Bibliography

This is an incomplete list of publications which describe mathematics aspects of the ANU quotient programs, their applications and design.
  1. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma Algebra System I: The User Language. J. Symbolic Comput., 24:235-265, 1997.
  2. Herbert Brückner. Algorithmen für endliche auflösbare Gruppen und Anwendungen. Doktorarbeit, RWTH Aachen, 1998.
  3. Martin Schönert et al. GAP - Groups, Algorithms and Programming. Lehrstuhl D für Mathematik, RWTH Aachen, fifth edition, 1995.
  4. George Havas and M.F. Newman. Application of computers to questions like those of Burnside. In Burnside Groups, volume 806 of Lecture Notes in Math., pages 211-230, Berlin, Heidelberg, New York, 1980. (Bielefeld, 1977), Springer-Verlag.
  5. George Havas, M.F. Newman, Alice C. Niemeyer, and Charles Sims. Groups with exponent six. Communications in Algebra, 28:3619-3638, 1999.
  6. Derek F. Holt and Sarah Rees. A graphics system for displaying finite quotients of finitely presented groups. In Groups and Computation, volume 11 of Amer. Math. Soc. DIMACS Series, pages 113-126. (DIMACS, 1991), 1993.
  7. C.R. Leedham-Green and L.H. Soicher. Collection from the left and other strategies. J. Symbolic Comput., 9:665-675, 1990.
  8. M. F. Newman and Werner Nickel. Engel elements in groups. J. Pure Appl. Algebra, 96:39-45, 1994.
  9. M.F. Newman. Calculating presentations for certain kinds of quotient groups. In SYMSAC '76, Proc. ACM Sympos. symbolic and algebraic computation, pages 2-8, New York, 1976. (New York, 1976), Association for Computing Machinery.
  10. M.F. Newman. Determination of groups of prime-power order. In Group Theory, volume 573 of Lecture Notes in Math., pages 73-84, Berlin, Heidelberg, New York, 1977. (Canberra, 1975), Springer-Verlag.
  11. M.F. Newman, Werner Nickel, and Alice C. Niemeyer. Descriptions of groups of prime-power order. J. Symbolic Comput., 25:665-682, 1998.
  12. M.F. Newman and E.A. O'Brien. Application of computers to questions like those of Burnside, II. Internat. J. Algebra Comput., 6:593-605, 1996.
  13. M.F. Newman and Michael Vaughan-Lee. Some Lie rings associated with Burnside groups. Electron. Res. Announc. Amer. Math. Soc., 4:1-3 (electronic), 1998.
  14. Werner Nickel. Computing nilpotent quotients of finitely presented groups. In G. Baumslag et al., editors, Geometric and Computational Perspectives on Infinite Groups, volume 25 of Amer. Math. Soc. DIMACS Series, pages 175-191. (DIMACS, 1994), 1995.
  15. Werner Nickel. Some Groups with Right Engel Elements. In Groups St Andrews 1997 in Bath, volume 261 of London Math. Soc. Lecture Note Ser., pages 571-578. Cambridge University Press, 1999.
  16. Alice C. Niemeyer. A soluble quotient algorithm. J. Symbolic Comput., 18:541-561, 1994.
  17. Alice C. Niemeyer. Computing finite soluble quotients. In Wieb Bosma and Alf van der Poorten, editors, Proc. of CANT `92, pages 75- 82. Kluwer Academic Publishers, 1995.
  18. E.A. O'Brien. The p-group generation algorithm. J. Symbolic Comput., 9:677-698, 1990.
  19. E.A. O'Brien. The groups of order 256. J. Algebra, 143(1):219-235, 1991.
  20. E.A. O'Brien. Isomorphism testing for p-groups. J. Symbolic Comput., 17:133-147, 1994.
  21. E.A. O'Brien. Computing automorphism groups of p-groups. In Wieb Bosma and Alf van der Poorten, editors, Computational Algebra Number and Number Theory, pages 83-90. (Sydney, 1992), Kluwer Academic Publishers, Dordrecht, 1995.
  22. W. Plesken. Towards a soluble quotient algorithm. J. Symbolic Comput., 4:111-122, 1987.
  23. Daniel Segal. Polycyclic Groups. Cambridge University Press, Cambridge, 1983.
  24. Charles C. Sims. Computation with finitely presented groups. Cambridge University Press, 1994.