
Modular Arithmetic in Finite Groups, Rings, Fields

OWO lecture notes, Martin Otto 2021

Contents: groups, rings, fields as algebraic structures; divisibility, primality and gcd
over the integers, Euclid’s algorithm; congruence modulo n and modular arithmetic; the
finite rings Zn and the finite fields Zp; outlook towards applications in cryptography.

1 Algebraic structures: groups, rings, fields

Algebraic structures consist of a non-empty domain together with a number of specified
operations (functions of specified arities over that domain) and constants (designated el-
ements of the domain). Common examples are the usual number domains like N,Z,Q,R
with arithmetical operations like +, · (binary) and/or additive inversion x 7! �x (unary,
but not available over N (!)), and possibly constants like 0, 1 for numbers which play a
special rôle w.r.t. such arithmetical operations.

We collect some properties of interest for operations like these.

Definition 1 [properties of binary operations]
Consider a binary operation � : A⇥A ! A over a non-empty domain A.

(i) � is associative if, for all a, b, c 2 A,
a � (b � c) = (a � b) � c;

(ii) � is commutative if, for all a, b 2 A,
a � b = b � a;

(iii) � has e 2 A as a neutral element if, for all a 2 A,
a � e = e � a = a;

(iv) � has inverses (w.r.t. the neutral element e 2 A) if
for all a 2 A there is some b 2 A such that a � b = b � a = e;

(v) � distributes (from the left) over a second binary operation ⇤ : A⇥A ! A if,
for all a, b, c 2 A, a � (b ⇤ c) = (a � b) ⇤ (a � c).

Definition 2 [groups]
A structure (A, �, e) with a binary operation � and constant e 2 A is a group [Gruppe] if
� is associative and has inverses w.r.t. the neutral element e. A group (A, �, e) is called
commutative or Abelian if the group operation � is commutative.

Definition 3 [rings and fields]
A structure (A,+, ·, 0, 1) with two binary operations +, · over A that are both associative
and commutative (referred to as addition and multiplication) and constants 0, 1 2 A is
a ring [Ring] if

1



OWO lecture: Modular arithmetic Martin Otto 2021 2

(i) (A,+, 0) is a commutative group (the additive group of the ring);

(ii) 1 is a neutral element for the multiplication operation · ;
(iii) multiplication · distributes over addition +, and 0 · a = 0 for all a 2 A.

A ring (A,+, ·, 0, 1) is a field [Körper] if
1 6= 0 and all a 6= 0 have inverses w.r.t. multiplication, i.e. if the restriction of · to
elements other than 0 forms another group (the multiplicative group of the field).

Familiar examples. The standard number fields (R,+, ·, 0, 1) and (Q,+, ·, 0, 1) are
fields (multiplicative inverses through division by non-zero numbers). The ring of inte-
gers (Z,+, ·, 0, 1) is not a field, as division is not available; the additive group (Z,+, 0)
has inverses, unlike (Z \ {0}, ·, 1) for multiplication. Over the natural numbers N both
addition and multiplication are associative and commutative with neutral elements 0
and 1, respectively, but inverses are not generally available.

We shall come to examples of finite number domains that form groups, rings and
fields with suitably adapted addition and multiplication operations in Section 3 below.

Example 4 Natural examples of finite and infinite groups that are not usually com-
mutative arise on sets of symmetries (structure-preserving invertible transformations)
of mathematical structures, or e.g. geometric patterns, with composition of transforma-
tions as the binary operation, and with the trivial identity transformation, which fixes
everything point-wise, as the neutral element w.r.t. composition.

2 Integer divisibility and division with remainder

Background terminology and basic facts. An integer a 2 Z is divisible by the
non-zero natural number (or integer) d if a = k · d for some k 2 Z; note that 0 is
divisible by any non-zero d. Common notation for “d divides a” is d|a. Any non-zero
number is trivially divisible by 1 and by itself. A natural number p > 1 that is divisible
only by 1 and itself is called a prime (note that 1 is not considered prime). It is well
known that any natural number n > 1 can be decomposed into a product of primes,
which is unique up to the arrangement of the factors (commutativity!). A related feature
about divisibility, which is also not proved here, is the following.

