
Symmetry and First-Order:Explicitly Presentation-Invariant CircuitsMartin Otto �Preliminary version, October 94AbstractWe investigate circuit complexity under the additional assumption of full combinatorialsymmetry with respect to permutations of the input representation. With this approachwe derive a very natural and simple characterization of �rst-order logic and its in�nitaryvariant with bounded numbers of variables over �nite structures. Extending these resultsto not necessarily acyclic boolean networks, we derive corresponding characterizations ofpartial �xed-point logic (or the relational query language WHILE) and ordinary �xed-point logic.Keywords: Finite model theory, descriptive complexity, generic computation, circuit complexity1 IntroductionCircuit complexity classes provide one paradigm for measuring algorithmical complexity. Inparticular they are naturally adapted to capture some aspects of parallelism. We are hereinterested in the algorithmical complexity of problems related to �nite relational structuresas inputs, e.g. decision problems for �nite graphs. One of the central topics in �nite modeltheory concerns connections between logical de�nability and algorithmical complexity of suchstructural properties, i.e. of relational queries. Turning to circuit complexitywe are interestedin statements relating the computability of relational queries in certain kinds of circuits totheir de�nability in certain logical systems.To treat �nite relational structures of a given type as inputs to boolean circuits, oneusually considers families (Cn)n�1, where Cn is of a format to allow representations of size nstructures as inputs. To obtain from a structure of size n a presentation as a binary string,we identify its universe with the standard domain f0; : : : ; n� 1g. The input gates of Cn arelabelled by the set of all instances of atoms (in the given type) over this standard domain. Inthis way the speci�cation of a concrete input structure of size n corresponds to the obviousallocation of truth values 1 and 0 to the labelled input gates of Cn.�Mathematische Grundlagen der Informatik, RWTH Aachen, 52074 Aachen, Germany,Email: otto@mephisto.informatik.rwth-aachen.de 1

For the present investigation we stress two important points:� A priori circuits provide a completely non-uniform measure of complexity. Withoutfurther restrictions, even non-recursive problems are contained in low circuit complex-ity classes (e.g. purely numerical properties of the size of the universe can be dealtwith in families of trivial circuits). Therefore, various uniformity conditions are usu-ally imposed, e.g. in terms of constructibility of the sequence within some (standard)complexity bound.De�nability in a natural logical system, on the other hand, provides some uniformityin giving a single characterization across all cardinalities.� One of the problems pervading �nite model theory has to do with the arbitrariness ofinput representations in the case of not necessarily linearly ordered structures. Thereis no canonical labelling of the input nodes by the instances of the atoms over a giveninput structure. Hence, the condition that each circuit Cn really computes a booleanfunction of structures in the intended sense, is an essential implicit restriction: If A1and A2, Ai = �f0; : : : ; n�1g; : : :�, are isomorphic | i.e. if they correspond to di�erentlabellings of the elements of one and the same structure as 0; : : : ; n�1 | then Cn mustcompute the same value on both inputs.For logical de�nability, invariance of the semantics under isomorphisms is one of themost basic conditions.We here want to investigate circuits which satisfy the crucial invariance condition explicitly.The circuits considered below are explicitly symmetric in the sense that any permutation ofthe universe of an input structure is reected in an automorphism of the entire circuit. This isof course the natural and straightforward combinatorial condition to guarantee isomorphism-invariant performance. We combine this requirement with a particular uniformity condition.For this notion of uniformity we present two conceptually di�erent views, which turn out tobe equivalent in our framework:(i) Either we require the sequence (Cn)n�1 to be coherent in the sense that for m > n, Cncan be embedded into Cm in some very uniform way.(ii) Or, the sequence of circuits is replaced by a single circuit providing input nodes forstructures of any �nite size. The input nodes are labelled to correspond to atomsover the natural countably in�nite domain !, thus providing a potentially in�nite set-up. Now in every concrete computation on a �nite input structure, only a �nite (butarbitrarily located) portion of this in�nite input �eld is used.Towards our main result we consider a particular kind of size restriction that is well adaptedto the required symmetry. Owing to the symmetry requirement, all permutations of the input�eld act as automorphisms on the circuit. Restricting these permutations to �nite subsets,we require that the orbits of nodes under these localized symmetry operations grow onlypolynomially with the size of the localization. We shall call symmetric circuits that satisfy thislocal criterion of polynomiality local polynomial. The main result establishes that a booleanquery on �nite structures can be evaluated in an explicitly symmetric, locally polynomial2

circuit if and only if it is de�nable in in�nitary logic with bounded number of variables, L!1!.Further restricting to circuits of �nite depth we obtain a corresponding characterization ofthe expressive power of �rst-order logic. Waiving the acyclicity requirement for circuits, andsimilarly considering explicitly symmetric networks with a �nite number of types of nodes,we obtain characterizations of partial and ordinary �xed-point logic. We sum up theseMain Results For explicitly symmetric and locally polynomial boolean circuits, resp. net-works, there are the following strict correspondences:Circuits � In�nitary Logic with Bounded Number of VariablesCircuits of Finite Depth � First-Order LogicFinitary Networks � Partial Fixed-Point LogicPositive Finitary Networks � Fixed-Point LogicThe interesting direction in these matches lies in the passage from circuit or network com-putability to logical de�nability. The common key ingredient is a combinatorial lemma tothe e�ect that locally polynomial predicates are necessarily de�nable in terms of a �nite tupleof parameters; here a predicate is locally polynomial if its restrictions to �nite subsets haveonly polynomial size orbits in terms of the size of the restrictions.The main statement among the above is the fact that any node in an explicitly symmetricand locally polynomial circuit computes a truth value that is de�nable in L!1! . The resultconcerning �rst-order really is just a consequence of restriction to �nite depth and �nitequanti�er-rank in L!1! , respectively. The results concerning networks rather than circuitsare obtained in direct analogy with those for circuits.In fact, explicitly symmetric and locally polynomial networks without further restrictionstill correspond to L!1!. A �niteness requirement on the network, however, gives �rst-orderplus the kind of recursion inherent in network evaluation: Partial �xed-point logic, or therelational query language While.Symmetric circuits guarantee invariance with respect to the input representation throughtheir graphical layout. Note that the symmetry condition is purely algebraic in terms of theunderlying graph of the circuit. The class of these circuits provides an explicitly isomorphism-preserving model of computation, in the sense that isomorphic inputs give rise to isomorphiccomputations. Models of computation satisfying this invariance condition are called genericin the literature. They have been studied in the context of foundational issues, e.g. [GL 81],and also in the context of �nite model theory and database theory, e.g. [AV 91]. There isconsiderable interest in complexity analysis related to natural generic models of computationfor several reasons:(i) The classical complexity classes, e.g. based on Turing machines, were obviously intendedto deal with strings, i.e. with linearly ordered structures for inputs.(ii) Logics are `generic'. Correspondingly, the failure { so far { to equate the standard com-plexity classes below NP with logical systems in the absence of order, can be attributedto a more systematic mis�t. In fact major open problems, like �nding a logic for PTime,directly concern the di�culty of isolating the isomorphism-preserving fragment withinthe non-generic framework. 3

(iii) In many areas, such as database theory, it is important to have a-priori guarantees ofpresentation-invariance.Note that the framework of explicitly symmetric circuits provides a universal model ofisomorphism-preserving circuit recognition: It is a trivial observation that exactly all booleanqueries on �nite relational structures, i.e. all isomorphism preserving boolean functions, canbe evaluated by explicitly symmetric circuits. However, for typical circuits, the straightfor-ward symmetrization procedure leads to an exponential blow-up in size. If symmetrizationis possible without being forced to non-polynomial width, then we are back in the realm oflocally polynomial and explicitly symmetric circuits.It is surprising that this weak size restriction turns out to be su�ciently powerful in theproposed framework to isolate some of the most important logical systems considered in �nitemodel theory.Concerning the connections with other work on logical de�nability in relation to circuit com-plexity classes, it is important to distinguish two di�erent approaches. Most of the literatureconcerns the standard case of circuit computability on strings, i.e. ordered structures; onthe logical side this is reected in the assumed presence of linear order, and often of otherbuilt-in constructs that appeal to ordered standard domains. These characterizations wouldviolate isomorphism- or presentation-invariance (genericity) if applied to computations onnot necessarily ordered input structures.Our results involving �nite depth circuits and �rst-order logic should be compared toa corresponding characterization of �rst-order logic in terms of certain restricted familiesof circuits in a paper by Denenberg, Gurevich and Shelah [DGS 86], concerned with thegenericity of circuit computations. The circuits exhibited there essentially also satisfy ourcriteria. In the crucial direction, however, we think that the present investigation yieldsnew insights even for the �rst-order case, since the criteria proposed here are not directlyrelated to the syntactic structure of �rst-order logic. On the contrary, they are derived quiteindependently on the basis of the invariance and uniformity considerations outlined above.There are several logical characterizations of circuit or parallel complexity classes whichconcern the standard case of computations on strings. We mention the work of Immerman,Barrington, Straubing, Compton and Laamme [I 89, BIS 86, CL 86], and also of Gurevichand Lewis, [GL 84], where low circuit complexity classes are equated with suitable logics overstandard domains.The central logic in our treatment is L!1!, in�nitary logic with �nitely many variables ineach formula. We write Lk1! for that fragfment of in�nitary logic L1! that consists ofthose formulae in which only k variable symbols occur, free or bound. L!1! is the union ofthese, L!1! = Sk Lk1! . These logics plays a central rôle in �nite model theory. Technicallythis is due to the fact that they provide a common frame containing the most popularextensions of �rst-order logic that model relational recursion, �xed-point logic and partial�xed-point logic. Unlike these logics themselves, the Lk1! have a very neat and applicablecharacterization of their expressive power in terms of pebble games, which provide suitablevariants of the Ehrenfeucht-Fra��ss�e characterization of elementary equivalence of structures.On the other hand, the Lk1! are su�ciently rich to de�ne even non-recursive queries, thus4

