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the nine monads which appeaﬁ'in the following diagram -

S LT

The present memo deals with the categories of algebras for "

m

NN
A, /\ah

H»p—-—-—-—é]i

To appear in the Proceedings of the International |

The monads and morphisms of monads appearing in the diagram will

be described:

For five of the monads, the category of algebras is the category

most of them result from contravariant adjunctions.

of continuous sup semilattices; the algebraic functors induced by

the four morphlsms with domain 3 are isomorphisms of categories.

The order for continuous lattlces will be that of [2] and
of [3a], dual to the order of the Compendium [1] and of [3b].

In this way, we can order subsets by set inclusion, with set : "

unions as suprema,“and:thenfdealuwith.order_preSerVingimapsfonly;'”'
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0.L. 1f 3 = (T,n,»}) and 8 = (S,e,m) are monads on cate-
gories @ and #, then a morphism (R,m) : 8 —> T consists of
a functor R : G0 —» B and a natural transformation T :
- S8R —> RT such that 7 :eR = Rn, and 7 -mR = Ry 7T - ST . This
induces an algebraic functor (R,m)* : -Gg — ﬁs . which lifts R,
with (R,mT}* (A,a) = (RA, Ro “rrA) for an (G-algebra (A,a).

We have US (R,m)* = RUS " for the forgetful functors, and it
is easily seen that T 1lifts to T :-'FSR —_— (R,'n')"“:Fg- for the
free algebra functors.. - '

2. We shall deal repeatedly with a morphism of monads
(R,m) : 8 —> 3 which satisfies the following conditions.

(i} R is faithful, and all morphisms 1, are epimorphic,

A
(ii) There is a functor A : Bs —> G such that RA = Us
; , 3
and A (R,m)* = U . _
(iii) Every morphism S'rrA is epimorphic, and the structure
of an S-algebra (B,B) always factors 8 = uw, , with

A
A=A(B,B) and uw.: RTA — 8 in 8,

THEOREM. If a morphism (R,7) of monads satisfies (i)
and (ii), then the functor (R,r)* is full and faithful, and
injective on objects. If (R,7) also satisfies (iii), then

(R,m)* is an isomorphism of categories.

.Proof. (R,m)* is faithful if R is, and clearly injective
on objects if (i) and (ii) are wvalid.

If g: (R,m}* (A,a) —> (R,mT)* (C,y) and f=Ag: A —C,
then g = Rf, and Rf *Rp CTy = R'Y'-,"ITC * SRf = Ry * RTE " T i:y
naturality of 7 . Now f : (B,a) —> (C,y), and g = (R,A)*f,
if (i) as well as (ii) is valid, '

For the last part, we must only show that (R,T}* is surjec-
tive on objects. Thus consider an 8-algebra (B,B), and put
A=A(B,B). If B-—=u'rrA-, we must show that u = Ra' for an
G-algebra structure of A,

For this, consider the following diagram:



SWA- Su

SSRA ——= 5 SRTA ——> SRA

i ™

TA A
LY RTTA ———> RTA
N Rup u
Y 7, v u v

. The outer sguare and the lefthand rectangle commute by hypothesis,
(R,W)*_FgA —> (B,B):; it follows that
TA —> A . Now the upper righthand square

and

S is epi, u :

A
u = Ra for

Since
a = Au :
commutes by naturality of 7,
F:Lnally,‘ ldRA =um, e, = uR‘nA » and an, = id

@ By = a - Ta follows by (i}.

Ly follows {

0.3. A (non-commutative) diagram

k——

op sP op
8P 25 8,°

op op
F G Fl T lGl

6 —Es g
of categories and functors, with contravariant adjunctions for the
vertical arrows, results in a bijective correspondence between

K : RG —> c-:-lsc’P and N : SF —> FlROP ,
and are called

. natural transformations
as follows., K and A
adjoint, if N, -8f and ¥, -Rg are adjoint for FIQP — 6,
whenever £ : B —> FA and g : A —3 GB are adjoint for

correspond to each other,




1 be the moﬁads induced by the
contravariant adjunctions, and let K : 8P —_> Gg and K, :
BIOP»-—> Gls be the comparlson functors, w1th USIC G
and - U K1 1 s- and with KB = (GH, Ge; ) and Kl ? i

= (Gl B, Gl eB) for objects. There are two situations in wh:.ch

- adjoint natural transformations produce a morphism of monads.
(i) If all G\, factor Gy \ = Kea " Ta s

monomorphic, then the Ty define a morphism (R,7T) : 8 — J,

and K lifts to a natural transformatic_m K : (R,F)*K —> Kl SQp .
(ii) If G, =G and R and if all ¥ factor

Let 3 on G and 8 on G

with every KFA

1 : = Idg FA
KFA = G 7\ Ty s with every Gy }‘A monomorphic, then the Ty
define = morphlsm (Id,r) = 3 —> 8 . 1In this situation, we have

K« K — (Id,7)=* KlSOP at the level of J-algebras.

