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Lecture I

Proof Mining: Proof Interpretations and Their Use in Mathematics



Early history

(Modified) Hilbert Program:

Calibrate the contribution of the use of ideal principles in proofs of real

statements.

Reduce the consistency of a theory T1 to that of a prima facie more

constructive theory T2.

General malaise of consistency proofs:

‘To one who has faith, no explanation is necessary. To one without faith,

no explanation is possible’ (attributed to St Thomas Aquinas).

Shift of emphasis (G. Kreisel (1951): use proof-theoretic methods to

extract new information from interesting proofs of existential

statements.

‘What more do we know if we have proved a theorem by restricted means

than if we merely know that it is true?’ (G. Kreisel)
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Extractive Proof Theory (G. Kreisel):

New results by logical analysis of proofs

Input: Noneffective proof P of C

Goal: Additional information on C :

effective bounds,

algorithms,

continuous dependency or full independence from certain parameters,

generalizations of proofs: weakening of premises.

E.g. Let C ≡ ∀x ∈ IN∃y ∈ IN F(x, y)

Naive Attempt: try to extract an explicit computable function realizing

(or bounding) ‘∃y ’: ∀x ∈ IN F(x, f(x)).
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Naive attempt fails

Proposition

There exist a sentence A ≡ ∀x∃y∀z Aqf(x, y, z) in the language of

arithmetic (Aqf quantifier-free and hence decidable), such

A is logical valid,

there is no recursive bound f s.t. ∀x∃y ≤ f(x)∀z Aqf(x, y, z).

Proof: Take

A :≡ ∀x∃y∀z
(
T(x, x, y) ∨ ¬T(x, x, z)),

where T is the (primitive recursive) Kleene-T-predicate.

Any bound g on ‘∃y ’, i.e. no computable g such that

∀x∃y ≤ g(x)∀z (T(x, x, y) ∨ ¬T(x, x, z))

since this would solve the halting problem! 2
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However, one can obtain such witness candidates and bounds (and

even realizing function(al)s) for a weakened version AH of A:

Definition

A ≡ ∃x1∀y1∃x2∀y2Aqf(x1, y1, x2, y2). Then the Herbrand normal

form of A is defined as

AH :≡ ∃x1, x2Aqf(x1, f(x1), x2, g(x1, x2)),

where f, g are new function symbols, called index functions.

A and AH are equivalent with respect to logical validity, i.e.

|= A⇔ |= AH,

but are not logically equivalent (but only in the presence of AC).
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We now consider again the sentence

A ≡ ∀x ∃y ∀z (P(x, y) ∨ ¬P(x, z)),

In contrast to A, the Herbrand normal form AH of A

AH ≡ ∃y
(
P(x, y) ∨ ¬P(x, g(y))

)
allows one to construct a list of candidates (uniformly in x , g) for ‘∃y ’,

namely (c , g(c)) for any constant c (also (x , g(x)))

AH,D :≡
(
P(x, c) ∨ ¬P(x, g(c))

)
∨
(
P(x, g(c)) ∨ ¬P(x, g(g(c)))

)
︸ ︷︷ ︸

∈TAUT

is a tautology.
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J. Herbrand’s Theorem (‘Théorème

fondamental’, 1930)

Theorem

Let A ≡ ∃x1∀y1∃x2∀y2Aqf(x1, y1, x2, y2). Then:

PL ` A iff there are terms s1, . . . , sk , t1, . . . , tn (built up out of the

constants and variables of A and the index functions used for the

formation of AH) such that

AH,D :≡
k∨

i=1

n∨
j=1

Aqf

(
si, f(si), tj, g(si, tj)

)
is a tautology. AH,D is called a Herbrand Disjunction.

Note that the length of this disjunction is fixed: k · n. The terms si , tj can

be extracted from a given PL-proof of A.
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Herbrand’s Theorem continued

Replacing in AH,D all terms ‘g(si , tj)’, ‘f (si )’, by new variables (treating

larger terms first) results in another tautological disjunction ADis s.t. A

can be inferred from A by a direct proof.
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An example

(Ulrich Berger) Consider the open first-order theory T in the language of

first-order logic with equality and a constant 0 and two unary function

symbols S , f . The only non-logical axiom of T is ∀x(S(x) 6= 0).

