NAME: Hans Dobbertin

Date: $\frac{M}{5}$ $\frac{D}{2}$ $\frac{Y}{84}$

TOPIC: About polytopes of valuations on finite distributive lattices

REFERENCE:

[1] L. Geissinger, The face structure of a poset polytope, Proceedings of the Third Caribbean Conference on Combinatorics and Computings, University of the West Indies, Cave Hill, Barbados, 1981.

Let L be a finite distributive lattice. A mapping $v:L\longrightarrow \mathbb{R}$ is a valuation if v(a+b)=v(a)+v(b)-v(ab) for all $a,b\in L$, and v(0)=0. V(L) denotes the real vector space of all valuations on L. The subset

$$M(L) = \{v \in V(L) : 0 \le v \le 1\}$$

is a convex polytope. In the sequel we shall verify the following conjecture of Geissinger [1]:

THEOREM A. The extreme points of the convex polytope M(L) are precisely the 0-1 valuations.

Before proving it we shall formulate this statement in another way. Let P be a finite poset with n elements. By L(P) we denote the distributive lattice of all lower sets of P, i.e., $A \in L(P)$ iff $A \subseteq P$ such that $y \le x \in A$ always implies $y \in A$. (Recall that each finite distributive lattice L is isomorphic to L(P) for the poset P of its prime elements.) A vector space isomorphism between \mathbb{R}^P and V(L(P)) is given by the mapping

$$\Phi: h \longrightarrow v_h : \begin{cases} L(P) \longrightarrow \mathbb{R} \\ A \longmapsto \sum_{p \in A} h(p). \end{cases}$$

The convex polytope

$$M(P) = \{h \in \mathbb{R}^P : 0 \le v_h \le 1\}$$

is the image of M(L(P)) under Φ^{-1} .

THEOREM B. An element h of the convex polytope M(P) is an extreme point if and only if h = h_C for some subchain C of P, where C = $\{p_0, p_1, \ldots, p_m\}$, $p_0 < p_1 < \ldots < p_m$, and

$$h_{C}(p) = \begin{cases} 0 & \underline{for} & p \in P - C, \\ (-1)^{k} & \underline{for} & p = p_{k}. \end{cases}$$

Obviously, the $h_{\mathbb{C}}$ are exactly those elements of M(P) which are associated with a 0-1 valuation (cf. Geissinger [1; Proposition 2]). Therefore Theorem A and Theorem B are equivalent.

<u>Proof of Theorem B.</u> The if part has already been mentioned in [1]. In fact, obviously every 0-1 valuation is an extreme point even of $[0,1]^{L(P)}$. Conversely, let $e \in M(P)$ be an extreme point. We can assume that $e(p) \neq 0$ for all $p \in P$. Define for i = 0, 1

$$L_i = \{A \in L(P) : v_e(A) = i\}$$
, $P_i = \bigcup \{A : A \in L_i\}$, and set $A^* = \bigcap \{A : A \in L_i\}$.

Of course $\emptyset \in L_0$. As we shall see later, also L_1 is non-empty so that the above definitions of P_1 and A^* really make sense. L_0 and L_1 are closed under non-empty unions and intersections; in particular P_i is the greatest element of L_i , and A^* is the smallest element of L_1 .

Given a subset M of a vector space, let the rank $\operatorname{rk}(M)$ of M be the dimension of the subspace generated by M. For $A \subseteq P$, the symbol δ_A refers to the characteristic function of A defined on P. Thus $\operatorname{v}_h(A) = \delta_A \cdot h$ $(A \in L(P))$.

LEMMA 1.
$$rk\{\delta_A : A \in L_0 \cup L_1\} = n$$
.

Proof. Otherwise the intersection of all hyperplanes

$$H(A) = \{h \in \mathbb{R}^P : \delta_A \cdot (h-e) = 0\} \quad (A \in L_0 \cup L_1, A \neq \emptyset).$$

contains a line $\{e+\lambda x_0:\lambda\in\mathbb{R}\}$. For all $A\in L(P)-(L_0\cup L_1)$ we have $0< v_e(A)<1$. Thus a continuity argument shows that for some $\epsilon>0$

$$\{e + \lambda x_{0} : |\lambda| < \epsilon\} \subseteq M(P)$$
,

a contradiction, since $\, {
m e} \,$ is an extreme point. $\, \square \,$

Here we insert a lemma of general character. The easy proof is left to the reader.