We omit the diagram-chasing proofs.

l. The proper fllter monad on sets

1.1. We denote by MSL the category of meet semilattices
with 0 (and 1) . Morphisms of MSL_ preserve finite meets,
and O .. The contravariant powerset functor on sets obviously
lifts to P, = ENs P —> MSL_, with PA the powerset of A for
a set A, ordered by set :r.nclus:.on and regarded as meet semi-
lattice with 0. '

If £f: A —~>PL and g : L —> PA are exponent:.ally
adjoint, i.e. always ac¢ £(xX) & xegla) - if xeA .and ael,
for. a set A and an object L of MSLo ,. then g is a morphism
g : L —> POA of MSLO iff every f£(x) is a proper filter
in L . Thus we have a functor Go : MSLOOP —> ENS , 'adjoint' on
the right- to P, s ~with “Gy L the set of all proper .fi}_ters in L
for a meet semilattice L with 0, and (Go £)(¢4) = £ (¥) for
f:L——>M in MSL0 and a proper filter ¢ in M .

We denote by 3‘0 the monad on sets obtained from this
adjunction; this is the proper filter monad. The proper filter
functor Fgy = G, POOP assigns to every set A the set of all

proper filters on A .
. R - -

v - . ' v L ) .
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.2. We denote by IAT the category of lattices, with 0
s and by Pp : ENSOP ——> LAT the functor which assigns to
every set its powerset, ordered by inclusion and considered as a
lattice. This functor has as adjoint on the right, with exponen-
tial adjunction, the' functor Gp : 1ATP ~-> ENS which assigns
to every lattice L the set of all prime filters in L.

= Qe

and

The resulting monad on sets is the ultrafilter monad; denoted
by U in this paper, with functor part U = G-pPpOP , the ultra-
filter functor on sets. As is well known, u-algebras are compact

Hausdorff spaces; the u-algebra structure of a compact Hausdorff

space X assigns to every ultrafilter on X its limit for X.
If S : LAT — MSL, is the inclusion functor, then clearly
spP, =P - Adjoint to the resulting identity natural transforma-
tion is ¥ : GP _ GOSOP given by inclusions. By 0.3.(ii),
this produces a morphism i = (Id, KPPOP) s U —> 30 . “Thus every
Eo-algebra (L,a) has an underlying compact space i*(L,a) , with
the restriction of & to ultrafilters as convergence of ultra-
filters. Morphisms of Eo—algebras are continuous maps for the

underlying compact topologies.

1.3. We define a sup semilattice as an ordered set L such
that every non-empty subset of L has a supremum in 1L . Mor=
phisms of sup semilattices preserve suprema of non—empty subsets.

We denote by E_ .the free sup semilattice functor on sets.
It is well known that E A, for a set A, is the set of non-

empty subsets of A, with set unions as suprema. E is left

©
adjoint to the forgetful functor | | : SSL —> ENS , with SSL
the category of sup semilattices. The unit s of this adjunc-
tion is given by SA(X) = {x}, for =xe¢A.

Every -sup semilattice L has a one-point extension to a com-
plete lattice L, obtained by adding a zero of to L, and a
map f£ : L — Lt of SSL extends to 3 : f —> L' with f(oL)
o,, .. We obtain a functor D : ss1°F —> MsL_ by letting
D, L = E, considered as object of MSL with the same order,
and puttipg_ x < (DD:EHx') &= ?(x)'g x!', for 7(x,x'):gmL><L' .
Then DOEOOP is naturally isomorphic to P, . Adjoint to this
isomorphism is K : | | — GODOOP with KL(x) = tx for xel .