Proposition

T ` ∃x
(
f(S(f(x))) 6= x).

Proof: Suppose that

∀x
(
f(S(f(x))) = x

)
,

then f is injective, but also (since S(x) 6= 0) surjective on {x : x 6= 0}
and hence non-injective. Contradiction! 2
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Analyzing the above proof yields the following Herbrand terms:

PL ` (S(s) 6= 0)→
3∨

j=1

(f(S(f(tj))) 6= tj),

where

t1 := 0, t2 := f(0), t3 := S(f(f(0))), s := f(f(0)).

2
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Remark

For sentences A ≡ ∀x∃y∀z Aqf(x, y, z), ADis can be written in the

form

Aqf(x, t1, b1) ∨ Aqf(x, t2, b2) ∨ . . . ∨ Aqf(x, tk, bk),

where the bi are new variables and ti does not contain any bj with

i ≤ j (used by Luckhardt’s analysis of Roth’s theorem, see below).

Herbrand’s theorem immediately extends to first-order theories T
whose non-logical axioms G1, . . . ,Gn are all purely universal.
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Theorem (Roth 1955)

An algebraic irrational number α has only finitely many exceptionally

good rational approximations, i.e. for ε > 0 there are only finitely many

q ∈ IN such that

R(q) :≡ q > 1 ∧ ∃!p ∈ ZZ : (p, q) = 1 ∧ |α− pq−1| < q−2−ε.

Theorem (Luckhardt 1985/89)

The following upper bound on #{q : R(q)} holds:

#{q : R(q)} <
7

3
ε−1 log Nα + 6 · 103ε−5 log2 d · log(50ε−2 log d),

where Nα < max(21 log 2h(α), 2 log(1 + |α|)) and h is the

logarithmic absolute homogeneous height and d = deg(α).

Independently: Bombieri and van der Poorten 1988.

Proof Mining: Proof Interpretations and Their Use in Mathematics



Theorem (Roth 1955)

An algebraic irrational number α has only finitely many exceptionally

good rational approximations, i.e. for ε > 0 there are only finitely many

q ∈ IN such that

R(q) :≡ q > 1 ∧ ∃!p ∈ ZZ : (p, q) = 1 ∧ |α− pq−1| < q−2−ε.

Theorem (Luckhardt 1985/89)

The following upper bound on #{q : R(q)} holds:

#{q : R(q)} <
7

3
ε−1 log Nα + 6 · 103ε−5 log2 d · log(50ε−2 log d),

where Nα < max(21 log 2h(α), 2 log(1 + |α|)) and h is the

logarithmic absolute homogeneous height and d = deg(α).

Independently: Bombieri and van der Poorten 1988.
Proof Mining: Proof Interpretations and Their Use in Mathematics



Limitations

Techniques work only for restricted formal contexts: mainly purely

universal (‘algebraic’) axioms, restricted use of induction, no higher

analytical principles.

Require that one can ‘guess’ the correct Herbrand terms: in general

procedure results in proofs of length 2|P|n , where 2k
n+1 = 22k

n (n cut

complexity).
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Towards generalizations of Herbrand’s

theorem

Allow functionals Φ(x, f) instead of just Herbrand terms: Let’s consider

again the example

A ≡ ∀x∃y∀z
(
T(x, x, y) ∨ ¬T(x, x, z))

)
.

AH can be realized by a computable functional of type level 2 which is

defined by cases:

Φ(x, g) :=

{
c if ¬T(x, x, g(c))

g(c) otherwise.

From this definition it easily follows that

∀x, g
(
T(x, x,Φ(x, g)) ∨ ¬T(x, x, g(Φ(x, g))

)
.

Φ satisfies G. Kreisel’s no-counterexample interpretation!
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If A is not provable in PL but e.g. in PA more complicated functionals

are needed (Kreisel 1951):

Let (an) be a nonincreasing sequence in [0, 1]. Then, clearly, (an) is

convergent and so a Cauchy sequence which we write as:

(1) ∀k ∈ IN∃n ∈ IN∀m ∈ IN∀i, j ∈ [n; n + m] (|ai − aj| ≤ 2−k),

where [n; n + m] := {n, n + 1, . . . , n + m}.
Then the (partial) Herbrand normal form of this statement is

(2) ∀k ∈ IN∀g ∈ ININ∃n ∈ IN∀i, j ∈ [n; n + g(n)] (|ai− aj| ≤ 2−k).
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By E. Specker 1949 there exist computable such sequences (an) even in

Q ∩ [0, 1] without computable bound on ‘∃n’ in (1).