being at odds with standard complexity measures. Intuitively, however, it is clear that somenotion of polynomiality is involved in these logics, especially as considered as fragments offull-edged in�nitary logic without bounds on the number of variables. In the pebble gamesthis polynomiality is reected in the fact that positions in the k-pebble game correspond tothe designation of up to k elements at a time over the structures involved; in particular thereare only polynomialy many di�erent positions in the game over a given �nite structure. Thepoint is that Lk1! can only assess properties of k-tuples, not of longer sequences of elements.But there is another scale of complexity inherent in the structure of the particular formulawhich cuts across all levels of standard complexity, thus giving rise to the de�nability of evennon-recursive properties.It is therefore appealing that here we obtain a characterization of Lk1! that is of acomplexity theoretic avour, and exactly accounts for that kind of polynomiality we observein L!1!: It turns out to be precisely captured in the notion of local polynomiality of explicitlysymmetric circuits.To �nish this introduction, here is a short outline of the organization of the rest of the paper:Section 2 introduces the basic de�nitions and facts concerning relational structures, theirrepresentations and the kinds of circuits we want to consider. It also contains the formalde�nition of the logics Lk1! and some remarks concerning these.In Section 3 we state and prove the main theorem dealing with circuits and L!1!.The extension of these results to networks is given in Section 4, where we also give a shortintroduction to the relevant �xed-point logics.The reader who is only interested in the circuit case can thus just ignore Section 4. ForSection 3, some of the technicalities are avoidable if one only deals with the uniform circuits ofin�nitary format, and leaves aside the parallel track concerning coherent sequences of circuitsof �nitary format. I have attempted to separate the corresponding lines of development sothat the reader who is comfortable with very in�nite circuits can isolate this more eleganttreatment and ignore the sequences of circuits.2 Basic de�nitions, preliminaries2.1 Finite structures and their representationsAll vocabularies are �nite and relational. Usually we think of the predicates in a vocabulary� as enumerated in some �xed order as R1; : : : ; Rl. Let then ri stand for the arity Ri.De�nition 2.1 The class of all �nite � -structures is denoted by strfin[�]. We write strn[�]for the class of � -structures of size n. str[n; �] is the class of all � -structures over the standarduniverse n = f0; : : : ; n� 1g. 1We shall also consider structures over the standard countably in�nite domain ! = f0; 1; 2; : : :gof the natural numbers. str[!; �] stands for the class of all � -structures over the universe !.1For notational convenience, we apply the standard set-theoretic convention of identifying n with the setf0; : : : ; n� 1g. 5

We write A = �A;RA1 ; : : : ; RAl � for a � -structure with universe A. The cardinality of A, jAj,is regarded as the size of A.For computational purposes, �nite structures are encoded or represented as binary stringsthat can for instance be written down on an input tape of a Turing machine, or applied to theinput gates of circuits. The standard procedure is the following: A with jAj = n is identi�edwith the standard domain n = f0; : : : ; n � 1g. In other words we pass from A 2 strn[�] toa structure bA 2 str[n; �], that is isomorphic with A. For structures in str[n; �], canonicalrepresentations as strings are induced by canonical enumerations of all instantiations of � -atoms over n: For each Ri the instantiations of R-atoms R[m], m 2 nri can be listed inlexicographic order. The sequence of boolean values corresponding to these atoms over bAdescribes bA completely.The places in the encoding string can naturally be identi�ed with the union nr1 _[: : : _[nrl .Let us introduce the abbreviating notation r = (r1; : : : ; rl) for the tuple of arities in � , andnr for this set that serves as a canonical parameterization of all instantiations of � -atomsover the domain n. The encodings of structures in str[n; �], and thereby indirectly of allstructures in strn[�] are binary strings labelled by nr.In general, however, there is no preferred bijection between A and the standard domain n.The passage from A 2 strn[�] to an isomorphic representative bA 2 str[n; �] is not well-de�ned.The main exception is in the case of structures that are linearly ordered themselves: There isan obvious uniquely determined correspondence that translates the given ordering on A intothe natural ordering of the standard domain. In the general case, it is an essential implicitcondition that computations on di�erent encodings of the same structure { or just as well, ofisomorphic structures { lead to the same outcome: Invariance with respect to representation.For A as above, the ambiguity in the encoding is exactly described by the operation of thesymmetric group on n elements, Sn: Any two di�erent encodings are induced by two di�erentbijections between A and n, hence related by a permutation of n = f0; : : : ; n� 1g. Sn actsnaturally not only on n, but also on all powers of n, on nr, and thereby also on strings labelledby nr . We thus get: Any two binary representations of the same or isomorphic structures ofsize n are related by permutations of the binary entries corresponding to the natural actionof Sn on nr .Invariance with respect to representations of structures in strn[�] corresponds toinvariance with respect to the action of Sn on binary strings labelled by nr .It will be convenient to consider �nite � -structures of arbitrary �nite size as embedded intothe standard countably in�nite domain !. This can be formalized as follows. Extend �by a new unary predicate symbol U to obtain �U := � _[fUg. With the class of all �nite� -structures associate the following class of countably in�nite �U -structures with universe !:str[!; �U]� := ��!;U;R1; : : : ; Rl� �� U � ! �nite ; Ri � U ri for i = 1; : : : ; l	 � str[!; �U]:The universe of any structure �!;U;R1; : : : ; Rl� in str[!; �U]� is the set !. The interpretationU � ! of the unary predicate U is a �nite subset of !, and the interpretations of thepredicates in � are restricted to this �nite subdomain U . Thus, str[!; �U]� provides a uniform6

representation of the members of strfin[�] as structures embedded into the standard domain !.For a given �nite � -structure A a representation in str[!; �U]� is obtained from any injectivemapping � of its universe A into !: �(A) = �!; �(A); �(R)R2� � 2 str[!; �U]�. Note thatthese representations are isomorphism-preserving: If f is an isomorphism between A and A0,and � and �0 are injections of A and A0 into !, then the corresponding representations �(A)and �0(A0) are related by the isomorphism �0f��1, which maps �(A) to �0(A0) according to�0 �f ���1 and, conversely, �0(A0) to �(A) through ��f�1 ��0�1. Note that this isomorphismcorresponds to a permutation of ! with �nite support, i.e. it only shifts �nitely many elements.Isomorphisms between structures in strfin[�] are represented as �nitary permutations of !relating their representations in str[!; �U]�.Representing structures in str[!; �U]� as in�nite binary strings corresponding to the canon-ical enumeration of instantiations of �U -atoms over !, we get binary strings labelled by!r1 _[: : : _[!rl _[!1. The last copy of ! is for the unary U -atoms, i.e. its entries correspondto the designation of the �nite embedded universe. Similar to the above, let us write !r+1for this set. As pointed out, the ambiguity in the representation corresponds to the actionof �nitary permutations of !. We write S! for the group of all permutations of !, and Sfinfor the subgroup of those permutations that have �nite support.Invariance with respect to representation of strfin[�]-structures in str[!; �U]� cor-responds to invariance with respect to the natural action of Sfin on binary stringslabelled by !r+1.2.2 The logicsThe logics we shall consider in connection with circuits are �rst-order logic L!! and itsin�nitary variants with bounded number of variables. In�nitary logic L1! has the �rst-order rules of construction of formulae augmented with disjunctions and conjunctions overarbitrary sets of formulae. Restrictions are obtained by limiting the number of variables thatmay occur (bound and free). Lk1! has variable symbols x1; : : : ; xk only. L!1! is the union ofthese restrictions, L!1! = Sk Lk1!. The following examples serve to illustrate the expressivepower of the Lk1! :| Over linear orderings (A;<) two di�erent variable symbols su�ce to produce �rst-orderformulae 'i(x), for i � 1, expressing that x is the i-th element with respect to <. Weuse variable symbols x and y. The formula '1(x) := :9y(y < x) de�nes the �rst element.Inductively, 'i+1(x) := :'i(x) ^ 8y�y < x ! Wj�i 'j(y)� is as desired, where 'j(y) is theresult of exchanging x and y throughout the formula 'j. Since three variables su�ce toaxiomatize linear orderings, we �nd that sentences in L31! can have arbitrarily complex andeven non-recursive classes of �nite models: Let � be an axiomatization of linear orderingsin L31!. For any set W � ! n f0g, the sentence 'W := � ^Wi2W 9x�'i(x) ^ :9y(x < y)�describes exactly those linear orderings, whose size is in W . We mention that actually twovariables su�ce to de�ne some non-recursive properties.| To indicate in another example how clever re-use of the �nite supply of variables cancapture some relational recursion, consider the de�nition of the transitive closure of a binaryrelation E. The formula 1(x; y) := x = y _ Exy describes the pairs of E-distance 1.7

Inductively, i+1(x; y) := i(x; y) _ 9z� i(x; z) ^ Ezy� de�nes those pairs (x; y), whose E-distance is at most i + 1. Thus �(x; y) := Wi�1 (x; y) de�nes the transitive closure of E.The last example is typical in the sense that in fact all relational recursion can be de�nedin L!1! . This is the main reason that these bounded variable fragments of in�nitary logic playsuch an important rôle in �nite model theory: They provide a common frame for the severallogics extending �rst-order by �xed-point operations. These, and in particular partial �xed-point logic, equivalent with the relational language WHILE, will be introduced in connectionwith the analysis of certain boolean networks in Section 4.The formula rank for L!1! is de�ned by induction as follows:rk(') = 0 for atomic ';rk(:') = rk(9x') = rk(8x') = rk(') + 1;rk(Vi2I 'i) = rk(Wi2I 'i) = supi2I�rk('i) + 1�:Obviously, the usual quanti�er rank is bounded by the formula rank, and over �nite vocabu-laries, it is easily shown that any formula of Lk1! of �nite quanti�er rank is equivalent witha �nitary formula in Lk1! , i.e. with a �rst-order formula using only k variable symbols.Lemma 2.1 The following are equivalent in expressive power with respect to �nite vocabu-laries: The �nite quanti�er rank fragment of Lk1!, the �nite formula rank fragment of Lk1!,and �rst-order logic with only k variable symbols.Let Q � strfin[�] be a class of �nite � -structures, closed under isomorphism of course. Recallhow the structures in strfin[�] relate to their representations in str[!; �U]�, and let QU �str[!; �U]� be the class of all the representations thus obtained from structures in Q. It isnot di�cult to see that, for natural logics, de�nability of Q over strfin[�] is equivalent withde�nability of QU over str[!; �U]�. We formally state this fact and indicate its proof forLk1! . The analogous result for �rst-order logic (with k variable symbols) is an immediateconsequence of the proof.Lemma 2.2 Let Q � strfin[�] and QU � str[!; �U]� as above. Then the following are equiv-alent:(i) There is a sentence ' 2 Lk1! [�] such that Q = �A 2 strfin[�] �� A j= '	.(ii) There is a sentence '� 2 Lk1![�U] such that QU = �A 2 str[!; �U]� �� A j= '�	.Sketch of proofThe direction from (i) to (ii) is an application of the relativization property for Lk1!. In-ductively, the relativization of �(x) to U , �U , is de�ned as follows: �U = � for atomicformulae, � U trivially commutes with boolean connectives, and (9x�)U = 9x(Ux ^ �U),(8x�)U = 8x(Ux! �U). It is immediate through syntactic induction, that for all formulae�(x), for all a in a structure A 2 strfin[�], and for any injection � that gives a representation�(A) of A in str[!; �U]�: A j= �[a] i� �(A) j= �U [�(a)]:If ' de�nes Q according to (i), then '� := 'U de�nes QU according to (ii).8

