Symmetry and First-Order:
Explicitly Presentation-Invariant Circuits

Martin Otto *

Preliminary version, October 94

Abstract

We investigate circuit complexity under the additional assumption of full combinatorial
symmetry with respect to permutations of the input representation. With this approach
we derive a very natural and simple characterization of first-order logic and its infinitary
variant with bounded numbers of variables over finite structures. Extending these results
to not necessarily acyclic boolean networks, we derive corresponding characterizations of
partial fixed-point logic (or the relational query language WHILE) and ordinary fixed-
point logic.

Keywords: Finite model theory, descriptive complexity, generic computation, circuit complexity

1 Introduction

Circuit complexity classes provide one paradigm for measuring algorithmical complexity. In
particular they are naturally adapted to capture some aspects of parallelism. We are here
interested in the algorithmical complexity of problems related to finite relational structures
as inputs, e.g. decision problems for finite graphs. One of the central topics in finite model
theory concerns connections between logical definability and algorithmical complexity of such
structural properties, i.e. of relational queries. Turning to circuit complexity we are interested
in statements relating the computability of relational queries in certain kinds of circuits to
their definability in certain logical systems.

To treat finite relational structures of a given type as inputs to boolean circuits, one
usually considers families (Cn)nzl, where (), is of a format to allow representations of size n
structures as inputs. To obtain from a structure of size n a presentation as a binary string,
we identify its universe with the standard domain {0,...,n — 1}. The input gates of C,, are
labelled by the set of all instances of atoms (in the given type) over this standard domain. In
this way the specification of a concrete input structure of size n corresponds to the obvious
allocation of truth values 1 and 0 to the labelled input gates of C,.

*Mathematische Grundlagen der Informatik, RWTH Aachen, 52074 Aachen, Germany,
Email: otto@mephisto.informatik.rwth-aachen.de

For the present investigation we stress two important points:

e A priori circuits provide a completely non-uniform measure of complexity. Without
further restrictions, even non-recursive problems are contained in low circuit complex-
ity classes (e.g. purely numerical properties of the size of the universe can be dealt
with in families of trivial circuits). Therefore, various uniformity conditions are usu-
ally imposed, e.g. in terms of constructibility of the sequence within some (standard)
complexity bound.

Definability in a natural logical system, on the other hand, provides some uniformity
in giving a single characterization across all cardinalities.

e One of the problems pervading finite model theory has to do with the arbitrariness of
input representations in the case of not necessarily linearly ordered structures. There
is no canonical labelling of the input nodes by the instances of the atoms over a given
input structure. Hence, the condition that each circuit C), really computes a boolean
function of structures in the intended sense, is an essential implicit restriction: If 2(;
and As, A; = ({0, oon—1} .. .), are isomorphic — i.e. if they correspond to different
labellings of the elements of one and the same structure as 0, ..., n—1— then (), must
compute the same value on both inputs.

For logical definability, invariance of the semantics under isomorphisms is one of the
most basic conditions.

We here want to investigate circuits which satisfy the crucial invariance condition explicitly.
The circuits considered below are explicitly symmetric in the sense that any permutation of
the universe of an input structure is reflected in an automorphism of the entire circuit. Thisis
of course the natural and straightforward combinatorial condition to guarantee isomorphism-
invariant performance. We combine this requirement with a particular uniformity condition.
For this notion of uniformity we present two conceptually different views, which turn out to
be equivalent in our framework:

(i) Either we require the sequence (Cj,)n>1 to be coherent in the sense that for m > n, C,
can be embedded into (', in some very uniform way.

(ii) Or, the sequence of circuits is replaced by a single circuit providing input nodes for
structures of any finite size. The input nodes are labelled to correspond to atoms
over the natural countably infinite domain w, thus providing a potentially infinite set-
up. Now in every concrete computation on a finite input structure, only a finite (but
arbitrarily located) portion of this infinite input field is used.

Towards our main result we consider a particular kind of size restriction that is well adapted
to the required symmetry. Owing to the symmetry requirement, all permutations of the input
field act as automorphisms on the circuit. Restricting these permutations to finite subsets,
we require that the orbits of nodes under these localized symmetry operations grow only
polynomaally with the size of the localization. We shall call symmetric circuits that satisfy this
local criterion of polynomiality local polynomial. The main result establishes that a boolean
query on finite structures can be evaluated in an explicitly symmetric, locally polynomial

circuit if and only if it is definable in infinitary logic with bounded number of variables, LY, .
Further restricting to circuits of finite depth we obtain a corresponding characterization of
the expressive power of first-order logic. Waiving the acyclicity requirement for circuits, and
similarly considering explicitly symmetric networks with a finite number of types of nodes,
we obtain characterizations of partial and ordinary fixed-point logic. We sum up these

Main Results For explicitly symmetric and locally polynomial boolean circuits, resp. net-
works, there are the following strict correspondences:

Infinitary Logic with Bounded Number of Variables
First-Order Logic

Partial Fized-Point Logic

Fized-Point Logic

Circuits

Circuits of Finite Depth
Finitary Networks

Positive Finitary Networks

The interesting direction in these matches lies in the passage from circuit or network com-
putability to logical definability. The common key ingredient is a combinatorial lemma to
the effect that locally polynomial predicates are necessarily definable in terms of a finite tuple
of parameters; here a predicate is locally polynomial if its restrictions to finite subsets have
only polynomial size orbits in terms of the size of the restrictions.

The main statement among the above is the fact that any node in an explicitly symmetric
and locally polynomial circuit computes a truth value that is definable in L% . The result
concerning first-order really is just a consequence of restriction to finite depth and finite
quantifier-rank in L% | respectively. The results concerning networks rather than circuits
are obtained in direct analogy with those for circuits.

In fact, explicitly symmetric and locally polynomial networks without further restriction
still correspond to L% . A finiteness requirement on the network, however, gives first-order
plus the kind of recursion inherent in network evaluation: Partial fixed-point logic, or the
relational query language While.