Fact 5 A prime p divides an integer m 2 Z if, and only if, p is a factor in the prime
decomposition of m; it follows that p divides a product m · n of integers if, and only if,
it divides at least one of the factors m,n.

2.1 Division with remainder: a mod b

Integers can always be divided with remainder (for any non-zero divisor, that is). A
remainder w.r.t. divison by some natural number n > 0 can be any integer between 0
and n� 1 (inclusive).
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Definition 6 [remainders and congruence modulo n]
The remainder of a 2 Z w.r.t. divison by non-zero n 2 N is the unique r in the range
0 6 r < n for which a� r is divisible by n, i.e. such that there is some k 2 Z for which

a = k · n + r (0 6 r < n)

We write amodn (read: “a modulo n”, or just “a mod n”) for this remainder of a 2 Z
w.r.t. divison by n. For fixed n > 0, two integers a and b are called congruent modulo n,
denoted as

a ⌘n b

if their remainders w.r.t. division by n are identical, i.e. if amodn = bmodn.

It is easy to check that a ⌘n b if, and only if, n|(a� b): their di↵erence is an integer
multiple of n. Division with remainder is closely connected with rounding (to the largest
integer below some rational). For a, b 2 N where b > 0 we write ba/bc for

ba/bc := max
�
d 2 N : d · b 6 a

 

and, Exercise, check by simple arithmetic that amod b = a� ba/bcb. (1)
The relation ⌘n, congruence modulo n, is an example of an equivalence relation.

Such relations can be seen as variants of equality, based on a possibly much coarser level
of classification as to when two objects are to be considered indistinguishable. Clusters
of mutually equivalent objects form so-called equivalence classes, and each member of
such an equivalence class becomes a representative of its entire equivalence class. In our
case, of ⌘n as an equivalence relation over Z, the equivalence classes modulo n are the

[a]n := {b 2 Z : a ⌘n b}, the equivalence class of a 2 Z,

each of them infinite. There are just exactly n many of them, which can be listed as
[0]n, . . . , [n� 1]n, so that the equivalence class [a]n of a is represented by its remainder
modulo n:

[a]n = [amodn]n,

and all Z is the disjoint union of these n-many classes. For an intuitive image, think of
Z wrapped around in a cycle of length n. The set of classes is denoted as

Zn := {[a]n : a 2 Z} (2)

and can (via our preferred choice of representatives) also be represented just by the
set {0, . . . , n � 1} of possible remainders. Interestingly, these finite domains Zn inherit
natural arithmetical operations from those on Z, see Section 3.

1
We now often drop the explicit notation · for multiplication, as in writing just ba/bcb for ba/bc · b.

2
Another suggestive notation for this set is Z/⌘n to be read as “Z modulo n.”
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2.2 Greatest common divisors and Euclid’s algorithm

For non-negative integers a, b, not both equal to 0,

gcd(a, b) = max
�
d 2 N : d|a and d|b

 

is the greatest common divisor [größter gemeinsamer Teiler, ggT] of a and b. One
can show (essentially based on Fact 5; do you see how?) that the above definition
always yields a unique result for gcd(a, b). We usually assume the convention to list the
arguments for gcd such that a > b. For b = 0 we get gcd(a, b) = a, for every a > 0.
Numbers a and b are called relatively prime [teilerfremd] if gcd(a, b) = 1, i.e. if they
share no prime factors.

Fact 7 For all a, b > 0: gcd(a, b) = gcd(b, amod b).

Exercise. To prove this fact, use elementary arithmetic to show directly that d divides
both a and b if, and only if, d divides both amod b and b.

Fact 7 supports an elegant algorithm for a straightforward (and computationally fea-
sible) gcd-computation. Euclid’s algorithm was known to (though possibly not invented
by) Euclid, in the 4th century BC, and may be regarded as one of the earliest non-trivial
mathematical algorithms.

Euclid(a, b) assume 0 6= a > b > 0

1 IF b = 0 THEN return a
2 ELSE return Euclid(b, amod b)

Correctness is shown on the basis of Fact 7 above. An extended form of this algorithm
also computes not just gcd(a, b) but also values k, ` 2 Z for which

gcd(a, b) = ka+ `b.