We denote by 80 = (Eo,s',q) the powerset monad on sets which
results from the adjunction E  ~ | | . Algebras for e, are
sup semilattices; the eo-algehra structure of a sup semilattice
is given by suprema. -

_ By 0.3.(ii), the natural transformation K - | [ —_— qo DOOP
induces a morphism j = (Id, Kgo) : 80 —_ 30 of monads, and . - -
hence an algebraic functor 3j*, from Eo-algebras to 8sL, whigh
preserves underlying sets and mappings. Thus an Eo-algebra
(L,a) has an underlying sup semilattice j*(L,a) , with supS$s
= o('S) for a non-empty subset S of L s, and homomeorphisms of
Eo-algebras Preserve tFes‘e suprema. '

1l.4. The functor Go MSLOOP > ENS- ,lif'ts- to. a 'éomparis'on

functor.. Ko to 'Jo-a'lgebras',_.with "iKO:L = (GOL, GoeL) for an
object L, and Kof= Gof : KoM —_— KoL for £ : L ~—> M.

One sees easily (see e.g. [3]) that suprema in j* KoL are
set intersectiqns; thus the order of filters in .KoL is the
natural order of filters, dual to set inclusion. .The limit in
ix K, L of an ultrafilter ¥ on GOL ‘consists of all acel
with eL(a) e¥; it follows that i= KOL is a Stone space, with
the coarsest topology for which the sets eL(a) are clopen.

There is also a comparison functor K_p : 1aTP —> CH which
assigns to a lattice I its Stone space of prime filters in L .
By 0.3.(ii), the ir.lclusion' GPL —> 6, L lifts to a ‘cl_o:s‘ed S
embeddipg KPL -+> ix K, L, for every latticg L.

1.5. PROPOSITION. If (L,a) 4is an Eo-algebra, with under-
lying compact space X = i*(L,a), then a(® = sup adl&@’ for a

filter @ on L, with supremum in 3§*(L,0). Morphisms of

3o-algebras are all morphisms of the underlying sup semilattices
which are continuous for the underlving compact topologies.

Procf, all morphisfns of Eo-algebras, including a, are -«
continuous and preserve suprema as stated. 1In Ko POL , a filter
® on L is the supremum of all finer ultrafilters ¥ ; thus
a(® is the supremum of the limits a(¥) of these ultrafilters.
These limits form the adherence adhX $;: this proves our formula.
Now the last part of 1.5 follows immediately from the fact that
- maps -of compact Hausdorff:G spaces preserve filter adherences .||



1.6. PROPOSITION. Eo-algebras can be embedded into compact
join semilattices (without 0) as a full subcateqory If (L,q)

is an Eo—algebra, then a(® = inf {supsS : Se¢ %] for a preper .
filter ® on L. '

Proof. We have V -« (ax@) = a+:V for joins in j*(L,a) an
and in j*K 'il: L. #Since joins in Ko PoL #are set intersections,
we hive vV (s") = s"xs" for s 1 and ¥ = €pr,(8) , with
®cs’ &> sc¢® . This shows that V is continuous for the com-a:.
pact topology of Ko POL . As 0 and aX& are 'continuous and
surjective for the compact topology, hence topological quotient
maps, it follows that V for 1 is continuous for i*{L,x).
Thus 30- algebras are compact join semilattices. '

Compact join semilattices .are compact ordered spaces; thus
filter bases have infima, and dual filter bases suprema, which
are topological limits. It follows that maps of compact join.
rsemilattic_es preserve infdma of filter“bases, and suprema of dual
filter bases. Since these maps preserve finite non-empty joins,
they preserve all joins. Wwith 1.5, it follows that @ -algebras
and their induced compact join: semllattlces have the same. maps. B

Now if (L,a) is an Eo-algebra and @ 2 proper filter _7
on L, then @ 1is the infimum of all filters 1S with sS¢%.
These filters %S form a filter basis in K P L; thus a{®)

' is the infimum of all a(tS) = supS with Se ¢’[l

O R e R N R T T T e e e e e e e e e

2.__]_.. A sup semilattice L (1.3} is called complete if every

filter base in L has an infimum in L.

For elements a,b of a complete sup semilattice L s Wwe say
that b is way above a, and we write b»a, if b 1is in every
filter ® in L with inf® < a. The elements way above a in
L form a filter which we denote by %®a , with inf#e 'y a.

We say that L is a continuous sup semilattice if inf’Fa = 3
for all acl.

Morphisms of complete and continuous sup semilattices are
mappings which preserve non-empty suprema and infima of filter
bases, or egquivalently of filters.



2.2. We use again the notations of 1.3, For a sup semi-

lattice L, putt:.ng qL(x) ix for xelL provides a map qi. :
L — P|L|. With g log) = g, this is clearly a morphism q :
D L —> P, [L] in MSL_, and it is easily verified that g as
just shown is natural in L.