LEMMA 2. Let X be a finite set and K a subset of the power set of X which is closed under non-empty unions and arbitrary intersections (in particular $X \in K$). Set $U_X = \bigcap \{U \in K : x \in U\}$, and define

$$x \le y \quad \underline{iff} \quad U_X \subseteq U_y$$

$$x \approx y \quad iff \quad U_{x} = U_{y}$$
.

Then \approx is an equivalence relation on X, and a partial ordering is given on X/\approx by setting

 $x/\approx \le y/\approx iff x \le y$.

The non-empty elements U of K are in a one-to-one correspondence with the non-empty lower sets of X/\approx via

 $U \longmapsto \{u/\approx : u \in U\}$.

Moreover we have $rk\{\delta_U \in \mathbb{R}^X : U \in K\} = |X/\approx|$.

Let \approx_i denote the equivalence relation on $X = P_i$ induced by $K = L_i$ in the sense of Lemma 2.

LEMMA 3. Every \approx_0 -class contains at least two elements.

<u>Proof.</u> Let p/\approx_0 be a minimal element in P_0/\approx_0 . Then by Lemma 2, $p/\approx_0 \in L_0$, i. e. $v_e(p/\approx_0) = \sum_{q \approx p} e(q) = 0$. As $e(p) \neq 0$, we conclude that $|p/\approx_0| \ge 2$. So the assertion follows by induction over the height in P_0/\approx_0 . \square

Actually L_1 must be non-empty, because otherwise we obtain a contradiction in view of Lemma 1 and Lemma 3:

$$\mathsf{n} = \mathsf{rk}\{\delta_\mathsf{A} : \mathsf{A} \in \mathsf{L}_\mathsf{o} \cup \mathsf{L}_\mathsf{1}\} = \mathsf{rk}\{\delta_\mathsf{A} : \mathsf{A} \in \mathsf{L}_\mathsf{o}\} = |\mathsf{P}_\mathsf{o}/\!\!\approx_\mathsf{o}| \leq \frac{\mathsf{n}}{2}$$

LEMMA 4. Every \approx_1 -class different from A* contains at least two elements.

<u>Proof.</u> A^* is the least element of L_1 , and $v_e(A^*) = \sum_{p \in A^*} e(p) = 1$. Therefore $\sum_{p \in A - A^*} e(p) = 0$ for all $A \in L_1$, and we can use the same argument as for Lemma 3 to prove the assertion. \square

Because P_0 or P_1 is a proper subset of P, we have

(1)
$$|P_0| + |P_1| \le 2n - 1$$
.

From Lemma 3 and Lemma 4 we conclude

(2)
$$2|P_0/\approx_0| \le |P_0|$$
,

(3)
$$2(|P_1/\approx_1|-1)+|A^*| \le |P_1|$$
.

Further, by using these inequalities together with Lemma 1 and Lemma 2 we obtain

$$\begin{array}{lll} n & = & \text{rk}\{\delta_A: A \in L_0 \cup L_1\} \leq & \text{rk}\{\delta_A: A \in L_0\} + \text{rk}\{\delta_A: A \in L_1\} = \\ \\ & = & \left|P_0/\approx_0\right| + \left|P_1/\approx_1\right| \leq \frac{1}{2}(\left|P_0\right| + \left|P_1\right| - \left|A^*\right|) + 1 \leq n + \frac{1}{2}(1 - \left|A^*\right|). \end{array}$$

Hence $|A^*|=1$. On the other hand A^* contains all minimal elements of P (indeed, if $m\in P-A^*$ is minimal then $v_e(A^*\cup\{m\})=1+e(m)>1$). We infer that P has a least element p_0 , $A^*=\{p_0\}$, and $e(p_0)=1$. Now consider $P'=P-\{p_0\}$ and $e'=-e|_{P'}$. It follows that e' is an extreme point of M(P'). Thus P' has a least element, say p_1 , and $e'(p_1)=-e(p_1)=1$, etc. Finally we see that $P=\{p_0,p_1,\ldots,p_{n-1}\}$ is a chain and $e(p_k)=(-1)^k$. This completes the proof of Theorem B.

Remark. Since it has been convenient in our present context, we have required that a valuation v satisfies v(0) = 0, a condition which is usually omitted. However, it is evident that this point does not touch Theorem A.