Extended-Euclid(a, b) assume 0 6= a > b > 0

1 IF b = 0 THEN return (a, 1, 0)
2 ELSE DO
3 (d,x,y) := Extended-Euclid(b, amod b)
4 return (d, y, x� ba/bcy)
5 OD

Extended-Euclid has the same recursive structure as Euclid. It performs just
like Euclid w.r.t. to variable (and output) d. For its correctness it just remains to prove
the equation

d = gcd(a, b) = ka+ lb (⇤)
for the output (d, k, l) of Extended-Euclid(a, b). We do so by induction, namely by
establishing that
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(i) (base case) equation (⇤) is true in case of termination in line (1);

(ii) (induction step) assuming that line (3) returns d, x, y satisfying the claim (⇤) for
Extended-Euclid(b, amod b), so does (d, y, x � ba/bcy) w.r.t. for Extended-

Euclid(a, b).

Of these, (i) is obvious, and (ii) follows by simple arithmetic. Indeed,

d = gcd(b, amod b) = xb+ y(amod b)

implies that d = gcd(a, b) and that

ya+ (x� ba/bcy)b = xb+ y(a� ba/bcb) = xb+ y(amod b) = d

as required. As an Exercise you should check the arithmetic behind the last equality
and think about how and why (i) and (ii) together do indeed establish the claim for all
runs of this algorithm, i.e. for all legitimate arguments a, b.

The fact that gcd(a, b) is an integer linear combination of the arguments a and b as
in (⇤) will be useful for solving simple equations in modular arithmetic and plays a key
role in some cryptographic applications to be discussed in Section ??. It is also essential
for a proof of the following characterisation of the gcd, which we omit here.

Proposition 8 For all a, b > 0:

(i) gcd(a, b) is the smallest positive number of the form ka+ lb for any k, l 2 Z.
(ii) The numbers of the form ka+lb, for k, l 2 Z, are precisely the multiples of gcd(a, b).

3 Modular arithmetic

Recall from Section 2.1 that Zn stands for the set of equivalence classes of integers w.r.t.
the equivalence relation of congruence modulo n:

a ⌘n b if, and only if, amodn = amodn if, and only if, n|(a� b).

In other words, we identify numbers having the same remainder w.r.t. division by n.
The minimal non-negative member in the class [a]n is just the remainder amodn. As
0 6 amodn < n, we may represent Zn by the n-element set {0, . . . , n � 1}, which
formally is a complete set of representatives for Zn.

Modular addition and multiplication. Addition and multiplication on Z carry
over to Zn by putting

[a]n + [b]n := [a+ b]n and [a]n · [b]n := [ab]n.

One needs to check that these operations are well-defined over Zn (!), i.e. that the
equivalence classes stipulated as values on the right-hand sides do not depend on the
chosen representatives a for [a]n and b for [b]n. We leave this as an Exercise.

Proposition 9

(i) For all n > 0: (Zn,+, [0]n) is a commutative group, and (Zn,+, ·, [0]n, [1]n) a ring.

(ii) For primes p: (Zp,+, ·, [0]p, [1]p) is a field.
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Proof For (i) one checks that the required equalities for associativity, commutativity,
distributivity and neutral elements carry over from corresponding equalities for repre-
sentatives in Z. For additive inverses, we note that [a]n + [n� a]n = [n]n = [0]n.

The crucial observation towards (ii) then concerns the existence of multiplicative
inverses (which we do not have in Z (!)). For a prime p and any a in the range 1, . . . , p�1,
the numbers a and p are relatively prime, i.e. gcd(p, a) = 1 (why?). From Section 2.2 we
therefore know that there are k, ` 2 Z such that 1 = gcd(p, a) = kp + `a. This implies
that [1]p = [kp + `a]p = [kp]p + [`a]p = [`a]p = [`]p · [a]p = [a]p · [`]p so that [`]p is the
desired inverse for [a]p in (Zp \ {[0]p}, ·, [1]p). 2

Theorem 10 (Fermat’s little theorem)
For all primes p and all a 6⌘p 0: ap�1 ⌘p 1.