‘Proper filters in a meet semilattice M with O, ordered
dually to set inclusion, form a sup semilattice, with intersec-

tions as suprema. Maps Go £, for morphisms £ of MSLC> ’
clearly preserve these suprema; thus we can 1ift Go to a func-
tor G, : MSL, —> SSL, with I lgg = G, -

PROPOSITION. The' functors p, and G, are adjoint on the
right, with g : Do'ﬁ, POI IOp and id(Go) adjoint.

Proof. For objects L of SSL and M of MSLg it is
well known that ac £(x) < xe'gl(a), for xel and aeM,
provides a bijection between morphisms g, :"M ,__-_9'-;3-303 J] ~of ".*r.MSI.;o
 and mappings £ : [L| —> G M. In this situation,’ a'e £(sup.xs)
=2 SUP X '€ gl(aJ, :and a e sup: f(x ) r&=>T xl g gl(a) for all.,:l.
'I‘hus f preserves suprema iff each gl(a) ;,3.5 a*pra.nc:.pal dual

'.ff:.lter ig(a) ’~ Cifflogy. ‘factors 9, =q, 9 - Since  q
is a natural embedd:.ng, this gives the desired bijection between
f: L — goM in 8SL and g : M -—->-D0L in MSLO , .and this

bijection is natural in L as well as M . The proof also shows
that o and id(Go) are adjoint [

2.3. We denote by D the monad on SSL obtained from the
adjunct:.on D, L S, of 2.2, with functor part Qg _ODOOP
Since £ : L —9 QOM and g - M —_— DOL are adjo:.nt iff always
ae £(x) &> x<g(a), both units of this adjunction are principal

filter maps. We note that - QoL is the sup semilattice of all

filters in L : these are the proper filters in D L.

2 ' . .
THEOREM. SSL is the category of continuous sup semi-

lattices, with algebra structures inf : Q_ L — L.

Proocf. If (L,a) is a -algebra, then af(9) £ a{ta) = a
for a filter ® in L and ae ¢ . On the other hand, if x<a
for all ac®, then tx ¢ ®, and x < a{w) follows. Thus L
is complete, and oY) -=‘inf<p for all 9 in QOL .



| satisfied: iby+l .64 thug sup*‘ ‘f’S"‘H

Now a Do—algebra is a ‘complete sup semilattice IL such that
inf : QoL -—> L preserves suprema and satisfies the formal: laws.
‘The formal laws require that always inf tx = x, which is valid,
and inf inf® = inf Qg inf)(®#) .for-a filter & in Qg ¢ . fThis is
also valid since inf¢ -is the set union of all w®e¢ &, and the
filter (Qo inf)(®) has the elements infeo, ®e¢ &, as a basis.

The map inf : Q L\—é L, preserves suprema iff there is a
mapping $0 T —_" Q L such’ that' always- inf® KX &SP LX) .
-+4{x) must be:the supremum of all ¢ with info < x, i.e.

t(x) =#x, and this must satisfy infi{x) < x . This is the case
iff L 1is a continuous sup semilattice..

| Morphisms of Qo-algebr_as must preserve suprema of non-empty
subsets, and algebra structures infL + thus they are the maps of
continuous sup semilattices [

2.4. By-2:.2 'ahd'O“’?a‘"(ﬁ'.)",“we':' ﬁévé.,a morphism of monads
sup = (} |, G qu) : 3" — D . For a proper filter @:zon a sup
'sem:i._latt:.c_:g » ", -théiilter s (G qL*}(ﬁ) consists of al.l xel
with txe®, and hence of all supS with sSe €.

THECREM. The algebraic.functor: sup*__,from continuous sup
semilattices to @ -algebras ig an 1somorphlsm of categories,

preserving underlylng sets and mappings, and with J* sup* - ‘the

. forgetful functor from continuous sup semilattices to SSI .

Proof. sup* clearly preserves underlying:sets and mappings.
For a continuous sup-semilattice "I <andf o 2 inf - éo 9y, » Wwe have
(Go qL)(,TS) = tsupS for non-empty S c L, hence a(1S) = supS.
Thus j* sup* L is the underlying sup semilattice of L.

Now sup* has the factorization property of 0.,2.(ii}, with';
A= 3%, and 0.2.(i) is also satisfied since every-filter © in
a sup semilattice I satisfies © = (G qL }(®) for the filter @.
on L with the sets % . JXE Q. as. £i lter base 0.2.4iii) is,
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3. _The proper Vi.g1=:ori§_'r=n_onad

3:1. For a compact Hausdorff space X, we dencte by VOX
the set of non-empty closed subsets of X, ovrdered by sét'inclu-
sion and provided with the coarsest topology such that the sets

Is = ?AeVOX : ACS} are closed for sSc¥ closed, and open for

SE&X open. This is the Vietoris space of X.

v X is a Hausdorff space, for if A ,B are closed in X
with AZB, then there are disjoint open sets R and S with
BCS and R and A not disjoint. Then '}IOX."\ff}C(X\R) ~and 148§.
are disjoint neighborhoods of A and B in VoX .

