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Introduction

Goal and scientific context. It is the aim of the present work to gener-
alise the mathematical theory used for the denotational semantics of cer-
tain programming languages. More precisely, we deal with languages al-
lowing for both probabilistic and non-deterministic choice. Theories have
already been elaborated by different researchers for finite state spaces and
for the case that the state space is a continuous domain. We now want to
generalise to stably compact state spaces, which comprise a large class of
domains, as well as all compact Hausdorff spaces.

Concerning the case of finite state spaces, McIver and Morgan, for-
merly from the Programming Research Group in Oxford, have done con-
siderable work, which is collected in [MM04]. There, they present a se-
mantics together with a verification calculus in the spirit of Dijkstra’s pred-
icate transformer logic.

In the case of continuous domains as state spaces, a solid theory has
been developed by Tix, Keimel, Plotkin in [TKP05]—based on previous
work by Tix ([Tix99])—and independently by Mislove (see [MOW04]).

Motivation. Before diving into the subject, I would like to give a brief
motivation. Two questions arise naturally: Why would we want to have
probabilistic and nondeterministic features in a programming language?
And: Why would we want other state spaces than continuous domains?

As to the first question, there are obvious applications for probabilistic
features, and less obvious ones for non-deterministic choice. For instance,
any of the popular prime number tests used for cryptography systems are
based on some random choice of a natural number. Other examples are
graph related problems, or sorting algorithms like quick-sort. The latter
often uses an initial random permutation to decrease the probability of
the worst case arising. Non-determinism on the other hand is used in dif-
ferent ways: to model programs that interact with a larger system, like the
operating system or a user; to describe abstraction or under-specification,
where the programmer wants to leave an implementation detail open; and
finally, to model parallelism as the possible interleavings of concurring
program bits.

Now, why use stably compact spaces instead of continuous domains?
Indeed, the question is justified, since dcpo’s and continuous domains
have been studied since the 1970s, and are extensively used to model the
denotational semantics of programming languages without probabilistic
or non-deterministic features. The benefit of generalising this to certain
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stably compact spaces is threefold: First, it further extends the range of
possible state spaces, i.e. of types to use. In fact, Martı́n Escardó is cur-
rently developing a functional language that has certain compact spaces
as built-in data types, and that allows for certain of our cone constructions
as type constructions. Secondly, the whole theory gets clarified, and the
separation theorems in Section 3 may be of use to anyone working with
topological cones. Finally, a direct link is established to the Dutch School,
which uses complete metric spaces instead of domains for semantics. This
may result in fruitful exchanges.

Organisation of the material. In Section 1, we begin by refreshing the
basic concepts of domain theory that we need. We introduce the notion of
a cone in its different forms, as well as some topological and categorical
notions. In Section 2, we introduce the extended probabilistic powerdo-
main, a construction conceived to model probabilistic choice. In Section 3,
we prepare several separation theorems for cones, needed in the sequel. In
Section 4 and 5, we present two constructions, the convex Smyth power-
cone and the convex Hoare powercone, to model nondeterministic choice
of programs. We finish by giving a brief summary and an overview of
open questions.
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helped and supported me on the way of writing this diploma thesis. First
of all, I am grateful to my supervisor Klaus Keimel, for going out of his
way and according me his time whenever I encountered a problem, and
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this diploma thesis both in Grenoble and in Darmstadt. I wish to thank
Artus Ph. Rosenbusch for helping me a lot with the pictures (drawn with
Pedro Quaresma’s dcpic and Paul Taylor’s diagrams ), for correcting
early drafts of the thesis, and most of all for countless discussions on all
the important and less important issues of my work, which helped me fa-
miliarise myself with the new concepts and their features. I am thankful
to Richard Lindner for setting up a reliable and comfortable computer sys-
tem to typeset this thesis. I thank Pavol Safarik for correcting some of the
very last drafts. Finally, I want to thank my family and friends for their
continuing, unconditional sympathy and support.
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1 The Basics

The starting point of our investigation is domain theory. The basic concepts
we need involve mainly order and topology. As a reference for domain
theory, see [GHK+03]. The interplay of topology and order has been moti-
vated by Smyth in [Smy83], that of topology and computability by Vickers
in [Vic89].

1.1 Order

We begin by briefly recalling the concepts related to partial orders.

Definition 1.1. Consider a set X equipped with a binary relationv as well
as the following conditions:

(R) (∀x ∈ X) x v x (reflexivity)
(T) (∀x, y, z ∈ X) x v y and y v z imply x v z (transitivity)
(AS) (∀x, y ∈ X) x v y and y v x imply x = y (antisymmetry)

A binary relation v on a set X will be called a preorder, if it satisfies
the conditions of reflexivity (R) and transitivity (T). If, in addition, it is
antisymmetric (AS), it will be called a partial order. The pair (X,v) will
then be called a preordered resp. partially ordered set (poset for short).

Definition 1.2. A function f : X → Y between preordered sets (X,vX)
and (Y,vY ) will be called monotone or order preserving, if we have the prop-
erty x vX y =⇒ f(x) vY f(y) for all x, y ∈ X .

Definition 1.3. Let (X,v) be a preordered set. Then for any subset D ⊆ X
we fix the following nomenclature and notation:

• We say that D is upper directed or just directed, if it is nonempty and
for any x, y ∈ D, there is an upper bound z ∈ D.

• The set ↑D denotes the set of all elements above some elements in D:

↑D :=
{

x ∈ X
∣∣ (∃d ∈ D) d v x

}
.

If D contains only one element x, we will write ↑x instead of ↑{x}
for brevity. Analogously, we define ↓D and ↓x to denote all elements
below elements in D, resp. x.

• D is called an upper set, if D = ↑D, and a lower set, if D = ↓D.
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Remark. We obviously have ↑D =
⋃

d∈D ↑d, and analogously for ↓D. Also
note that, by reflexivity of v, we have D ⊆ ↑D and D ⊆ ↓D. The prop-
erty of being an upper (lower) set is preserved under arbitrary unions and
intersections.

Definition 1.4. A poset X is called a directed complete poset, or just dcpo, if
every directed subset D ⊆ X has a supremum (i.e. a least upper bound) in
X . We write

⊔↑ D for the supremum of a directed set D.

Remark. For brevity, we will not always explicitly state that a subset D is
directed. By writing

⊔↑ D we will mean: the subset D is directed, and its
supremum is

⊔↑ D.

Definition 1.5. An inf semilattice is a poset X in which any two elements
x, y ∈ X have an infimum, denoted by x ∧ y. Equivalently, an inf semilat-
tice is a poset in which every finite nonempty subset has an infimum.

A sup semilattice is a poset X in which any two elements x, y ∈ X have
a supremum, denoted by x ∨ y. Equivalently, a sup semilattice is a poset
in which every finite nonempty subset has a supremum.

Where it is clear whether we mean a sup or an inf semilattice, we will
just use the term semilattice.

A complete semilattice is a poset where every nonempty subset has an
infimum and every directed subset has a supremum.

Definition 1.6. For a dcpo (X,v), we define a binary relation �. The
relation x � y holds if whenever a directed supremum

⊔↑ D lies above y,
there is some element in D that is already above x:

x � y :⇐⇒ y v
⊔↑

D =⇒
(
∃d ∈ D

)
x v d.

The relation � is called way-below relation or ’order’ of approximation. We
will write ��x := {y ∈ X | y � x} and ��D := {y ∈ X | (∃d ∈ D) y � d}, and
accordingly for ��x and ��D.

Remark. Note that� is in general not an order relation, because it may lack
reflexivity.

The usual picture to help visualise the way-below relation is the fol-
lowing:
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Definition 1.7. A dcpo (resp. semilattice) X is called a continuous domain
(resp. continuous semilattice), if every element is the directed supremum of
the elements way below it:(

∀x ∈ X
)

x =
⊔↑

��x.

Remark. I define the notion of a continuous domain without saying what
a domain should be. The reason is that the word ’domain’ has many dif-
ferent meanings in different publications: sometimes it stands for dcpo,
sometimes for continuous domain (e.g. in [GHK+03]), sometimes even
more conditions are required. By using the term continuous domain, I thus
try to avoid confusion.

1.2 Topology

We assume basic knowledge of topology, such as the concept of a topo-
logical space, open and closed sets, neighbourhoods, bases and subbases
of a topology, nets, and continuous functions. The purpose of this sub-
section is not to give a primer on topology, but to refresh some concepts
that the reader may have known but forgotten, to fix the notation at cer-
tain points, and most importantly to establish the essential links between
topology and order that are commonly used in domain theory.

We begin with a characterisation of continuity that will prove useful in
Section 5:

Proposition 1.8. Let f : X → Y be a function between topological spaces. Then
the following assertions

(i) The map f is continuous.
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(ii) We have f(E) ⊆ f(E) for any subset E ⊆ X .

(iii) We have f(E) = f(E) for any subset E ⊆ X .

are equivalent.

Proof.

(i) ⇒ (ii): Assume f is continuous, let E ⊆ X be any subset. The closure
operator · is monotone and order preserving. We get

E ⊆ f−1
(
f(E)

)
whence E ⊆ f−1

(
f(E)

)
.

By continuity of f , the preimage of a closed set is closed, so we get:

f−1
(
f(E)

)
⊆ f−1

(
f(E)

)
︸ ︷︷ ︸

closed

whence f−1
(
f(E)

)
⊆ f−1

(
f(E)

)
.

These two inclusions combine to E ⊆ f−1
(
f(E)

)
, which is equivalent

to f(E) ⊆ f(E), i.e. (ii).

(ii) ⇒ (i): Assume f(E) ⊆ f(E) holds for any subset E ⊆ X . Choose a
closed subset C ⊆ Y . Set E := f−1(C). We have:

f
(
E

)
⊆ f(E) by assumption

⇐⇒ E ⊆ f−1
(
f(E)

)
by standard set theory

⇐⇒ f−1(C) ⊆ f−1(C) since E = f−1(C).

Since the closure operator is monotone, we also have the reverse in-
clusion f−1(C) ⊆ f−1(C), whence we have equality. Thus, the preim-
age of the closed set C is again closed, hence f is continuous.

(ii) ⇒ (iii): By assumption, f(E) is contained in f(E). The latter is a closed
set, hence it also contains the closure of f(E). The reverse inclusion
is clear from he monotonicity of the closure operator, hence we get
the equality f(E) = f(E).

(iii) ⇒ (ii): We have f(E) ⊆ f(E) since the closure operator is monotone.
By assumption, we have f(E) = f(E), hence we have in particu-
lar f(E) ⊆ f(E). Together, these two inclusions give f(E) ⊆ f(E),
which was to show.

2

Using this proposition, one can prove a lemma which we will need in
Section 5. We quote it from [TKP05] without explicit proof.
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Lemma 1.9. ([TKP05, Lemma 1.2]) Let X , Y and Z be topological spaces
and let

f : X × Y → Z

be separately continuous, that is, x 7→ f(x, y) is continuous on X for every y ∈ Y
and similarly for the second coordinate. Then one has

f
(
A×B

)
= f

(
A×B

)
= f

(
A×B

)
= f

(
A×B

)
.

for all subsets A ⊆ X and B ⊆ Y .

Now we can turn to the interplay of topology and order.

Definition 1.10. Let (X, O) be a topological space, let N(x) denote the
neighbourhood filter of a point x in X . Then the binary relation v on
X defined by

x v y :⇐⇒ N(x) ⊆ N(y)

is called the specialisation preorder on X .

There are many equivalent ways to define the specialisation preorder:

x v y :⇐⇒ N(x) ⊆ N(y)

⇐⇒ {x} ⊆ {y}
⇐⇒ x ∈ {y}
⇐⇒

(
∀U ∈ N(x)

)
y ∈ U.

It is easy to check that v is indeed a preorder. It turns out to be an
order if and only if the space satisfies the T0 separation axiom. We will
then call it specialisation order. The specialisation preorder is trivial—that is,
corresponds to the equality on the space—if and only if the space satisfies
the T1 separation axiom. Since we are interested in order relations, all
topological spaces considered in this paper will be supposed to be at least
T0. When talking about order on a topological space, we will always mean
the respective specialisation order.

Here is a reminder of the T0 and T1 separation axioms:

Definition 1.11. A topological space (X, O) is said to satisfy the T0 sepa-
ration axiom, if for any two distinct points in X , we can separate the first
from the second or the second from the first by an open set:

x 6= y =⇒
((
∃U ∈ N(x)

)
y 6∈ U or

(
∃U ∈ N(y)

)
x 6∈ U

)
.
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Definition 1.12. A topological space (X.O) is said to satisfy the T1 sepa-
ration axiom, if for any two distinct points in X , we can separate the first
from the second and the second from the first by an open set, respectively:

x 6= y =⇒
((
∃U ∈ N(x)

)
y 6∈ U and

(
∃U ∈ N(y)

)
x 6∈ U

)
.

It is important to notice and straightforward to verify that with respect
to the specialisation order of a topological space, all open sets are upper
sets.

Definition 1.13. A subset of a topological space is called saturated, if it is
the intersection of open sets.

Proposition 1.14. Let D be a saturated subset of a topological space (X, O). Then
D is equal to the intersection of all open sets containing it:

D =
⋂ {

U ∈ O
∣∣ D ⊆ U

}
.

Proof. Since D is saturated, there is a collection of open sets (Ui)i∈I such
that D =

⋂
i∈I Ui. Since every Ui is open and contains D, the intersection

of all open sets containing D cannot be a larger set than D. However, by
definition, the intersection of all open sets containing D must contain D,
so it cannot be a smaller set than D either. Hence, the two intersections
represent the same set. 2

Equivalently, we could characterise the saturated subsets as being ex-
actly those which are upper with respect to the specialisation order on the
space. Since open sets are upper sets, this is an easy exercise.

To any subset which is not saturated, we can form the intersection of
all open sets containing it. This will be called the saturation of that subset.
By the previous observation, the saturation of a subset D is ↑D.

Definition 1.15. On a dcpo X , the Scott topology σ(X) consists of those up-
per sets U = ↑U that cannot be reached by directed suprema from outside:(

∀D ⊆ X directed
) ⊔↑ D ∈ U =⇒

(
∃d ∈ D

)
d ∈ U.

Remark. Equivalently, the closed sets in the Scott topology are the lower
sets A = ↓A which cannot be left by directed suprema from the inside:(
∀D ⊆ A directed

) ⊔↑ D ∈ A.

Definition 1.16. A function f between dcpo’s is called Scott-continuous, if
it preserves directed suprema, i.e. if

f
( ⊔↑ D

)
=

⊔↑ f(D)

for every directed set D.
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Remark. Scott-continuous functions are in particular monotone. Further-
more, as the name suggests, it turns out that the Scott-continuous func-
tions are exactly those which are continuous with respect to the Scott topo-
logies on the dcpo’s.

Definition 1.17. On a T0 space, the Co-compact topology has as basis for the
closed sets all compact saturated sets. The Patch topology is then generated
by the original topology and the co-compact topology. That is, the patch
topology is the smallest topology containing both the original topology
and the co-compact topology.