Note that the claim implies that ap ⌘p a for all a 2 Zp, i.e. that x 7! xp is the
identity transformation on Zp.

Proof For the proof we consider subgroups of the multiplicative group of (in this case:
the field) Zp, which itself has precisely p�1 elements represented by 1, . . . , p�1. For fixed
a 6⌘p 0, we look at the subgroup generated by a whose domain is the subset {[a]kp : k 2
Z} ✓ Zp. Here [a]�n for n 2 N stands for the n-th power of the multiplicative inverse of
[a]p, i.e. of [a]�1

p . (To see that these elements form a group w.r.t. multiplication within
Zp, we need to check that the set is closed under multiplication and has multiplicative
inverses for each of its elements, which is clear from its definition.) In any group, any
subset with these closure properties forms a group as a subgroup of the given group. As
the supply of elements in the multiplicative group of Zp is finte (there are exactly p� 1
many),

{[a]kp : k 2 Z} = {[a]kp : 0 6 k < m}

for some m 2 N, and for the minimal such m we must have [a]mp = [1]p (why?), and
this minimal m is the number of elements in the subgroup. By a general fact about
finite groups, which we leave as a slightly more challenging Exercise, the size of any
subgroup divides the size of the given finite group. Hence m|(p� 1), i.e. p� 1 = `m for
some ` 2 N. It follows that [a]p�1

p = [a]m`
p = ([a]mp )` = [1]`p = [1]p as claimed. 2

E�cient exponentiation in Zn. Addition and multiplication in Zn are computation-
ally feasible because they reduce to corresponding algorithms for integers. But in Zn,
even exponentiation is feasibly computable. In contrast, ordinary integer exponentiation
a, b 7! ab involves an exponential increase in the lengths of the digital representations
(e.g. in binary). But if the results are capped as in modular arithmetic over Zn, we
obtain a feasible exponentiation algorithm, based on repeated squaring .
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Modular-Exponentiation(a, b, n) assume a, b > 0

let bk . . . b0 be the binary expansion of b: b = b0 + 2b1 + · · ·+ 2kbk

1 d := 1
2 c := a
3 FOR i = 0, . . . , k DO
4 IF bi = 1 THEN d := (d · c)modn
5 c := c2modn
6 OD
7 return d

For correctness observe that (in Zn as well as in Z):

ab = ab0 · a2b1 · · · a2kbk = ab0 · (a2)b1 · · · (a2k)bk .

The variable c successively gets set to a, a2, a4, . . . , a2
k
modn in lines 3 and 5, and

the corresponding factors are multiplied into d for those bi that are not 0.

Exercise. Show that 3444 + 4333 is divisible by 5, and that 2999 + 5999 as well as
5222 � 2222 are divisible by 7 (without ever so much as thinking of 3-digit decimal
numbers for the intermediate results!).

4 Outlook/excursion: cryptographic applications

Cryptography is the science of the use of encryption methods that protect communica-
tion. In the simplest setting, consider the problem of transmitting a message M from B
(Bob) to A (Alice) over some insecure channel in such a way that even though someone
might intercept the message, its contents is not revealed to the eavesdropper. To achieve
this, B has to encrypt the message and only submit its encrypted form to the insecure
channel; the necessary assumptions being that (a) a potential eavesdropper who inter-
cepts the encrypted message cannot (or at least not easily) retrieve the original message;
but that the legitimate recipient, A, can decrypt the encrypted message to get at the
original message.

Encryption and decryption are therefore based on transformations of M which re-
quire specific extra information, so-called keys, to be (e�ciently) computed. More pre-
cisely, encryption and decryption are performed by means of matching pairs of transfor-
mations, such that the decryption transformation inverts the encryption transformation.

With simple symmetric schemes the same key is necessary for encryption and match-
ing decryption, which raises the problem of making the key used by B (for encryption)
available to A (for decryption). This makes a large scale use of such systems impractical,
as one either would have to rely on the same insecure channels for the distribution of
keys or has to go to the extra trouble of (pre-)arranging key choices by other means
(trusted messengers). While the first option clearly compromises security, the second
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is not feasible at the scale required for secure everyday communication (outside secret
service activities, say).