Symmetric circuits guarantee invariance with respect to the input representation through
their graphical layout. Note that the symmetry condition is purely algebraic in terms of the
underlying graph of the circuit. The class of these circuits provides an explicitly isomorphism-
preserving model of computation, in the sense that 1somorphic inputs give rise to isomorphic
computations. Models of computation satisfying this invariance condition are called generic
in the literature. They have been studied in the context of foundational issues, e.g. [GL 81],
and also in the context of finite model theory and database theory, e.g. [AV 91]. There is
considerable interest in complexity analysis related to natural generic models of computation
for several reasons:

(i) The classical complexity classes, e.g. based on Turing machines, were obviously intended
to deal with strings, i.e. with linearly ordered structures for inputs.

(ii) Logics are ‘generic’. Correspondingly, the failure — so far — to equate the standard com-
plexity classes below NP with logical systems in the absence of order, can be attributed
to a more systematic misfit. In fact major open problems, like finding a logic for PTime,
directly concern the difficulty of isolating the isomorphism-preserving fragment within
the non-generic framework.

(iii) In many areas, such as database theory, it is important to have a-priori guarantees of
presentation-invariance.

Note that the framework of explicitly symmetric circuits provides a universal model of
isomorphism-preserving circuit recognition: It is a trivial observation that exactly all boolean
queries on finite relational structures, i.e. all isomorphism preserving boolean functions, can
be evaluated by explicitly symmetric circuits. However, for typical circuits, the straightfor-
ward symmetrization procedure leads to an exponential blow-up in size. If symmetrization
is possible without being forced to non-polynomial width, then we are back in the realm of
locally polynomial and explicitly symmetric circuits.

It is surprising that this weak size restriction turns out to be sufficiently powerful in the
proposed framework to isolate some of the most important logical systems considered in finite
model theory.

Concerning the connections with other work on logical definability in relation to circuit com-
plexity classes, it is important to distinguish two different approaches. Most of the literature
concerns the standard case of circuit computability on strings, i.e. ordered structures; on
the logical side this is reflected in the assumed presence of linear order, and often of other
built-in constructs that appeal to ordered standard domains. These characterizations would
violate isomorphism- or presentation-invariance (genericity) if applied to computations on
not necessarily ordered input structures.

Our results involving finite depth circuits and first-order logic should be compared to
a corresponding characterization of first-order logic in terms of certain restricted families
of circuits in a paper by Denenberg, Gurevich and Shelah [DGS 86], concerned with the
genericity of circuit computations. The circuits exhibited there essentially also satisfy our
criteria. In the crucial direction, however, we think that the present investigation yields
new insights even for the first-order case, since the criteria proposed here are not directly
related to the syntactic structure of first-order logic. On the contrary, they are derived quite
independently on the basis of the invariance and uniformity considerations outlined above.

There are several logical characterizations of circuit or parallel complexity classes which
concern the standard case of computations on strings. We mention the work of Immerman,
Barrington, Straubing, Compton and Laflamme [I 89, BIS 86, CL 86], and also of Gurevich
and Lewis, [GL 84], where low circuit complexity classes are equated with suitable logics over
standard domains.

The central logic in our treatment is LY ,, infinitary logic with finitely many variables in

each formula. We write L% for that fragfment of infinitary logic L., that consists of
those formulae in which only & variable symbols occur, free or bound. L¥, is the union of
these, LY, =, LY . These logics plays a central role in finite model theory. Technically
this is due to the fact that they provide a common frame containing the most popular
extensions of first-order logic that model relational recursion, fixed-point logic and partial
fixed-point logic. Unlike these logics themselves, the LX have a very neat and applicable
characterization of their expressive power in terms of pebble games, which provide suitable
variants of the Ehrenfeucht-Fraissé characterization of elementary equivalence of structures.

On the other hand, the LF are sufficiently rich to define even non-recursive queries, thus

being at odds with standard complexity measures. Intuitively, however, it is clear that some
notion of polynomiality is involved in these logics, especially as considered as fragments of
full-fledged infinitary logic without bounds on the number of variables. In the pebble games
this polynomiality is reflected in the fact that positions in the k-pebble game correspond to
the designation of up to k elements at a time over the structures involved; in particular there
are only polynomialy many different positions in the game over a given finite structure. The
point is that L* can only assess properties of k-tuples, not of longer sequences of elements.
But there is another scale of complexity inherent in the structure of the particular formula
which cuts across all levels of standard complexity, thus giving rise to the definability of even
non-recursive properties.

It is therefore appealing that here we obtain a characterization of L% that is of a
complexity theoretic flavour, and exactly accounts for that kind of polynomiality we observe
in LY . It turns out to be precisely captured in the notion of local polynomiality of explicitly

symmetric circuits.

To finish this introduction, here is a short outline of the organization of the rest of the paper:

Section 2 introduces the basic definitions and facts concerning relational structures, their
representations and the kinds of circuits we want to consider. It also contains the formal
definition of the logics L. and some remarks concerning these.

In Section 3 we state and prove the main theorem dealing with circuits and L%, .

The extension of these results to networks is given in Section 4, where we also give a short
introduction to the relevant fixed-point logics.

The reader who is only interested in the circuit case can thus just ignore Section 4. For
Section 3, some of the technicalities are avoidable if one only deals with the uniform circuits of
infinitary format, and leaves aside the parallel track concerning coherent sequences of circuits
of finitary format. I have attempted to separate the corresponding lines of development so
that the reader who i1s comfortable with very infinite circuits can isolate this more elegant
treatment and ignore the sequences of circuits.

2 Basic definitions, preliminaries

2.1 Finite structures and their representations

All vocabularies are finite and relational. Usually we think of the predicates in a vocabulary
7 as enumerated in some fixed order as Ry, ..., ;. Let then r; stand for the arity R;.