The converse really amounts to saying that any formula that, as in (ii), de�nes a class QUmust be equivalent with the relativization of a formula ' 2 Lk1! [�]. Then the equivalencedisplayed above shows that ' is as desired for (i).The crucial equivalence with a relativization can either be derived from Gaifman's Theo-rem, or be proved in an ad-hoc manner inductively as follows. Let �(x) 2 Lk1![�U]. We claimthat over str[!; �U]�, � is equivalent with a disjunction of formulae of the form 'U (x0)^�(x),where ' 2 Lk1![�], x0 � x, � is quanti�er-free and involves only U and equality. To thisend, split �(x) into a disjunction corresponding to cases with respect to which of the freevariables are interpreted as being outside the U -part. Let �(x) be a quanti�er-free type inthe language consisting of equality and U , x0 the tuple of those variables from x of which� asserts that they are in the U -part, x1 the rest. Obviously � is equivalent with the dis-junction over the � ^ � for all such types �. In an easy induction over � one shows that,over structures in str[!; �U]�, i.e. on structures that are trivial outside the U -part, � ^ � isequivalent with a formula of the form [(x0)]U ^ �. Since '� of (ii) is a sentence withoutfree variables, this gives its direct equivalence with a relativization 'U over all structures instr[!; �U]�. Q.E.D.2.3 Boolean circuitsWe generally consider circuits of unbounded fan-in corresponding to the boolean connectivesV (for arbitrary conjunctions), W (for arbitrary disjunctions), and : (for negation). Thus aboolean circuit is a connected and acyclic directed graph, whose nodes are labelled as follows:{ Nodes of in-degree 0 are of two types: Either they are regarded as input nodes and areunambiguously labelled by a set of input labels, or they correspond to boolean constantsand carry labels T or F .{ Nodes of in-degree 1 may carry the label : (for negation) or no label (for identity).{ Nodes of in-degree greater than 1 carry labels V or W (for conjunction or disjunction).{ Usually we consider a single marked node as the output node.Due to acyclicity there is a well de�ned depth function. The depth of the input nodes is 0,the depth of any other node is the supremum (in the strict sense) of the depths of all itsdirect predecessors.After setting the input nodes to certain boolean values, truth values are propagatedthroughout the circuit in the standard fashion (the formal de�nition is by induction ondepth). The labellings of input nodes that arise in our considerations are indicated in thefollowing. Recall that n = f0; : : : ; n� 1g, and that r is the tuple of arities of the predicatesin � .De�nition 2.2 (i) A boolean circuit is formatted for str[n; �] if its input nodes areinjectively labelled by the set nr = nr1 _[: : : _[nrl . For short, we talk of an [n; �]-circuit.(ii) A boolean circuit is formatted for str[!; �], or is an [!; �]-circuit for short, if itsinput nodes are injectively labelled by the set !r = !r1 _[: : : _[!rl .9

(iii) A sequence (Cn)n�1 of circuits, where Cn is formatted for str[n; �], will be termeda [n; �]-sequence.Note that a circuit formatted for str[!; �] is necessarily in�nite, whereas circuits formattedfor str[n; �] may or may not be �nite. The input �elds, in all cases, are adapted to takingthe binary representations of respective structures, as outlined above, as inputs: The sets ofinput labels parameterize the set of all instances of atoms over the corresponding standarduniverse. We are interested in circuits that are appropriate for the evaluation of booleanqueries for �nite � -structures. To this end we consider(a) single in�nite circuits formatted for str[!; �U], and meant to evaluate QU � str[!; �U]�,or(b) [n; �]-sequences that evaluate Q in the usual sense that the n-th member of the sequenceevaluates Qn = Q \ strn[�].This leads to the following semantic interpretations of circuits:De�nition 2.3 (i) An [!; �U]-circuit C computes the boolean query Q on strfin[�], ifits output node computes the characteristic function of Q for all binary representationsof �nite � -structures via str[!; �U]�-structures.(ii) An [n; �]-circuit Cn computes the boolean query Qn on strn[�], if its output nodecomputes the characteristic function of Qn on all representations of �nite � -structuresvia str[n; �].(iii) An [n; �]-sequence (Cn)n�1 of circuits computes the boolean query Q on strfin[�],if, for each n, Cn computes the query Qn := Q \ strn[�].Observe, that the underlying boolean functions are functions on the domain f0; 1g!r+1 in (i),on f0; 1gnr in (ii), and on S1�1f0; 1gnr in (iii).We are interested in symmetric circuits. Symmetry is expressed in terms of the automorphismgroup of the circuit. Over the input �eld we want to consider those permutations of labelsas automorphisms, that are induced by permutations of the standardized universes, n or !.Recall the action of Sn and S! , respectively, on nr , or on !r and !r+1.De�nition 2.4 Let C be an [n; �]- or an [!; �]-circuit. An automorphism of C is an auto-morphism of the underlying graph which respects the labelling in the following sense:The labels of all non-input nodes must be preserved, on the input nodes an automorphismmust correspond to an automorphism of the labelling; the output node has to be �xed.The above considerations about the ambiguity of the input representation showed that iso-morphisms between �nite � -structures translate to automorphisms of the input labellings. Inthe case of representations in str[!; �U]�, furthermore we only need consider those permuta-tions of ! that �x all but �nitely many points, i.e. we restrict attention to the action of thesubgroup Sfin � S! of permutations of �nite support.De�nition 2.5 Let C be an [n; �]- or an [!; �]-circuit. C is explicitly symmetric, or symmet-ric for short, if the action of Sn or Sfin on the respective input �eld extends to an automorphicaction on the entire circuit C. 10

Note that symmetry of a circuit is not a semantic notion here! It is a purely combinatorialrequirement concerning the graphical layout of circuits. It is the natural notion of this type,however, that guarantees invariance of the computed function with respect to representationor encoding. The latter, by contrast, is a semantic notion.In fact, symmetry implies that the entire evaluation of the circuit becomes invariant withrespect to representation: Isomorphic inputs yield isomorphic computations. This require-ment is the essence of so-called generic models of computation. The following is obvious, butdeserves explicit mention:Proposition 2.1 The following are equivalent for a boolean function f on f0; 1g!r+1 :(i) f is the characteristic function of a boolean query Q � strfin[�] (in the sense ofDe�nition 2.3 (i).(ii) f can be computed by an explicitly symmetric [!; �U]-circuit.Similarly, the following are equivalent for a boolean function f on S1�1f0; 1gnr:(i) f is the characteristic function of a boolean query Q � strfin[�] (in the sense ofDe�nition 2.3 (iii).(ii) f can be computed by an [n; �]-sequence (Cn)n�1 of explicitly symmetric circuits Cn.For the implications (i)) (ii) observe that any boolean circuit computing f can be sym-metrized, i.e. made explicitly symmetric, at the expense of introducing a host of new nodes.Essentially, the original circuit is superposed with all its images under the operation of therequired symmetry group. Finally a new output node is added in such a way that it computesthe disjunction (or conjunction) over all the images of former output nodes that were pro-duced in the symmetrization. If f computes the characteristic function of a query, then allthese copies of former output nodes must compute the same value, whence their conjunctionand disjunction gives the value of f itself. Note that this ad-hoc symmetrization in generalleads to an exponential blow-up in size | or in width, since we only add copies of nodes atthe same depth.In general the action of Sfin or Sn on C need not be unique, i.e. there could be di�erentlifts of the group operation on the input �eld to the rest of the circuit. It is easily shown,however, that this can only be due to a redundancy in the layout of the circuit that can beeliminated through suitable factorization.Proviso 1 We shall assume without loss of generality that the explicitly symmetric circuitsunder consideration satisfy the following condition. For any automorphism � of C and anynode v 2 C: If � �xes the set of direct predecessors of v, then � �xes v itself. This impliesin particular that any automorphism of C is induced by a unique automorphism of the inputlabelling.As pointed out above, symmetrization can in general be expected to lead to exponentialnumbers of isomorphic copies of the same node. Turning this expected trade-o� betweenexplicit symmetry and orbit size of nodes under the automorphism group into a criterion, we11

consider circuits that can be symmetrized within polynomial bounds, or symmetric circuits forwhich the orbits under automorphisms grows only polynomially with the size of the supportof these automorphisms. For a formal de�nition of this notion of local polynomiality weintroduce some notation concerning the group actions.For �nite s � !, put Ss := �� 2 Sfin �� supp(�) � s	 � Sfin � S!. Note that this inagreement with the notation Sn for the permutation group on n = f0; : : : ; n�1g. If H is anysubgroup of S! that operates on C and v is a node of C, then vH := f�(v) j� 2 Hg standsfor the orbit of v under H.De�nition 2.6 Let C be an explicitly symmetric [!; �]-circuit. C is locally polynomial ifthere is a polynomial p such that for all �nite s � ! and for all nodes v of C: ��vSs �� � p(jsj).Similarly, an [n; �]-sequence of symmetric circuits (Cn)n�1 is locally polynomial if thereis one polynomial p giving a uniform bound on the orbit size across the whole sequence in thesense that for all n, for all s � n, and for all nodes v of Cn: ��vSs �� � p(jsj).Note that, when we speak of locally polynomiality of circuits, explicit symmetry will alwaysbe understood.Finally we come to considerations about uniformity in our framework of circuit com-putation. It is clear that computation of a query by a symmetric in�nite [!; �U]-circuit asin De�nition 2.3 (i) induces some kind of uniformity: There is one in�nite and extremelyhomogenous circuit for the computation of the query. The following de�nition isolates acorresponding uniformity criterion at the level of sequences of symmetric circuits.The criterion is in terms of embeddings of one circuit into another. An embedding of Cinto C0 is an injective mapping h:C ! C0, that preserves labels and edges: For v 2 C, h(v)must carry the same label in C 0 as v in C; for v1; v2 2 C, there is an edge (wire) connectingv1 to v2 in C if and only if there is an edge from h(v1) to h(v2) in C0.Consider two members of an [n; �]-sequence of symmetric circuits, Cn and Cm, n < m.Note that the input �eld of Cn is a subset of the input �eld of Cm. Roughly, we want toconsider a node of Cm as belonging to the smaller input �eld if it is �xed by all permutationsof mnn, i.e. �xed by Smnn. We call an embedding of Cn into Cm complete if its range consistsof all nodes of Cm that are �xed by Smnn.De�nition 2.7 A [n; �]-sequence (Cn)n�1 of symmetric circuits is called coherent if for alln, there is a complete embedding of Cn into Cm for all su�ciently large m > n.The following correspondence between the two notions of uniformity| a single in�nite locallypolynomial symmetric circuit vs. a coherent locally polynomial sequence of symmetric circuits| will be a consequence of our main theorem, i.e. we shall prove it via a detour involvingthe logical characterization through L!1! :Proposition 2.2 The following are equivalent for any boolean query Q � strfin[�]:(i) Q can be computed by a coherent and locally polynomial [n; �]-sequence (Cn)n�1 ofsymmetric circuits.(ii) Q can be computed by a single symmetric and locally polynomial [!; �U]-circuit.12