. For - £.: X-—> Y 4in CH, let Yof be thf restriction of

£ to VOX and VOY . Since (Vof) (IT) = If (T) for TCY,

the map Vof : VQX _ VOY is continuous, and VO is a functor,
to CH since we shall see in 3.2 that VOX is compact.

3:2. We denote by CH the category of compact Hausdorff
spaces, and by | | : CH — ENS the underlying set functor.
For a compact Hausdorff space X, adherencessof proper filters
on X provide a mapping adhy, : FO]X[ ——>_]VOX]. One sees
easily that adhX is natural in X, and we have shown in e
[3],&5;2.2#ﬁt§at adhX Preserves suprema of sets of filters, ™

PROPOSITION. adhy : i*KOPo]x[' —> V_X is continuous.

" COROLLARY . VOX is a compact Hausdorff space.

Proof. For SCX closed and a filter & on X, we have
adhx¢‘ c s "':i;ff all c];l’osed neighbirhoods of § in X are in & .
Thus adh, (IS) = NR", with R" = e, (R) for L= Po'lxl (see
1.4), for'all:closed" neig'*hbarho?ds..' R of 8 in VOX . This set
is closed in i*k_p_[x]. | '

For SCX open, we have adl&‘:’ € s iff S contains a
closed neighborhood R of .acEl'hX ¢: with Re® . Thus adhx'_(ls)
= UR for closures R of open sets contained in § . This set

is open in ixK P _|X| .
Since adhx ts = cle s the closure of s in X, the map
‘_-;uih}‘r is surjective. Thus VOX is compact {
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3.3. For a compact Hausdorff space X, we denote by Sy
X ——) VX the 51ng1eton map, with sx(x) = {x] for xeX. Since
sx () = 8 for s&cX, the map Sy is continuous. '

It is well known (see e.g. [3b],5.4) that the set union UK
is closed in X for K closed 1n v X . Thus set unions define
Uy :.ngpx —_ vX . Clearly uX (ls) lls for Sc<X; thus
u, is continuous.

It is ea511y seen that s and u, are natural in X ,

X
PROPOSITION._ The functor Vg and the natural transforma-" -
tions obtained.above, define a monad Bo = {vo,s,u) on-CH, and
a_morphism (| |, adh) : 3 —> V_ of monads.
We call . U the proper Vletorls monad, and we use adh as
abbrev1atlon for (| | , adh) when this is convenient,

Proof. The monadic identites for s and u are easily
verified; we omit details.
We must show that adh - | | = | |s, and

SRR RN Y1 U T IR RS adhv P adh L e
The first of these is obvious: the poznt filter nx(x) has [x]

as its adherence. For the second one, put 2 = l*IC P X . Since

;ﬂxlls the & -algebra structure.of K, P [X|, ~we’ have ak dlagram'

-adh
Flz| ——Zs IVOZI 225 2]

Foadhy lvoadhx adhy
F |V x| % .]vovoicl —3 v X

with the faétorization of phc[ by 1.5 on top. The lefthand
square commutes by naturality of :adhX , and the righthand square
since adhX preserves suprema as remarked above. Thus the dia-
gram commutes ]

3.4. THEOREM. The algebraic functor (}af,adh)# , & from
Uo-algebras to Eo-algebras, is an isomorphism of categories,

preserving underlying sets and mappings, with- i* (| |,adh)* Tthe

forgetful functor from Uo-algebras to CH.
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Proof. It is clear that (| |,adh)* preserves underlying
sets and mappings. If (X,€) is a 'Uo-algebra\and ¥ an ultra-
filter on X, with limit x, then adhsc\]? = {x}), and.