Definition 2.1 The class of all finite T-structures is denoted by stry,[7]. We write sty [7]
for the class of T-structures of size n. str[n, 7] is the class of all T-structures over the standard
universe n = {0,...,n —1}. !

We shall also consider structures over the standard countably infinite domain w = {0,1,2,...}
of the natural numbers. strlw, 7] stands for the class of all T-structures over the universe w.

1For notational convenience, we apply the standard set-theoretic convention of identifying n with the set
{0,...,n —1}.

We write 2 = (A, R¥* ... le) for a T-structure with universe A. The cardinality of A, |4],
is regarded as the size of 2.

For computational purposes, finite structures are encoded or represented as binary strings
that can for instance be written down on an input tape of a Turing machine, or applied to the
input gates of circuits. The standard procedure is the following: A with |A| = n is identified
with the standard domain n = {0,...,n — 1}. In other words we pass from 2 € stv,[r] to
a structure 9 € ste[n, 7], that is isomorphic with 2. For structures in stt[n, 7], canonical
representations as strings are induced by canonical enumerations of all instantiations of 7-
atoms over n: For each R; the instantiations of R-atoms R[m], ™ € n"* can be listed in
lexicographic order. The sequence of boolean values corresponding to these atoms over A
describes 2 completely.

The places in the encoding string can naturally be identified with the union n™ U ... Un".
Let us introduce the abbreviating notation 7 = (rq, ..., ;) for the tuple of arities in 7, and
n” for this set that serves as a canonical parameterization of all instantiations of 7-atoms
over the domain n. The encodings of structures in stt[n, 7], and thereby indirectly of all
structures in stt,[r] are binary strings labelled by n”.

In general, however, there is no preferred bijection between A and the standard domain n.
The passage from 2 € stt,[7] to an isomorphic representative 2 € str[n, 7] is not well-defined.
The main exception is in the case of structures that are linearly ordered themselves: There 1s
an obvious uniquely determined correspondence that translates the given ordering on A into
the natural ordering of the standard domain. In the general case, it is an essential implicit
condition that computations on different encodings of the same structure — or just as well, of
isomorphic structures — lead to the same outcome: Invariance with respect to representation.
For 2 as above, the ambiguity in the encoding is exactly described by the operation of the
symmetric group on n elements, S,,: Any two different encodings are induced by two different
bijections between A and n, hence related by a permutation of n = {0,...,n — 1}. S, acts
naturally not only on n, but also on all powers of n, on n”, and thereby also on strings labelled
by n”. We thus get: Any two binary representations of the same or isomorphic structures of
size n are related by permutations of the binary entries corresponding to the natural action
of S, on n".

Invariance with respect to representations of structures in str, [7] corresponds to
invariance with respect to the action of S, on binary strings labelled by n”.

It will be convenient to consider finite 7-structures of arbitrary finite size as embedded into
the standard countably infinite domain w. This can be formalized as follows. Extend r
by a new unary predicate symbol U to obtain 7y := rU{U}. With the class of all finite
T-structures associate the following class of countably infinite 7y -structures with universe w:

strfw, Tp]* = {(w,U,Rl,...,Rl) | U C w finite , R; C U™ for i = 1,...,1} C str[w, 717].

The universe of any structure (w, U Ry, ..., Rl) in strw, 7y]* is the set w. The interpretation
U C w of the unary predicate U is a finite subset of w, and the interpretations of the
predicates in 7 are restricted to this finite subdomain U. Thus, stt[w, 77]* provides a uniform

representation of the members of stry, [7] as structures embedded into the standard domain w.
For a given finite 7-structure 2 a representation in sttfw, 77]* is obtained from any injective
mapping p of its universe A into w: p(A) = (w, p(A), p(R)rer) € sttfw,mw]*. Note that
these representations are isomorphism-preserving: If f is an isomorphism between 21 and U,
and p and p' are injections of A and A’ into w, then the corresponding representations p(2A)
and p/(A') are related by the isomorphism p’ fp~t, which maps p(A4) to p’(A’) according to
p'ofop~tand, conversely, p'(A’) to p(A) through po f~1op'~1. Note that this isomorphism
corresponds to a permutation of w with finite support, i.e. it only shifts finitely many elements.
Isomorphisms between structures in stty,[7] are represented as finitary permutations of w
relating their representations in strfw, ry]”.

Representing structures in stt[w, 7¢7]* as infinite binary strings corresponding to the canon-
ical enumeration of instantiations of 7y-atoms over w, we get binary strings labelled by
Wt U ... Uw Uw!. The last copy of w is for the unary U-atoms, i.e. its entries correspond
to the designation of the finite embedded universe. Similar to the above, let us write w"t!
for this set. As pointed out, the ambiguity in the representation corresponds to the action
of finitary permutations of w. We write S, for the group of all permutations of w, and Sy,
for the subgroup of those permutations that have finite support.

Invariance with respect to representation of strg,[r]-structures in str[w, 77]* cor-
responds to invariance with respect to the natural action of Sy, on binary strings
labelled by w”*1.

2.2 The logics

The logics we shall consider in connection with circuits are first-order logic L, and its
infinitary variants with bounded number of variables. Infinitary logic L., has the first-
order rules of construction of formulae augmented with disjunctions and conjunctions over
arbitrary sets of formulae. Restrictions are obtained by limiting the number of variables that
may occur (bound and free). L* has variable symbols z1, ..., z; only. L% is the union of
these restrictions, L%, = |J, L%,. The following examples serve to illustrate the expressive
power of the L :

— Opver linear orderings (A, <) two different variable symbols suffice to produce first-order
formulae ¢;(x), for ¢ > 1, expressing that z is the i-th element with respect to <. We
use variable symbols # and y. The formula ¢1(x) := =Jy(y < x) defines the first element.
Inductively, @;41(x) := —pi(2) A Vy(y <z — \/]»<Z» ©; (y)) is as desired, where ¢;(y) is the
result of exchanging = and y throughout the formula ¢;. Since three variables suffice to
axiomatize linear orderings, we find that sentences in L2, can have arbitrarily complex and
even non-recursive classes of finite models: Let y be an axiomatization of linear orderings
in L3,,. For any set W C w\ {0}, the sentence pw = x AV, Fz (i (z) A =Fy(z < y))
describes exactly those linear orderings, whose size is in W. We mention that actually two
variables suffice to define some non-recursive properties.