By contrast, there is a simple (primitive recursive) bound Φ∗(g , k) on

(2) (also referred to as ‘metastability’ by T.Tao):

Proposition

Let (an) be any nonincreasing sequence in [0, 1] then

∀k ∈ IN∀g ∈ ININ∃n ≤ Φ∗(g, k)∀i, j ∈ [n; n+g(n)] (|ai−aj| ≤ 2−k),

where

Φ∗(g, k) := g̃(2k−1)(0) with g̃(n) := n + g(n).

Moreover, there exists an i < 2k such that n can be taken as g̃ (i)(0).
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Remark

The previous result can be viewed as a polished form of a Herbrand

disjunction of variable (in k) length:

2k−1∨
i=0

(
|ag̃(i)(0) − ag̃(g̃(i)(0))| ≤ 2−k

)
.

Corollary (T. Tao’s finite convergence principle)

∀k ∈ IN, g : IN→ IN∃M ∈ IN∀1 ≥ a0 ≥ . . . ≥ aM ≥ 0∃N ∈ IN(
N + g(N) ≤ M ∧ ∀n,m ∈ [N,N + g(N)](|an − am| ≤ 2−k

))
.

One may take M := g̃(2k)(0).
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An Example from Ergodic Theory

X Hilbert space, f : X → X linear and ‖f(x)‖ ≤ ‖x‖ for all x ∈ X .

An(x) :=
1

n + 1
Sn(x), where Sn(x) :=

n∑
i=0

f(i)(x) (n ≥ 0)

Theorem (von Neumann Mean Ergodic Theorem)

For every x ∈ X , the sequence (An(x))n converges.

Avigad/Gerhardy/Towsner (TAMS 2010):

in general no computable rate of convergence.

But: Prim. rec. bound on metastable version!

Theorem (Garrett Birkhoff 1939)

Mean Ergodic Theorem holds for uniformly convex Banach spaces.
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By logical metatheorems (see Lecture II tomorrow!):

Theorem (K./Leu̧stean, Ergodic Theor. Dynam. Syst. 2009)

X uniformly convex Banach space, η a modulus of uniform convexity and

f : X → X as above, b > 0.

Then for all x ∈ X with ‖x‖ ≤ b, all ε > 0, all g : IN→ IN :

∃n ≤ Φ(ε, g, b, η) ∀i, j ∈ [n; n + g(n)]
(
‖Ai(x)− Aj(x)‖ < ε

)
,

where

Φ(ε, g, b, η) := M · h̃(K)(0), with

M :=
⌈

16b
ε

⌉
, γ := ε

16
η
(
ε

8b

)
, K :=

⌈
b
γ

⌉
,

h, h̃ : IN→ IN, h(n) := 2(Mn + g(Mn)), h̃(n) := maxi≤n h(i).

Computable rate of convergence iff the norm of limit is computable!
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Bounding the number of fluctuations

We say that (xn) admits k ε-fluctuations if there are i1 ≤ j1 ≤ . . . ik ≤ jk

s.t. ‖xjn − xin‖ ≥ ε for n = 1, . . . , k .

As a corollary to our analysis of Birkhoff’s proof, Avigad and Rute showed

Theorem (Avigad, Rute (ETDS 2015))

(An(x)) admits at most

2 log(M) ·
b

ε
+

b

γ
· 2 log(2M) ·

b

ε
+

b

γ

many fluctuations.

Partly possible because Birkhoff’s proof only uses boundedly many (in

the data) instances of the law-of-excluded-middle for ∃-statements!
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Problems of the no-counterexample

interpretation

For principles F ∈ ∃∀∃ n.c.i. no longer ‘correct’. Cn := {0, 1, . . . , n}.

Direct example: Infinitary Pigeonhole Principle (IPP):

∀n ∈ IN∀f : IN→ Cn ∃i ≤ n ∀k ∈ IN∃m ≥ k
(
f(m) = i

)
.