Definition 1.18. On a T0 space X , the upper topology has as basis for the
closed sets the sets ↓x, for x ∈ X . Dually, the lower topology has as basis for
the closed sets the sets ↑x, for x ∈ X .

Remark. The nomenclature may be confusing at first. Note however that
the open sets in the upper topology are upper sets (being the complements
of closed sets generated by ↓x), and that the open sets in the lower topol-
ogy are lower sets (being the complements of closed sets generated by ↑x).

Definition 1.19. On a T0 space, the Lawson topology is generated by the
Scott topology and the lower topology . That is, the Lawson topology is
the smallest topology containing both the Scott topology and the lower
topology.

1.3 The Extended Reals

This subsection is useful in two ways: On the one hand, it provides two
examples for the notions we just introduced. And on the other hand, it
presents two spaces that we will extensively use in the rest of this paper,
as spaces of scalars, as weights we assign to open sets, and so on. These
two spaces are the nonnegative reals

R+ :=
{

r ∈ R
∣∣ r ≥ 0

}
and the extended nonnegative reals

R+ := R+ ∪ {∞}.

Order. Note that both of them contain zero as an element. Unless other-
wise stated, we equip R+ and R+ with the usual order, which is extended
in the case of R+ to take care of ∞ as the largest element. Thanks to the
added ∞ value, R+ is a dcpo, and even a continuous domain. The way
below relation on both is just the usual ’strictly less’ relation < (except for
0 � 0).



SECTION 1. THE BASICS 14

Topology. The Scott topology is given by the sets ]r,∞[ with r ≥ 0 on
R+ and by the sets ]r,∞] with r ≥ 0 on R+. A function f : X → R+ that is
continuous w.r.t. the Scott topology on the target space R+ is called lower
semicontinuous in classical analysis. The space of lower semicontinuous
functions is denoted by L(X).

Arithmetic. In Section 2, we will integrate lower semicontinuous func-
tions with respect to measure-like functions. Though we will not go to
great length and detail in this matter, we must define how to extend the
algebraic operations on the reals:

x +∞ = ∞ = ∞+ x, for x ∈ R+

x · ∞ = ∞ = ∞ · x, for x ∈ R+\{0}
0 · ∞ = 0 = ∞ · 0,

With this, addition and multiplication are Scott-continuous on R+, turn-
ing it into a continuous dcpo-cone (see below in Subsection 1.4).

1.4 Cones

When modelling the interplay of nondeterministic and probabilistic choice,
we will use certain convex combinations. Hence, the need for structures
with addition and scalar multiplication arises.

Definition 1.20. A set C endowed with two operations, that of addition
+: C × C → C and that of scalar multiplication · : R+ × C → C is called a
cone, if the following hold: There is a neutral element 0 ∈ C for addition
turning (C, +, 0) into a commutative monoid, that is, for all a, b, c ∈ C one
has:

(a + b) + c = a + (b + c)

a + b = b + a

a + 0 = a.

Moreover, scalar multiplication acts on this monoid as on a vector space:
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For a, b ∈ C and r, s ∈ R+, one has

1 · a = a

0 · a = 0

(r · s) · a = r · (s · a)

r · (a + b) = (r · a) + (r · b)
(r + s) · a = (r · a) + (s · a).

Definition 1.21. A function f : C → D between cones is called linear if, for
all a, b ∈ C and r ∈ R+, one has

f(a + b) = f(a) + f(b)

f(r · a) = r · f(a).

Definition 1.22. A cone C is an ordered cone if it is also endowed with a
partial order ≤ such that addition and scalar multiplication considered as
maps C × C → C and R+ × C → C, respectively, are order preserving in
both variables. If the order is directed complete and if addition and scalar
multiplication are Scott-continuous, then C is called a dcpo-cone. Thus, a
dcpo-cone is at the same time a cone and a dcpo. In the case that C is a
continuous domain, C is called a continuous dcpo-cone.

Remark. In literature, the word d-cone is often used instead of dcpo-cone,
for brevity. In this paper, we stick to the explicit terminology, for the sake
of clarity.

One can picture a cone abstractly in the following way:
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The minimal element is denoted by 0, an open set U is drawn as an up-
per set, the dashed border should remind us that open sets have a “soft”
border (since scalar multiplication by any fixed element is lower semicon-
tinuous). Since cones have similarities with vector spaces, we often depict
the points as vectors.

Definition 1.23. A semitopological cone is a cone C equipped with a topol-
ogy such that

• addition is separately continuous (i.e. continuous in each of the two
components separately) and

• scalar multiplication is jointly continuous (i.e. continuous as a func-
tion R+× C → C)

with respect to the given topology on C and the Scott topology on R+.
A topological cone is a cone C equipped with a topology such that

• addition is jointly continuous (i.e. as a function C × C → C) and

• scalar multiplication is jointly continuous (i.e. continuous as a func-
tion R+× C → C)

with respect to the given topology on C and the Scott topology on R+.

Remark. It is easy to verify that continuous functions preserve the spe-
cialisation order. Hence, every topological cone is an ordered cone with
respect to its specialisation order. Note that for monotonicity, it does not
matter if we check the two components of scalar multiplication separately
or jointly. The same holds true for the property of preserving directed
suprema, since with R+, one of the two factors is a continuous domain
(see [TKP05, p. 14]). For the same reason, joint continuity and separate
continuity are equivalent for scalar multiplication (a continuous domain
has a completely distributive lattice of open sets by [GHK+03, Theorem
II-1.14, p.142], hence is an α-space by [Ers97, Theorem 3], hence for a func-
tion such as scalar multiplication, separate and joint continuity agree by
[Ers97, Proposition 2]). Therefore, we will always only check for separate
continuity in the proofs.

Now that we have introduced different cone structures, which allow
for addition and scalar multiplication, it makes sense to define the follow-
ing:
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Definition 1.24. A subset U of a cone is called convex, if for each pair of
points in U , the line segment connecting them is also contained in U :(

∀x, y ∈ U
) (
∀r ∈ [0, 1]

)
r · x + (1− r) · y ∈ U.

A topological cone is called locally convex, if every point has a neigh-
bourhood basis of open convex sets.

Remark. Note that our notion of convexity is of geometrical nature and not
to be confused with order convex which means that a, b ∈ U and a ≤ x ≤ b
imply x ∈ U . However, upper sets are automatically order-convex, so
open convex sets are also order-convex w.r.t. the specialisation order.

1.5 Stably Compact Spaces

In this subsection, we define stably compact spaces, which we will use
for our constructions in Section 2 and Section 4. The class of stably com-
pact spaces subsumes most semantic domains and has many other closure
properties which are interesting for semantics (see [Keg99]). Stably com-
pact spaces are useful if one wants to stick with T0 spaces but enjoy prop-
erties that compact sets have in Hausdorff spaces. An example for a stably
compact space is R+ equipped with the Scott topology.

Definition 1.25. A subset of a topological space is called compact, if it satis-
fies the Heine-Borel property, i.e. for every open cover of the subset, there
is a finite subcover. The space itself is called locally compact if, for every
point, every neighbourhood contains a compact neighbourhood.

Remark. Since the Heine-Borel property is about open coverings and open
sets are upper sets, a set is compact if and only if its saturation is. Thus, we
will often consider compact saturated sets instead of just compact ones.

Definition 1.26. Given a collection F ⊆ P(X) of subsets of a topological
space (X, O), consider the following assertions:

(F0) F 6= ∅

(F1) ∅ 6∈ F

(F2) F1, F2 ∈ F =⇒
(
∃F3 ∈ F

)
F3 ⊆ F1 ∩ F2

(F3) F ∈ F and F ⊆ G ⊆ X =⇒ G ∈ F.

Then F is called a filter base, if it satisfies (F0)–(F2). If, in addition, it
satisfies (F3), then it is called a filter.
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Remark. Note that (F2) and (F3) imply that a filter is closed under finite
intersection.

Definition 1.27. A topological space is called coherent, if the intersection of
any two compact saturated subsets is again compact.

Definition 1.28. We call a topological space (X, O) well-filtered, if the fol-
lowing holds: For any filter base F of compact saturated sets, if

⋂
F is

contained in an open set U , then there is F ∈ F such that F is already
contained in U .

Definition 1.29. A topological space is called stably compact, if it is com-
pact, locally compact, coherent and well-filtered.

Remark. Stably compact spaces are often defined to be sober instead of well-
filtered. A space X is sober, if for every irreducible closed set C there is a
unique x ∈ X with {x} = C. A nonempty set C is irreducible, if C ⊆ D∪E
implies C ⊆ D or C ⊆ E.

The presence of local compactness makes sober and well-filtered equiv-
alent properties (see [GHK+03, Theorem II-1.21, p.147]), so our definition
is just a reformulation of the standard one.

1.6 Categories

We assume knowledge of the basic concepts in category theory, such as
categories, morphisms and functors. We briefly recall the definition of a
natural transformation and a monad, that we will need in Section 2.

Definition 1.30. Let C, D be categories and let F, G : C → D be two func-
tors. A natural transformation τ : F

.→ G assigns to every object A in C a
morphism τA : F (A) → G(A), such that for every morphism f : A → B in
C, the following diagram commutes:

A F (A)
τA - G(A)

B

f

?
F (B)

F (f)

?

τB

- G(B)

G(f)

?

So natural transformations map functors to functors. The composition of
two natural transformations τ and σ is given by (τ ◦ σ)A = τA ◦ σA, for
every object A.
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Note that the collection of functors between two categories is again a
category, with the natural transformations as morphisms.

Definition 1.31. A monad on a category C is given by a triple (T, η, µ) with
T : C → C as well as η : IdC → T and µ : T 2 → T such that the following
equalities hold:

µ ◦ ηT = IdT = µ ◦ Tη and µ ◦ Tµ = µ ◦ µT .

That is, the following diagrams commute:

T
ηT - T 2 �

Tη
T T 3 Tµ

- T 2

T

µ

?==
==

==
==

==
==

==
=

===============
T 2

µT

?

µ
- T

µ

?

Then η and µ are called the unit and the multiplication of the monad, re-
spectively.

Definition 1.32. An algebra of a monad (T, η, µ) on a category C is given
by an object A in C together with a morphism α : T (A) → A such that the
following diagrams commute:

A
ηA - T (A) T 3(A)

T (α)
- T 2(A)

A

α

?

===============
T 2(A)

µT (A)

?

α
- T (A)

α

?
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2 The Extended Probabilistic Powerdomain V(X)

We want to give the denotational semantics of programs using probabilis-
tic choice. More concretely, we want to allow the program to choose be-
tween a finite number of program sections, where each choice has a given
probability to occur. Since finite choice can be obtained by finite use of
binary choice, this is equivalent to having an instruction like this:

P1 ⊕p P2

The intended meaning of such a construct is: The program P1 is executed
with probability p, and the program P2 is executed with probability 1− p,
where 0 < p < 1 is a real number.

If a program is allowed to make such choices, the outcome of the pro-
gram may be different for different executions. The behaviour of the pro-
gram is then no longer uniquely determined, but rather given by some
distribution on the state space.

This approach has been studied since the early 1980s first by Saheb-
Djahromi, then by Plotkin and Jones, who have established the notion of a
probabilistic powerdomain ([Sah80, Plo82, JP89, Jon90]), which has later been
extended to the extended probabilistic powerdomain. See [TKP05, Introduc-
tion] for a brief overview of these approaches. These constructions are
spaces of valuations, which are the topological flavour of distributions.

In this section, we will generalise parts of [TKP05, Section 2.2] on the
extended probabilistic powerdomain by considering stably compact spaces
instead of continuous domains as state spaces.

2.1 The Definition

Definition 2.1. On a topological space (X, O), a function µ : O → R+ that
assigns to every open set a nonnegative extended real number is called a
valuation, if for all U, V ∈ O it satisfies the following conditions:

µ(∅) = 0 (strictness)
U ⊆ V ⇒ µ(U) ≤ µ(V ) (monotonicity)

µ(U) + µ(V ) = µ(U ∪ V ) + µ(U ∩ V ) (modularity)

If, in addition, it preserves directed suprema, i.e. if for any directed family
of open sets (Ui)i∈I it satisfies

µ

( ⋃↑

i∈I

Ui

)
=

⊔↑

i∈I

µ
(
Ui

)
,

then it is called a continuous valuation.
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Remark. Since the collection of open sets on a topological space is ordered
by inclusion, we can indeed talk about a directed family of open sets.

Examples of valuations include point valuations, defined by

ηx : O → R+ with ηx(U) :=

{
1 if x ∈ U

0 if x 6∈ U

and simple valuations, which are finite linear combinations of point valua-
tions with nonnegative real coefficients:

n∑
i=1

riηxi
.

The centre of interest of this section is the space of all continuous valu-
ations of some topological space:

Definition 2.2. The collection of all continuous valuations on a topological
space X is called the extended probabilistic powerdomain on X and denoted
by V(X).

2.2 The Topological Cone V(X)

We will explore V(X) and equip it with a richer structure. First, we define
a pointwise addition and scalar multiplication by setting

(µ + ν)(U) := µ(U) + ν(U) and (r · µ)(U) := r · µ(U).

Furthermore, we define an order on V(X) by setting

µ ≤ ν :⇐⇒ µ(U) ≤ ν(U) for all open sets U.

This turns V(X) into an ordered cone.
Since valuations can be considered to be a topological variant of mea-

sures or probability distributions, it is natural to ask whether they can
be used for integration. Indeed, for any topological space X , the inte-
gral of a lower semicontinuous function f : X → R+ with respect to a con-
tinuous valuation µ can be defined. If we define the auxiliary function
fµ : R+ → R+ by

fµ(r) := µ
(
f−1

(
]r, +∞]

))
,

then we can define the integral via an improper Riemann integral:∫
f dµ :=

∫ ∞

0

fµ(r) dr.
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It turns out that the integral is linear in its two components, which sug-
gests the scalar product notation 〈µ, f〉 :=

∫
f dµ. Details on the integral

can be found in [Tix95, Section 4].

Definition 2.3. Consider the extended probabilistic powerdomain V(X)
over a topological space X . We define the following topologies on V(X):

• The weak topology is the coarsest topology that renders continuous
the maps µ 7→ µ(U) : V(X) → R+ for all open subsets U .

• The product topology is the coarsest topology that renders continuous
the maps 〈·, f〉 : V(X) → R+ for all lower semicontinuous functions
f ∈ L(X).

It turns out that these two topologies agree, and that with them, V(X)
is a topological cone (see [Tix95, Lemma 4.9, Satz 4.6]). The space V(X)
with the weak topology has even more useful properties: If we start with
a stably compact space X , then V(X) with the weak topology is stably
compact, too (see [TKP05, Theorem 2.10(c)]). Furthermore, V(X) is always
locally convex:

Proposition 2.4. If X is a topological space, then V(X) with the weak topology
is locally convex.