3 Boolean circuits and L!1!Here is our main theorem dealing with the equivalence between L!1! and locally polynomialsymmetric circuits.Theorem 3.1 The following are equivalent for any boolean query Q � strfin[�]:(i) Q can be computed in a coherent locally polynomial [n; �]-sequence of explicitly sym-metric circuits (Cn)n�1.(ii) Q can be computed in a locally polynomial symmetric [!; �U]-circuit.(iii) Q is the class of �nite models of a sentence of L!1! , i.e. Q is de�nable in L!1! .The proof will immediately yield the following in restriction to �nite depth:Theorem 3.2 The following are equivalent for any boolean query Q � strfin[�]:(i) Q can be computed in a coherent locally polynomial [n; �]-sequence of explicitly sym-metric �nite circuits (Cn)n�1 of constant depth.(ii) Q can be computed in a locally polynomial symmetric [!; �U]-circuit of �nite depth.(iii) Q de�nable in �rst-order logic.Most of this section is devoted to the proof of the main theorem. The easy part consists ofshowing that the natural circuit expansions of L!1!-formulae lead to symmetric and locallypolynomial circuits.Locally polynomial symmetric circuits for L!1!By induction over formulae in L!1! , we show the following:Lemma 3.1 Let '(x) be a formula in Lk1! [�] of formula rank �. Then there are:(a) A locally polynomial [!; �]-circuit, whose nodes correspond in a one-to-one fashionto the instantiations of atomic formulae or subformulae of ' over !. Two nodes ofthis circuit are related by an automorphism of the circuit if and only if they correspondto Sfin-related instantiations of the same subformula. The node corresponding to theinstantiation [m] computes, on each input A 2 str[!; �], the boolean value of A j= [m]. The depth of this circuit is equal to the formula rank � of '.(b) A locally polynomial coherent [n; �]-sequence of circuits of depth �, (Cn)n�1, suchthat the nodes of Cn correspond to the instantiations of atomic formulae and the sub-formulae of ' over n. Again, two nodes of Cn are related by an automorphism of Cnif and only if they correspond to Sn-related instantiations of the same subformula. Thenode corresponding to [m] in Cn computes the boolean value of A j= [m] on eachinput A 2 str[n; �]. 13

Note that an application of these statements to sentences of L!1! proves the implications(iii)) (i) and (iii)) (ii) in the main theorem: This is immediate in the statement involvingthe sequences, since these already have the appropriate format. For (iii)) (ii), involvingstr[!; �U]�, we have to apply (i) of the lemma to the relativization 'U of the sentence ' thatde�nes Q. Lemma 2.2 shows that the resulting [!; �U]-circuit is adequate for Q.Since any formula of L!1! of �nite formula or quanti�er rank is equivalent with a �rst-order formula and vice versa, cf. Lemma 2.1, the corresponding implications in Theorem 3.2follow as well.ProofThe constructions of the circuits are by induction over formulae. We treat (i) �rst. Theclaim is obvious for atomic formulae '. The desired circuits consist just of the input nodes.Note that the claim carries over to boolean combinations of formulae immediately. It onlyremains to treat the existential step.Let (x) = 9z�(z; x). Assume that C is a circuit for �(z; x) meeting the requirements, inparticular its depth is equal to the formula rank of �. The circuit for is obtained trough theaddition of one new level to C. Let the nodes in the new level be disjunctive nodes labelledby the instantiations [m] of over !. The node labelled [m] is connected to the top-levelnodes of C that correspond to the instantiations �[m;m] of �, for all m 2 !. It is easy tocheck that the resulting circuit is as desired.We turn to the coherent sequence required in (ii). It is easiest to obtain its membersas restrictions of the in�nite circuit obtained for the evaluation of ' over str[!; �] accordingto (i). Let C be this [!; �]-circuit that is constructed according to the proof of (i). Thedesired coherent sequence of circuits consists of suitable restrictions of this single circuit C.To obtain Cn, restrict C to nodes whose associated instantiations of subformulae exclusivelyinvolve parameters from n. It is immediate by induction over the subformulae of ' that thenodes of Cn compute what they should. Local polynomiality and symmetry carry over fromC. From the way all Cn are embedded into C it follows directly that the coherence conditionis satis�ed. Q.E.D.L!1!-de�nability for locally polynomial symmetric circuitsIn preparation for the proof of the important direction in the main theorem, we �rst isolate thecrucial combinatorial core of the matter. The following lemma connects local polynomialitywith de�nability over few parameters in an abstract setting.Some notation to facilitate the statement and proof of the lemma: Let, for any tuple mthe set of its components be denoted by [m]. Put G := Sfin, the group of permutations of !with �nite support. For any object O that can be subject to the action of G, let G(O) bethe subgroup that �xes O. We apply this notation in particular to predicates R over ! andto tuples m or their component sets [m]. Recall that Ss, for �nite s � !, is the group ofpermutations of ! whose support is contained in s.Lemma 3.2 Let R � !r be an r-ary predicate over !. Assume that R is locally polynomialin the sense that for all �nite s � !, the orbit of R under Ss is bounded by a polynomial in14

the size of s. I.e. there is a polynomial p of degree k, such that for all s: ��RSs�� � p(jsj). Letk be the degree of p.Then there is a tuple of at most k distinct parameters m from ! such that R is de�nableover these: There is a quanti�er free formula �(x1; : : : ; xr; z) involving only equality suchthat R = �b 2 !r �� �[b;m]	. The parameter tuple m can be chosen with pairwise distinctcomponents and such that G(m) � G(R) � G([m]):The following is a simpli�ed proof. A preliminary version of this paper contained an un-necessarily complicated argument. I am grateful to Martin Grohe for pointing that out tome.ProofGenerally G(m) � G([m]) � G. Observe that de�nability of R relative to parametersm is indeed equivalent with G(m) � G(R). To indicate the argument for the non-trivialimplication, assume that G(m) � G(R). Let � be the disjunction over all equality types oftuples (b;m), b 2 R. A simple automorphism argument shows that R = �b �� �[b;m]	.The proof of the lemma is given in two steps. Under the assumptions of the lemma, weshow:(i) There is a �nite tuple m0 such that R is �xed relative to m0: G(m0) � G(R).(ii) For m0 as in (i) there is a subtuple m such that G(m) � G(R) � G([m]).2Note that a tuple m as in (ii) satis�es the claims of the lemma: De�nability follows fromG(m) � G(R); G(R) � G([m]), on the other hand, implies that R is shifted by any per-mutation that does not preserve m setwise. As there are � jsjj[m]j� choices for [m] over s, localpolynomiality with p of degree k implies that the size of [m] is at most k.The proof of (i) is easy. Assume to the contrary that there is no �nite parameter setthat �xes R. This implies the existence of a sequence of �nite subsets s1 � s2 � : : : � !such that jsij � 2ri together with permutations �i 2 G, such that �i has support in si+1,�xes si pointwise, but does not �x Rjsi+1: Since R is not �xed relative to si, it su�ces tochoose an r-tuple that is in R and can be mapped to a tuple outside R without moving pointsin si. Let �i be the permutation exchanging these two tuples, and join the components ofthese two r-tuples to si to obtain si+1. But now the �i commute, so that for each subsetI � f1; : : : ; dg, R is mapped to a di�erent isomorphic copy of itself by �I := Qi2I �i. Thusthe orbit of R under Ssd+1 has at least 2d elements. In other words, the orbits of R growexponentially, contradicting local polynomiality.In order to prove (ii), it su�ces to prove the following:(�) If R is �xed by all permutations that �x one of two �nite sets, s1 or s2,pointwise, then R is �xed by all permutations that �x s1 \ s2 pointwise.2Note that we have to admit the empty tuple for m, which occurs for fully S! -invariantR.15

This su�ces to reduce a �nite tuple m0 such that G(m0) � G(R) until a tuple m with G(m) �G(R) � G([m]) is obtained: If � 2 G(R), then also G(�(m0)) � G(R) (by conjugation with�), i.e. R is �xed by all permutations that �x m0 and also by those that �x �(m0). Thus, by(�), R is �xed by all permutations that �x [m0] \ �([m0]) pointwise. If � 2 G(R) n G([m0]),then [m0]\ �([m0]) is a proper subset of [m0].For the proof of (�), let si = [mi] and assume that G(mi) � G(R) for i = 1; 2. W.l.o.g.let the mi be tuples of pairwise distinct components, of the same length and such thatmi = (m0; ui) where [u1] \ [u2] = ;. So s1 \ s2 = [m0]. Let u0 be any tuple of pairwisedistinct components of the same length as the ui, i = 1; 2, but disjoint from these and fromm0. Let (ui; uj) denote the permutation that exchanges ui and uj and �xes all other points.It is obvious that (u0; u1) �xes m2, and (u0; u2) �xes m1, whence these permutations both �xR. Through conjugation with (u0; u2) we �nd that G(m0; u0) �xes R. Repeated applicationof this argument shows that G(m0; u) � G(R) for any tuple u of pairwise distinct componentsthat is of the same length as u0 and disjoint from m0. Similarly (u; u0) �xes R for any twosuch tuples.Let now � 2 G(m0). Choose u := ��1(u1). Then �� (u1; u) �xes m1 = (m0; u1), therefore�xes R. Since (u1; u) also �xes R, it follows that � �xes R. Q.E.D.Note that in the proof we do not really need the in�nite domain ! but could do with asu�ciently large �nite domain for R. Su�ciently large, here, is to be understood in terms ofthe polynomial p and the arity r of R.Corollary 3.1 If R � nr is locally polynomial in terms of a polynomial p of degree k, andif n is su�ciently large in relation to r and p, then there is a tuple of at most k distinctparameters m from n such that R is de�nable over these. This tuple m can be chosen withpairwise distinct components and such that G(m) � G(R) � G([m]).We are now in a position to prove L!1!-de�nability of the boolean values computed by locallypolynomial circuits. We �rst treat single circuits C, where C is either an [!; �]-circuit or an[n; �]-circuit. In the latter case assume that n is su�ciently large in relation to the polynomialthat bounds the orbit size so that at the crucial step in the proof Corollary 3.1 applies.Fix a locally polynomial [!; �]- or [n; �]-circuit C. Let the polynomial which bounds theorbit size be of degree k. Let G be the appropriate symmetry group for C, Sfin or Sn. Let�wj �� j 2 J	 be a system of representatives of all nodes in C up to the operation of G, i.e.this set contains exactly one member of each orbit under G. Let Oj = wGj be the orbit of wjunder G. As above, we write G(m) and G([m]) for the subgroups that �x m or the set of itscomponents, similarly G(v) for the subgroup �xing a node v of C.Claim 1(i) For every node v 2 C there is a tuple m 2 ! (if C is of [!; �]-format) or m 2 n (ifC is of [n; �]-format) of at most k components, pairwise distinct, such thatG(m) � G(v) � G([m]):We shall call such tuple a base for v. 16