IPP causes arbitrary primitive recursive complexity, but (IPP)H

∀n ∈ IN∀f : IN→ Cn ∀F : Cn → IN ∃i ≤ n ∃m ≥ F(i)
(
f(m) = i

)
has trivial n.c.i.-solution for ‘∃i’, ‘∃m’:

M(n, f, F) := max{F(i) : i ≤ n} and I(n, f, F) := f(M(n, f, F)).

M, I do not reflect true complexity of IPP!

Related problem: bad behavior w.r.t. modus ponens!
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A Modular Approach: Proof Interpretations

Interpret the formulas A in P : A 7→ AI ,

Interpretation CI contains the additional information,

Construct by recursion on P a new proof PI of CI .

Our approach is based on novel forms and extensions of:

K. Gödel’s functional interpretation!

Proof Mining: Proof Interpretations and Their Use in Mathematics



A Modular Approach: Proof Interpretations

Interpret the formulas A in P : A 7→ AI ,

Interpretation CI contains the additional information,

Construct by recursion on P a new proof PI of CI .

Our approach is based on novel forms and extensions of:
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Gödel’s functional interpretation in five

minutes

Gödel’s functional interpretation D combined with Krivine’s negative

translation N results in an interpretation Sh = D ◦ N (Streicher/K.07)

A 7→ ASh (Shoenfield variant)
such that

ASh ≡ ∀x∃y ASh(x, y), where ASh is quantifier-free,

For A ≡ ∀x∃y Aqf(x, y) one has ASh ≡ A.

A↔ ASh by classical logic and quantifier-free choice in all types

QF-AC : ∀a∃b Fqf(a, b)→ ∃B∀a Fqf(a,B(a)).

x, y are tuples of functionals of finite type over the base types of

the system at hand.
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Gödel’s functional interpretation in five

minutes
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ASh ≡ ∀u∃x ASh(u, x), BSh ≡ ∀v∃y BSh(v, y).

(Sh1) PSh ≡ P ≡ PSh for atomic P

(Sh2) (¬A)Sh ≡ ∀f∃u¬ASh(u, f(u))

(Sh3) (A ∨ B)Sh ≡ ∀u, v∃x, y
(
ASh(u, x) ∨ BSh(v, y)

)
(Sh4) (∀z A)Sh ≡ ∀z, u∃x ASh(z, u, x)

(Sh5) (A→B)Sh ≡ ∀f, v∃u, y
(
ASh(u, f(u))→ BSh(v, y)

)
(Sh6) (∃zA)Sh ≡ ∀U∃z, f ASh(z,U(z, f), f(U(z, f)))

(Sh7) (A ∧ B)Sh ≡
∀n, u, v∃x, y (n=0→ ASh(u, x)) ∧ (n6=0→ BSh(v, y))

↔ ∀u, v∃x, y
(
ASh(u, x) ∧ BSh(v, y)

)
.
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Sh extracts from a given proof p

p ` ∀x ∃y Aqf(x, y)

an explicit effective functional Φ realizing ASh, i.e.

∀x Aqf(x,Φ(x)).
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3. Monotone functional interpretation

(K.1996)

Monotone Sh extracts Φ∗ such that

∃Y
(
Φ∗ & Y ∧ ∀x ASh(x,Y(x))

)
,

where & is some suitable notion of being a ‘bound’ that applies to higher

order function spaces (W.A. Howard){
x∗ &IN x :≡ x∗ ≥ x,

x∗ &ρ→τ x :≡ ∀y∗, y(y∗ &ρ y→ x∗(y∗) &τ x(y)).

Also relevant: bounded functional interpretation (F. Ferreira, P. Oliva)
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Tao on a finitary approach to analysis

‘it is common to make a distinction between “hard”, “quantitative”, or

“finitary” analysis on the one hand, and “soft”, “qualitative”, or

“infinitary” analysis on the other hand.’ ...‘It is fairly well known that the

results obtained by hard and soft analysis resp. can be connected to each

other by various “correspondence principles” or “compactness principles”.