§((x}) = x .., Thus x is the limit of ¥ in i* (| |,adh)*(X,5) i
it follows that i* (| [)* (X,€) = X . since i* (| |,adh)* pre-
serves underlying mappings, it is the forgetful functor from

b, -algebras to CH . BAs | | i* also preserves underlying sets
and mappings, 0.2.(ii) is satisfied with A = i* , Since -

adhx ts =8 for § closed in X, 0.2.(i) is satisfied. Finally,
0:.2.(iii) is satisfied by 1.5, so that 0.2 applies [j

>

S PV WP S T T R

4.1. We ‘denote by TOP the category of topological spaces |
and continuous maps, and by R : TOP —> ENS the underlying set
functor. For purposes of this paper, objects :0f% TOP:. could-be
xestricted;ﬁ_ﬁo._;_-be. 'I‘o spaces oOr sober spaces, or the super—_sober.
spaces of the Compendium [1]. ' ' -

For a topological space X, an object L of MSLO, and
adjoint r:laps £f:RX — GOL and g : L — PoRo X, w¢ have
g(a) = £ (a') for aeclL -and a = eL(a) . If‘;.,,;I‘cf,.‘.:X‘ :i.‘s-\;thé:i_.meet
semilattice of closed sets of X, ordered by set inclusion, and
Z. L the set GdE with the coarsestvtopolog'y such that ia’ 1is:
closed for all aeL, it-follows:that f : X -—-}"E&‘L‘ .is econtin-
nous iff g maps L into I‘OX . Thus we have contravariant
functors I'o : Top“F —> MSL, and Eo_ : MSL‘C'DOp , adjoint on the
right.

Clearly . R Eo
T, —> P, R?p adjoint to 'id(G»'o) is given by inclusions.

We denote by \no the closed proper filter monad on TOP , with
functor part W, = 20 I‘OOP , Obtained from the adjunction‘ 1-.00p

— =, .

= Go , and thé?;"i'aturél transformation M :
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4.2. By 0.2.(i), we have a morphism r = (R, Go 7\°p) :

‘3‘0 —_— lho of monads, with (Go T\X)('Q) the restrictionuof ¢ to
closed sets for a proper filter @ on a topological space X.

If L is a lattice, then prime filters in I form a sub-
space EPL of EOL: this defines a functor Ep : 1aT°P
—> TOP, adjoint on the right to the Ffunctor I, rop°F
—~> LAT with I‘pX the lattice of closed sets of a space X.
If S : LAT — MSL is the inclusiop functor, then I‘o = S I‘p ,
and subspace-inclusions define a natural transformation ¥ :

Ep —_— Eo sCP , with K and id(I_—'o) clearly adjoint.

We denote by Wb the monad on.. TOP.-rresulting from theu=
adjuﬁction rpOP — E‘.p , with functor part Wp = Ep FPOP . This
is the prime closed filterr monad on TOP, and WPX‘ is the prime
Wallman compactification of X for a topeclogical space X.

' _mp-algebras were studied in [4]; they are compact ordered

spaces. If (Z,{) 1is a compact ordered space, then 2 = r+ (&,
for a unigue lbp-algebra (X,a), where x* 1is the algebraic
functor induced by the restriction'morphism: r : U —> \npfv;,,_ SIS
In this situation, X is. Z with the upper topology, i.e. open
gsets of X are increasing open sets of Z, the topology of 2

is the patch topology of X, and Z has the induced order of X,
i.e. xg<y in the order of 2z iff cl (x] ccl {y}. -

4.3. By 4.2, a lno-algébra (X,c,) has an induced compact
ordered space i* (X,a) and an induced continuous sup semilattice,
or ﬁo-algebra, r* (X,a). Since the diagram on p.l of this paper
commutes, both have the same compact topology, the patch topology

of X . They also have the same order:

PROPOSITION., If (X,a) is_ a Emo—algebra, then the order of
the induced continuous sup semilattice =r#*(X,a) is the induced

order of X.

Proof. Wé note-:first that thersindudéed order of azspace }Io L
is the natural order of filters in L, since ¢L¢% for that i -
order iff {$e U ai‘{|L for every basic closed set with ®e U a,

Now let (X,a) be a: \no—algebra, with induced '&"o-algebra
structure a - cjl_x , Wwhere clx‘lf is the restriction of a filter @

to closed sets. If %<y in the induced order of X, :then
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xVy = a(tclx[x,y}) = cr.(fcl {y]) =y in r+*(X,a). Conversely,
tel (x} < tel {x,y} in the induced order of W,X¥ . The contin-
ucus map o preserves the induced order: thus Xx £ xVy in the
induced order of X, and x<y in this order if xVy=y]

4.4. For an ¥ -algebra (A,a), let U (A,a) be A pPro-
vided with the upper topology for the induced compact ordered
space of (A,a). This clearly defines a Ffunctor U which pre-
serves underlying sets and mappings, from & -algebras to  ToOP,
with RU the forgetful functor from 3 -algebras to sets. Note:
that our upper topology is the lower topology of the Compend:.um