It follows from symmetry, that then also, for all � 2 G: G(�(m)) � G(�(v)) �G(�([m])), i.e. that �(m) is a base for �(v).(ii) Fix bases mj for the wj for each j 2 J . Then the following predicates, that describethe edge relation between nodes, are quanti�er-free equality de�nable over ! or n foreach pair of indices j; j0 2 J :Rjj0 := �(�(mj); �0(mj0)) �� �; �0 2 G; �(wj) 2 pred(�0(wj0))	:Note that we have to admit arity 0, or empty tuples, for the bases mj. If both, mj and mj0 areempty, then Rjj0 is to be regarded as a boolean value (and we stretch the notion of quanti�erfree de�nability accordingly).ProofNote that the de�nability claimed in (ii) is almost trivial as a consequence of (i), symmetryand the de�nition of the Rjj0: It su�ces to check that the Rjj0 are invariant under theoperation of G, i.e. invariant under �nitary permutations. Any predicate with this invarianceproperty is de�nable in terms of equality types, as is shown by a standard argument similarto that at the very beginning of the proof of Lemma 3.2.The explicit statement of (ii), however, is justi�ed by its rôle in the proof. (i) and (ii) areproved simultaneously in an induction over the depth of nodes.| For depth 0 we are either dealing with an input node, which corresponds to an instantiationof an atom, or with a boolean constant in a node labelled T or F . As a base we take theparameters of the instantiation in the �rst case, and the empty tuple in the case of a nodelabelled by a constant.| Consider now v of depth � > 0. W.l.o.g. assume that v = wj0 for some j0 2 J . Notethat all predecessors of v must be in orbits Oj whose depth is strictly less than �. Let J0 bethe set of indices j for which the orbit of wj contains direct predecessors of v. We assumethat statement (i) of the claim holds for all nodes of depth less then �, and that tuples mjsatisfying (i) for the wj, j 2 J0 are �xed.De�ne a predicate Rj := ��(mj) �� � 2 G; �(wj) 2 pred(v)	:With this de�nition we get, for all � 2 G, j 2 J0:�(wj) 2 pred(v) , �(mj) 2 Rj:Only the direction from right to left is of interest. So assume that �(mj) 2 Rj, i.e. forsome �: �(mj) 2 pred(v) and �(mj) = �(mj). It follows that ��1 � � �xes mj, whence it�xes wj (by the inductive hypothesis and the choice of mj for wj). But this implies that�(wj) = �(wj) 2 pred(v).From this equivalence we also get, for any � 2 G, j 2 J0:�(Rj) = Rj , �8�:�(mj) 2 Rj , � � �(mj) 2 Rj�, �8�:�(wj) 2 pred(v) , � � �(wj) 2 pred(v)�, �(Oj \ pred(v)) = Oj \ pred(v):17

It thus follows, with Proviso 1, that for all � 2 G:�(v) = v , �(pred(v)) = pred(v), �(Oj \ pred(v)) = Oj \ pred(v) for all j 2 J0, �(Rj) = Rj for all j 2 J0:Hence ��RHj �� � ��vH �� for all j 2 J0 and all subgroups H � G. We apply Lemma 3.2 in thecase of an [!; �]-circuit C, and Corollary 3.1 in the case of an [n; �]-circuit with su�cientlylarge n. Observe that `su�ciently large' is in relation to p and the arity of the Rj, whichis at most k by the inductive hypothesis. It follows that each Rj is quanti�er free equalityde�nable from a tuple of at most k parameters pj. Choose pj as in Lemma 3.2/Corollary 3.1such that G(pj) � G(Rj) � G([pj]).Consequently, all the Rj for j 2 J0 are �xed by G(m) for any (not, at �rst, necessarily�nite) tuple m such that [m] = Sj2J0 [pj]. Hence, also v itself is �xed by G(m). This m isalso minimal in the sense that any permutation which does not �x [m] must move v: Anysuch permutation must move at least one [pj], therefore Rj, hence also v. Thus, by localpolynomiality, [m] is after all �nite, in fact m can have at most k di�erent components. Thisestablishes the �rst part of Claim 1 for v itself.Let now x be a tuple of variables of the appropriate arity for the base m just obtainedfor v. Let, for j 2 J0, yj be a tuple of variables of the arity of Rj (i.e. of the same arity asmj), disjoint from x. By Lemma 3.2/Corollary 3.1, Rj is quanti�er-free equality de�nablefrom pj. Since pj is a subtuple of m, Rj is in particular quanti�er free equality de�nable asRj = �yj �� �j(yj;m)	, for a suitable formula �j, for each j 2 J0. Recall that v = wj0 sothat m may serve as the mj0 in the sense of the statement (ii) of the claim. Note that then,by symmetry, Rjj0 = ��(yj ;m) �� � 2 G; yj 2 Rj	 for all j 2 J0. For j 62 J0, Rjj0 is empty.This proves (ii) for all pairs (j; j0) with j 2 J and j0 = j0: For the non-trivial case, j 2 J0,we �nd Rjj0 = �(yj ; x) �� �j(yj; x)	: Q.E.D.Towards the logical de�nability of the values computed in the nodes, it turns out that a basefor v corresponds to the tuple of instantiations for the free variables in the de�ning formulafor that node.Let C be a locally polynomial [!; �]- or [n; �]-circuit as above, let the polynomial p whichbounds the orbit size be of degree k, and assume that n is su�ciently large in relation to pin the [n; �]-case. Let G be the appropriate symmetry group for C, Sfin or Sn. Let also thesystem of representatives �wj �� j 2 J	 of all nodes in C with respect to the operation of Gbe �xed as above. For each wj �x a base mj according to the last claim.Claim 2 For any node v of depth � and with base m as in Claim 1, there is a formula'(x) 2 L2k[�] of quanti�er rank at most max(1; k�) such that '[m] de�nes the boolean valuecomputed at v:If C is an [!; �]-circuit, then for all inputs A 2 str[!; �], the boolean value computed by C atv over input A is the boolean value of A j= '[m].18

If C is an [n; �]-circuit, then for all inputs A 2 str[n; �], the boolean value computed by C atv over input A is the boolean value of A j= '[m].It follows from symmetry, that then also, for all � 2 G, the boolean value computed at�(v) is de�ned by '[�(m)].Before giving the proof, let us see how Claim 2 applies to the implication (ii)) (iii) inTheorem 3.1. Let Q be a query over strfin[�], C a locally polynomial [!; �U]-circuit thatcomputes Q (cf. De�nition 2.3 (i)). Apply the above claim to the output node of C, to obtaina sentence ' 2 L2k[�U] that de�nes the value computed by C over any input in str[!; �U].With Lemma 2.2, ' can be transformed into a sentence '0 2 L2k[�] that is equivalent with 'over all structures in str[!; �U]�. Thus, Q is de�nable in L2k as claimed in the main theorem.Since �nite depth of C yields �nite quanti�er rank, an application of Lemma 2.1 proves thecorresponding implication in Theorem 3.2.ProofThe proof is by induction over depth, in parallel with the proof of the last claim. Depth 0 istrivial: Either v is an input node, then for ' we take the atom corresponding to that inputnode, or v corresponds to a boolean constant in which case we can take any universally false,respectively valid, sentence of quanti�er rank 1 for '.So assume that v = wj0 is of depth � > 0, and that the claim holds for all nodes of lesserdepth. Let v for instance be a V-node. Let m = mj0 be the chosen base at v. Let J0 bethe set of indices j for which wj is related to a direct predecessor of v. By the inductivehypothesis, there is a formula 'j(yj) for each j 2 J0, satisfying the requirements of the claimfor wj and its �xed base mj. From Claim 1 we know that the predicates Rjj0 are quanti�erfree equality de�nable by formulae �jj0(yj; yj0). Recall from the de�nition of the Rjj0 thatthe immediate predecessors of v = wj0 in the orbit of wj are exactly those nodes �(wj) forwhich (�(mj);m) 2 Rjj0. It follows that the formula'(x) := ĵ2J 8yj��jj0(yj ; x)! 'j(yj)�is again in L2k1! and de�nes the value computed at v. Observe that the quanti�er rank of thisnew formula is bounded by the supremum of the quanti�er ranks of the 'j, each increasedby k. Inductively, this leads to the bound formulated in the claim. Q.E.D.We have now established the implications (ii)) (iii) in both, Theorem 3.1 and its restrictionto �nite depth, Theorem 3.2. It remains to construct the de�ning formula for a coherentsequence of circuits. This is possible on the basis of the de�ning formulae for each individualmember Cn.Let (Cn)n�1 be a coherent and locally polynomial [n; �]-sequence of circuits. We begin withsome preparatory remarks that exploit the coherence of this sequence.Recall that Cn is embedded into Cm for m > n, m su�ciently large. Owing to Proviso 1and the completeness condition, this embedding is in fact unique: The range of the embeddingis �xed, since by completeness it must consist exactly of those nodes of Cm that are �xedby all permutations of m n n. There cannot be any internal automorphisms of Cn that �x19

the input �eld of Cn. But the images of the input nodes are uniquely prescribed for anyembedding.We shall therefore identify nodes across the Cn in the following manner: v 2 Cn andv0 2 Cn0 are identi�ed if they are mapped to the same node of Cm under the completeembeddings of Cn and Cn0 into Cm for su�ciently large m. Saying that a node v occurs inCn means that there is a node in Cn which is identi�ed with v in this precise sense.For the symmetries we regard Sn as a subgroup of Sm for n < m, and all the Sn assubgroups of Sfin. We say that v is Sfin-related to v0, or that v is in the same Sfin-orbit as v0,if v is Sn-related to v0 in Cn for all su�ciently large n. Speaking of Sfin-orbits in this sense,we can again introduce a system of representatives of nodes �wj �� j 2 J	, such that all nodesbelong to one of the orbits Oj of a wj under Sfin.Let p of degree k be the polynomial that bounds orbit size in the Cn.Claim 3 For any node v 2 (Cn)n�1 there is a tuple m 2 ! of at most k components, pairwisedistinct, such that:(i) For all Cn in which v occurs:Sn(m) � Sn(v) � Sn([m]):As above m is called a base for v.(ii) v is in Cn exactly for those n that contain the base m.(iii) The boolean value computed at v in Cn is de�ned by a formula '(x) 2 L2k[�]: Forall inputs A 2 str[n; �] the boolean value computed by Cn at v over input A is the booleanvalue of A j= '[m].ProofThe proof is an adaptation of Claims 1 and 2. Some points are immediate:1) Each node v has a base in each Cn for su�ciently large n. This was proved in Claim 1;su�ciently large means large enough that v occurs in Cn and, more importantly, large enoughin relation to the polynomial p so that Claim 1 applies.2) Let m be a base for v in Cm, m su�ciently large. We claim that then m is a base for vin each Cn that contains v, and that these are exactly the Cn with m 2 n.We �rst show that whenever m is su�ciently large in relation to n, and m is a base inCm, then v occurs in Cn if and only if m 2 n: From the complete embedding of Cn into Cmwe have v 2 Cn , Smnn � Sm(v), Smnn � Sm([m]) , [m] � n:For the last equivalence, assume that m is at least n+ j[m]j+ 1.We turn to the uniformity of bases across all n. It is obvious that Sm(m) � Sm(v) �Sm([m]) in Cm, m su�ciently large, implies that Sn(m) � Sn(v) � Sn([m]) in Cn for all n <m that containm. The crucial point, therefore, is upward agreement of bases as is expressed inthe following observation: If Sn(m) � Sn(v) � Sn([m]) in Cn, Sm(m0) � Sm(v) � Sm([m0])in Cm, n > j[m]j+ 1, m su�ciently large with respect to n, then [m] = [m0]. This followswith a complete embedding of Cn into Cm. First observe that [m0] must be contained in20