It is however my belief that the relationship between the two types of

analysis is much deeper.’ ...’There are rigorous results from proof theory

which can allow one to automatically convert certain types of qualitative

arguments into quantitative ones...’

(T. Tao: Soft analysis, hard analysis, and the finite convergence principle,

2007)
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Recall from Lecture I: Gödel’s functional

interpretation

Gödel’s functional interpretation D combined with Krivine’s negative

translation N results in an interpretation Sh = D ◦ N (Streicher/K.07)

A 7→ ASh (Shoenfield variant)
such that

ASh ≡ ∀x∃y ASh(x, y), where ASh is quantifier-free,

For A ≡ ∀x∃y Aqf(x, y) one has ASh ≡ A.

A↔ ASh by classical logic and quantifier-free choice QF-AC.

Sh extracts from a given proof p

p ` ∀x ∃y Aqf(x, y)

an explicit effective functional Φ realizing ASh, i.e.

∀x Aqf(x,Φ(x)).
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Basic facts about functional interpretation

Peano arithmetic in all finite types PAω has a functional

interpretation by primitive recursive functionals in higher types

in the sense of Hilbert (1926), Gödel (1941,1958).

Full classical analysis PAω+dependent choice has functional

interpretation by bar recursive functionals (Spector 1962).

PRAω+weak Königs lemma has functional interpretation by

ordinary primitive recursive functionals in the sense of Kleene

(K.1992).

Systems of bounded arithmetic have functional interpretation by

basic feasible functionals (Cook, Urquhart 1993).
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General logical metatheorems I

Context: continuous functions between constructively represented

Polish spaces.

Uniformity w.r.t. parameters from compact Polish spaces.

Extraction of bounds from noneffective existence proofs.
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K., 1993-96: P Polish space,K a compact P-space,A∃ existential.

BA:= basic arithmetic, HBC Heine/Borel compactness WKL (SEQ−

restricted sequential compactness, ACA).

From a proof

BA + HBC(+SEQ−) ` ∀x ∈ P∀y ∈ K ∃m ∈ IN A∃(x, y,m)

one can extract a closed term Φ of BA (+iteration)

BA (+ IA ) ` ∀x ∈ P∀y ∈ K∃m ≤ Φ(fx) A∃(x, y,m).

Important:

Φ(fx) does not depend on y ∈ K but on a representation fx of x!
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Limits of Metatheorem for concrete spaces

Compactness means constructively: completeness and total

boundedness.

Necessity of completeness: The set [0, 2]Q is totally bounded and

constructively representable and

BA ` ∀q ∈ [0, 2]Q ∃n ∈ IN(|q−
√

2| >IR 2−n).

However: no uniform bound on ∃n ∈ IN!
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Necessity of total boundedness: Let B be the unit ball C [0, 1]. B is

bounded and constructively representable.

By Weierstraß’ theorem

BA ` ∀f ∈ B∃n ∈ IN
(
n code of p ∈ Q[X] s.t. ‖p− f‖∞ <

1

2

)
but no uniform bound on ∃n : take fn := sin(nx).
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Necessity of A∃ ‘∃-formula’:

Let (fn) be the usual sequence of spike-functions in C [0, 1], s.t. (fn)

converges pointwise but not uniformly towards 0. Then

BA ` ∀x ∈ [0, 1]∀k ∈ IN∃n ∈ IN∀m ∈ IN(|fn+m(x)| ≤ 2−k),

but no uniform bound on ‘∃n’ (proof based on Σ0
1-LEM).

Uniform bound only if (fn(x)) monotone (Dini): ‘∀m ∈ IN’ superfluous!
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Necessity of Φ(fx) depending on a representative of x :

Consider

BA ` ∀x ∈ IR∃n ∈ IN(n >IR x).

Suppose there would exist an =IR-extensional computable Φ : ININ → IN

producing such a n. Then Φ would represent a continuous and hence

constant function IR→ IN which gives a contradiction.

Proof Mining: Proof Interpretations and Their Use in Mathematics



Unique existence

P,K Polish, K compact, f : P × K → IR (BA-definable).