THEOREM. The algebralc functor =r* from - W —algebras to
Eo-algebras is an isomorphism of categories, p_reserv:.ng underlying

sets and mappings, and with U r* the forgetful functor from
o-algebras to TOP . '

Proof. r#* clearly preserves underlying sets and mapp:.rigs
If (X,a) is a W -algebra, then X has the upper topology of
the induced compact ordered space Whlch by 4.3 is alsoc the induced
compact ordered space of r+ (X,a) . -;._Thus Ur*(X,a) = X . Since
U r* preserves underlying mappings, it follows that Ur* Iis the

forqetful fu_nctor for ‘_wgfa_lgobra_s. ?_{1_1.15 02(11) is satiéfied e,

e e

with A = U. . o
0.2.(1) is valid- -every fn.lter -0f .closed. set.s of a space X
is the restriction-of a filter on RX to closed’ set
It remains to verify the factorization of. 0.2.(1ii1),. i.e. :|.:E
(L,a) is-an 7.1" algebra with X = i* (L,a), then o (@)
= sup adhx¢ depends only on the decreasing closed sets in ‘I’
i.e. the sets closéd for U (L,a) . -Restricting ® to these sets
can only increase o(®). 0On the other hand, if =x (£ a(@), then
tx -and.. adhxé ‘are: digjeoint;. thus % has an ‘increasing ne:.gh-
borhood V in X with’ X\V a neighborhood of adhX¢ and thus .-
in ® . This shows that restr:.ct:l.ng ® to increasing closed sets

does not change sup..adhxé g
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5.__The open proper filter

.

£i monad
Due to the duality between open and closed sets, the develop-
ments of this section are closely parallel to those of Section 4.

e

23

gé%.'-ﬁe denbté‘bf ~@;X' an&'}QpX_'thé'sef'bfopén.segg of a
topological space X, ordered by set inclusion and regarded as an
obiect of MSL and IAT respectively. 1In the-other direction,
we denote by H L the set G,I; of proper filters in a meet .- -
semllattlce L w1th o, prov;ded with the topology for which the
sets a# = eL(a), for ael, form a basis of open sets. If L
igs a lattice, then HPI‘ is the subspace of ﬁoI. consisting of
all prime filters in L . '

| ‘As in Section 4, this defines functors @p : Top°P —> IAT
and @o : TOPOP ~> MSL with S @P = @o for the forgetful func-
tor § : IAT - MSL, , and with adjoints on the right H : -1aTP
—> ToP and N_ : MSL °° — TOP . :
We denote by Hp the prime open filter monad on TOP and by

Ho the open proper filter monad on TOP which result from the %
adjunctions discussed above, with functor parts I-Ip = HF’QPOP and
= & °P - '

Ho no o 7

| 5.2. We:have RHP_# Gp and Rno = G, for the underlying
set functor R : TOP ~—> ENS , and natural inclusions QA :

6, —> 7, R ang 1 6, —> P, R°P adjoint to identity trans-

formations. By 0.3. (1), we get morphlsms r = (R,m) of monads,
with Ty = Gp}&: or TX =G %X reducing ultrafllters Or. proper:i
filters to their open sets. These maps T are surjective.

_ X
Subspace’ inclusions provide K : Hp —_ HOSOP for the for-

getful functor S , adjoint to id(@ ). Thus we have an inclusion
morphism i = (Id, K@POP) : ﬂ — ﬁ

We denote by D : LAT ~—> LAT the dual lattice functor which
reverses order in every lattice, preserving underlying sets and
mappings. Complements of closed sets define a natural isomorphism
P o I)Ié —~>j&p. For a lattice L ;;the_complement 'L\vmgjofiaﬂgy;
prime filter o in I is a prime filter in DL it is easily
seen that complements of prime.filterﬁddefine;éipatural isomorphism



g : I ~> HDOP . By 0.3, o I°P - np°p +7 for a natural iso-
morphism of monads (Id,r) : lbp _— Hp .

5.3. "If- h+'Id — H is the unit of H or lio , then
hx(x) is the filter of open neighborhcods of x, for a space X
and xeX . We define the dual induced order of X, dual to the
" induced order of X, by putting x{y 1iff hx(x) <ho(y) .
For z®._~in a s'ia.'ace HPL or l'IoL , the sets a ' with ae®
" form a base of neighborhoods of & ; it follows that the dual
induced order of IIPL or IIOL is the natural order for filters,

dual to set inclusion.
By 5.2, we.have algebraic functors r+ , from H_-algebras
to compact Hausdorff spaces and from lio-algebras to Eo-algebras.