Proof. The weak topology is equal to the product topology on V(X),
which is the coarsest topology such that the maps 〈·, f〉 : V(X) → R+ are
continuous for all lower semicontinuous functions f : X → R+. The sets
〈·, f〉−1(]r, +∞]) are a basis of this topology. Since 〈·, f〉 is linear and the
open sets ]r, +∞] in R+ are convex, so are the basic open sets of the prod-
uct topology. Now, this is just the definition of being locally convex. 2

2.3 The Monad (V, η, µ)

In this section, we will consider the category StCp of stably compact
spaces and continuous maps. We begin by showing that V can be extended
to a functor. Indeed, given a continuous function f : X → Y between sta-
bly compact spaces, we can define

V(f) : V(X) → V(Y ) by µ 7→ µ ◦ f−1,

where f−1 denotes the preimage of f . Then we can show that V is a functor
from the category StCp of stably compact spaces into itself (and even into
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the category StCpCvCone of stably compact locally convex topological
cones, by the above):

Proposition 2.5. The extended probabilistic powerdomain operator V is an endo-
functor of the category StCp.

Proof. We have already seen that V maps the objects of StCp to objects
of StCp. What we still have to check is that it maps the morphisms right.
So let f : X → Y be a continuous function, hence a morphism in StCp. It
is straightforward to verify that V(f) is well-defined and linear, using that
the preimage f−1 preserves arbitrary union and finite intersection, as well
as the pointwise definition of of + and · on V(X). What remains to show
is that V(f) is continuous w.r.t the weak topologies on V(X) and V(Y ),
respectively.

To this end, let V =
{

ν ∈ V(Y )
∣∣ ν(U) > r

}
be a subbasic open set in

V(Y ). Then we have

V(f)−1(V ) =
{

µ ∈ V(X)
∣∣ V(f)(µ) ∈ V

}
=

{
µ ∈ V(X)

∣∣ µ ◦ f−1 ∈ V
}

=
{

µ ∈ V(X)
∣∣ (

µ ◦ f−1
)
(U) > r

}
=

{
µ ∈ V(X)

∣∣ µ
(
f−1(U)

)
> r

}
,

which is basic open in V(X), since f is continuous, and hence f−1(U) is
open. 2

Remark. The images of both objects and morphisms under V lie in the cat-
egory StCpCone of stably compact locally convex topological cones with
linear continuous functions.

Knowing that V is a functor, we can define suitable η and µ such that
(V, η, µ) becomes a monad in the category StCp of stably compact spaces.
Why is this interesting? Well, if we can determine the algebras of this
monad, then we might derive a universal property for the extended prob-
abilistic powerdomain. More precisely: Suppose that to any object C in
StCpCvCone there is a unique morphism γ turning (C, γ) into an algebra
of this monad. Then for a given object C, we would have the following
commuting diagram

C V(C)

C

.................................................................................................................................................... ............
ηC

............................................................................................................................................................................ ...........
.id

............................................................
...
.........
...

γ
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and for any other object D and any morphism f : C → D, we would have
a unique morphism f̂ : V(C) → D, given by f ◦ γ:

C V(C)

C

D

.................................................................................................................................................... ............
ηC

.................................................................................................................................................................................................................................................. .........
...

f ............................................................
...
.........
...

f

............................................................
...
.........
...

γ
.............
.............
.............
.............
.............
.............
.........
...
.........
...

f̂

This universal property is important for our denotational semantics:
Suppose we have probabilistic but no non-deterministic features in our
programming language. A program P on the state space X is interpreted
by a function JP K : X → V(X). Now, for two such programs P1 and P2,
we can form the sequential composition P1 ; P2, but we cannot interpret it
by concatenating the interpreting functions for P1 and P2—for simple type
checking reasons. But if we have the universal property described above,
we can find a unique extension ĴP2K to JP2K and form ĴP2K◦JP1K to interpret
P1 ; P2.

As we will see, we can find some suitable extension function with-
out knowing the algebras of our monad, just using the monad proper-
ties. So let us determine the monad of StCp involving V. This for, let
η : IdStCp

.→ V be defined by ηC : C → V(C) with x 7→ ηx for every C in
StCp. In order to define µ : V2 .→ V, first consider for every open set U the
evaluation map

εU : V(C) → R+ with ξ 7→ ξ(U).

All such evaluation maps are continuous w.r.t. the weak topology on V(C),
by definition of the latter. Now, for every ν ∈ V2(C), define a valuation
µC(ν) : O(C) → R+ on C by setting

µC(ν)(U) :=

∫
ξ∈V(C)

ξ(U) dν =

∫
ξ∈V(C)

εU(ξ) dν.

Now, let us verify that these are indeed natural transformations, and
exhibit some of their properties:

Proposition 2.6. Let C be a stably compact space. Then we have:

(a) The map ηC is injective and continuous, even an embedding.

(b) The map η : IdStCp
.→ V is a natural transformation.
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(c) For all ν ∈ V2(C), the map µC(ν) is a continuous valuation on C.

(d) The map µ : V2 .→ V is a natural transformation.

(e) The map µC : V2(C) → V(C) is continuous w.r.t. the weak topology on the
respective spaces.

Proof. (a): Since C is T0, the point valuations ηx and ηy must differ at some
open set, if x 6= y. Hence, ηC is injective. Now, for continuity let U ⊆ V(C)
be a subbasic open set, i.e. U =

{
ξ ∈ V(C)

∣∣ ξ(V ) > r
}

for some open set
V ⊆ C. We have

η−1
C (U) =

{
x ∈ C

∣∣ ηC(x) ∈ U
}

=
{

x ∈ C
∣∣ ηx ∈ U

}
=

{
x ∈ C

∣∣ ηx(V ) > r
}
,

which is empty for r > 1 and equal to V if r ≤ 1. In both cases, the
preimage is an open set, hence the map is continuous. To check that ηC is
an embedding, we have to verify that the topology on C is the “trace” of
the weak topology on V(C). That is, we have to show that for U ⊆ V(C)
which is subbasic open, the set {x ∈ C | ηx ∈ U} is open. This is given by
the continuity of ηC which we have just shown. For r = 0, this gives us
a set U = {ξ ∈ V(C) | ξ(V ) > 0} with the property ηx(V ) = ηx(C) ∩ U for
every x ∈ C and every open set V ⊆ C, hence we are done.

(b): Let f : C → D be a morphism in StCp. For x ∈ C and U open in
D, we have

(ηD ◦ f) (x)(U) = ηf(x)(U)

= ηx

(
f−1(U)

)
=

(
ηx ◦ f−1

)
(U)

= V(f)(ηx)(U)

= (V(f) ◦ ηD) (U).

Hence, we have ηD ◦ f = V(f) ◦ ηC and η is a natural transformation.
(c) and (d): Here, the very same proof for the case of continuous do-

mains instead of stably compact spaces can be taken over from [Kir93,
Lemma 6.3, p.52], since Kirch uses no feature specific to continuous do-
mains in his proof.

(e): Let U ⊆ V(C) be subbasic open, i.e. U =
{

ξ ∈ V(C)
∣∣ ξ(V ) > r

}
for
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V ⊆ C open. Then we calculate

µ−1
C (U) =

{
ν ∈ V2(C)

∣∣ µC(ν) ∈ U
}

=
{

ν ∈ V2(C)
∣∣ µC(ν)(V ) > r

}
=

{
ν ∈ V2(C)

∣∣ ∫
ξ∈V(C)

ξ(U) dν > r
}

=
{

ν ∈ V2(C)
∣∣ ∫

ξ∈V(C)

εU(ξ) dν > r
}
,

which is subbasic open since the εU are continuous by definition of the
weak topology. 2

Now we have everything ready to show the monad property:

Theorem 2.7. The triple (V, η, µ) is a monad in the category StCp of stably
compact spaces.

Proof. The exact same verification from [Kir93, Satz 6.1, p.54], stated for
the case of continuous dcpo-cones, goes through in our setting. 2

Although a lot of the investigations of continuous dcpo-cones in [Kir93]
apply to our new situation, in our case the algebras of the monad (V, η, µ)
remain unknown so far. But the monad properties are sufficient to prove
the extension property we need for sequential composition of programs:
For a given continuous function f : C → D between stably compact spaces,
define the map f̂ : V(C) → V(D) by setting

f̂ := µD ◦ V(f)

By the monad properties, we have µ◦Vη = IdStCp, i.e. µD◦V(f)◦ηC = f ,
hence the following diagram commutes and we have found the sought-
after extension f̂ to f :

C V(C)

V(D) VV(D)

.................................................................................................................................................... ............
ηC

........................................................................................................................................................................................................................................... .........
...

f

.............

.............

.............

.............

.............

.............

.........
...
.........
...

f̂

....................................................................................................................................... µD

.................................................................................................................................................................................................................................... .........
...

V(f)

Note that we have shown a property which is a bit more general than
what we need, since in the concrete case of program composition, we have
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C = D. The extension f̂ has a certain uniqueness property which we do
not need to discuss in view of our applications.

To finish this section, here is an interesting special case of our property:

Proposition 2.8. For every stably compact space X , we have the following ex-
tension property:

For every lower semicontinuous function f : X → R+, there is a continuous
linear function f̂ : V(X) → R+ such that f̂ ◦ ηX = f , i.e. such that the following
diagram commutes:

X V(X)

R+

.......................................................................................... ........................
............ ηX

..................................................................................................................................................................... .........
...

f

..............................................................................................................
...
.........
...

f̂

This function is given by f̂(µ) :=
∫

f dµ.

Proof. By a straightforward calculation, we find
∫

f dηx = f(x). Hence(
f̂ ◦ ηX

)
(x) = f̂(ηx) =

∫
f dηx = f(x),

so the diagram commutes. By the definition of the weak topology, the
function f̂ is continuous. Finally, f̂ = 〈·, f〉 is linear for every topological
space X (see [Tix95, Satz 4.4]). 2
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3 Hahn-Banach Type Theorems

In this section, we will prove separation theorems for locally convex topo-
logical cones, that we will need in Section 4. Most of it has already been
proved for the case of continuous dcpo-cones in [TKP05]. Klaus Keimel
and Gordon Plotkin had suggested generalisations to topological cones. It
was my task to write down the proofs for these generalisations. I have ex-
amined the existing proofs to verify which assumptions are actually used,
and how far we can generalise them. I had to make only minor changes
there. The proofs of Lemma 3.7 and Lemma 3.9 are new, as well as the
diagrams and the remark after Corollary 3.11.

3.1 A Sandwich Theorem

We start with a version of the Sandwich Theorem for topological cones.
For its proof we will take advantage of existing results for ordered cones.
First, we introduce sublinear and superlinear functionals:

Definition 3.1. Let C be a cone. A map p : C → R+ is called sublinear if it
is homogeneous and subadditive, that is, if

p(r · a) = r · p(a) (homogeneity)
p(a + b) ≤ p(a) + p(b) (subadditivity)

for all a, b ∈ C and all r ∈ R+.
A map q : C → R+ is called superlinear if it is homogeneous and super-

additive, that is, if

q(r · a) = r · q(a) (homogeneity)
q(a + b) ≥ q(a) + q(b) (superadditivity)

for all a, b ∈ C and all r ∈ R+.

We quote a sandwich theorem due to W. Roth (see [Rot00], Theorem 2.6)
for ordered cones:

Theorem 3.2. Let C be a topological cone. Let p : C → R+ be a sublinear and
q : C → R+ a superlinear functional such that a ≤ b ⇒ q(a) ≤ p(b). (The latter
is satisfied if q ≤ p and one of p, q is order preserving.) Then there exists an
order-preserving linear functional Λ: C → R+ such that q ≤ Λ ≤ p.

Indeed, among the order preserving sublinear functionals f : C → R+ such
that q ≤ f ≤ p there are minimal ones, and each of those is linear.
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Proof. We proceed in four steps.
Step 1: Without loss of generality we can assume that both p and q

are order-preserving functions. Simply set p′(a) := inf{p(B) | a ≤ b} and
q′(a) := sup{q(b) | b ≤ a}. It is easy to see that p′ is sublinear, q′ superlinear,
both are order preserving and that the estimate q′(a) ≤ p′(a) holds true for
all a ∈ C.

Step 2: In the set of all order preserving sublinear functionals f : C → R+

such that q ≤ f ≤ p we can choose a maximal chain F by the Hausdorff
maximality principle. The pointwise defined infimum

p(x) = inf{f(x) | f ∈ F}

is again order preserving and sublinear, hence minimal in the set of all
order preserving sublinear functionals f : C → R+ such that q ≤ f ≤ p.
In the same way, one finds an order preserving superlinear functional q
which is maximal in the set of all order preserving superlinear functionals
g : C → R+ such that q ≤ g ≤ p.

Step 3: Assuming that p is sublinear and order-preserving, the set

C ′ := {a ∈ C | p(a) < +∞}

is again a cone and a lower set in C. If µ is an order preserving linear func-
tional below p on C ′, then it can be extended to a linear order preserving
functional on all of C by setting it equal to +∞ outside C ′. For the task at
hand we can therefore assume that both p and q take values below +∞.

Step 4: We claim that p = q, which implies that Λ := p = q is linear. For
this, choose any fixed a ∈ C and let

q′(x) := sup
{

q(c)− p(b)
∣∣ b, c ∈ C, c ≤ x + b

}
and

p′(x) := inf
{

p(d) + λq′(a)
∣∣ λ ∈ R+, d ∈ C, x ≤ d + λa

}
.

Setting c = x and b = 0 in the first definition we see that q ≤ q′, likewise
by setting d = x and λ = 0 in the second we have p′ ≤ p. A simple
calculation shows that superlinearity, resp. sublinearity, are preserved. By
the minimality and maximality property of p, resp. q, we deduce p′ = p
and q′ = q. By setting x = a as well as d = 0 and λ = 1 in the second
definition we see that p′(a) ≤ q′(a) and this implies p(a) = q(a) by the
previous inequalities. As this is true for all a ∈ C, we conclude p = q. 2

We are now heading towards a topological version of this Sandwich
Theorem.
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The following is well-known:

Lemma 3.3. If g : X → R+ is an arbitrary function, then there is a greatest lower
semicontinuous function ǧ : X → R+ below g called the lower semicontinuous
envelope of g. It is given by

ǧ(x) = lim inf g
(
N(x)

)
= sup

{
r ∈ R

∣∣ (
∃U ∈ N(x)

)(
∀u ∈ U

)
r < g(u)

}
We may, in particular, form the lower semicontinuous envelope for ev-

ery function g : C → R+, when C is a cone with a topology τ . The follow-
ing properties are crucial. The lemma and its proof are due to Gordon
Plotkin.

Lemma 3.4. (Plotkin) Let C be a cone with a topology τ and let g : C → R+ be
any function.

(a) If g is homogeneous and if x 7→ rx : C → C is τ -continuous for every r > 0,
then ǧ is homogeneous, too.

(b) If g is subadditive and if addition is continuous as a map from (C×C, τ×τ)
to (C, τ), then ǧ is subadditive, too.

(c) If g is superadditive and order preserving and if addition is almost τ -open,
that is, if ↑(U + V ) is τ -open for any two τ -open sets U and V , then ǧ is
superadditive, too.

(c’) If g is superadditive and if addition is τ -open, that is, if U +V is τ -open for
any two τ -open sets U and V , then ǧ is superadditive, too.