MFI transforms uniqueness statements

∀x ∈ P, y1, y2 ∈ K
( 2∧

i=1

f(x, yi) =IR 0→ dK(y1, y2) =IR 0
)

into moduli of uniqueness Φ : Q∗+ → Q∗+

∀x ∈ P, y1, y2 ∈ K, ε > 0
( 2∧

i=1

|f(x, yi)| < Φ(x, ε)→ dK(y1, y2) < ε
)
.

Let ŷ ∈ K be the unique root of f (x , ·), yε an ε-root |f (x , yε)| < ε.

Then

dK(ŷ, yΦ(x,ε)) < ε).
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Case study: strong unicity in L1-approximation

Pn space of polynomials of degree ≤ n, f ∈ C [0, 1],

‖f‖1 :=
∫ 1

0 |f(x)|dx, dist1(f,Pn) := inf
p∈Pn

‖f − p‖1.

Best approximation in the mean of f ∈ C [0, 1] (Jackson 1926):

∀f ∈ C[0, 1]∃!pb ∈ Pn

(
‖f − pb‖1 = dist1(f,Pn)

)
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Theorem (K./Paulo Oliva, APAL 2003)

Let dist1(f ,Pn) := inf
p∈Pn

‖f − p‖1 and ω a modulus of uniform continuity

for f .
Ψ(ω, n, ε) := min{ cnε

8(n+1)2 ,
cnε
2
ωn( cnε

2
)}, where

cn := bn/2c!dn/2e!
24n+3(n+1)3n+1 and

ωn(ε) := min{ω(ε
4

), ε
40(n+1)4d 1

ω(1)e
}.

Then ∀n ∈ IN, p1, p2 ∈ Pn

∀ε ∈ Q∗+
( 2∧

i=1

(‖f−pi‖1−dist1(f,Pn) ≤ Ψ(ω, n, ε))→ ‖p1−p2‖1 ≤ ε
)
.
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Recall from I. Lecture

X uniformly convex Banach space,f : X → X linear and

‖f(x)‖ ≤ ‖x‖ for all x ∈ X . An(x) := 1
n+1

∑n
i=0 f i(x).

We extracted from Birkhoff’s proof for the convergence of (An(x)) an

effective bound Φ such that for all x with ‖x‖ ≤ b :

∃n ≤ Φ(ε, g, b, η) ∀i, j ∈ [n; n + g(n)]
(
‖Ai(x)− Aj(x)‖ < ε

)
.
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The nonseparable/noncompact case

In the example of the Mean Ergodic Theorem one got bounds on the

metastable version that were

uniform in (i.e. independent of) the choice of the starting

point ‖x‖ except for a norm upper bound b ≥ ‖x‖ although closed

bounded convex sets in X are not compact (except for IRn),

uniform in the nonexpansive operator,

uniform in the choice of the space X (except for a modulus of

uniform convexity).

Similarly: Uniform modulus of uniqueness for best approximations in

uniformly convex spaces: no compactness required but uniform convexity

instead of strict convexity!

Question: What is the reason for this strong uniformity and is there a

logical Metatheorem to explain this?

Answer: Yes! Crucial: no separability assumption on X is used.
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General logical metatheorems II

Many abstract types of metric structures can be added as atoms:

metric, hyperbolic, CAT(0), δ-hyperbolic, normed, uniformly convex,

Hilbert spaces, abstract Lp- and C (K )-spaces, IR-trees X : add new

base type X , all finite types over IN,X and a new constant dX

representing d etc.

Condition: Defining axioms must have a monotone functional

interpretation. This e.g. is the case if X is axiomatizable in positive

bounded logic (Günzel/K., Adv. Math. 2016).

Counterexamples (to extractibility of uniform bounds): for the classes of

strictly convex (→ uniformly convex) or separable (→ totally bounded)

spaces!
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A formal system for analysis

Types: (i) IN,X are types, (ii) with ρ, τ also ρ→ τ is a type.

Functionals of type ρ→ τ map type-ρ objects to type-τ objects.

PAω,X is the extension of Peano Arithmetic to all types over IN,X .

Aω,X :=PAω,X+DC, where

DC: axiom of dependent choice for all types

Implies full comprehension for numbers (higher order arithmetic).