n, because v in Cm cannot be a�ected by Smnn, by completeness. That two bases within nmust agree setwise is obvious.We can thus choose bases that satisfy (i) and (ii) of the claim for all the representativeswj , j 2 J , of orbits with respect to Sfin. Let mj be such base for wj . Note that bases arecompatible with the operation of Sfin: If v = �(wj), then �(mj) is a base for v.Recall that Oj is the orbit of wj under Sfin. It follows from the above that Oj\Cn, the setof nodes in Cn that are Sfin-related to wj, is the same as the set ��(wj) �� � 2 Sfin; �(mj) 2 n	;note however, that wj need not occur in Cn or that mj need not be in n.Consider now the predicates that describe the edge relation. Put, just as in Claim 1 (ii),Rjj0 := �(�(mj); �0(mj0)) �� �; �0 2 Sfin; �(wj) 2 pred(�0(wj0)) in Cn, n su�ciently large 	:We claim that these predicates uniformly describe the edge relations in all the Cn. Moreprecisely: Their restrictions to n are the correct edge predicates for Cn. Let �(mj); �0(mj0) 2n. Then �(wj); �0(wj0) 2 Cn and, through embeddability, there is an edge connecting �(wj)to �0(wj0) in Cn if and only if this is the case in all Cm in which these nodes both occur.It follows from the arguments in Claims 1 and 2, that the corresponding predicates Rjj0are uniformly de�nable by the formulae �jj0 in all Cn. We thus �nd inductively, that also theformulae 'j de�ning the values computed at wj and constructed as in the proof of Claim 2are uniformly applicable in all Cn. This �nishes the proof of Claim 3. Q.E.D.Strict matches for each Lk1!A last remark in this section concerns the apparent mismatch between the degree k of thepolynomial that is responsible for local polynomiality, and the number of variables in formulaeof L!1!. In Lemma 3.1, local polynomiality of degree k was established for circuits evaluatingformulae in Lk1!, but only de�nability in L2k1! could be shown in Claims 1 and 3 for symmetriccircuits whose orbit size is bounded by a polynomial of degree k.Observe, however, that up to 2k variables were essentially needed in the description of thelinks between nodes in the proofs of Claims 1, 2 and 3: The formulae �jj0 de�ning the edgerelations Rjj0 used up to 2k variables. This is not surprising, however: Single nodes requirea tuple of at most k parameters for their identi�cation within their orbit in a circuit whoseorbit sizes are bounded by a degree k polynomial. Edges correspond to pairs of nodes andthus may require up to 2k parameters. This also indicates a way to obtain an exact match,for each k separately, in Theorem 3.1: We have to rede�ne local polynomiality { or ratherits degree { in terms of bounds on the orbit size of edges or wires, rather than in terms ofnodes! To obtain this re�nement we now de�ne the following, cf. De�nition 2.6:De�nition 3.1 An explicitly symmetric [!; �]- or [n; �]-circuit C is locally polynomial ofdegree k if there is a polynomial p of degree k such that for all �nite s � ! and for alledges e of C: ��eSs �� � p(jsj). An analogous de�nition applies to [n; �]-sequences of symmetriccircuits.Note that a circuit is locally polynomial in the sense of a polynomial bound on the orbits ofnodes, if it is locally polynomial in the sense of a polynomial bound on the orbits of edges.21

Thus, this new de�nition of the degree of local polynomiality really just is a re�nement. Thepoint is that in this way we obtain matches at each level k:Theorem 3.3 The following are equivalent for any query Q � strfin[�] and for each k:(i) Q can be computed in a coherent [n; �]-sequence of explicitly symmetric circuits, thatis locally polynomial of degree k.(ii) Q can be computed in a single symmetric [!; �U]-circuit that is locally polynomial ofdegree k.(iii) Q is de�nable in Lk1! .Sketch of proofWe refer to the corresponding parts of the proofs of Lemma 3.1 and Claims 1, 2 and 3.First consider a boolean query that is de�nable in Lk1!. We claim that the circuitsconstructed in Lemma 3.1 are locally polynomial of degree k. The construction of the circuitswas by induction over the formula rank. The operation of the symmetry group on any nodeis the operation on the parameters that instantiate the subformula belonging to that node.Thus, the former proof led to tuples of at most k parameters in each node. Now we haveto consider edges. These occur between nodes that link an instantiation of a subformula'[m] to nodes belonging to certain instantiations of its direct constituents. If ' is a booleancombination of subformulae, then the parameter set [m] is the union of the parameter setsat the immediate predecessor nodes. Therefore, in this case, all edges into the node of '[m]are �xed relative to m. Consider now the existential step. Let '(x) = 9z (z; x). Edgesnow link nodes belonging to instantiations [m;m] to the node associated with '[m]: Again,since has only k variables, the tuple (m;m) has at most k components, and the edge underconsideration is �xed relative to these.Now for the opposite direction, i.e. the analysis of the corresponding steps in the proofsof Claims 1, 2 and 3. Assume now local polynomiality of degree k. The de�ning formulaeare obtained in the proof of Claim 2 by induction on the depth of nodes. In the constructionof the formula '(x) de�ning the the value at wj0 , those formulae 'j(yj) are used, that de�nethe values at direct predecessor nodes of v. The �jj0(yj; yj0) de�ne the Rjj0 that exactlydescribe the occurrences of edges between nodes. If C is locally polynomial of degree k, theneach �jj0 must enforce su�ciently many equalities between variables in (yj ; yj0) so that theseconsist in fact of at most k distinct components. But these equalities can be exploited in theconstruction of the new formula ', that in the case of a conjunctive node wj0 was of the form'(yj0) := ĵ2J 8yj��jj0(yj; yj0)! 'j(yj)�:Contraction of di�erent variable symbols that are equated by �jj0 into the same symboltherefore yields ' 2 Lk1! if the 'j are in Lk1! by inductive hypothesis. Q.E.D.22

4 Boolean networks4.1 Basic de�nitionsBoolean circuits generalize to a certain kind of computational networks if the condition ofacyclicity is dropped. A boolean network is a connected directed graphs with a labellingcompletely analogous to that required for circuits. The computation of a network N on someinput is described in terms of a sequence of assignments of truth values to the nodes of N ,Tt:N ! f0; 1g, for t � 0. Intuitively these assignments corresponds to a description ofthe time-dependent evolution of the network under stepwise ow of information. The inputcorresponds to an assignment to the input nodes. The initial assignment T0 on all of Nis obtained through setting the values of all non-input nodes to 0. Inductively a sequence(Tt)t�0 is generated as follows. On all nodes of in-degree 0, the initial assignment is keptthroughout. For any node v of in-degree at least 1, the assignment Tt+1(v) is determinedin the obvious way on the basis of the assignments Tt(u) of all direct predecessors u of v.The computation terminates if this sequence of assignments becomes ultimately constant,i.e. if for some t we have Tt+1 = Tt. The value computed by N on an input, over which thecomputation terminates, is the boolean value given to the output node in the terminatingtruth assignment.De�nition 4.1 A network N is formatted for str[!; �] if the input nodes are labelled injec-tively by !r , r the tuple of arities in � . It is formatted for str[n; �] if its input nodes arelabelled by nr . We talk of [!; �]- and [n; �]-networks. A sequence of networks (Nn)n�1 is an[n; �]-sequence if Nn is an [n; �]-network for each n.Computation of a query Q over strfin[�], either by a single [!; �U]-network or by a [n; �]-sequence of networks, is de�ned in complete analogy with De�nition 2.3 above. For instance,an [!; �U]-network computes Q if its output node computes the characteristic function of Qfor all encodings of �nite � -structures via representations in str[!; �U]�.The notion of automorphisms of networks is the same as for circuits. Also, the criterion ofexplicit symmetry carries over unchanged, cf. De�nition 2.5:De�nition 4.2 Let N be an [n; �]- or [!; �]-network. N is explicitly symmetric, or symmet-ric, if the action of Sn or Sfin on the respective input �eld extends to an automorphic actionon the entire circuit C.In analogy with Proviso 1 we may restrict attention to networks whose automorphisms arenot due to trivial redundancies:Proviso 2 For symmetric boolean networks N we assume the following:For any automorphism � of N and any node v 2 N : If � �xes the direct predecessors of vsetwise, then � �xes v itself.De�nition 4.3 Let N be a symmetric [!; �U]-network.(i) N is locally polynomial if, as for circuits, the size of orbits is locally polynomial.23