Proof. (a) Clearly ǧ(sx) = sǧ(x) for s = 0. For s > 0, we note that U is an
open neighbourhood of x if and only if sU is an open neighbourhood of
sx. Thus, r < ǧ(x) iff r < g(u) for all u in some open neighbourhood U of
x iff sr < sg(u) = g(su) for all u in some open neighbourhood U of x iff
sr < g(v) for all v in some open neighbourhood V of sx iff sr < ǧ(sx).

(b) Suppose that g is subadditive, and take r < ǧ(x + y). Then there
is a τ -open W containing x + y such that g(w) > r for any w in W . Since
addition is continuous on C, there are τ -open neighbourhoods U , V of x
and y, respectively, such that U + V is a subset of W . So we have for any
u ∈ U and any v ∈ V that r < g(u + v) ≤ g(u) + g(v), by the subadditivity
of g. Now, set a = inf{g(u) | u ∈ U} and b = inf{g(v) | v ∈ V }. Then
a + b ≥ r, ǧ(x) ≥ a and ǧ(y) ≥ b, showing that r ≤ ǧ(x) + ǧ(y).

(c) Take r < ǧ(x) + ǧ(y). Then there are a and b such that r < a + b,
a < ǧ(x) and b < ǧ(y). So there are τ -open neighbourhoods U , V of x and
y, respectively, such that g(u) > a for all u ∈ U and g(v) > b for all v ∈ V .
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By hypothesis, ↑(U + V ) is τ -open, too, hence a τ -open neighbourhood of
x + y. For all w ∈ ↑(U + V ) there are u ∈ U , v ∈ V such that w ≥ u + v,
whence g(w) ≥ g(u + v) ≥ g(u) + g(v) > a + b by the monotonicity and
superadditivity of g. So we get that ǧ(x + y) > r.

(c’) is proved in the same way as (c). 2

Theorem 3.5. (Sandwich Theorem) Let C be a topological cone, let p : C → R+

be sublinear and let q : C → R+ be superlinear and lower semicontinuous with
q ≤ p. Then there is a lower semicontinuous linear functional Λ: C → R+ such
that q ≤ Λ ≤ p.

Proof. We can apply Roth’s Sandwich Theorem 3.2 to our situation with
the trivial order on C. As q ≤ p, the hypotheses of Roth’s sandwich the-
orem are indeed satisfied. Thus, there is a linear functional Λ such that
q ≤ Λ ≤ p. Moreover, Λ can be chosen to be minimal in the set X of all
sublinear maps s : C → R+ with q ≤ s ≤ p. We now show that Λ is lower
semicontinuous.

Lemma 3.4(a),(b) implies that Λ̌ is sublinear. As q ≤ Λ and as q is lower
semicontinuous by hypothesis, we also have q ≤ Λ̌ ≤ p. The minimality
property of Λ now implies Λ = Λ̌, that is Λ is lower semicontinuous, too.

2

3.2 A Separation Theorem

To prove the Separation Theorem we need the following:

Lemma 3.6. If B is an open subset of a topological cone C then r ·B is also open
for all r > 0.

Proof. This is an immediate consequence of the fact that scalar multipli-
cation by a real number r > 0 is an order-isomorphism and a homeomor-
phism, respectively. 2

Lemma 3.7. Let M be a convex subset of a semitopological cone C. Then the
closure M is convex.

Proof. Let M ⊆ C be convex. Let m ∈ M , and let r, s > 0 be positive
scalars. We apply Proposition 1.8 to the map x 7→ r · m + s · x, which is
continuous by separate continuity of addition and scalar multiplication on
C; in a second step, we use convexity of M to get

r ·m + s ·M ⊆ r ·m + s ·M ⊆ M.
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Since we can do this for arbitrary m ∈ M , this gives r ·M +s ·M ⊆ M (F).
Now we take m ∈ M . Again, by Proposition 1.8 we obtain

r ·M + s ·m ⊆ r ·M + s ·m.

Since m ∈ M , we can apply (F) to get

r ·M + s ·m ⊆ M = M.

Again, since m ∈ M was arbitrary, this gives r ·M + s ·M ⊆ M . We have
in particular: For any two elements m, n ∈ M and any scalar r ∈ [0, 1], we
have that r ·m + (1− r) · n ∈ M . Hence M is convex. 2

Definition 3.8. Let U be any subset of a topological cone C. The functional
FU : C → R+ defined by

FU(x) = sup
{

r > 0
∣∣ x ∈ rU

}
= inf

{
s > 0

∣∣ sx ∈ U
}

is called the Minkowski functional of U .

Remark. For convenience, let us write rx := FU(x). It is useful to observe
that the Minkowski functional can be written as

rx = FU(x) =
1

inf
{

r > 0
∣∣ rx ∈ U

} .

We will use this notation in parts (b) and (c) of the following proof of
Lemma 3.9. To get a geometrical intuition for the Minkowski functional,
consider the following picture:
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•

The Minkowski functional FU(x) tells us, how much we can scale U
without leaving the point x behind. The (multiplicative) inverse 1

FU (x)
= 1

rx

tells us, how far we must stretch x at least to reach the set U .
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Lemma 3.9. Let U be an open subset of a topological cone C. Then:

(a) FU is continuous and homogeneous.

(b) If U is convex, then FU is superlinear.

(c) If C \ U is convex, then FU is sublinear.

Proof.

(a) Let ]s, +∞] ⊆ R+ be open. We have

x ∈ F−1
U (]s, +∞]) ⇐⇒ FU(x) > s

⇐⇒ ∃r > sx ∈ rU

⇐⇒ x ∈
⋃
r>s

rU

which is open since the rU are open by Lemma 3.6. Hence the preim-
age is open and FU is continuous for any open set U ⊆ C.

Furthermore, we obviously have

FU(sx) = sup
{

r > 0
∣∣ sx ∈ rU

}
= r · sup

{
r > 0

∣∣ x ∈ rU
}

= s · FU(x),

so FU is also homogeneous.

(b) Suppose U is convex. Let x, y ∈ C. The points

1

FU(x)
x =

1

rx

x and
1

FU(y)
y =

1

ry

y

lie “on the boundary” of U . That is, if we scale them by any factor
greater than 1, they will lie inside U . Hence, by convexity of U , every
point on the line segment connecting the two points is either inside
U , or has the same property of “lying on the boundary”. Since we
are interested in a scaled version of x + y with exactly this property,
lying inside U or on the boundary makes no difference to us here.
Thus, assume w.l.o.g. that the line segment between 1

rx
x and 1

ry
y is

contained in U . Let µ be the amount by which we have to scale x + y
in order to lie on this line segment. Then we have

λ

(
1

rx

x

)
+ (1− λ)

(
1

ry

y

)
= µ(x + y),
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from which we can conclude λ
rx

= (1−λ)
ry

, whence µ = λ
rx

= 1
rx+ry

. So
1

rx+ry
is an upper bound for 1

rx+y
= inf

{
r > 0

∣∣ r(x + y) ∈ U
}

, hence

1

rx+y

≤ 1

rx + ry

, whence rx+y ≥ rx + ry.

If we rewrite this abbreviation in its original form, we obtain

FU(x + y) ≥ FU(x) + FU(y),

which means that FU is superlinear.

(c) If C\U is convex, we can apply the exact same procedure as in (b)
to show that 1

rx+ry
is a lower bound for 1

rx+y
, hence rx+y ≤ rx + ry,

whence FU(x + y) ≤ FU(x) + FU(y), so FU is sublinear.

2

Theorem 3.10. (Separation Theorem) Let C be a topological cone with two
disjoint nonempty convex subsets A and U , where U is open. Then there exists a
lower semicontinuous linear functional Λ: C → R+ such that Λ(a) ≤ 1 < Λ(b)
for all a ∈ A and all b ∈ U .

Proof. Without loss of generality we can assume A to be closed, since A is
also nonempty convex and disjoint from U .

Let q be the Minkowski functional of U and p the Minkowski functional
of V = C \ A. As U ⊆ V , we have q ≤ p. By Lemma 3.9, q is superlinear, p
is sublinear and both are continuous.

Now, we apply the Sandwich Theorem to get a linear lower semi-
continuous function Λ with q ≤ Λ ≤ p. For all a ∈ A and b ∈ U , this
yields

Λ(a) ≤ p(a) ≤ 1 < q(b) ≤ Λ(b),

since a ∈ 1 ·A implies p(a) ≤ 1 and U open, b =
⊔↑

r<1 r · b imply that there
exist a non-negative real number r < 1 with r · b ∈ U . Thus b ∈ 1

r
U and

1
r

> 1, hence, q(b) > 1. 2

The Separation Theorem, which we just proved, implies that the lower
semi-continuous linear functionals separate the points of a locally convex
topological cone. More generally:

Corollary 3.11. Let C be a locally convex topological cone and a 6≥ b elements
of C. Then a linear lower semi-continuous function Λ: C → R+ exists such that
Λ(a) < Λ(b).

Proof. There is a convex open neighbourhood U of b such that a 6∈ U .
Using this U and A := {a}, we can apply Theorem 3.10 to get the desired
function Λ. 2
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Remark. Under the conditions of this corollary, we get an open set separat-
ing b from a in the following way:

•
Λ(a)

•
Λ(b)

•r

]


By Corollary 3.11, to any two points a, b ∈ C with a 6≥ b, there is a linear
lower semicontinuous function Λ: C → R+ with Λ(a) < Λ(b). Take r ∈ R
with Λ(a) < r < Λ(b). Then Λ−1(]r, +∞]) is convex and open by linearity
and continuity of Λ, and it contains b, but not a.

3.3 A Strict Separation Theorem

We begin by considering the cone Rn

+ with the Scott topology. Define the
additive norm || · ||1 : Rn

+ → R+ by:

||x ||1 :=
n∑

i=1

xi

and the sup norm by:
||x ||∞ := maxi=1,...,nxi.

The additive norm is a linear continuous functional; the sup norm is sub-
linear and continuous, but not linear.

We say that x is bounded if ||x ||∞ < +∞. We have x >> sx, for any
bounded x and any s with 0 ≤ s < 1. (This is not true for unbounded
elements.) We set 1 = (1, . . . , 1) ∈ Rn

+.

Lemma 3.12. Let K be a convex Scott-compact subset of Rn

+ disjoint from ↓1.
Then there is a linear continuous functional h and an a > 1 such that h(1) ≤ 1
and h(x) > a for all x in K.

Proof. As x ≤ 1 iff ||x ||∞ ≤ 1, we have ||x ||∞ > 1, for any x in K. But
||K ||∞ is compact as the sup norm is continuous. So we get a b such that
+∞ > b > 1 and ||x ||∞ > b for all x in K. Now, setting s = 1

b
, we get

0 < s < 1, and, for all x in K, sx 6≤ 1. Now set

V = {y | y >> sx, for some x in K} .

Clearly V is open; it is convex as K is; and it is disjoint from ↓1 because
sx 6≤ 1 for any x in K. So, by the Separation Theorem 3.10, there is a linear
continuous functional f such that f(x) > 1 for x in V and f(1) ≤ 1.
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The open set V contains all bounded elements of K; however it may
not contain all its unbounded elements. The latter can be taken care of
using the additive norm, and we combine that linearly with f to obtain h.
Choose t and r such that s < t < r < 1, take a = r

t
> 1, and set:

h(x) = rf(x) + (1− r)
||x ||1

n
.

Clearly h(1) ≤ 1. We claim that h(x) > a holds for any x in K. For x
unbounded this is immediate, since then we have ||x ||1 = +∞. For x
bounded we have tx >> sx since t > s and so tx ∈ V , implying f(x) > 1

t
.

This yields that h(x) ≥ rf(x) > a. 2

Now we are ready to prove a strict separation theorem:

Theorem 3.13. (Strict Separation Theorem) Let C be a locally convex topo-
logical cone. Suppose that K is a compact convex set and that A is a nonempty
closed convex set disjoint from K. Then there is a lower semicontinuous linear
functional f and an a in R+ such that f(x) > a > 1 ≥ f(y) for all x in K and
all y in A.

Proof. Consider an element v of K. As v is not in A, by local convexity
there is a convex open set U containing v and disjoint from A. So, by the
Separation Theorem 3.10, there is a lower semicontinuous linear functional
g such that g(v) > 1 and for all y in A, we have g(y) ≤ 1. So

Ug := {x | g(x) > 1}

is an open set containing v and disjoint from A. As K is compact we can
cover it by a finite collection Ug1 , . . . , Ugn of such open sets. Now define
g : C → R n by:

g(x) = (g1(x), . . . , gn(x)) .

Then g is linear and lower semicontinuous. So we have that g(A) ⊂ ↓1 and
that g(K) is compact, convex, and disjoint from ↓1 (any x in K is in some
Ugi

, so gi(x) > 1, and we have that g(x) 6≤ 1).
Lemma 3.12 now yields a lower semicontinuous linear functional h and

an a > 1 such that h(1) ≤ 1 and h(x) > a for all x ∈ g(K). Choosing
f = h ◦ g, we obtain the required functional f and constant a. 2

Remark. The statement of Theorem 3.13 can be illustrated by the following
picture:
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Corollary 3.14. Let C be a locally convex topological cone. Suppose that K is a
compact convex set and that A is a nonempty closed convex set disjoint from K.
Then they can be separated by a convex open set; that is, there is a convex open
set V including K and disjoint from A.

Proof. Take V := {x ∈ C | f(x) > a}, with f and a as given by Theo-
rem 3.13. 2



SECTION 4. THE CONVEX SMYTH POWERCONE S(C) 38

4 The Convex Smyth Powercone S(C)

The other phenomenon besides probabilistic choice that we want to model
in a program is finite nondeterministic choice. As before, we can restrict
ourselves to binary nondeterministic choice

P1 t P2

The difference to probabilistic choice is that we do not know how prob-
able each of the possible choices is, and that this probability can change
from one execution of the program to the next. The outcome of the pro-
gram can be modelled by a set of possible outcomes. There are different
approaches as to which subsets of the state space to allow, so there are
different powerdomain constructions (the name indicates that we consider
some subset of the power set of the state space). Some of the most promi-
nent constructions—which have been elaborated for the case that the state
space is a continuous domain—include

• the convex lower powercone or convex Hoare powercone,

• the convex upper powercone or convex Smyth powercone and

• the biconvex powercone or convex Plotkin powercone.

Whilst the convex Hoare powercone is suitable for proving partial correct-
ness of a program, the convex Smyth powercone provides total correct-
ness, and the convex Plotkin powercone combines both approaches. For
details, see [TKP05, Chapter 4]. In this section, we will generalise as much
as possible from the results of [TKP05] for the convex Smyth powercone
to the case of stably compact state spaces.

4.1 Definition and Basic Properties

Definition 4.1. For a topological cone C, consider

S(C) :=
{

P ⊆ C
∣∣∣ P nonempty, convex, compact, saturated

}
ordered by reverse inclusion ⊇ and equipped with the following opera-
tions of addition and scalar multiplication:

+S : S(C)× S(C) → S(C) P +S Q := ↑(P + Q)
·S : R+ × S(C) → S(C) r ·S P := ↑(r · P ).
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On this collection consider the topology Σ generated by the following ba-
sic open sets:

NU :=
{

Q ∈ S(C)
∣∣ Q ⊆ U

}
for U ⊆ C open.