— To indicate in another example how clever re-use of the finite supply of variables can
capture some relational recursion, consider the definition of the transitive closure of a binary
relation £. The formula ¢1(z,y) := « = y V Fxy describes the pairs of E-distance 1.

Inductively, ¥;11(x,y) := (2, y) V Elz(1/)i(x, z) A Ezy) defines those pairs (z,y), whose E-
distance is at most ¢ + 1. Thus {(z,y) := ;. ¥(x, y) defines the transitive closure of £.

The last example 1s typical in the sense that in fact all relational recursion can be defined
in L% . This is the main reason that these bounded variable fragments of infinitary logic play
such an important role in finite model theory: They provide a common frame for the several
logics extending first-order by fixed-point operations. These, and in particular partial fixed-
point logic, equivalent with the relational language WHILE, will be introduced in connection
with the analysis of certain boolean networks in Section 4.

The formula rank for L%

¥ » 1s defined by induction as follows:

rk(p) =0 for atomic ;
rk(—p) = rk(Fzp) = rk(Vep) = rk(p) + 1;
tk(Aier i) = tk(Vies #1) = sup;er (tk(i) + 1)

Obviously, the usual quantifier rank is bounded by the formula rank, and over finite vocabu-
laries, it is easily shown that any formula of L¥ of finite quantifier rank is equivalent with
k

a finitary formula in L%, i.e. with a first-order formula using only &k variable symbols.

Lemma 2.1 The following are equivalent in expressive power with respect to finite vocabu-
laries: The finite quantifier rank fragment of L*_, the finite formula rank fragment of L*

oow ? oow ?
and first-order logic with only k variable symbols.

Let @ C stvg,[7] be a class of finite T-structures, closed under isomorphism of course. Recall
how the structures in stty,[r] relate to their representations in strfw, 7p/]*, and let QY C
stefw, 77]* be the class of all the representations thus obtained from structures in @. It is
not difficult to see that, for natural logics, definability of @) over stry,[7] is equivalent with
definability of QY over stt[w, 77]*. We formally state this fact and indicate its proof for
LY .. The analogous result for first-order logic (with k variable symbols) is an immediate
consequence of the proof.

Lemma 2.2 Let Q C strg,[7] and QY C str[w, 7v]* as above. Then the following are equiv-
alent:

(i) There is a sentence p € LE_,[7] such that @ = {2 € stra,[7] | A E o).

(it) There is a sentence ©* € LE, [rv] such that QU = {A € ste[w, ro]* | A E ¢ }.
Sketch of proof
The direction from (i) to (ii) is an application of the relativization property for L% . In-
ductively, the relativization of x(Z) to U, xY, is defined as follows: y¥ = yx for atomic
formulae, - Y trivially commutes with boolean connectives, and (Jzx)¥ = F=(Uz A xY),

(Vex)V =Ve(Uzr — xY). It is immediate through syntactic induction, that for all formulae
x(Z), for all @ in a structure 2 € stry;,[7], and for any injection p that gives a representation

p(2) of A in strfw, 7r]*:
A x[@ iff p(2A) XU [p(@).
If ¢ defines @ according to (i), then * := Y defines QY according to (ii).

The converse really amounts to saying that any formula that, as in (ii), defines a class Qu
must be equivalent with the relativization of a formula ¢ € L*, [r]. Then the equivalence
displayed above shows that ¢ is as desired for (i).

The crucial equivalence with a relativization can either be derived from Gaifman’s Theo-
rem, or be proved in an ad-hoc manner inductively as follows. Let y(Z) € L [r/]. We claim
that over sttfw, 77]*, y is equivalent with a disjunction of formulae of the form ¢V (zo) A n(T),
where ¢ € L% _[7], Ty C T, 5 is quantifier-free and involves only U and equality. To this
end, split y(T) into a disjunction corresponding to cases with respect to which of the free
variables are interpreted as being outside the U-part. Let n(T) be a quantifier-free type in
the language consisting of equality and U, Ty the tuple of those variables from T of which
71 asserts that they are in the U-part, T; the rest. Obviously y is equivalent with the dis-
junction over the x A n for all such types 1. In an easy induction over x one shows that,
over structures in sttfw, 7y]*, i.e. on structures that are trivial outside the U-part, x A 7 is
equivalent with a formula of the form [¢)(Zo)]Y A 7. Since ¢* of (ii) is a sentence without
free variables, this gives its direct equivalence with a relativization ¢ over all structures in

stew, 77]*. Q.E.D.
2.3 Boolean circuits

We generally consider circuits of unbounded fan-in corresponding to the boolean connectives
N (for arbitrary conjunctions), \/ (for arbitrary disjunctions), and — (for negation). Thus a
boolean circuitis a connected and acyclic directed graph, whose nodes are labelled as follows:

— Nodes of in-degree 0 are of two types: Either they are regarded as input nodes and are
unambiguously labelled by a set of input labels, or they correspond to boolean constants
and carry labels T or F'.

— Nodes of in-degree 1 may carry the label = (for negation) or no label (for identity).

— Nodes of in-degree greater than 1 carry labels A or \/ (for conjunction or disjunction).

Usually we consider a single marked node as the output node.

Due to acyclicity there is a well defined depth function. The depth of the input nodes is 0,
the depth of any other node is the supremum (in the strict sense) of the depths of all its
direct predecessors.