Surprisingly this key exchange problem can be eliminated. A first milestones in the
development of modern era cryptography is the discovery of a key exchange protocol
by Di�e, Hellman and Merkle that allows Alice and Bob to generate a common secret
key interactively without actually transmitting the key itself. A second and even more
important milestone occurred with the invention of public key cryptography by Rivest,
Shamir and Adleman, whose RSA cryptosystem is a widely used standard today.3

We generally assume here that the messages in question have already been encoded
as bitstrings of some fixed length or numbers in a certain fixed range. (This also means
that longer messages have to be cut up and transmitted in blocks of suitable lengths.)
In this sense, our message spaces will either be domains of fixed length bitstrings {0, 1}n
or fixed initial segments of the natural numbers Zn = {0, . . . , n� 1}.

4.1 Conventional symmetric cryptography

One of the most simple and generic encryption/decryption schemes of the conventional
symmetric key variant uses bit-wise addition mod 2 (or bitwise exclusive or, xor). To
use it on a message space of bitstrings of length n, M = m1 . . .mn 2 {0, 1}n, Alice
and Bob share the same key , which can be used for encryption and decryption (hence
“symmetric”). For their key they can use any fixed (and agreed) bitstring of length n,
K = k1 . . . kn 2 {0, 1}n. To encrypt a message M , Alice would compute the string M 0

M 0 := M �K where m0
i = (mi + ki)mod 2.

To decrypt, Bob converts M 0 back into M using the same transformation

M := M 0 �K where mi = (m0
i + ki)mod 2.

Security relies on the fact that only the encrypted message M 0 is passed across the
insecure channel, and on the assumption that only A and B know their key K.

Of course, in order to be able to communicate in this way, Alice and Bob have to
share the information about K: the key exchange problem.

4.2 An interactive key exchange protocol

The gist of the key exchange problem seems to be that in order to communicate securely,
Alice and Bob must already share an exclusive secret (their key) beforehand. Can this
constraint be avoided? Is this constraint unavoidable, or can keys somehow be generated
between A and B, in such a way that only they share the full information about the key,
and without transmitting the key between A and B? Unlikely though it seemed at the

3
Historically it now appears that both these major scientific innovations had previously (and in

reverse order) been found but not published by researchers for the British Government, who were not

permitted to publish them. These and many other intriguing aspects of the history of cryptography are

treated in Simon Singh’s books [The code book, 1999] and [The Science of Secrecy, 2000].
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time of this discovery, there are protocols that allow A and B to create their common
key interactively in a process in which they only exchange auxiliary information from
which the resulting key is not feasibly computable.

Such phenomena rest on the existence of functions that are easy to compute but
(assumed to be) hard to invert, so-called one-way functions . An important example is
provided by modular exponentiation (easy, see above) with the discrete logarithm as
its inverse. Though not a proven fact, there is good reason to assume that the discrete
logarithm is not feasibly computable. The discrete logarithm to base g in Zn solves the
modular exponential equation

gx ⌘n y

for x, given y (and fixed g and n). It is thus an inverse to modular exponentiation
x 7! gxmodn. The underlying complexity theoretic assumption is that x is not feasibly
computable from y, while y is of course feasibly computable from x.

This can be used for a key exchange protocol idea due to Di�e, Hellman and Merkle
(1976) as follows.

Alice and Bob agree (publicly) on suitable numbers n and g. In a session in which
they want to generate a common key for cryptographic purposes, Alice and Bob inde-
pendently choose numbers a and b. They do not reveal the numbers a and b to each
other, however. Instead Alice sends to Bob the number gamodn and Bob send to Alice
the number gbmodn. According to the crucial complexity assumption, a and b are not
accessible even to someone who intercepts these messages. Now Alice chooses for her key
the number (gbmodn)amodn = gabmodn, which she can compute from the number
received from Bob using her own secret a. Bob computes the same number according to
gabmodn = (gamodn)bmodn from the number received from Alice using his secret b.

Now Alice and Bob share the key gabmodn, without having communicated any
information from which this key could be extracted (if the discrete logarithm is indeed
not feasibly computable).

