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Let L be a finite distributive lattice. A mapping v : L —> R
is a valuation if v(a+b) = v(a)+v(b)-v(ab) for all a,bel, and
v(0) = 0. V(L) denotes the real vector space of all valuations on L.

The‘subset'

A
N

M(L) = {veVv{L) : 0svsl}

is a convex polytope. In the sequel we shall verify the following con-

jecture of Geissinger [1]:

THEOREM A, The extreme points of the convex polytope M(L) are

precisely the 0-1 valuations.

Before prov%ng it we shall formulate this statement in another way.
Let P be a finite poset with n e]eﬁents. By L{P) we denote the dis-
tributive lattice of all lower sets of .P, i.e., AeL(P) iff A< P such
‘that y s x € A always implies y € A. (Recall that each finite distriﬁutive
‘1éttice L s isomorphic to L(P) for the poset P of its prime elements.)

A vector space isomorphism between RP and V(L(P)) is given by the

mapping
L(P) —> R

¢ : h r—>
A —> szAh(p).

The convex polytope




M(P) = (h e R : 0

is the image of M{L(P)) under o1

THEOREM B. An element h of the convex polytope M(P) is an

extreme point if and only if h = h. for some subchain C of P,

where C={p0, Pl, D ) pm}s po<p1<“'<pm’ ?_[l_d_

’O,E pebP-C,
hc(p)={

(-1)% for p = Py -

Obviously, the hC are exactly those elements of M(P) which are
associated with a 0-1 valuation (cf. Geissinger [1; Proposition 2]).

Therefore Theorem A and Theorem B are equivalent.

Proof of Theorem B. The if part has already been mentioned in [1].

In fact, obviously every 0-1 valuation is an extreme point even Qf
[0,1]L(p). Conversely, let e &€ M(P) be an extreme point. We can

assume that e(p) #0 for all pe P. Define for i =20, 1
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Ay = i}, Pi = \J{A:Ace€ Li} , and set

=
H

N (A:AeL}.

0f course = Lo' As we shall see later, also L1 is non-empty
so that the above definitions of P1 and A" really make sense. L0
and Ll' are closed under non-empty unions and intersections; in parti-
cular 'Pi is the greatest element of L., and A¥ is the smallest

element of Ll‘



Given a subset M of a vector space, let the rank rk{M) of M
be the dimension of the subspace generated by M. For AC P, the
symbol ‘SA refers to the characteristic function of A defined on P.
Thus v, (A) = spoh (AEL(P)).

LEMMA 1. r'k{<SA : A€ LOU Ll} =n.

Proof. Otherwise the intersection of all hyperplanes

H(A) = (h€R" @ 8pe(h-e) =0} (AL ULy, AZ#D)
contains a line {e+ix  : A €R}. For all A€ L(P)- (LOU Ll)

we have 0 < v.e(A-) < 1. Thus a continuity argument shows that for some

e>0
{e+ax, : A < e} C M(P),

a contradiction, since e 1is an extreme point. O

Here we insert a lemma of general character. -The easy proof is

left to the reader.

LEMMA 2. l_g_’_c_ X be a finite set and K a subset of the power set

of X which is closed under non-empty unions and arbitrary intersections

(in particular X € K). Set U, = M{Uek : xelU}, and define

Then ~ 1is an equivalence relation on X, and g'partiaT ordering is

given on X/~ by setting



The non-empty elements U of K are in a one-to-one correspondence

with the non-empty lower sets of X/~ via

U b {um : ueur.

Moreoverlyg'have rk{dy, erR' : Ue K}y = 1X/a~] .

Let . denote the equivalence relation on X = Pi induced by

K = Li in the sense of Lemma 2.

LEMMA 3. Every wo-cTass contains at Teast two elements.

Proof. Let . p/~ be a minimal element in Po/ﬁa. Then
by Lemma 2, p/m €L, e ve(pﬁmo) = anjpe(q) = 0. As e(p) #°0,
we conclude that |p/a6{ z 2. So the assertion follows by induction

cver the height in Po/mb. I

Actually L1 must be non-empty, because otherwise we obtain a

contradiction in view of Lemma 1 and Lemma 3:

A

RS R}

n=rk{gy :Ael ul,) = rk{s, : A€ Lot = IPOﬁHO|

LEMMA 4.  Every~ -class different from A" contains at Jeast

two elements.

Proof. A" is the least element of L,, and v (A*) = e(p) =
— : 1 ] pEA*

Therefore « &(p) = 0 forall Ael,, and we can use the same
pehA-A

argument as for Lemma 3 to prove the assertion. []



Because P0 or Py is a proper subset of P, we have
(1) |P0|+|P1| s 2n-1.

From Lemma 3 and Lemma 4 we conclude
(@) 2P f) 5 1P,
(3) 2(|Pymy] - 1)+ [AT] s [Py

Further, by using these inequalities together with Lemma 1 and Lemma 2

we obtain

=
]

rk{GA tAe LOLJLl} < rk{GA :Ae L0}4-rk{6 : Ae Ll} =

A

[Py/mol + IPy/m ] s S(1P |+ [Py = [A")+1 < n+ (1 - 8%

Hence |A¥| = 1. On the other hand A* contains all minimal elements
dF P (indeed, if m€ Pf-A* is minima]Ithen ve(A*LJ{m}) = 1+e(m) > 1).
‘We infer that P has a least element Py » AY = {po} , and e(po) =1.
Now consider P' =P-{p,} and e’ = -e|p. . It follows that e' s an
extreme point of M(P'). Thus P*' has a least element, say Py and

e‘(pl) = —e(pl) =1, etc. Finally we see that P = {po, pi, cens pn-l}

is a chain and e(pk) = (—1)k. This completes the proof of Theorem B.

Remark. Since it has been'convehient in our present context, we have
required that a valuation v satisfies v{0) =0, a condition which is
usually omitted. However, it is evident that this point does not touch

Theorem A.