Then S(C) is called the convex upper powercone or convex Smyth power-
cone over C.

Remark. The idea behind the definition of Σ is to carry over the topology
on the starting space to the powercone: We take the original open sets in
C and collect all elements of S(C) that lie inside them.

Moreover, the sets NU do indeed form a basis of a topology on S(C),
since clearly NU ∩NV = NU∩V and U ∩ V is open if U and V are.

Theorem 4.2. The collection S(C) with the operations +S and ·S and the topology
Σ is a topological cone.

We will prove this theorem in a number of steps.

Proposition 4.3. Scalar multiplication on S(C) is jointly continuous with re-
spect to the Scott topology on R+ and Σ on S(C).

Proof. We omit the verification that scalar multiplication is indeed well-
defined, as the procedure of [TKP05, Proof of Proposition 4.13] where C is
a dcpo-cone, can be directly taken over for the case that C is a stably com-
pact and locally convex topological cone. We show that ·S is continuous in
each of its two components. By the remark following Definition 1.23, this
suffices to prove joint continuity.

• sr : S(C) → S(C), P 7→ ↑(rP ) is continuous: Suppose U ⊆ S(C) is
open w.r.t. Σ. If r = 0, then ↑(0 ·P ) = C for all P ∈ S(C). But then, we
have s−1

0 (U) = S(C) if C ∈ U and s−1
0 (U) = ∅ if C 6∈ U , both of which

are trivially open. Thus, assume r > 0. Then s−1
r =

{
1
r
P | P ∈ U

}
,

which is open—for let U =
⋃

i NUi
be formed by some basic open sets

via arbitrary union. Then s−1
r (U) =

⋃
i N 1

r
Ui

.

• sP : R+ → S(C), r 7→ ↑(rP ) is continuous: Suppose U ⊆ S(C) is open
w.r.t. Σ, and consider s−1

P (U) = {r ∈ R+ | ↑(rP ) ∈ U}. There are two
cases: If there is no r ∈ R+ with ↑(rP ) ∈ U , then s−1

P (U) is empty,
hence open. Hence, assume there is r0 ∈ R+ with ↑(r0P ) ∈ U . If
r0 = 0, then U = S(C) and s−1

P (U) = R+, which is trivially open.
Suppose henceforth that r0 > 0 for all r0 ∈ s−1

P (U), hence we have
r0P = ↑(r0P ). In R+, the open sets are of the form ]s, +∞[. To show
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that s−1
P is such an interval, it suffices to show that it is an upper set

and that for any t ∈ s−1
P (U), there is t′ ∈ s−1

P (U) with t′ < t. We will
call the latter property (?). First we show that the preimage is an
upper set. Consider an element r ∈ s−1

P (U) and take some element
r′ > r above it. From rP ∈ U and

r′P =

(
r′

r

)
︸ ︷︷ ︸

>1

· rP ⊆ rP,

we conclude that r′P lies above rP in the order of reverse inclusion.
Since U is an open, hence upper set, this means that r′P also belongs
to U .

It remains to show that the preimage of U fulfils property (?). So let
t ∈ s−1

P (U), i.e. tP ∈ U . For any t′ < t, we have t′P ⊇ tP . We now
seek a particular t′ below t such that t′P ∈ U . Equivalently, we seek
0 < r < 1 such that (rt)P = r(tP ) ∈ U and then set t′ := rt. That is,
we want to scale down the compact set tP by a small amount r, such
that the scaled version is still contained in U . Now, we recall how
the open sets in Σ are constructed from the basic sets. Since tP is an
element in the open set U , there must be a neighbourhood Uorig ⊆ C
of tP ⊆ C which is open in the original topology of C. So we want to
scale down tP by r such that the scaled set is still contained in Uorig,
as illustrated in the following picture:
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Uorig

We have that r(tP ) is an element in U , if we can show that there is
0 < r < 1 such that r(tP ) is still contained in Uorig. To this end,
consider

f : C → R+ with x 7→ f(x) := inf
{

s ∈ R+

∣∣ sx ∈ Uorig
}
,
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where R+ is equipped with the upper topology, whose non-trivial
open sets are of the form [0, k[, for k ∈ R+. This function is con-
tinuous, since f−1([0, k[) = 1

k
Uorig is open in C by Lemma 3.6, and

f−1(∅) = ∅ as well as f−1(R+) = C are open, too. Since C is a topo-
logical cone, scalar multiplication ·x by a fixed element x ∈ tP ⊆ C
is continuous, hence

{
s ∈ R+ | sx ∈ Uorig

}
= ·−1

x (Uorig) is open in R+

with the Scott topology. For x ∈ tP ⊆ Uorig, we know 1 ∈ ·−1
x (Uorig),

so ·−1
x (Uorig) = [k, +∞[ with k < 1. Using this, we are almost done:

We infer f(x) = inf ·−1
x (Uorig) < 1 for x ∈ tP , hence f(tP ) ⊆ [0, 1[.

For the last step, observe that continuous functions map compact
path-connected sets to compact path-connected sets. Clearly, tP is
path-connected, since it is convex, and it is compact by assumption.
So f(tP ) is path-connected and compact in R+ with the upper topo-
logy. In R+, the path-connected sets are exactly the intervals. Fur-
thermore, f(tP ) has to be a bounded interval, since we have seen
above that it is strictly bounded by 1. It is easy to show that intervals
of the form [k1, k2[ or ]k1, k2[ are not compact in the upper topology.
Hence, f(tP ) must be of the form [k1, k2] or ]k1, k2]. In both cases, we
see that f takes on its maximum on the set tP , and that this maxi-
mum is strictly bounded by 1. Set n := max f(tP ) < 1, then r := n+1

2

is the sought number. It is strictly smaller than 1, and it can be used
to scale any element of tP without leaving Uorig. This completes the
proof that scalar multiplication with a fixed element P in S(C) is con-
tinuous.

2

Proposition 4.4. Addition on S(C) is jointly continuous with respect to Σ.

Proof. As above, we omit the verification that +S : S(C)× S(C) → S(C) is
well-defined and refer to [TKP05, Proof of Proposition 4.13].

Now, to show continuity, let P, Q ∈ S(C). Let NU ⊆ S(C) be basic open
with P +S Q ∈ NU . We have

P +S Q ∈ NU ⇐⇒ P +S Q ⊆ U

⇐⇒ ↑(P + Q) ⊆ U

⇐⇒ P + Q ⊆ U since U is open hence upper
⇐⇒ P ×Q ⊆ +−1(U)

We have that P and Q are compact and that +−1(U) is open by continu-
ity of + on C. So we can apply an argument from general topology (see
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[Kel55, Chapter 5, Theorem 12]) to get open sets U1 and U2 with P ⊆ U1

and Q ⊆ U2 and U1 × U2 ⊆ +−1(U). So we get open neighbourhoods
P ∈ NU1 and Q ∈ NU2 with

NU1 + NU2 ⊆ ↑(NU1 + NU2) = NU1 +S NU2 ⊆ NU .

Hence, addition +S on S(C) is jointly continuous. 2

Finally, we have to verify the cone axioms. We state a simple lemma
first.

Lemma 4.5. In a cone C, the equality (r+s)P = rP +sP holds for any convex
subset P ⊆ C and any scalars r, s ≥ 0.

Proof. For the inclusion “⊆”, let (r + s) · x ∈ (r + s) · P . We have

(r + s) · x = rx + sx ∈ rP + sP

For the second inclusion “⊇”, let rx + sx′ ∈ r · P + s · P . We have

rx + sx′ = r+s
r+s

· (rx + sx′)

= (r + s) ·
(

1
r+s

· rx + 1
r+s

· sx′
)

= (r + s) ·
(

r
r+s

· x + s
r+s

· x′
)

∈ (r + s) · P as r
r+s

+ s
r+s

= 1 and P is convex

which finishes the proof. 2

Proposition 4.6. The triple
(
S(C), +S, ·S, C

)
is a cone.

Proof. We only outline most of the verifications, since they are straight-
forward. Addition on S(C) is associative since addition on C is monotone
and associative. It is commutative since addition on C is commutative.
The entire cone C as a set is the neutral element for addition on S(C),
since 0 ∈ C and since addition + is monotone. We have 1 ·S P = P
and 0 ·S P = C, which is the neutral element for addition. We have
(r · s) ·S P = r ·S (s ·S P ) using monotonicity of scalar multiplication on
C. The equation r ·S (P +S Q) = (r ·S P ) +S (s ·S Q) follows from mono-
tonicity of addition and scalar multiplication as well as the corresponding
distributivity law on C. With the additional help of Lemma 4.5, the proof
of the second distributivity law, (r+s) ·S P = (r ·S P )+S (s ·S P ), is straight-
forward. 2
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We have shown that the convex Smyth powercone over a topological
cone is again a topological cone. Throughout the remainder of this sub-
section, unless otherwise stated, we will consider the convex Smyth pow-
ercone S(C) over a stably compact locally convex topological cone C.

Proposition 4.7. Let C be a stably compact topological cone, and S(C) the con-
vex Smyth powercone over C. Then the topology Σ satisfies the T0 separation
axiom.

Proof. Take P, Q ∈ S(C) with P 6≤ Q, i.e. Q 6⊆ P . We are looking for an
open set containing P but not Q. By assumption, Q 6⊆ P , hence we can
find q ∈ Q \P . In C, set

U := C \{ q } = C \↓q.

This is an open subset with P ⊆ U but Q 6⊆ U by construction. Thus, we
have P ∈ NU but Q 6∈ NU . 2

Now we will give a characterisation of the way below relation on the
convex Smyth powercone. The corresponding version in the case of the
classical Smyth powerdomain defined by

Sc(X) :=
{

P ⊆ X
∣∣∣ P nonempty, compact, saturated

}
for any topological space X (so in particular for any topological cone)
can be found in [GHK+03, Prop. I-1.24.2(ii), p.67]. The new proof for
nonempty convex compact saturated sets is inspired by the one for the
classical case, but makes use of the additional cone structure and the sep-
aration theorems in Section 3.

Remark. Note that the classical Smyth powerdomain Sc(X) over a topolog-
ical space X is denoted by Q∗(X) in [GHK+03].

Proposition 4.8. Let C be any topological cone, K1, K2 ∈ S(C) and consider the
following assertions:

(a) there is a convex open set U ⊆ C such that K2 ⊆ U ⊆ K1

(b) K1 � K2 in S(C)

Then we have (a) =⇒ (b) if C is well-filtered; if, in addition, C is coherent, locally
compact and locally convex, then (b) =⇒ (a) holds and the two properties are
equivalent.
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Before we can prove this, we need a lemma from [TKP05]. We cite it
together with its proof, because it is short and elegant and enlightening:

Lemma 4.9. ([TKP05, Lemma 2.9]) For compact convex subsets P and Q of
a topological cone, conv(P ∪Q) is also compact.

Proof. The set ∆2 =
{

(r, 1− r)
∣∣ r ∈ [0, 1]

}
is compact with respect to

the Scott topology on [0, 1]2. The map from ∆2 × C × C to C, defined by(
(r, s), x, y

)
7→ r · x + s · y is continuous. The convex hull of P ∪Q is equal

to the image of the compact set ∆2 × P ×Q. Thus, conv(P ∪ Q) is also
compact. 2

Remark. Note that the convex hull of a compact set is not compact in gen-
eral. Hence, we can not drop the condition that the compact sets P and Q
be convex in the previous lemma.

Now we are ready to prove Proposition 4.8:
Proof of Proposition 4.8. First, we show (a) =⇒ (b), assuming that C is
well-filtered:

Let C be a filter base of convex compact saturated subsets such that⋂
C ⊆ K2, i.e. K2 v

⋂
C in the order of reverse inclusion. Since by assump-

tion (a) we have a convex open set U with K2 ⊆ U , the well-filteredness
property provides us with a C ∈ C such that C ⊆ K2, hence C ⊆ K1, which
means K1 v C in the given order. So we have shown K1 � K2.

Now, suppose in addition that C is locally convex and locally compact
to show the implication (b) =⇒ (a):

We begin by proving that K2 is the intersection of convex compact
neighbourhoods. This means that for any y 6∈ K2 we must find some con-
vex compact neighbourhood Uy of K2 that does not contain y. Consider
↓y = {y}, which is closed and convex by Lemma 3.7. By Corollary 3.11
resp. the remark following it, we get an open convex set Cy that separates
K2 from ↓y. Since Cy is a neighbourhood for each point x ∈ K2, by local
compactness we find a compact neighbourhood Cx for every x ∈ K2 such
that Cx is contained in Cy. These Cx cover K2; in particular, their interiors
form an open cover. Since K2 is compact, we find x1, . . . , xn such that

K2 ⊆ Cx1 ∪ · · · ∪ Cxn︸ ︷︷ ︸
=: N

.

Since the union is finite, N is compact, its convex hull conv(N) is then
compact by Lemma 4.9. Since Cy was convex and the Cx are all contained
in it, we have conv(N) ⊆ N ⊆ Cy. Hence, conv(N) is the Uy we were
looking for.
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Now, K2 is the intersection of a collection of convex compact neigh-
bourhoods. We know that the intersection of two convex sets is convex,
by coherence we have that the intersection of two compact saturated sets
is compact, so we can extend the given collection to a filter base C with

K2 =
⋂

C =
⊔↑

C.

Since by assumption we have K1 � K2, we find P in C with K1 v P , i.e.
P ⊆ K1. Since P is a neighbourhood of K2, we have

K2 ⊆ int(P ) ⊆ P ⊆ K1.

However, we are not yet finished, for P is open but need not be convex.
We have

⋂
C = K2 ⊆ int(P ), hence by well-filteredness, there is Q1 ∈ C

with Q1 ⊆ int(P ). Since Q1 is again compact and convex, we can repeat the
argument made above for K2 to find that Q1 =

⋂
C1 holds for some filter

base C1 of compact convex neighbourhoods of Q1. Again, we use well-
filteredness and

⋂
C1 = Q1 ⊆ int(P ) to get a neighbourhood Q2 ∈ C1 of Q1

with Q2 ⊆ int(P ). Repeating this procedure gives an increasing sequence
of compact convex neighbourhoods Qi ⊆ int(Qi+1):

K2 ⊆ Q1 ⊆ Q2 ⊆ . . . ⊆ int(P ).

We form the union of these neighbourhoods:

U :=
⋃
i≥1

Qi.

Since each Qi is contained in int(P ), so is the union. This is an increasing,
hence directed union, and its members are convex. Hence the union is
convex. Finally, the set U is a neighbourhood for any of its elements. To
see this, let x ∈ U . It is contained in some Qi. Since we have

x ∈ Qi ⊆ int(Qi+1) ⊆ U,

we have that U is a neighbourhood of x. This shows that U is open, hence
we have found a convex open set with K2 ⊆ U ⊆ K1. 2

From results on the classical Smyth powerdomain Sc(C) in [GHK+03,
Prop. I-1.24.2(iii), p.67], it follows immediately that the convex Smyth pow-
ercone S(C) is a dcpo whenever C is a well-filtered topological space (since
Sc(C) is a dcpo in this case and convex sets are closed under arbitrary in-
tersections). To show that it is even a continuous domain is slightly more
complicated.
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Theorem 4.10. Let C be a stably compact locally convex topological cone. Then
the convex Smyth powercone S(C) is a bounded complete domain, so in particular
a continuous domain.