4.3 RSA public key cryptography

In public key cryptography the key exchange problem does not even arise as such, as
we are dealing with asymmetric schemes in which A and B need not share the same
key. That alone, however, does not solve any of the underlying problems, as still A
and B have to establish a situation in which they are in possession of matching keys
for the decryption of messages encrypted by the other. Public key cryptosystems like
RSA solve this problem by letting each participant have two keys: one public to be used
for encryption by anyone who wants to communicate to the owner of this public key;
and one secret known only to its owner which is necessary to decrypt any message thus
encrypted.

So each participant is responsible for his or her own pair of matching keys, only one
of which is made available to the rest of the world. The theoretical problem to be solved,
once this idea is formulated, concerns a mechanism according to which such key pairs
can be generated such that one key cannot feasibly be computed from the other. Rivest,
Shamir and Adleman (1977) devised the following scheme.
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We consider simple one-way communication from B to A. Let PA and SA be the
two keys maintained (and generated) by Alice (A): PA is made public, SA is kept secret
(remains known only to A). The crucial property is that only with knowledge of SA can
one decrypt a message encrypted with PA. B obtains the publicly available key PA to
encrypt M and sends this encrypted message to A. Then A, and only A, can restore
the original message through decryption with SA.

Assume that the message is (encoded as) a natural number M < n, with a fixed
agreed bound n. So the message space is Zn = {0, . . . n � 1} = Zn. Let TP and TS be
one-one mappings of Zn into itself, associated with keys P and S. In our scenario think
of A’s public and secret keys P = PA, S = SA. These need to give rise to transformations
TP , TS : Zn ! Zn, which form a matching encryption/decryption pair such that for all
M

TS(TP (M)) = M.

According to the above protocol, if A has chosen SA = S and PA = P , B sends
TP (M) to A; A applies TS to regain TS(TP (M)) = M . To ensure secrecy and practicality,
one has to find families of matching pairs of transformations TS and TP based on key
pairs S and P such that

– on the one hand, M cannot be feasibly computed from TP (M) and P alone,

– on the other hand, both TP and TS are feasibly computable with knowledge of the
respective keys.

RSA is based on modular exponentiation. With a pair of two large primes p and q
(randomly generated by A) associate n = pq and N := (p � 1)(q � 1). A also chooses
some integer e relatively prime to N , i.e., one such that gcd(e,N) = 1. A then computes
a solution d to the modular equation

ex ⌘N 1,

essentially using Extended Euclid. A’s keys, which are good for messages M 2 Zn,
are the pairs of numbers P = (n, e) (the public key) and S = (n, d) (the secret key).
The associated transformations in the message space Zn are

• TP based on the public key P = (n, e): TP (M) = M emodn

• TS based on the secret key S = (n, d): TS(M) = Mdmodn

Correctness of RSA. To show that TS(TP (M)) = M , it su�ces to show that

M ed ⌘n M.

The proof uses Fermat’s little theorem, Theorem 10 above, plus some simple modular
arithmetic. We only give a sketch here. From ed ⌘N 1 and N = (p� 1)(q � 1) we find
that ed = 1 + k(p� 1)(q � 1) for suitable k 2 Z. Therefore,

M ed ⌘n MM (p�1)(q�1)k.
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Fermat’s theorem, applied for both primes p and q, respectively, implies that

M ed ⌘p M and M ed ⌘q M.

Thus M ed = M + k1p = M + k2q for suitable ki 2 Z. Now k1p = k2q for distinct
primes p and q implies that p|k2 and q|k1. Using for instance that k2 = k3p for some
k3 2 Z we find that

M edmodn = (M + k2q)modn = (M + k3pq)modn = (M + k3n)modn = M modn.

Remark. The security of RSA rests on the assumption that TS is not e�ciently com-
putable without knowledge of d and in particular that d is not e�ciently computable
from the publicly available (n, e).

Note that d is computable from n and e to the extent that factorisation of composite
numbers into their prime factors is computable. From the prime factors p and q of n
and knowledge of e, one would obtain N and d just as e↵ectively as Alice.

There is no known polynomial time factorisation algorithm, and factorisation is cur-
rently believed to be too hard to admit a feasible systematic attack on RSA encryption.


