closed I:E ) congruences of 5. Fhm= EMW
Ay s ieminyeet '