After setting the input nodes to certain boolean values, truth values are propagated
throughout the circuit in the standard fashion (the formal definition is by induction on
depth). The labellings of input nodes that arise in our considerations are indicated in the
following. Recall that n = {0,...,n — 1}, and that 7 is the tuple of arities of the predicates
in 7.

Definition 2.2 (i) A boolean circuit is formatted for ste[n, 7] if its input nodes are
injectively labelled by the set n” = n™ U ... Un". For short, we talk of an [n, 7]-circuit.

(ii) A boolean circuit is formatted for sttfw, 7], or is an [w, T]-circuit for short, if its
input nodes are injectively labelled by the set w™ =W U ... Uw™,

(iii) A sequence (Cp)n»1 of circuits, where C,, is formatted for ste[n, 7], will be termed
a [n, T]-sequence.

Note that a circuit formatted for str[w, 7] is necessarily infinite, whereas circuits formatted
for stt[n, 7] may or may not be finite. The input fields, in all cases, are adapted to taking
the binary representations of respective structures, as outlined above, as inputs: The sets of
input labels parameterize the set of all instances of atoms over the corresponding standard
universe. We are interested in circuits that are appropriate for the evaluation of boolean
queries for finite 7-structures. To this end we consider

(a) single infinite circuits formatted for sttfw, 77], and meant to evaluate QY C str[w, 7¢/]*,
or

(b) [n, T]-sequences that evaluate @ in the usual sense that the n-th member of the sequence
evaluates @, = @ N ste, [7].

This leads to the following semantic interpretations of circuits:

Definition 2.3 (i) An [w,Ty]-circuit C' computes the boolean query @ on strg,[r], if
its output node computes the characteristic function of Q) for all binary representations
of finite T-structures via stefw, Ty]*-structures.

(ii) An [n,7]-circuit C),, computes the boolean query @, on stv,[r], if its output node
computes the characteristic function of QQ,, on all representations of finite T-structures
via ste[n, 7).

(iii) An [n,T]-sequence (Cp)n»1 of circuits computes the boolean query @ on stvg,[7],
if, for each n, C,, computes the query Q, = Q N str,[7].

Observe, that the underlying boolean functions are functions on the domain {0, 1}“’F+1 in (i),

on {0,1}"" in (i), and on J,,,{0, 1}"" in (iii).

We are interested in symmetric circuits. Symmetry is expressed in terms of the automorphism
group of the circuit. Over the input field we want to consider those permutations of labels
as automorphisms, that are induced by permutations of the standardized universes, n or w.
Recall the action of S,, and S, respectively, on n”, or on w” and w"t!.

Definition 2.4 Let C' be an [n,7]- or an [w, 7]-circuit. An automorphism of C' is an auto-
morphism of the underlying graph which respects the labelling in the following sense:
The labels of all non-input nodes must be preserved, on the input nodes an automorphism
must correspond to an automorphism of the labelling; the output node has to be fized.

The above considerations about the ambiguity of the input representation showed that iso-
morphisms between finite 7-structures translate to automorphisms of the input labellings. In
the case of representations in str[w, 7/]*, furthermore we only need consider those permuta-
tions of w that fix all but finitely many points, 1.e. we restrict attention to the action of the
subgroup Sy, C S, of permutations of finite support.

Definition 2.5 Let C be an [n, 7]- or an [w, 7]-circuit. C is explicitly symmetric, or symmet-
ric for short, if the action of S, or Sy, on the respective input field extends to an automorphic
action on the entire curcuit C'.

10

Note that symmetry of a circuit is not a semantic notion here! It is a purely combinatorial
requirement concerning the graphical layout of circuits. It is the natural notion of this type,
however, that guarantees invariance of the computed function with respect to representation
or encoding. The latter, by contrast, 1s a semantic notion.

In fact, symmetry implies that the entire evaluation of the circuit becomes invariant with
respect to representation: Isomorphic inputs yield isomorphic computations. This require-
ment is the essence of so-called generic models of computation. The following is obvious, but
deserves explicit mention:

Proposition 2.1 The following are equivalent for a boolean function f on {0, 1}“’F+1:
(i) [is the characteristic function of a boolean query @ C steg,[7] (in the sense of
Definition 2.3 (i).

(ii) f can be computed by an explicitly symmetric [w, Ty]-circuit.
Stmalarly, the following are equivalent for a boolean function f on Ulzl{O, 1

(i) [is the characteristic function of a boolean query @ C steg,[7] (in the sense of
Definition 2.3 (iu).

(ii) f can be computed by an [n, 7]-sequence (Cp)ns1 of explicitly symmetric circuits C,.

For the implications (i) = (ii) observe that any boolean circuit computing f can be sym-
metrized, i.e. made explicitly symmetric, at the expense of introducing a host of new nodes.
Essentially, the original circuit is superposed with all its images under the operation of the
required symmetry group. Finally a new output node is added in such a way that it computes
the disjunction (or conjunction) over all the images of former output nodes that were pro-
duced in the symmetrization. If f computes the characteristic function of a query, then all
these copies of former output nodes must compute the same value, whence their conjunction
and disjunction gives the value of f itself. Note that this ad-hoc symmetrization in general
leads to an exponential blow-up in size — or in width, since we only add copies of nodes at
the same depth.

In general the action of S, or S, on C need not be unique, i.e. there could be different
lifts of the group operation on the input field to the rest of the circuit. It is easily shown,
however, that this can only be due to a redundancy in the layout of the circuit that can be
eliminated through suitable factorization.

Proviso 1 We shall assume without loss of generality that the explicitly symmetric circuits
under consideration satisfy the following condition. For any automorphism 7 of C' and any
node v € C': If m fizes the set of direct predecessors of v, then 7 fizes v itself. This implies
e particular that any automorphism of C' is induced by a unique automorphism of the imnput
labelling.