Aω[X , d , . . .] results by adding constants dX , . . . with axioms expressing

that (X , d , . . .) is a nonempty metric, hyperbolic . . . space.
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A warning concerning equality

Extensionality rule (only!):

s =ρ t

r(s) =τ r(t)
,

where only x =IN y primitive equality predicate but for ρ→ τ

sX =X tX :≡ dX(x, y) =IR 0IR,

s =ρ→τ t :≡ ∀vρ(s(v) =τ t(v)).
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A novel form of majorization

y , x functionals of types ρ and ρ̂ := ρ[IN/X ]:

xIN &IN yIN :≡ x ≥ y

xIN &X yX :≡ x ≥ ‖y‖.

For complex types ρ→ τ this is extended in a hereditary fashion.

Example:

f∗ &X→X f ≡ ∀n ∈ IN, x ∈ X[n ≥ ‖x‖ → f∗(n) ≥ ‖f(x)].

f : X → X is nonexpansive (n.e.) if ‖f(x)− f(y)‖ ≤ ‖x− y‖.

Then λn.n + b &X→X f , if b ≥ ‖f (0)‖.
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As special case of general logical metatheorems due to

K. (TAMS 2005), Gerhardy/K. (TAMS 2008) one has:

Theorem

If Aω[X , 〈·, ·〉] proves

∀x ∈ P∀y ∈ K∀z ∈ X ∀f : X→ X
(
f n.e.→ ∃v ∈ IN A∃

)
,

then one can extract a computable functional Φ : ININ × IN→ IN s.t.

for all x ∈ P, b ∈ IN

∀y ∈ K ∀z ∈ X∀f : X→ X(
f n.e. ∧ ‖z‖, ‖f(0)‖ ≤ b→ ∃v ≤ Φ(rx, b)A∃

)
holds in all nonempty (real) Hilbert space X .

Uniformly convex case: bound Φ additionally depends on a modulus of

uniform convexity η.
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Mean Ergodic Theorem again

Since Birkhoff’s proof formalizes in Aω[X , ‖ · ‖, η] the following is

guaranteed:

X uniformly convex Banach space with modulus η and f : X → X

nonexpansive linear operator. Let b > 0. Then there is an effective

functional Φ in ε, g , b, η s.t. for all x ∈ X with ‖x‖ ≤ b, all ε > 0, all

g : IN→ IN :

∃n ≤ Φ(ε, g, b, η)∀i, j ∈ [n, n + g(n)]
(
‖Ai(x)− Aj(x)‖ < ε

)
.

(see Lecture I)
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A theorem of R. Wittmann

Halpern iterations: U : C → C nonexpansive, u0 ∈ C , αn ∈ [0, 1]

un+1 := αn+1 u0 + (1− αn+1) U(un).

Theorem (R. Wittmann, 1992): C ⊆ X closed and convex, u0 ∈ C and

Fix(U) 6= ∅. Under suitable conditions on (αn) (satisfied e.g. for

αn := 1
n+1 ) (un) converges strongly towards the fixed point of U that is

closest to u0.

Remark: Wittmann’s theorem is a nonlinear generalization of the

Mean ergodic theorem: for αn := 1/(n + 1),C := X and linear U, the

Halpern iteration coincides with the Cesàro means. Hence the Mean

Ergodic Theorem follows as a special case.
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Ergodic Theorem follows as a special case.

Proof Mining: Proof Interpretations and Their Use in Mathematics



A theorem of R. Wittmann

Halpern iterations: U : C → C nonexpansive, u0 ∈ C , αn ∈ [0, 1]

un+1 := αn+1 u0 + (1− αn+1) U(un).

Theorem (R. Wittmann, 1992): C ⊆ X closed and convex, u0 ∈ C and

Fix(U) 6= ∅. Under suitable conditions on (αn) (satisfied e.g. for

αn := 1
n+1 ) (un) converges strongly towards the fixed point of U that is

closest to u0.

Remark: Wittmann’s theorem is a nonlinear generalization of the

Mean ergodic theorem: for αn := 1/(n + 1),C := X and linear U, the

Halpern iteration coincides with the Cesàro means. Hence the Mean
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General features of the logical analysis of

Wittmann’s

Use of weak compactness gets in the end eliminated via a

quantitative projection argument and a profound use of the power of

majorizability.

As a consequence, both proofs yield ordinary primitive recursive

bounds with elementary verifications.