(ii) N is �nitary if the number of orbits of nodes under the full automorphism groupaut(N) is �nite, i.e. if there are only �nitely many isomorphism types of nodes in N .An embedding between symmetric networks is de�ned just as for circuits as a label preservingisomorphic embedding of the underlying graphs. Such an embedding is complete if its imageconsists of those nodes that are �xed by all permutations that �x all images of input nodes.De�nition 4.4 Let (Nn)n�1 be a [n; �]-sequence of symmetric networks.(i) (Nn)n�1 is locally polynomial if there is a uniform polynomial bound on the orbitsize across all n.(ii) (Nn)n�1 is coherent, if for all n, there is a complete embedding of Nn into Nm forall su�ciently large m > n.(iii) A coherent sequence (Nn)n�1 is �nitary, if there is a uniform �nite bound on thenumber of orbits of nodes under the full automorphism group aut(Nn) in Nn.Just as for circuits, it will turn out that coherent locally polynomial [n; �]-sequences ofnetworks are equivalent with locally polynomial [!; �U]-networks as far as the evaluationof boolean queries over strfin[�] is concerned.De�nition 4.5 A network is positive if all nodes labelled : (for negation) are immediatesuccessors to input nodes.Positive networks obviously have the special property that the truth assignments Tt aremonotone in the sense that Tt(v) = 1 implies that Tt0(v) = 1 for all later stages t0 > t.In connection with networks we shall mainly consider the most expressive of the �xed-pointextensions of �rst-order logic: Partial �xed-point logic, PFP.Let ' = '(X;x) be a formulawith a free second-order variableX of some arity r matchingthe arity of x = (x1; : : : ; xr); ' may have other free variables, which then are regarded asparameters in what follows. With ' associate a global operator F' on r-ary predicates: Overa structure A, which interprets ' up to the designated free variables, FA' is de�ned throughFA' : R 7! �a �� A j= '[R; a]	, for all r-ary predicates R � Ar. Iteration of this operator onthe empty predicate generates a sequence of predicates (FA')i(;), where (FA')i stands for thei-fold iteration of the operation FA' , with (FA')0 = idAr . The �rst elements in the sequence(FA')i(;) are ;; FA' (;); FA' �FA' (;)�; : : :The partial �xed point of ' is de�ned to be either the empty set, if this sequence is ultimatelynon-trivially periodic, or the predicate determined as the �xed point reached in this sequence,if it exists. The predicates (FA')i(;) are called the stages of the �xed-point generation.In the logic PFP we have, in addition to the usual �rst-order rules for the formation offormulae, the following rule: With '(X;x) as above in PFP, the formula (z) := �PFPX;x'�zis also a formula of PFP. Its semantic is such that A j= [a] if and only if a is in the partial�xed point determined by F' on A. It is well known that on linearly ordered structures, PFP24

captures PSpace, [V 82, AV 89]. On the class of all �nite structures PFP is also equivalentwith the language WHILE, see [AV 89, G 92].Standard �xed-point logic, FP, can be obtained as a restriction of PFP as follows. Insteadof allowing the above �xed-point generation for all formulae '(X;x) only admit formulae 'that are positive in all second-order variables (equivalently, negations may only occur infront of atoms not involving second-order variables). More intuitive descriptions of this logicare in terms of least-�xed-point or inductive �xed-point operators, cf. [G/S 86]. The greatimportance of FP in �nite model theory is due to the result of Immerman and Vardi that onordered structures FP coincides with PTime, [V 82, I 86].It is not di�cult to prove that both, FP and PFP, satisfy the property expressed inLemma 2.2 for L!1!. De�nability of a query Q � strfin[�] in PFP or FP over strfin[�] isequivalent with de�nability of QU � str[!; �U]� in PFP or FP over str[!; �U]�:Lemma 4.1 Let Q � strfin[�] and let QU � str[!; �U]� be the class consisting of all repre-sentations of structures from Q over str[!; �U]�. Then the following are equivalent:(i) There is a sentence of PFP[�] (resp. FP[�]) that de�nes Q over strfin[�].(ii) There is a sentence of PFP[�U] (resp. FP[�U]) that de�nes QU over str[!; �U]�.The following remarks about FP and PFP concern simultaneous �xed-point generations.Instead of a single '(X;x) one may consider systems of formulae 'j(X1; : : : ; Xl; x(j)), 1 �j � l, where the arity of Xj matches that of the tuple x(j) for each j. Regarded as operatorsfor the simultaneous transformation of an l-tuple of predicates, this system induces stagesaccording to: X0j = ;Xt+1j = �x(j) �� 'j [Xt1; : : : ; Xtl ; x(j)]	; 1 � j � l:Again, this may or may not lead to a stationary assignment to the Xj , and the partial �xedpoint of the system is de�ned as in the standard case, with ; as the default value for all the�xed-point predicates if no stationary assignment is reached. We state without proof sometechnical facts that will be useful in our applications. The proofs are straightforward codingarguments.Remark 4.1 (i) Each component of the simultaneous partial �xed point of a system isde�nable in ordinary PFP.(ii) (Simultaneous) partial �xed points that are generated from some initial assignmentother than ;, that is PFP-de�nable itself, are also de�nable in standard PFP.(iii) It is possible and often natural to admit 0-ary �xed-point variables in systems forthe generation of simultaneous partial �xed-points, corresponding to boolean �xed-pointvariables. Modelling these through unary indicator predicates that are either full orempty, one sees that standard PFP is rich enough to comprise this variation, too.A system for the simultaneous generation of partial �xed points is regarded as positive ifthe constituent formulae are positive in all �xed-point variables. Under the assumption ofpositivity all the closure properties stated for PFP above also apply to FP.25

4.2 Boolean networks and �xed-point logicsTheorem 4.1 For a boolean query Q on strfin[�], the following are equivalent:(i) Q can be computed by a �nitary coherent locally polynomial [n; �]-sequence of sym-metric networks.(ii) Q is computable by a �nitary locally polynomial symmetric [!; �U]-network.(iii) Q is de�nable in PFP.The following will be an immediate corollary of the proof of Theorem 4.1:Theorem 4.2 For a boolean query Q on strfin[�], the following are equivalent:(i) Q can be computed by a �nitary coherent locally polynomial [n; �]-sequence of positivesymmetric networks.(ii) Q is computable by a �nitary locally polynomial symmetric positive [!; �U]-network.(iii) Q is de�nable in FP.The proofs can largely be reduced to the treatment of circuits. We give sketches in the twofollowing sections that deal with the passages form formulae to networks and from networksto de�ning formulae separately.Finitary networks for PFPWe apply a normal form theorem for PFP: Any PFP-sentence is equivalent with one ofthe form ���PFPX;x ��, for �rst-order �(X) and (X;x), where (X;x) is such that the�xed point induced by F always exists. See [G 92] for a presentation of this normal formtheorem. The reduction to only one application of the partial �xed-point operator is stan-dard, the guaranteed termination of the iteration is achieved through an intrinsic check fortermination.For network evaluation with its time dependent ow of information, the distances betweennodes along di�erent paths obviously matter. It is easy to �nd examples of circuits thatcompute di�erent boolean functions, depending on whether they are evaluated as circuitsor as networks. When we use circuits as building blocks for networks, some care has to betaken. We call a boolean circuit synchronized if it has the following property: Any two pathsfrom a node v1 to a node v2 must have the same length. This immediately implies that thedistance of a node from the sources (depth 0, or in-degree 0) is path independent and equalsits depth.It is easy to see, that synchronized circuits can be evaluated in the time dependent networkmanner without a�ecting the result.The easiest way to obtain synchronized circuits for �rst-order formulae is to manipulateformulae prior to the application of Lemma 3.1. Any �rst-order formula is equivalent with onein which any two subformulae that are connected by ^ or _ have the same formula rank. Thiscan be achieved, for instance, through semantically vacuous repetition of identical conjuncts26

or disjuncts. Since the depth of nodes in the constructions of Lemma 3.1 corresponds toformula rank of subformulae, these rank-balanced formulae lead to synchronized circuitsautomatically.From Lemma 3.1, we thus obtain the following for any �rst-order formula '(X;x), which isregarded as a formula over the vocabulary � _[fXg:(i) A locally polynomial [!; � _[fXg]-circuit C, with the following particular properties: Cis synchronized and of �nite depth d; the nodes at depth d correspond in a one-to-onefashion to the instantiations for x in '(X;x) over !; two such nodes are related by anautomorphism if they correspond to Sfin-related instantiations; the node correspondingto the instantiation m for x computes the boolean value of '[X;m] over any input instr[!; � _[fXg].(ii) A locally polynomial coherent [!; � _[fXg]-sequence of circuits of constant �nite depthd, (Cn)n�1, such that for all n: Cn is synchronized; the nodes at depth d of Cn corre-spond to the instantiations for x in '(X;x) over n; two of these nodes are related byan automorphism if they correspond to Sn-related instantiations; the node correspond-ing to the instantiation m computes the boolean value of '[X;m] over any input instr[n; � _[fXg].In both cases we further obtain natural networks that `compute the partial �xed-point'PFPX;x'(X;x) as follows. Connect the depth d node corresponding to the instantiation mto the input node corresponding to the same instantiation of the atom Xx. The resultingnetwork is formatted for str[!; �] or str[n; �], since the X-atoms no longer are input nodes.Symmetry is preserved, since the new links connect nodes which are �xed relative to eachother by all automorphisms of the original circuit. For the same reason, local polynomialityis not a�ected. Let N be the resulting network. Let um denote the former input node forthe instantiation m of Xx.We claim that in a computation over input A 2 str[!; �] or A 2 str[n; �], with truthassignments Tt, these nodes um compute the stages of the partial �xed-point evaluation inthe following sense: At time steps t with (d+ 1)i � t < (d+ 1)(i+ 1), Tt(um) = 1 if and andonly if m 2 (FA')i(;). This is clear for i = 0: By our conventions on network computation,the um are all assigned 0 during 0 � t � d. Inductively, assume that the nodes um carrythe correct truth values for �FA' �i(;) at time steps (d + 1)i � t < (d + 1)(i + 1). Withrespect to the former circuit, this corresponds to the input �A; (FA')i(;)�. Therefore, thenext d+ 1 steps in the network computation simulate the stepwise evaluation of the booleancircuit C on this input; synchronization is essential to allow step-wise evaluation instead ofthe standard evaluation for circuits. It follows that the claim holds for the consecutive timeinterval.If the partial �xed-point evaluation reaches a stationary stage, then the entire networkcomputation becomes stationary and terminates. The resulting values in the um representthe predicate PFPX;x'(X;x).Networks for ���PFPX;x �� are constructed by extending N with an appropriate circuitC for �(X), as obtained from another application of Lemma 3.1 to the �rst-order formula27