As pointed out above, symmetrization can in general be expected to lead to exponential
numbers of isomorphic copies of the same node. Turning this expected trade-off between
explicit symmetry and orbit size of nodes under the automorphism group into a criterion, we

11

consider circuits that can be symmetrized within polynomial bounds, or symmetric circuits for
which the orbits under automorphisms grows only polynomially with the size of the support
of these automorphisms. For a formal definition of this notion of local polynomiality we
introduce some notation concerning the group actions.

For finite s C w, put S5 := {ﬂ' € Sen | supp(m) C 5} C Si. C S,. Note that this in
agreement with the notation 5, for the permutation group on n = {0,...,n—1}. If H is any
subgroup of S, that operates on C and v is a node of C, then v := {7 (v) |7 € H} stands
for the orbit of v under H.

Definition 2.6 Lel C' be an explicitly symmetric [w, 7]-circuit. C is locally polynomial if
there is a polynomial p such that for all finite s C w and for all nodes v of C': |vSS < p(]s]).

Similarly, an [n, T]-sequence of symmetric circuits (Cp)n»1 @5 locally polynomial if there
1s one polynomial p giving a uniform bound on the orbit size across the whole sequence in the
sense that for all n, for all s C n, and for all nodes v of Cy: |vSS < p(|s])-

Note that, when we speak of locally polynomiality of circuits, explicit symmetry will always
be understood.

Finally we come to considerations about uniformity in our framework of circuit com-
putation. It is clear that computation of a query by a symmetric infinite [w, 77]-circuit as
in Definition 2.3 (i) induces some kind of uniformity: There is one infinite and extremely
homogenous circuit for the computation of the query. The following definition isolates a
corresponding uniformity criterion at the level of sequences of symmetric circuits.

The criterion is in terms of embeddings of one circuit into another. An embedding of C'
into C” is an injective mapping h: €' — C’, that preserves labels and edges: For v € C', h(v)
must carry the same label in C” as v in C; for vy, v2 € C, there is an edge (wire) connecting
v1 to vg in C' if and only if there is an edge from h(vy) to h(ve) in C".

Consider two members of an [n, 7]-sequence of symmetric circuits, C,, and C,,, n < m.
Note that the input field of C), is a subset of the input field of C},. Roughly, we want to
consider a node of (), as belonging to the smaller input field if it is fixed by all permutations
of m\ n, i.e. fixed by S;,\,,. We call an embedding of C;, into Cy,, complete if its range consists
of all nodes of €y, that are fixed by Sp\,,.

Definition 2.7 A [n, 7]-sequence (Cp)ns1 of symmetric circuits is called coherent if for all
n, there is a complete embedding of C,, wnto Cy, for all sufficiently large m > n.

The following correspondence between the two notions of uniformity — a single infinite locally
polynomial symmetric circuit vs. a coherent locally polynomial sequence of symmetric circuits
— will be a consequence of our main theorem, i.e. we shall prove it via a detour involving
the logical characterization through L% :

Proposition 2.2 The following are equivalent for any boolean query Q) C stry,[7]:

(i) Q can be computed by a coherent and locally polynomial [n, T]-sequence (Cp)ns1 of
symmetric circuits.

(ii) @ can be computed by a single symmetric and locally polynomial [w, Ty]-circuit.

12

3 Boolean circuits and L¥_,

Here is our main theorem dealing with the equivalence between L% = and locally polynomial

symmetric circuits.
Theorem 3.1 The following are equivalent for any boolean query @ C stvg,[7]:

(i) @ can be computed in a coherent locally polynomial [n, T]-sequence of explicitly sym-
metric circuits (Cp)ns1.

(ii) @ can be computed in a locally polynomial symmetric [w, Ty]-circuit.

(iii) @ is the class of finite models of a sentence of LY, i.e. @ is definable in LY.

ooWw ?

The proof will immediately yield the following in restriction to finite depth:
Theorem 3.2 The following are equivalent for any boolean query @ C stvg,[7]:

(i) @ can be computed in a coherent locally polynomial [n, T]-sequence of explicitly sym-
metric finite circuits (Cp)n»1 of constant depth.

(ii) @ can be computed in a locally polynomial symmetric [w, Tv]-circuit of finite depth.
(iii) @ definable in first-order logic.

Most of this section is devoted to the proof of the main theorem. The easy part consists of
showing that the natural circuit expansions of L% -formulae lead to symmetric and locally
polynomial circuits.

Locally polynomial symmetric circuits for LY

By induction over formulae in LY, ,, we show the following:
Lemma 3.1 Let p(Z) be a formula in L% [7] of formula rank . Then there are:

(a) A locally polynomial [w, T]-circuit, whose nodes correspond in a one-to-one fashion
to the instantiations of atomic formulae or subformulae of ¢ over w. Two nodes of
this circuit are related by an automorphism of the circuit if and only if they correspond
to Sg.-related instantiations of the same subformula. The node corresponding to the
instantiation [m] computes, on each input A € strfw, 7], the boolean value of U =
w[m]. The depth of this circuit is equal to the formula rank « of .

(b) A locally polynomial coherent [n, T]-sequence of circuits of depth o, (Cp)ns1, such
that the nodes of Cy,, correspond to the wnstantiations of atomic formulae and the sub-
formulae of ¢ over n. Again, two nodes of C,, are related by an automorphism of Cy,
if and only if they correspond to S, -related instantiations of the same subformula. The
node corresponding to Y[m] in C, computes the boolean value of A |= Y[m] on each
input A € ste[n, 7].

13

Note that an application of these statements to sentences of L% proves the implications
(iii) = (i) and (iii) = (ii) in the main theorem: This is immediate in the statement involving
the sequences, since these already have the appropriate format. For (iii) = (ii), involving
str[w, 7%, we have to apply (i) of the lemma to the relativization ¢U of the sentence ¢ that
defines @). Lemma 2.2 shows that the resulting [w, 7]-circuit is adequate for Q).