The proof will go along these lines: We will use certain results from
[GHK+03] about the classical Smyth powerdomain. To go from one con-
struction to the other and back again, we will use the convex hull operator
conv : Sc(C) → S(C) and the canonical injection i : S(C) → Sc(C).

Sc(C) =
{

A ⊆ C
∣∣ A nonempty compact saturated

}

S(C) =
{

A ⊆ C
∣∣ A nonempty compact saturated convex

}
................................................................................
...
.........
...

conv
........
........
........
........
........
........
........
...................
............

........................

i

We will show that the composition of both is a Scott-continuous pro-
jection, i.e. a monotone, idempotent selfmap, and since S(C) is its image,
we can apply [GHK+03, Theorem I-2.2, p.80] to conclude that the convex
Smyth powercone is a continuous domain.

Lemma 4.11. Consider the convex hull operator defined by

conv : Sc(C) → S(C) with Q 7→ conv(Q),

consider the canonical injection defined by

i : S(C) → Sc(C) with Q 7→ Q.

Consider the composition i ◦ conv : Sc(C) → Sc(C) with Q 7→ conv(Q). Then
we have:

(a) The selfmap i ◦ conv : Sc(C) → Sc(C) is a projection operator

(b) The selfmap i ◦ conv : Sc(C) → Sc(C) is Scott-continuous, i.e. it preserves
directed suprema:⊔↑ conv(C) =

⋂
conv(C) = conv

( ⋂
C

)
= conv

( ⊔↑
C
)

for every directed set C.

Proof. Clearly, we have conv(P ) = conv(conv(P )), and if P ⊆ Q then
conv(P ) ⊆ conv(Q). So i ◦ conv is idempotent and monotone. For Scott
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continuity, let C be a directed set in Sc(C), i.e. a filter base of nonempty
compact saturated sets in C. We want to show:

conv
( ⋂ {

K ⊆ C
∣∣ K ∈ C

})
=

⋂ {
conv(K)

∣∣ K ∈ C
}
.

“⊇”: Clear, since conv(K) =
⋂
{P ⊆ C | K ⊆ P convex} and

⋂
C ⊆ K

for every K ∈ C.
“⊆”: Let x ∈ conv(

⋂
C). Then x = λx1 +(1−λ)x2 for some x1, x2 ∈

⋂
C.

But then x1, x2 ∈ K for every K in C, so λx1 + (1 − λ)x2 is in conv(K) for
every K in C, so x ∈

⋂
{conv(K) | K ∈ C}. 2

With this technical lemma, we are ready to prove Theorem 4.10:
Proof of Theorem 4.10. By [GHK+03, Prop. I-1.24.2(iv), p.67], we have
that Sc(C) is a continuous domain, and by Lemma 4.11, we have that S(C)
is its image under the Scott-continuous projection operator i ◦ conv. Now,
by [GHK+03, Theorem I-2.2, p.80], such images are continuous domains,
too. 2

Proposition 4.12. Let C be a stably compact locally convex topological cone.
Then the topology Σ is equal to the Scott topology on S(C).

Proof. First we show that the Scott topology is finer than Σ:
Let U ∈ Σ, let A ⊆ S(C) be directed with

⋂
A =

⊔↑
A ∈ U . Since

the empty set does not belong to S(C), we have that A is a filter base on
C. Now,

⊔↑
A is an element in the open set U , so it is an element in some

basic open set NV contained in U . By the definition of the basic open sets,
this means that V is open and

⋂
A ⊆ V in C. Since

⋂
A is an element of

the convex Smyth powercone, it is nonempty. So we can apply the well-
filteredness property to find an A ∈ A with A ⊆ V . Thus, we obtain
A ∈ NV ⊆ U , so the set U is Scott-open.

Next, we show that Σ is finer than the Scott topology:
Let U be a basic Scott-open set in S(C). If U = ∅, then we are done.

Hence, assume U 6= ∅. Since S(C) is a continuous domain, the sets ��Q
for elements Q are a basis of the Scott topology. Hence, we have U = ��Q
with Q ∈ S(C). The space C is stably compact and locally convex, so by
Proposition 4.8, we have that Qi � Q is equivalent to Qi ⊆ Ui ⊆ Q for
some convex open set Ui. Hence, we have that U =

⋃
i

NUi
is an open set

w.r.t. the topology Σ. 2

Combining this result with our main Theorem 4.2, we conclude:
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Corollary 4.13. Let C be a stably compact locally convex topological cone. Then
the convex Smyth powercone S(C), equipped with the Scott topology, is a contin-
uous dcpo-cone.

We finish this subsection by showing that the properties of being stably
compact and locally convex are inherited from C to S(C).

Proposition 4.14. Let C be a stably compact locally convex topological cone.
Then the convex Smyth powercone S(C) with the Scott topology is stably compact
and locally convex.

Proof. Since by Corollary 4.13, S(C) is a continuous dcpo-cone, it is auto-
matically locally convex with the Scott topology by [TKP05, Prop. 2.5].

The proof that S(C) is stably compact combines several results from
[GHK+03]. Unfortunately, it uses several concepts that we have not in-
troduced here, because we do not use them in this paper. For those who
are familiar with domain and lattice theory, I will state the proof using all
necessary vocabulary. The readers who are not so well acquainted with
the subject may consider this proposition as an external result of its own.

From [GHK+03, Prop. I-1.24.2(iv), p.67], we know that Sc(C) is a con-
tinuous semilattice. So in particular, it is a continuous domain, and cer-
tainly every bounded finite set has a supremum in Sc(C): By coherence
of C, every finite intersection of compact sets is compact; if the sets are
bounded above, this finite intersection cannot be empty, so it is an element
of Sc(C).

Now, by [GHK+03, Prop. I-1.25, p.69], this implies that the poset Sc(C)
is a bounded complete continuous domain (note that in [GHK+03], a con-
tinuous domain is simply called ’domain’). Using Lemma 4.11 as well
as [GHK+03, Theorem I-2.2, p.80], we see that S(C) is the image of the
bounded complete domain Sc(C) under the Scott-continuous projection
operator i ◦ conv, hence it is a bounded complete domain, too.

But bounded complete domains are complete continuous semilattices,
so we can use [GHK+03, Theorem III-1.9, p.214] to conclude that the Law-
son topology on S(C) is compact. By [GHK+03, Prop. VI-6.24, p.482], a
continuous Lawson-compact semilattice is stably compact both with the
lower and with the Scott topology. 2

4.2 A property for the composition of programs

Interpreting a program P as a function JP K : C → S(C), we can express the
fact that nondeterministic choice has taken place—since the output is not
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a single value but a set of possible outcomes, with no priority on them.
What we still need is a way to model every single nondeterministic choice
during the program. Naı̈vely, if for the given state space, programs P1

and P2 can have the output Q, resp. R, and we make a nondeterministic
choice P1 tP2, then the possible outcomes are now Q∪R. Now, if we also
remember that we have to stay inside the convex Smyth powerdomain,
which consisted of compact saturated convex subsets of the state space,
this gives us the following notion of infima:

Proposition 4.15. Let C be any topological cone. Then binary infima exist in
S(C) and are given by

P ∧Q = ↑ conv(P ∪Q).

Furthermore, the infima have the following properties:

P +S (Q ∧R) = (P +S Q) ∧ (P +S R)

r ·S (P ∧Q) = (r ·S P ) ∧ (r ·S Q).

Proof. The union of two compact sets is always compact, and by Lemma
4.9, its convex closure is still compact. Taking the saturation of this closure
changes neither the property of being compact nor the property of being
convex.

The properties of distributing over +S and ·S are shown to hold in
[TKP05, Proof of Lemma 4.15] for the case of dcpo-cones. Since no par-
ticular features distinguishing dcpo-cones from our topological cones are
used there, the proof goes through in our context as well.. The Lemma 2.8
which is used therein is stated in the same paper for arbitrary cones. 2

Just like for the case of the extended probabilistic powerdomain, an
extension property is needed to ensure that the composition of programs
can be given a proper semantic. The first step in doing this is to extend the
assignment C 7→ S(C) to a functor.

Proposition 4.16. Let f : C → D be a continuous linear map between stably
compact locally convex topological cones. Then the map S(f) : S(C) → S(D),
defined by

S(f)(P ) := ↑f(P )

is a linear continuous function preserving binary infima.

Proof. The corresponding proof for the case of continuous dcpo-cones in
[TKP05, Prop. 4.19] can be overtaken as is: By Corollary 4.13, we have that
S(C) and S(D) are continuous dcpo-cones themselves, and the fact that in
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continuous dcpo-cones, every compact convex saturated set is the inter-
section of its compact convex saturated neighbourhoods has been shown
to hold true for locally convex locally compact topological cones in the
proof of Proposition 4.8. 2

With this, we have shown:

Corollary 4.17. The convex Smyth powercone operator S is a functor from the
category StCpCvCone of stably compact locally convex topological cones into
the category StCpCvCone∧ of stably compact locally convex topological cones
with binary infima.

Now we have to define natural transformations η and µ such that the
triple (S, η, µ) becomes a monad in the category StCpCvCone of stably
compact locally convex topological cones. For a given cone C in this cate-
gory, define ηC : C → S(C) by

ηC(x) := ↑x.

It is straightforward to check that ηC is well-defined, i.e. that ↑x is non-
empty, compact and convex. For a convex compact saturated subset Q of
SS(C), define µC : SS(C) → S(C) by

µC(K) =
⋃ {

P ⊆ C
∣∣ P ∈ K

}
.

for K ∈ SS(C). Then we have:

Proposition 4.18. The maps µC and ηC are well-defined and (S, η, µ) is a monad.
For a given morphism f : C → D in StCpCvCone, the function

f̂ := µD ◦ S(f)

is a linear lower semicontinuous function preserving binary infima, such that the
following diagram commutes:

C S(C)

S(D) SS(D)

...................................................................................................................................................... ............
ηC

........................................................................................................................................................................................................................................... .........
...

f

.............

.............

.............

.............

.............

.............

.........
...
.........
...

f̂

............................................................................................................................................ µD

.................................................................................................................................................................................................................................... .........
...

S(f)
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Proof. As is clear from the monad properties, we have µ◦Sη = IdStCpCone,
hence µD ◦ S(f) ◦ ηC = f . The verifications that have to be made for the
proof of this proposition are lengthy but straightforward and shall not be
carried out in explicit detail here. 2

The function f̂ is the sought-after extension to f that we need for the
composition of programs. Note that, here again, we have shown a prop-
erty which is more general than we need, since in the concrete case of
program composition, we have C = D. As in Section 2, the extension
f̂ has a certain uniqueness property which is—again—irrelevant for our
applications.

We finish this section with the following special case of our extension
property:

Proposition 4.19. For every stably compact topological cone C, we have the fol-
lowing property:

For every lower semicontinuous function f : C → R+, there is a lower semi-
continuous linear function f̂ : S(C) → R+ preserving binary infima, such that
f̂ ◦ iC = f , i.e. such that the following diagram commutes:

C S(C)

R+

............................................................................................. ........................
............ iC

..................................................................................................................................................................... .........
...

f

..............................................................................................................
...
.........
...

f̂

This function is given by f̂(Q) := inf f(Q).

Proof. Clearly, f̂ is well-defined: Since f is continuous and monotone,
compact saturated sets Q are mapped to compact saturated sets f(Q) in
R+. These are of the form [r, +∞], hence r = inf f(Q).

Furthermore, we have

f̂(iC(x)) = f̂(↑x) = inf f(↑x)︸ ︷︷ ︸
3f(x)

= f(x),

thus the diagram commutes.
We still have to check that f̂ is continuous and linear and that it pre-

serves binary infima. First, notice that f̂ is continuous if and only if it is
Scott-continuous, since we have the Scott topology on S(C) and R+. So we
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have to show that f̂ preserves directed suprema. We have

f̂
( ∨↑

i

Pi

)
= inf f

( ∨↑

i

Pi

)
= inf f

( ⋂
↓

i

Pi

)
= inf

⋂
↓

i

f(Pi) =
∨↑

i

inf f(Pi) =
∨↑

i

f̂(Pi).

Linearity of f̂ is straightforward to check using the linearity of f . Fi-
nally, regarding binary infima, we have

f̂(P ∧Q) = inf f(P ∧Q) = inf f(↑ conv(P ∪Q)).

Now, ↑ conv(P ∪Q) is compact saturated and convex, hence its image un-
der the continuous linear function f is compact and convex, too, hence of
the form [r, +∞] or [r, s[ or [r, s]—so the infimum of f(↑ conv(P ∪ Q)) is r.
Using Proposition 4.8 resp. its equivalent for the classical Smyth powerdo-
main Sc(C) as well as the very definition of the convex hull, it follows that
r must be one of the infima inf f(P ) and inf f(Q), namely the smaller one.
Hence it is equal to the binary infimum of f̂(P ) and f̂(Q), which finishes
the proof. 2
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5 The Convex Hoare Powercone H(C)

In view of partial correctness, we introduce the convex Hoare Powercone.
Partial correctness means: if the program terminates, it produces the cor-
rect result.

5.1 Definition and Basic Properties

Definition 5.1. For a semitopological cone C, consider

H(C) :=
{

A ⊆ C
∣∣∣ A nonempty, convex, closed

}
ordered by inclusion ⊆ and equipped with the following operations of
addition and scalar multiplication:

+H : H(C)×H(C) → H(C), A +H B := A + B
·H : R+ ×H(C) → H(C), r ·H A := r · A.

On this collection, consider the upper topology generated by the following
subbasic open sets:

(↓B)c = H(C) \↓B =
{

A ∈ H(C)
∣∣ A 6⊆ B

}
for B ∈ H(C).

Then H(C) is called the convex lower powercone or convex Hoare powercone
over C.

Theorem 5.2. For every semitopological cone C, the collection H(C) with the
operations +H and ·H and the upper topology is a semitopological cone.

The remainder of this subsection is devoted to the proof of this the-
orem. First, we verify that the operations +H and ·H on H(C) are well-
defined:

Proposition 5.3. The operations of addition

+H : H(C)×H(C) → H(C), (A, B) 7→ A + B

and scalar multiplication

·H : R+ ×H(C) → H(C), (r, A) 7→ r · A

on the convex Hoare powercone H(C) are well-defined for any semitopological
cone C.
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Proof.
Addition:
Let A, B ∈ H(C). Since A and B are both nonempty, so is A+B, as well as
A +H B = A + B, which is furthermore closed by definition. We have that
A + B is convex:

Let x, y ∈ A+B with x = ax + bx and y = ay + by. For r ∈ [0, 1], we have

r · x + (1− r) · y = r · ax + r · bx + (1− r) · ay + (1− r) · by

= (r · ax + (1− r) · ay)︸ ︷︷ ︸
∈ A

+ (r · bx + (1− r) · by)︸ ︷︷ ︸
∈ B

∈ A + B

Finally, the closure of a convex set is again closed by Lemma 3.7.