These,,_.ﬁlpngﬂgg___rs_ preserve underlying sets and mappings.

THEOREM. If (¥,a) is an Hé-algebra, then r*(X,a), pro-
vided with the dual induced order of X, is a compact ordered

space, and X  has the lower topoclogy of this compact ordered

space. Every. ¥ -algebra is obtained in this way, and morphisms

of :ﬁ};-algebras are meorphisms of the corresponding compact ordered
spaces. '

Proof. If Z = r¥(X,a) for an ﬁp«-algebra (X,a),_.i':.th_eﬁ it
is seen as in [4], 1.7, that the topology of Z is finer than the
tbpology of X. If o ris an ultrafilter on X and & the prime
filter of open sets in ©, then a{®) is the limit of @ for 2 ;
thus @ converges to all x> a(®) for the dual induced order
of X. Conversely, if ® converges to x for X , then
hy (x) > ® in HPX : thus x > a(®) for the dual induced order
of X since the continuous map a preserves this order.

If x£y in X, so that y ¢ c].x{x}‘_, then hy(y) is not
in the closed set a.‘_(clx‘[x}) in HP'X; thus there is a basic
open set V in pr, ._with V an open_ neighborhood of x ‘.. -
in X, disjoint from a (CJX {x}) . It follows that X\V is in
every ultrafilter with limit x for Z; thus X\V is a neigh-
borhood 0of x in Z . Now X\V XV ~is a neighborhood of (x,y)
in ZXxZ, disjoint from the graph of < since V is decreasing,
and (2,£) is a compact ordered space. Ultrafilters have the
same limits for X as-for the lower -topology of "(Z;K): ‘.thus~.. -
" X has this lower topology.



- The remainder of’fhe probflfo;lows;the proof..of the corre-
sponding results of [4], with orly minor changes.] ™. 2il°

il REMARK. Since the mphads mp and EP are isomorphic,

the same spaces have algebra structures for the two monads.

These spaces are the super-sober spaces of the Compendium [1].
The compact ordered spaces obtained in this way from a super-
sober space X are dual. They have the same topology, the patch
topology of X [l:; 4], but dual orders. '

5.4. 'Thé matphisms éf'meﬁaanOEEinfprovideﬁaigeﬁxgic func-
tors i*.and ¥ B frqmriﬁo-algebfas to ﬁ»-algebraSvéﬁd to
30-algebras. If (X,a) 4is an ﬂo-algebra, then the_;ﬂo-algebra
r*(¥X,a} and the compact ordered space obtained from i*(X,a)
provide us with the same compact Hausdorff topology; we now show
‘that they also provide us with the same order.

PROPOSITION. If (X,a) “is an ¥ _-algebra, then the order of
the 3o-algebra sr¥{X,a) is the dual induced order of X.

Proof. Let r = (R,r), with Ty restricting a filter on X
to its open sets. If (X,a) 1is an ﬁo-algebra, then =xzVy :-
= a(wx(T[x,y}n in r*(X,a). If x<y in the dual induced order
of X, then w,(1{x,y)) = hy(y); thus xVy =y . Conversely,.
"we have hX(x) < wx(T[x,y])‘ in the dual induced order of Ho}(j
and «a preserves this order. Thus x<y in the dual induced

order of X if xVy =y in r*(X,a)]

5.5. The lower topology of a continuous sup semilattice L.
is the-Scott topology, with U € I. open iff U is decreasing and
meets every filter ® in L with inf® in U . Scott topo-:=i -
logies provide a functor 5, from 3°-algebras to TOP, which
preserves underlying sets and mappings. It follows that RS is
the forgetful functor from 3°-algebras to sets.

THEOREM. The algebraic functor r¥ from ﬂo—algebras to
Eo-algebras is an isomorphism of categories, preserving underlying
gsets and mappings, and with S r* the forgetful functor from
Ho-algebras to TOP .
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Proof. 0.2.(i) and 0.2.(ii), with A = U, are verified as
in the proof of 4.4. To 6bté,in"ljo ;2.(iii) for an B‘o-algebra
(L,a), '?:;e' must show that a(®) = sup adhxﬁ, for a filter &
on L and X = i*(L,a), depends only on the decreasing open
~sets in ® ., Restricting & to these sets can only increase

. a(®) . oOn the other hand, if x £ a(®, then !a(®, and hence
also adhxq’, has a decreasing neighborhood VvV with X\V a
neighborhood of x . Then Ve ®; thus restricting & to its
decreasing open sets cannot inc:;ease sup adhxé 0