Since any formula of LY of finite formula or quantifier rank is equivalent with a first-

order formula and vice versa, ¢f. Lemma 2.1, the corresponding implications in Theorem 3.2
follow as well.

Proof

The constructions of the circuits are by induction over formulae. We treat (i) first. The
claim 1s obvious for atomic formulae . The desired circuits consist just of the input nodes.
Note that the claim carries over to boolean combinations of formulae immediately. It only
remains to treat the existential step.

Let (%) = Jzx(z, 7). Assume that C is a circuit for x(z, T) meeting the requirements, in
particular its depth 1s equal to the formula rank of y. The circuit for # is obtained trough the
addition of one new level to C'. Let the nodes in the new level be disjunctive nodes labelled
by the instantiations ¢[m] of ¥ over w. The node labelled ¥[m] is connected to the top-level
nodes of C that correspond to the instantiations x[m,m] of x, for all m € w. Tt is easy to
check that the resulting circuit i1s as desired.

We turn to the coherent sequence required in (ii). It is easiest to obtain its members
as restrictions of the infinite circuit obtained for the evaluation of ¢ over sttjw, 7] according
to (i). Let C' be this [w, 7]-circuit that is constructed according to the proof of (i). The
desired coherent sequence of circuits consists of suitable restrictions of this single circuit C.
To obtain C,, restrict (' to nodes whose associated instantiations of subformulae exclusively
involve parameters from n. It is immediate by induction over the subformulae of ¢ that the
nodes of (), compute what they should. Local polynomiality and symmetry carry over from
C'. From the way all ', are embedded into C' it follows directly that the coherence condition
1s satisfied. Q.E.D.

L¥ -definability for locally polynomial symmetric circuits

In preparation for the proof of the important direction in the main theorem, we first isolate the
crucial combinatorial core of the matter. The following lemma connects local polynomiality
with definability over few parameters in an abstract setting.

Some notation to facilitate the statement and proof of the lemma: Let, for any tuple m
the set of its components be denoted by [m]. Put G := Sy,, the group of permutations of w
with finite support. For any object O that can be subject to the action of G, let G(O) be
the subgroup that fixes O. We apply this notation in particular to predicates R over w and

to tuples 7 or their component sets [m]. Recall that Ss, for finite s C w, is the group of
permutations of w whose support is contained in s.

Lemma 3.2 Let R C w" be an r-ary predicate over w. Assume that R is locally polynomeal
wn the sense that for all finite s C w, the orbit of R under Sy is bounded by a polynomial in

14

the size of s. Le. there is a polynomial p of degree k, such that for all s: |RSS <p(|s]). Let
k be the degree of p.

Then there is a tuple of at most k distinct parameters m from w such that R is definable
over these: There is a quantifier free formula n(xy, ... 2, Z) involving only equality such
that R = {E € w’ | n[b, m]} The parameter tuple T can be chosen with pairwise distinct
components and such that

G(m) C G(R) C G([m]).

The following is a simplified proof. A preliminary version of this paper contained an un-
necessarily complicated argument. I am grateful to Martin Grohe for pointing that out to
me.

Proof
Generally G(m) C G([m]) C G. Observe that definability of R relative to parameters
™ is indeed equivalent with G(m) C G(R). To indicate the argument for the non-trivial
implication, assume that G(T) C G(R). Let n be the disjunction over all equality types of
tuples (b,7m), b € R. A simple automorphism argument shows that R = {E | n[b, m]}

The proof of the lemma is given in two steps. Under the assumptions of the lemma, we
show:

(i) There is a finite tuple 7 such that R is fixed relative to m': G(m’) C G(R).
(ii) For m’ as in (i) there is a subtuple T such that G(m) C G(R) C G([m]).?

Note that a tuple 7 as in (ii) satisfies the claims of the lemma: Definability follows from
G(m) C G(R); G(R) C G([m]), on the other hand, implies that R is shifted by any per-

mutation that does not preserve 7 setwise. As there are <|[|mi|]|> choices for [m] over s, local

polynomiality with p of degree k implies that the size of [m] is at most k.

The proof of (i) is easy. Assume to the contrary that there is no finite parameter set
that fixes R. This implies the existence of a sequence of finite subsets s1 C s2 C ... C w
such that |s;| < 2ri together with permutations m; € G, such that m; has support in s;41,
fixes s; pointwise, but does not fix R|s;y1: Since R is not fixed relative to s;, it suffices to
choose an r-tuple that is in R and can be mapped to a tuple outside R without moving points
in s;. Let m; be the permutation exchanging these two tuples, and join the components of
these two r-tuples to s; to obtain s;41. But now the m; commute, so that for each subset
I'c{l,...,d}, Ris mapped to a different isomorphic copy of itself by 7y := [],_; m. Thus
the orbit of R under S;,,, has at least 2¢ elements. In other words, the orbits of R grow
exponentially, contradicting local polynomiality.

In order to prove (ii), it suffices to prove the following:

(*)

2Note that we have to admit the empty tuple for 7z, which occurs for fully S, -invariant R.

If R is fixed by all permutations that fix one of two finite sets, s; or so,
pointwise, then R is fixed by all permutations that fix s; N sy pointwise.

15

This suffices to reduce a finite tuple 7’ such that G(T') C G(R) until a tuple m with G(m) C
G(R) C G([m]) is obtained: If # € G(R), then also G(x(m’)) C G(R) (by conjugation with
7), i.e. R is fixed by all permutations that fix 7’ and also by those that fix #(7n'). Thus, by
(%), R is fixed by all permutations that fix [m'] N x([m’]) pointwise. If 7 € G(R) \ G([7']),
then ['] N #([f]) is a proper subset of [A].