Scalar multiplication:
For r = 0, we have r · A = { 0 }, which is clearly in H(C). For r > 0, the
map a 7→ r ·a is a linear homeomorphism on C, hence r ·A is convex, closed
and nonempty whenever A is. Hence A ∈ H(C) implies r · A ∈ H(C),
which finishes the proof. 2

Next, we verify that the operations of addition and scalar multiplica-
tion on H(C) are separately continuous and jointly continuous, respec-
tively. We begin with a lemma:

Lemma 5.4. In a cone, the preimage of a convex set under an affine function is
again a convex set.

Proof. Let A ⊆ C be a convex subset of a cone, and let f : C → D be
an affine function between cones. Let t ∈ D and f ′ : C → D be a linear
function such that f = f ′ + t.

Take x, y ∈ f−1(A) in the preimage of A under f . That is, we have
f(x) = f ′(x) + t ∈ A and likewise for y. For any r ∈ [0, 1], we have, by
linearity of f ′,

f
(
r · x + (1− r) · y

)
= f ′

(
r · x + (1− r) · y

)
+ t

= r · f ′(x) + (1− r) · f ′(y) + t

= r · f ′(x) + (1− r) · f ′(y) + r · t + (1− r) · t
= r ·

(
f ′(x) + t

)
+ (1− r) ·

(
f ′(y) + t

)
= r · f(x) + (1− r) · f(y),

which is in A, since f(x), f(y) ∈ A by assumption and A is a convex set.
Hence, we have r · x + (1− r) · y ∈ f−1(A). 2

With this, we are ready to prove separate continuity of addition.
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Proposition 5.5. Let C be a semitopological cone. Then addition on H(C) as
defined by the map

+H : H(C)×H(C) → H(C), (A, B) 7→ A + B

is separately continuous w.r.t. the upper topology.

Proof. Fix A ∈ H(C). We have to show that the function

+H,A : H(C) → H(C), B 7→ A +H B

is continuous with respect to the upper topology.
Let D ∈ H(C), let ↓D be subbasic closed in H(C). We have to show

that the set +−1
H,A(↓D) is closed in H(C).

We have

+−1
H,A

(
↓D

)
=

{
B ∈ H(C)

∣∣ +H,A (B) ∈ ↓D
}

=
{

B ∈ H(C)
∣∣ A +H B ∈ ↓D

}
=

{
B ∈ H(C)

∣∣ A +H B ⊆ D
}

=
{

B ∈ H(C)
∣∣ A + B ⊆ D

}
(since the closure operator is order preserving and D is closed, we have
A + B ⊆ D = D ⇐⇒ A + B ⊆ D)

=
{

B ∈ H(C)
∣∣ A + B ⊆ D

}
=

{
B ∈ H(C)

∣∣ A×B ⊆ +−1(D)
}

=
{

B ∈ H(C)
∣∣ ∀a ∈ A : { a } ×B ⊆ +−1(D)

}
(the map +a : C → C, x 7→ a+x is continuous for any a ∈ C by assumption,
since C is a semitopological cone)

=
{

B ∈ H(C)
∣∣ ∀a ∈ A : B ⊆ +−1

a (D)
}

=
{

B ∈ H(C)
∣∣ B ⊆

⋂
a∈A

+−1
a (D)︸ ︷︷ ︸

=: D′

}

= ↓D′.

Since D is a closed and convex subset, so are the continuous affine preim-
ages +−1

a (D) by Lemma 5.4, as well as an arbitrary intersection thereof,
such as D′. If D′ happens to be empty, so is ↓D′, and hence it is a closed
set. Otherwise, we have D′ ∈ H(C), and ↓D′ is a subbasic closed set in the
upper topology, which finishes the proof. 2
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Remark. Note that upper and lower closures ↑ and ↓ are always taken
within their respective spaces. Hence, in the above proof, ↓D′ stands for{

B ∈ H(C)
∣∣ B ⊆ D′ } and not for

{
B ⊆ C

∣∣ B ⊆ D′ }, so we can safely
conclude D′ = ∅ =⇒ ↓D′ = ∅, since the sets in H(C) are nonempty.

We go on with scalar multiplication.

Proposition 5.6. Let C be a semitopological cone. Then scalar multiplication on
H(C) as defined by the map

·H : R+ ×H(C) → H(C), (r, A) 7→ r · A

is jointly continuous w.r.t. the upper topology.

Proof. According to the remark following Definition 1.23, we only have to
check for separate continuity.

Firstly, we have to show that for each fixed scalar r ∈ R+, the selfmap
·H,r : H(C) → H(C), A 7→ r·A is continuous. For r = 0, the map is constant,
hence continuous. So let r > 0.

Let D ∈ H(C), let ↓D be subbasic closed. Consider the preimage
·−1
H,r(↓D) of the scalar multiplication function with fixed scalar r. We have

·−1
H,r(↓D) =

{
A ∈ H(C)

∣∣ ·H,r (A) ∈ ↓D
}

=
{

A ∈ H(C)
∣∣ r · A ⊆ D

}
=

{
A ∈ H(C)

∣∣ A ⊆ 1
r
·D

}
= ↓

(
1
r
·D

)
Since scalar multiplication defines a linear homeomorphism on C, the sub-
set 1

r
·D is closed and convex, and it is clearly nonempty, hence an element

of H(C). Hence we have ↓
(

1
r
·D

)
subbasic closed, which finishes the first

part of the proof.
For the second part of the proof, we fix A ∈ H(C) and show that the

map ·H,A : R+ → H(C), r 7→ r ·A is continuous. Consider a subbasic closed
set ↓D in H(C). We have

·−1
H,A

(
↓D

)
=

{
r ∈ R+

∣∣ ·H,A (r) ∈ ↓D
}

=
{

r ∈ R+

∣∣ r · A ⊆ D
}

=
{

r ∈ R+

∣∣ ∀a ∈ A : r · a ∈ D
}
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Let ·a : R+ → C, r 7→ r · a denote scalar multiplication by a fixed element
a ∈ C. By assumption, C is a semitopological cone, hence for any a ∈ C
the function ·a is continuous.

=
{

r ∈ R+

∣∣ ∀a ∈ A : r ∈ ·−1
a (D)

}
=

{
r ∈ R+

∣∣ r ∈
⋂
a∈A

·−1
a (D)

}
=

⋂
a∈A

·−1
a (D)︸ ︷︷ ︸

=: D′

Since D is closed, so are the continuous preimages ·−1
a (D), as well as an

arbitrary intersection thereof, such as D′. Hence, the preimage D′ of a
subbasic closed set ↓D is closed, which finishes the proof. 2

Now we are left to verify the cone axioms.

Proposition 5.7. The triple
(
H(C), +H, ·H, { 0 }

)
is a cone.

Proof. For every A, B ∈ H(C), we have A +H B = B +H A, since addition
on C is commutative. Furthermore, we clearly have A +H { 0 } = A and
{ 0 } ∈ H(C). For the associativity of addition, we verify(
A +H B

)
+H C = A + B + C

= (A + B) + C by continuity of + and Lemma 1.9

= A + (B + C) by associativity of +

= A + B + C by continuity of + and Lemma 1.9

= A +H

(
B +H C

)
.

For scalar multiplication, we only verify one distributivity rule. The other
equations are immediate. We show (r + s) ·H A = (r ·H A) +H (s ·H A):

(r + s)P = rP + sP by Lemma 4.5

=⇒ (r + s)P = rP + sP since · is monotone
⇐⇒ (r + s) ·H P = (r ·H P ) +H (s ·H P ) by definition of +H and ·H

With this, H(C) is a cone. 2
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5.2 The supremum ∨: Distributivity laws and continuity

Proposition 5.8. On the convex Hoare powercone H(C) over a semitopological
cone C, binary suprema ∨ exist and are given by

A ∨B = conv(A ∪B).

Proof. By Lemma 3.7, the set conv A ∪B is not only closed but convex. It
is nonempty, since A, B ∈ H(C) are nonempty by assumption. Hence, it
is an element of the convex Hoare powercone and contains both A and B,
hence is an upper bound in the order ⊆ of inclusion. On the other hand,
any upper bound of A and B in H(C) would have to be convex and closed,
hence would have to comprise the convex hull of their union, as well as
the closure thereof. Hence, we do indeed get the smallest upper bound
with conv(A ∪B). 2

Proposition 5.9. On the convex Hoare powercone H(C) over a semitopological
cone C, the supremum ∨ satisfies the following distributivity laws:

(i) A +H

(
B ∨B′) =

(
A +H B

)
∨

(
A +H B′),

(ii) r ·H
(
B ∨B′) =

(
r ·H B

)
∨

(
r ·H B′).

Proof.

(i) We have that +H,A is continuous, hence monotone w.r.t. the order
of specialisation, which is just the order ⊆ of inclusion—since the
upper topology always reflects the order with respect to which it
was created. Hence we immediately get

A +H B = +H,A(B) ⊆ +H,A(B ∨B′) = A +H

(
B ∨B′)

and likewise

A +H B′ = +H,A(B′) ⊆ +H,A(B ∨B′) = A +H

(
B ∨B′),

whence (
A +H B

)
∨

(
A +H B′) ⊆ A +H

(
B ∨B′).

Now for the reverse inclusion: We apply Lemma 1.9 to the function
+ to see that

A +H

(
B ∨B′) = A + conv(B ∪B′) = A + conv(B ∪B′).
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So it suffices to show A + conv(B ∪B′) ⊆ (A +H B) ∨ (A +H B′). For
this purpose, let x ∈ A + conv(B ∪B′). We have

x = a + r · b + (1− r) · b′

= r · (a + b) + (1− r) · (a + b′)

∈ conv((A + B) ∪ (A + B′))

⊆ conv
(
(A + B) ∪ (A + B′)

)
=

(
A +H B

)
∨

(
A +H B′),

which finishes the proof for part (i).

(ii) We begin by a case distinction: If r = 0, the claim trivially holds. So
let r > 0. Again, we use Proposition 1.8 on the map ·H,r and the fact
that scalar multiplication is a homeomorphism on C to get

r ·H
(
A ∨B

)
= r · conv(A ∨B)

= r · conv(A ∪B)

= r · conv(A ∪B)

= conv
(
(r · A) ∪ (r ·B)

)
=

(
r ·H A

)
∨

(
r ·H B

)
,

which finishes the proof for part (ii).

2

We finish the subsection on the supremum by exhibiting its continuity
as a function.

Proposition 5.10. The supremum function on H(C) defined by

∨ : H(C)×H(C) → H(C), (A, B) 7→ conv A ∪B

is jointly continuous.

Proof. Take ↓D ⊆ H(C) subbasic closed. Then the preimage

∨−1(↓D) =
{

(A, B) ∈ H(C)×H(C)
∣∣ A ∨B = conv A ∪B ⊆ D

}
=

{
(A, B) ∈ H(C)×H(C)

∣∣ A ⊆ D and B ⊆ D
}

= ↓D × ↓D

is subbasic closed in H(C) × H(C) with the product of the upper topolo-
gies. 2
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5.3 H(C) as a stably compact space

Our main result in this subsection is that the convex Hoare powercone con-
struction preserves the property of being stably compact. In other words:
If C is a stably compact space, then so is H(C). As in the case of the Smyth
powercone, the proof will involve an additional, similar construction, that
of the classical Hoare powercone Hc(C). We will use results from [GHK+03]
to examine the classical Hoare powercone and transfer some of its proper-
ties to the convex Hoare powercone via a projection.

Some remarks are in order. Our aim is to turn H(C) with the upper
topology into a stably compact space. Here, the order is that of subset in-
clusion ⊆. In proceeding with the proof, we will occasionally equip our
powercones with the reverse order ⊇ and the corresponding lower topol-
ogy. Whereas the topologies agree (upper with ⊆ and lower with ⊇), the
properties of the spaces as dcpo’s differ considerably. We will thus use
the reverse order in our proofs to apply the appropriate domain theoretic
results from [GHK+03].

In general, since we usually construct our topologies on a space using
the order, we will always state the order—even if we deal with the topo-
logical properties of the space.

We begin with a definition. For a semitopological cone C, the classical
Hoare powercone Hc(C) contains all nonempty closed subsets of C:

Hc(C) :=
{

A ⊆ C
∣∣∣ A nonempty and closed

}
.

So in comparison to the convex Hoare powercone H(C), we drop the con-
dition that the subsets be convex. Hence, the classical construction can be
applied to any topological space, not only to topological cones. All results
about Hc(C) stated below hold true without the specific cone properties
of C. The only reason we do not use simply a topological space, is that we
want to connect our results to the convex Hoare powercone H(C) at the
end.

In the sequel, we will equip our given cone C with the patch topology
(see Definition 1.17). To indicate this change in topology, we will write CP .

Theorem 5.11. Let C be a stably compact semitopological cone. Then Hc(C
P )

with the order⊇ of reverse subset inclusion and the Lawson topology is a compact
Hausdorff space and a complete continuous semilattice.

Proof. We have that C is stably compact, i.e. compact, coherent, well-
filtered and locally compact. We equip C with the patch topology w.r.t. ⊆
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and write CP to indicate this change. Since C is compact, coherent and
sober (recall that sober is equivalent to well-filtered in the presence of lo-
cal compactness), the space CP is compact by [GHK+03, Lemma VI-6.5,
p.475]. Since C is locally compact, CP is a pospace by [GHK+03, Lemma
VI-6.6, p.476] and hence Hausdorff by [GHK+03, Prop. VI-1.4, p.441].

So Hc(C
P ) is the classical Hoare powercone over a compact Hausdorff

space. Now, [GHK+03, Example VI-3.8, p.454 and Exercise VI-3.18, p.458]
tell us that the classical Hoare powercone over a compact Hausdorff space
is a compact Hausdorff space and a complete continuous semilattice when
equipped with the order ⊇ of reverse subset inclusion and the Lawson
topology. 2

Before we return to the convex Hoare powercone, we need a definition
and three lemmas.

Definition 5.12. A selfmap c : X → X on a dcpo (X,v) is called closure
operator if it is a projection that lies above the identity map, that is, if we
have x v c(x) for any x ∈ X .

Lemma 5.13. The map

i : Hc(C
P ) → Hc(C

P ) with A 7→ conv A,

where the closure · is taken w.r.t. the original topology on C, is a Scott-continuous
closure operator w.r.t. the order ⊇ of reverse inclusion.

Proof. First, we show that i is a closure operator:

i is monotone: Since both the convex hull operator conv(·) and the closure
operator · are monotone, we get:

A ⊆ B =⇒ conv A ⊆ conv B

=⇒ conv A ⊆ conv B

=⇒ i(A) ⊆ i(B).

i is idempotent: We have

i ◦ i (A) = i
(
i(A)

)
= conv

(
conv A

)
.