�(X). N for PFPX;x and C for �(X) are joined to produce a network for ���PFPX;x ��as follows. The nodes um in N take the place of the input nodes for the X-atoms in C. Allother input nodes of C are merged with the corresponding input nodes of N . It is easy to seethat the resulting networks computes the right thing, given that the PFP-evaluation alwaysreaches a �xed point. Also, this join of N and C preserves symmetry and local polynomialityfor reasons similar to those given above.In order to obtain the desired [!; �U]-network for the query Q de�ned by ���PFPX;x ��,we apply the entire argument to the relativization ����PFPX;x ���U , i.e. to the PFP-sentencesentence that de�nes QU in the sense of Lemma 4.1.To obtain the coherent sequence, we apply the above procedure to each member of acoherent sequence for ' as given in (ii) and join the resulting network in the manner describedwith the corresponding member of a coherent sequence for �. It remains to check thatcoherence is also preserved in these manipulations. We omit the details.For the variation concerning FP rather than PFP, we point out that an analogous normalform for FP allows to focus on FP-sentences of the form ���FPX;x ��, where �(X) and (X;x) are �rst-order and positive in X. W.l.o.g. one may assume that negation signsoccur in only in front of atoms involving equality or predicates other than X. The circuitsthat are obtained for such �rst-order formulae in Lemma 3.1 have negation gates only asimmediate successors to input nodes and thus immediately lead to positive networks if theabove constructions are applied.PFP-de�nability for �nitary locally polynomial networksIt remains to prove that any query computable in a �nitary locally polynomial network, orin a �nitary coherent locally polynomial sequence of networks, can be de�ned in PFP. Theargument will be given in some detail for the single networks. It can be adapted to coherentsequences in close analogy with what has been done for circuits in the last section { thedetails, however, are omitted.We associate with a network N a canonical unfolding as a circuit, which represents the entiretime dependent computation of the network statically.De�nition 4.6 Let N be a boolean network. The canonical unfolding of N is the booleancircuit de�ned as follows: The set of nodes of C is ! � N . For nodes v of depth 0 in N weintroduce edges from (t; v) to (t+ 1; v) for all t. For an internal node v 2 N , the node (t; v)is joined to the node (t+1; v0) if v is joined to v0 in N . Labels carry over in the obvious way,with the following stipulation for nodes at depth 0:The labelling of a node v at depth 0 in N is transferred to the node (0; v). All other nodes(0; v), v of depth greater than 0 in N , receive the label F . Nodes (t; v) for v of depth 0 in Nand t > 0 have in-degree 1 in C and receive no label.It is not di�cult to see that for all t 2 !, the node (t; v) of C computes the truth value Tt(v)of the network evaluation at v at time step t.For each node v of N we call the set of nodes (t; v), t 2 !, the �bre of v in C. As regardsautomorphisms, any � 2 aut(N) induces an automorphism �0 2 aut(C), which is uniquely28

determined with the property that it preserves �bres and acts as � on these. In fact aut(N)is naturally isomorphic with the subgroup aut0(C) of aut(C) consisting of �bre-preservingautomorphisms. The strategy to adapt our previous results to networks consists in replacingordinary circuits with these �bred circuits. Rather than give a formal de�nition, we shall talkof �bred circuits just to stress that we replace the full automorphism group aut(C) of thecircuit by its subgroup aut0(C). Few facts about the origin of aut0(C) will actually matter.These are:(i) For symmetric [n; �]- or [!; �U]-networks, there is a unique extension of the action ofSn or Sfin to aut0(C).(ii) Instead of Proviso 1 the circuits considered now satisfy the corresponding property onlyfor automorphisms in aut0(C): If � 2 aut0(C) �xes the set of direct predecessors of anode v then it �xes v itself.It is easy to see that not only symmetry but also local polynomiality carries over from thenetwork to its unfolding. The same is true of the coherence of sequences: Embeddability isobviously preserved, completeness of the embedding as well. We employ the results aboutcircuits with the slight modi�cation in the proof to take care of (ii) above, in order to getthe following as a corollary to Claim 1 of the last section.Fix a locally polynomial str[!; �]- or str[n; �]-network N . Let C be its canonical unfolding.Let the polynomial which bounds the orbit size be of degree k. Let G be the appropriatesymmetry group for N and C, Sfin or Sn. Note that G acts in aut0(C) according to (i) above.Corollary 4.1 For every node v 2 N there are a tuple m 2 ! (for [!; �]-format) or m 2 n(for [n; �]-format) of at most k components, pairwise distinct, such that for each node (t; v)in the �bre of v in C: G(m) � G((t; v)) � G([m])with respect to the action of G on C. It follows that G(m) � G(v) � G([m]) with respect tothe action of G on N .Let �wj �� j 2 J	 be a set of representatives for all orbits of nodes under G, Oj the orbit ofwj . Fix a base mj for each wj according to the above corollary. Let sj be the arity of mj.Note that J � ! is a system of representatives for the orbits in C under aut0(C).Let us introduce the notation [[!]]s for the set of all s-tuples with pairwise distinct compo-nents over !, similarly for [[n]]s over n. If N is an [!; �]-network, then the set Sj2Jfjg� [[!]]sjparameterizes the nodes of N : (j;m) is taken as an address of the node �(wj), where� is chosen such that �(mj) = m. Similarly for an [n; �]-network, the parameter set isSj2Jfjg� [[n]]sj . Note, however, that this parameterization is not in general injective, owingto the possibility that G(v) 6= G(m) for bases m of v. The parameterization extends to theassociated unfolding C of N , simply through adding a component ! for the depth in C.Just as in the proof of Claim 1, we further �nd that the connections between nodesare quanti�er-free equality de�nable in terms of this parameterization. Consider a node(t+ 1; v) 2 C. Its direct predecessors are of the form (t; w), with w a direct predecessor of v29

in N . In C we �nd that the following predicates are quanti�er-free equality de�nable:R(t;j)(t+1;j0) = �(�(mj)�0(mj0)) �� (t; �(wj)) 2 pred(t+ 1; �0(wj0)) in C	= �(�(mj)�0(mj0)) �� �(wj) 2 pred(�0(wj0)) in N	 =: Rjj0:The independence of t that is indicated in the second equality is due to the de�nition of thecanonical unfolding. Just as for circuits, these Rjj0 encode the edge relation of the network.Applying Claim 1 (ii) to C therefore yields quanti�er-free equality formulae �jj(yj; yj0) thatde�ne the sets Rjj0 appropriate for N .We turn to the logical description of the computation of �nitary N by PFP-formulae. Fromnow on we deal entirely with the networks themselves once more.As we assume N is �nitary, the set J is �nite. Introduce predicate variables Xj of aritysj for each j 2 J . Let xj be a tuple of distinct element variables of arity sj , j 2 J . Theintention is to use the xj as addresses for the nodes in Oj and the Xj , or rather their stagesin a PFP-evaluation, to describe the collections of those nodes in Oj that are assigned thetruth value 1 in the corresponding stage of the network evaluation. For j with empty base,we appeal to the remarks about boolean �xed-point variables in Remark 4.1: Think of thecorresponding Xj as boolean values that are modelled by unary indicator predicates.For explicit notation let J = f1; : : : ; lg.Claim 4 Let N be of [!; �]-format. There are �rst-order formulae 'j(X1; : : : ; Xl; xj) and�j(xj), for 1 � j � l, such that the following are true in the computation of N on any inputA 2 str[!; �]:(i) For all n 2 [[!]]sj : A j= �j[n] if and only if the input node determined by (j;m) isset to 1 in N on input A.(ii) The sequence of predicates �P t1; : : : ; P tl �t2! which is inductively generated throughP 0j := �m �� A j= �j[m]	P t+1j := �m �� A j= 'j[P t1; : : : ; P tl ;m]	 ; 1 � j � lindicates the truth assignments in the computation of N on A:m is in P tj if and only if the node determined by (j;m) evaluates to 1 under Tt in thecomputation on A.The same applies to computations of [n; �]-networks over A 2 str[n; �].Observe that this su�ces to prove that any query Q � str[!; �U]� that can be evaluated bya �nitary locally polynomial [!; �U]-network is PFP-de�nable over strfin[�]: Apply the claimto the given [!; �U]-network. The system for a simultaneous partial �xed point from (ii)can be transformed into a single PFP[�U]-formula for the de�nition of each component Xjof the simultaneous partial �xed point. Termination of the computation is equivalent withthe existence of a �xed-point for the system, and the eventual value computed in the outputnode v of N is encoded in that component Xj of the resulting �xed point, that belongs to30

the orbit of v { actually this component is the encoding of a boolean �xed-point variable,since v has empty base, cf. Remark 4.1.We thus �nd that QU � str[!; �U]� is PFP-de�nable, but this is enough to obtain PFP-de�nability of Q itself by Lemma 4.1.Sketch of proofThe existence of the �j is obvious, in fact these are chosen to be atomic formulae correspond-ing to the rôle of the di�erent input nodes, or universally valid or false sentences in the caseof source nodes labelled T or F .Consider the requirements on the 'j . Let (j0;m) be an address for v. The direct prede-cessors of v in Oj are those with addresses �yj �� �jj0(yj;m)	. Suppose that v is a V-node.'j0 (X1; : : : ; Xl; x) can then be chosen as'j0(X1; : : : ; Xl; x) := ^j=1:::l 8yj��jj0(yj; x)! Xjyj�:That these formulae satisfy the requirements is proved in an easy induction. Q.E.D.Note also that positivity of the network leads to formulae 'j that are positive in all Xjwith the possible exception of indices j of orbits of input nodes. But the predicates Xj forthese orbits can be dispensed with anyway: Input nodes keep their initial truth assignmentthroughout. These initial assignments are de�ned by the corresponding �j, and these cancompletely replace Xj in the �xed-point system. This shows, that for positive N we can geta positive system and �nally a de�ning formula in FP.AcknowledgmentsI am grateful to Erich Gr�adel for suggesting the extension to networks. Thanks are due toMartin Grohe for his very careful reading of a preliminary version of this paper, and forsuggesting a substantial simpli�cation in the proof of Lemma 3.2.
31

References[AV 89] S. Abiteboul, V. Vianu, Fixpoint Extensions of First-Order Logic and Datalog-Like Languages, Proc. 4th IEEE Symp. on Logic in Computer Science (1989),71{79[AV 91] S. Abiteboul, V. Vianu, Generic Computation and Its Complexity, Proc. 23rdACM Symp. on Theory of Computing (1991), 209{219[BIS 86] D.A.M. Barrington, N. Immerman, H. Straubing On Uniformity within NC1,Journal of Computer and System Sciences 41 (1990), 274{306[CL 86] K. Compton, C. Laamme An Algebra and a Logic for NC1, Information andComputation 87 (1990), 241{263[DGS 86] L. Denenberg, Y. Gurevich, S. Shelah De�nability by Constant-Depth Polyno-mial-Size Circuits, Information and Control 70 (1986), 216{240[GL 81] P. Gacs, L.A. Levin Causal Nets or What is a Deterministic Computation,Information and Control 51 (1981), 1{19[G 92] M. Grohe,Diplomarbeit, Universit�at Freiburg (1992)[GL 84] Y. Gurevich, H.R. Lewis A Logic for Constant-Depth Circuits, Informationand Control 61 (1984), 65{74[G/S 86] Y. Gurevich, S. Shelah, Fixed Point Extensions of First Order Logic Annalsof Pure and Applied Logic 32 (1986), 265{280[I 86] N. Immerman, Relational Queries Computable in Polynomial Time, Informa-tion and Control 68 (1986), 86-104[I 89] N. Immerman, Expressibility and Parallel Complexity, SIAM Journal of Com-putation 18 (1989), 625{638[V 82] M. Vardi, Complexity of Relational Query Languages, Proc. 14th ACM Symp.on Theory of Computing (1982), 137{146[W 87] I. Wegener, The Complexity of Boolean Functions, Teubner (1987)
32