Quadratic rate of asymptotic regularity for 1/(n + 1) (K. Adv.

Math. 2011):

∀n ∈ IN∀k ≥ 4dn(8dn + 2)
(
‖uk − U(uk)‖ ≤

1

n

)
,

where d ≥ diam(C).
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A quantitative metastable version of

Wittmann’s theorem

Theorem (K., Adv. Math. 2011)

Let αn := 1/(n + 1) and (un) as above. Then for ε ∈ (0, 1)

∀g : ININ∃k ≤ Φ(ε/2, g+, d)∀i, j ∈ [k; k + g(k)]
(
‖ui − uj‖ ≤ ε

)
,

where
Φ(ε, g , d) := ρ(ε2/4d2, χd,ε(Nε,g ,d)) with

Nε,g ,d := 16d ·
(
max

{
(∆∗ε,g )(i)(1) : i ≤ nε,d

})2
, nε,d :=

⌈
d2

εd

⌉
,

εd := ε4

8192d2, ∆∗ε,g (n) := d1/Ωd(ε/2, g̃M , χd,ε(16d · n2))e,

with Ωd(ε, g , j) := δε,g̃(ρ(ε2/2d2,j)), where δε,m := ε2

16dm ,

ρ(ε, n) :=
⌈
n+1
ε

⌉
, χd,ε(n) := max

{
χd(n),

⌈
32d2

ε2

⌉}
,

χd(n) := 4dn(4dn + 2), g̃(n) := max{n, g(n)} and g+(n) := n + g(n).
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‘Proof Mining’ in core mathematics

During the last 20 years this proof-theoretic approach has resulted in

numerous new quantitative results as well as qualitative

uniformity results in nonlinear analysis: fixed point theory (≥40),

ergodic theory (≥15), optimization (D. Körnlein) (≥5), topological

dynamics (≥ 5), approximation theory (≥ 5), abstract Cauchy

problems (A. Koutsoukou-Argyraki) (2) etc.

General logical metatheorems explain this (K. TAMS 2005,

Gerhardy/K. TAMS 2008, Günzel/K. Adv. Math. 2012).

Some of the logical tools used have recently been rediscovered in

special cases by Terence Tao in his “finitary analysis”!

Proof mining has also led to new concepts that are now commonly

used in analysis: W -hyperbolic spaces (K.2005), UCW -hyperbolic

spaces (Leuştean 2007), (generalized) uniform Fejér monotonicity

(Leuştean/Nicolae/K. 2014).
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Tao also established (without bound) a uniform version (in a special

case) of the Mean Ergodic Theorem as base step for a generalization to

commuting families of operators.

‘We shall establish Theorem 1.6 by “finitary ergodic theory” techniques,

reminiscent of those used in [Green-Tao]...’ ‘The main advantage of

working in the finitary setting ... is that the underlying dynamical system

becomes extremely explicit’...‘In proof theory, this finitisation is known as

Gödel functional interpretation...which is also closely related to the

Kreisel no-counterexample interpretation’

(T. Tao: Norm convergence of multiple ergodic averages for commuting

transformations, Ergodic Theor. and Dynam. Syst. 28, 2008)
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2016 survey:

www.mathematik.tu-darmstadt.de/˜kohlenbach/progress.pdf

2008 book:
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Applied Proof Theory: 
Proof Interpretations and their Use in Mathematics

Ulrich Kohlenbach presents an applied form of proof theory that 
has led in recent years to new results in number theory, approxi-
mation theory, nonlinear analysis, geodesic geometry and ergodic 
theory (among others). This applied approach is based on logical 
transformations (so-called proof interpretations) and concerns 
the extraction of effective data (such as bounds) from prima facie 
ineffective proofs as well as new qualitative results such as inde-
pendence of solutions from certain parameters, generalizations  
of proofs by elimination of premises.
The book first develops the necessary logical machinery empha-
sizing novel forms of Gödel‘s famous functional (‚Dialectica‘) 
interpretation. It then establishes general logical metatheorems 
that connect these techniques with concrete mathematics. Finally, 
two extended case studies (one in approximation theory and one 
in fixed point theory) show in detail how this machinery can be 
applied to concrete proofs in different areas of mathematics.
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