By Lemma 3.7, the set conv A is already convex, and thus we get
conv

(
conv A

)
= conv A, and hence

conv
(
conv A

)
= conv A = conv A = i(A),

which was to show.
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i lies above the identity: We have A ⊆ conv A ⊆ conv A for any A ⊆ C, so
in particular for any A ∈ Hc(C

P ).

Finally, we show that i preserves directed suprema: We have that the im-
age im(i) = i

(
Hc(C

P )
)

is simply H(C). Now, H(C) with the order⊇ of re-
verse inclusion is clearly closed under the formation of directed suprema,
given by directed intersections—since both convexity and closedness are
preserved under the formation of arbitrary intersection, and since a fil-
tered intersection of nonempty closed sets cannot be empty on a compact
space. But by [GHK+03, Lemma I-2.4, p.81], a closure operator on a dcpo
is Scott-continuous, i.e. preserves directed suprema, if and only if its im-
age is closed under the formation of directed suprema. This finishes the
proof. 2

Lemma 5.14. The map i′ : Hc(C
P ) → H(C) with A 7→ conv A preserves di-

rected suprema and arbitrary infima.

Proof. The map i′ is a restricted version of the selfmap i : Hc(C
P ) → Hc(C

P )
defined in the previous Lemma 5.13. Like i, and by the very same argu-
ment, i′ preserves directed suprema, given by directed intersection. It does
also preserve arbitrary infima, given on Hc(C

P ) by A ∧B = A ∪B and on
H(C) by A ∧B = conv A ∪B. To see this, take any system (Ai) ⊆ Hc(C

P ).
We have

i′
( ∧

i

Ai︸︷︷︸
∧ in Hc(CP )

)
= i′

(⋃
i

Ai

)
= conv

⋃
i

Ai

F
= conv

⋃
i

Ai to be shown

= conv
⋃
i

conv Ai

=
∧
i

i′(Ai)︸ ︷︷ ︸
∧ in H(C)

.

If we can show the equality F, we are done. The inclusion “⊇” is clear.
We show the reverse inclusion “⊆” in more generality by replacing

⋃
i Ai
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with some arbitrary subset X ⊆ C:

X ⊆ conv X

=⇒ X ⊆ conv X since closure · is monotone

=⇒ conv X ⊆ conv conv X since conv is monotone

=⇒ conv X ⊆ conv X since conv X is convex by Lemma 3.7

=⇒ conv X ⊆ conv X since closure · is monotone

=⇒ conv X ⊆ conv X since closure · is idempotent

This proves equation F, and thus finishes the proof. 2

Lemma 5.15. Let C be a stably compact semitopological cone. Then the convex
Hoare powercone H(C), equipped with the order ⊇ of reverse subset inclusion
and the Lawson topology, is a compact Hausdorff space.

Proof. Consider the map i′ : Hc(C
P ) → H(C), A 7→ conv A from the previ-

ous Lemma 5.14. Both its domain and its target space are complete semi-
lattices with the order ⊇ of reverse subset inclusion. By Lemma 5.14, the
map i′ preserves directed suprema and arbitrary infima. In particular, i′

preserves nonempty finite infima, hence is a semilattice homomorphism.
By [GHK+03, Theorem III-1.8, p.213], a semilattice homomorphism be-
tween complete semilattices preserves directed suprema and nonempty
infima if and only if it is a continuous map w.r.t. the Lawson topologies on
the domain and target space.

Now, the starting space (Hc(C
P ),⊇) is compact in the Lawson topol-

ogy by Theorem 5.11, and i′ is surjective. Hence, the target space (H(C),⊇)
with the Lawson topology is the continuous image of a compact space,
hence compact, which finishes the proof. 2

Finally, we apply our results to the convex Hoare powercone H(C):

Theorem 5.16. Let C be a stably compact semitopological cone. Then the Hoare
powercone H(C) with the order ⊆ of subset inclusion and the upper topology is
stably compact.

Proof. By Lemma 5.13, we have that H(C) is the image of Hc(C
P ) un-

der a closure operator preserving directed suprema. Since (Hc(C
P ),⊇) is

a continuous semilattice by Theorem 5.11, so is the image (H(C),⊇) by
[GHK+03, Corollary I-2.3, p.81]. Furthermore, H(C) is Lawson-compact
by Lemma 5.15. By [GHK+03, Prop. VI-6.24, p.482], a continuous Lawson-
compact semilattice is stably compact both with the lower and with the
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Scott topology. Finally, the lower topology on (H(C),⊇) is equal to the
upper topology on (H(C),⊆). 2

5.4 A property for the composition of programs

We finish the section about the convex Hoare powercone by giving an
analogon of Section 4.2 for the Smyth powercone.

Lemma 5.17. Let X be a topological T0-space with specialisation order v. Then
for every subset A ⊆ X , we have

∨
A =

∨
A.

Proof. We show that every subset A has the same upper bounds as its
closure A. The least upper bound must then be the same.

Clearly, since A ⊆ A, every upper bound of A is also an upper bound of
A. So let x ∈ X be an upper bound for A. Let a ∈ A \A, and let (ai) ⊆ A be
a net converging to a. We have ai v x for every i, because the net is in A.
Since the net converges to a, in every open neighbourhood U ∈ N(a) of a
we find some ai. Since x lies above all ai and open sets are upper sets, this
means that x is contained in every open neighbourhood of a. So we have
N(a) ⊆ N(x), which is just the definition of a v x. Thus, x is an upper
bound for A and for all a ∈ A \A, hence an upper bound for A, which
finishes the proof. 2

Proposition 5.18. Let C, D be stably compact semitopological cones, where D
has binary suprema ∨ with + and · distributing over ∨. Let f : C → D be a
continuous linear map. Then the map defined by

f̂ : H(C) → D with f̂(A) :=
∨

f(A)

is linear.

Proof. Let +H and ·H denote addition and scalar multiplication on H(C),
let A, B ∈ H(C).
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We verify that f̂ preserves addition:

f̂
(
A +H B

)
=

∨
f
(
A +H B

)
=

∨
f
(
A + B

)
=

∨
f

(
A + B

)
by Lemma 5.17

=
∨

f (A + B) by continuity of f and Proposition 1.8

=
∨

f(A) + f(B) by linearity of f

=
∨

f(A) + f(B) by Lemma 5.17

=
∨

f(A) +
∨

f(B) as + distributes over ∨ in D

= f̂(A) + f̂(B).

By an analogous proof, we get f̂(r ·H A) =
∨

r · f(A), and since scalar
multiplication defines an order isomorphism on D, this is in turn equal to
r ·

∨
f(A) = r · f̂(A). Hence f̂ is linear. 2

Proposition 5.19. Let C, D be stably compact semitopological cones, where D
has binary suprema ∨ and is equipped with the upper topology. Let f : C → D be
a continuous linear map. Then the map defined by

f̂ : H(C) → D with f̂(A) :=
∨

f(A)

is continuous.

Proof. Take ↓x ⊆ D subbasic closed. We have

f̂−1
(
↓x

)
=

{
A ∈ H(C)

∣∣ f̂(A) ∈ ↓x
}

=
{

A ∈ H(C)
∣∣ ∨

f(A) ∈ ↓x
}

=
{

A ∈ H(C)
∣∣ ∨

f(A) v x
}

=
{

A ∈ H(C)
∣∣ f(A) ⊆ ↓x

}
=

{
A ∈ H(C)

∣∣ A ⊆ f−1(↓x)
}

= ↓f−1
(
↓x

)
.

The set ↓x is nonempty, upper-closed and convex. Hence the set f−1(↓x)
is convex by linearity of f and Lemma 5.4; it is closed by continuity of f ;
and it is nonempty, since f(0) = 0 by linearity of f , and thus

f(0) = 0 v x ⇐⇒ 0 ∈ f−1(↓x).
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Hence, we have f−1(↓x) ∈ H(C), whence ↓f−1(↓x) is a subbasic closed set
in H(C) with the upper topology. 2

Lemma 5.20. If a function preserves binary suprema and directed suprema, then
it preserves arbitrary suprema.

Proof. Take an arbitrary nonempty subset D of the space. Form the subset

D1 =
{

a ∨ b
∣∣ a, b ∈ D

}
of all binary suprema in D. Next, form the subset

D2 =
{

a ∨ b
∣∣ a, b ∈ D1

}
of all binary suprema in D1, and so on. Collecting all these binary suprema
gives a directed set D′ =

⋃∞
i=1 Di. If the directed supremum

∨↑ D′ exists,
it is equal to the supremum

∨
D of D. Any function preserving directed

suprema and binary suprema will preserve the supremum of D′, and thus
the supremum of D. If D was empty, the supremum is the smallest ele-
ment of the starting space; any function preserving binary suprema also
preserves the order, and hence maps the smallest element of the starting
space to the smallest element of the target space. Thus, functions pre-
serving directed and binary suprema do indeed preserve arbitrary (even
empty) suprema. 2

Proposition 5.21. Let C, D be stably compact semitopological cones, where D
has binary suprema ∨ with + and · distributing over ∨, and D is equipped with
the upper topology. Let f : C → D be a continuous linear map. Then the map
defined by

f̂ : H(C) → D with f̂(A) :=
∨

f(A)

is the unique linear continuous map preserving binary suprema that makes the
following diagram commute:

C H(C)

D

.......................................................................................................................................................................... ............
x 7→ ↓x

...................................................................................................................................................................................................................................................................................... .........
...

f

.........................................................................................................................................................................................
...
.........
...

f̂
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Proof.
Continuity, linearity, extension property:
The map f̂ is linear and continuous by Propositions 5.18 and 5.19. Since
x =

∨
↓x = max ↓x and continuous maps preserve the specialisation order,

we have
f̂(↓x) =

∨
f(↓x) = max f(↓x) = f(x),

whence the diagram commutes.

Preserving binary suprema:
We verify that the extension function f̂ preserves binary suprema. We
have:

f̂
(
A ∨B

)
= f̂

(
conv A ∪B

)
=

∨
f
(
conv A ∪B

)
by definition of f̂

=
∨

f
(
conv A ∪B

)
by Lemma 5.17

=
∨

f
(
conv A ∪B

)
by Lemma 1.8

It is an easy exercise to verify that f(conv E) = conv f(E) holds for any
linear function f and any subset E.

=
∨

conv f(A ∪B)

Taking Lemma 5.17 one step further, we have that
∨

E =
∨

conv E for any
subset E. (Hint: An element x is an upper bound for E iff E ⊆ ↓x iff
conv E ⊆ ↓x, since ↓x is already closed and convex.) This gives:

=
∨

f(A ∪B)

=
∨(

f(A) ∪ f(B)
)

=
∨

f(A) ∨
∨

f(B)

= f̂(A) ∨ f̂(B),

which was to show.

Uniqueness:
For the diagram to commute, we have to set f̂(↓x) := x. By [GHK+03, Ex-
ercise O-5.15(viii), p.46], we have that f̂ preserves directed suprema, since
it is a continuous function between sober spaces. By assumption, we also
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want f̂ to preserve binary suprema. Hence, by Lemma 5.20, the function
f̂ preserves arbitrary suprema.

For any A ∈ H(C), we have:

conv A = A =
⋃
x∈A

↓x = conv
⋃
x∈A

↓x =
∨

x∈A

↓x =
∨↑

x∈A

↓x.

Hence, we obtain

f̂(A) = f̂
( ∨↑

x∈A

↓x
)

=
∨↑

x∈A

f̂(↓x) =
∨↑

x∈A

f(x) =
∨↑ f(A),

whence we have no choice for the definition of f̂ , which shows unique-
ness. 2

To end this section, consider the category SemiTop of stably compact
semitopological cones with continuous linear maps as morphisms, as well
as the category SemiTop∧ of stably compact semitopological cones with
binary suprema, together with continuous linear functions preserving bi-
nary suprema as morphisms.

Proposition 5.22. The assignment C 7→ H(C) can be extended to a func-
tor H : SemiTop → SemiTop∧ by assigning to any continuous linear map
f : C → D the map

H(f) : H(C) → H(D) with A 7→ f(A)

which is continuous and linear and preserves binary suprema.

Proof. We have to verify that H(f) is continuous and linear and that it
preserves binary suprema. These are straightforward calculations, using
the continuity and linearity of f as well as Lemma 1.9 and Proposition 1.8.
We leave them as exercise to the reader.

Finally, for A ∈ H(C) we see that

H(idC)(A) = idc(A) = A = A = idH(C)(A),

and for composition we use continuity of f and g together with Proposi-
tion 1.8 to get:

H
(
g ◦ f

)
(A) = g

(
f(A)

)
= g

(
f(A)

)
=

(
H(g) ◦H(f)

)
(A).

2
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Conclusion

To conclude this diploma thesis, we give a brief overview of what we have
done and of questions arising from our work.

Summary

We have verified that the extended probabilistic powerdomain construc-
tion V can be extended to an endofunctor, and even to a monad in the
category StCp of stably compact spaces. We have verified that separa-
tion theorems formerly shown for dcpo-cones still hold with locally con-
vex topological cones. We have shown that the convex Smyth powercone
construction S is a functor from the category StCpCvCone of stably com-
pact locally convex topological cones into the category StCpCvCone∧ of
stably compact locally convex topological cones with binary infima. For
stably compact locally convex topological cones C, we have exhibited an
alternative characterisation of the Scott topology on S(C), and we have
shown that the latter is a continuous dcpo-cone in this case. Finally, we
have shown that the convex Hoare powercone construction is a functor
from the category SemiTop of stably compact semitopological cones to
the category SemiTop∧ of stably compact semitopological cones with bi-
nary suprema. For all three constructions, V, S and H, we have proved an
extension property that can be used for the denotational semantics of the
composition of programs.

Open Questions

An interesting task would be to determine the algebras of the monads V,
discussed in Section 2 for the extended probabilistic powerdomain, and S,
discussed in Section 4 for the convex Smyth powercone. This would pro-
vide a genuine universal property. Looking at the special case of Proposi-
tion 2.8, we see that the images of µ ∈ V(X) under the extension function
must be uniquely determined by the values on the point valuations ηx, in
order for the universal property to hold.

Unfortunately, there is no hope of taking over the procedure used for
continuous domains: There, arbitrary continuous valuations are approx-
imated by simple valuations (that is, linear combinations of point valua-
tions) via directed suprema; any function for which we search an extension
is a continuous function between sober spaces, hence preserves directed
suprema, hence is determined by the images of the point valuations. Kirch
has shown in [Kir93, Satz 5.4, p.47] that whenever such an approximation
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by directed suprema is possible in V(X), the space X is already a contin-
uous domain (under the assumption that X is sober, which is the case for
stably compact spaces). Hence one must find another, more topological
way to approximate continuous valuations by point valuations.

Concerning the convex Hoare powercone H(C), it is still open whether
it can be made into a topological, rather than a semitopological cone, pro-
vided that the given cone C is a topological cone.

Finally, one could further investigate Proposition 5.19, which states
that the extension function on H(C) is continuous. More precisely, it is
unclear whether the target space has to carry the upper topology. Closer
examination might show if this requirement is superfluous or necessary.
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