For the proof of (*), let s; = [m;] and assume that G(m;) C G(R) for i = 1,2. W.lo.g.
let the m; be tuples of pairwise distinct components, of the same length and such that
m; = (Mo, w;) where [u] N [u2] = 0. So 51 N se = [Mmg]. Let Wy be any tuple of pairwise
distinct components of the same length as the w;, ¢ = 1,2, but disjoint from these and from
. Let (W, ;) denote the permutation that exchanges @; and u; and fixes all other points.
Tt is obvious that (Wg, @) fixes T2, and (Up, Uz) fixes 71, whence these permutations both fix
R. Through conjugation with (%, W2) we find that G(7g, o) fixes R. Repeated application
of this argument shows that G(7y, @) C G(R) for any tuple @ of pairwise distinct components
that is of the same length as wy and disjoint from . Similarly (@, @) fixes R for any two
such tuples.

Let now p € G(Myp). Choose & := p~*(@1). Then po (uy,u) fixes My = (Mo, U1), therefore
fixes R. Since (@1,) also fixes R, it follows that p fixes R. Q.E.D.

Note that in the proof we do not really need the infinite domain w but could do with a
sufficiently large finite domain for R. Sufficiently large, here, is to be understood in terms of
the polynomial p and the arity r of R.

Corollary 3.1 If R C n” s locally polynomual in terms of a polynomial p of degree k, and
of nois sufficiently large in relation to r and p, then there is a tuple of at most k distinct
parameters m from n such that R s definable over these. This tuple @ can be chosen with
pairwise distinct components and such that G(m) C G(R) C G([m]).

We are now in a position to prove L% -definability of the boolean values computed by locally
polynomial circuits. We first treat single circuits C', where C' is either an [w, 7]-circuit or an
[n, 7]-circuit. In the latter case assume that n is sufficiently large in relation to the polynomial
that bounds the orbit size so that at the crucial step in the proof Corollary 3.1 applies.

Fix a locally polynomial [w, 7]- or [n, 7]-circuit C. Let the polynomial which bounds the
orbit size be of degree k. Let (G be the appropriate symmetry group for C', S;, or S,. Let
{wj | jE J} be a system of representatives of all nodes in C' up to the operation of G, i.e.
this set contains exactly one member of each orbit under G. Let O; = w§ be the orbit of wy
under GG. As above, we write G(7) and G([m]) for the subgroups that fix 77 or the set of its
components, similarly G(v) for the subgroup fixing a node v of C'.

Claim 1

(i) For every node v € C there is a tuple m € w (if C is of [w, 7]-format) or M € n (if
C'is of [n, T]-format) of at most k components, pairwise distinct, such that

G(m) C G(v) C G([m]).

We shall call such tuple a base for v.

16

It follows from symmetry, that then also, for all 7 € G: G(x(M)) C G(w(v)) C
G(w([m])), i.e. that w(M) is a base for w(v).

(ii) Fix bases m; for the w; for each j € J. Then the following predicates, that describe
the edge relation between nodes, are quantifier-free equality definable over w or n for
each pair of indices j,j' € J:

Ry = {(x(m;), «'(m;1) | 7,7’ € G, w(w;) € pred(x’(w;j))}.

Note that we have to admat arity 0, or empty tuples, for the bases m;. If both, m; and m;: are
empty, then R is to be regarded as a boolean value (and we stretch the notion of quantifier
free definability accordingly).

Proof
Note that the definability claimed in (ii) is almost trivial as a consequence of (i), symmetry
and the definition of the R;;:: It suffices to check that the R;;, are invariant under the
operation of (G, i.e. invariant under finitary permutations. Any predicate with this invariance
property is definable in terms of equality types, as is shown by a standard argument similar
to that at the very beginning of the proof of Lemma 3.2.

The explicit statement of (ii), however, is justified by its role in the proof. (i) and (ii) are
proved simultaneously in an induction over the depth of nodes.
— For depth 0 we are either dealing with an input node, which corresponds to an instantiation
of an atom, or with a boolean constant in a node labelled T or F'. As a base we take the
parameters of the instantiation in the first case, and the empty tuple in the case of a node
labelled by a constant.
— Consider now v of depth & > 0. W.l.o.g. assume that v = w;, for some j, € J. Note
that all predecessors of v must be in orbits O; whose depth is strictly less than «. Let Jy be
the set of indices j for which the orbit of w; contains direct predecessors of v. We assume
that statement (i) of the claim holds for all nodes of depth less then «, and that tuples 7;
satisfying (1) for the w;, j € Jy are fixed.
Define a predicate

R; = {w(m]») | Te G, m(w;) € pred(v)}.
With this definition we get, for all ¢ € G, j € Jy:
o(w;) € pred(v) < o(m;) € R;.

Only the direction from right to left is of interest. So assume that o(7;) € R;, i.e. for
some 7: w(M;) € pred(v) and w(m;) = o(m;). It follows that ¢=! o 7 fixes m;, whence it
fixes w; (by the inductive hypothesis and the choice of 77; for w;). But this implies that
o(w;) = m(w;) € pred(v).

From this equivalence we also get, for any p € G, j € Jo:

p(Rj)IR]' =2 (VO’:O’(WJ') € Ry C}poa(mj)ERj)
& (VU: o(w;) € pred(v) & poo(w;) € pred(v))
< p(O; Npred(v)) = O; Npred(v).

17

It thus follows, with Proviso 1, that for all p € G:

p(v) =v < p(pred(v)) = pred(v)
& p(O; Npred(v)) = O; Npred(v) for all j € Jy
& p(R;)=R; forall j € Jy.

Hence |Rf[| < |vH| for all j € Jy and all subgroups H C . We apply Lemma 3.2 in the
case of an [w, 7]-circuit €', and Corollary 3.1 in the case of an [n, 7]-circuit with sufficiently
large n. Observe that ‘sufficiently large’ is in relation to p and the arity of the R;, which
is at most k£ by the inductive hypothesis. It follows that each R; is quantifier free equality
definable from a tuple of at most k parameters p;. Choose p; as in Lemma 3.2/Corollary 3.1
such that G(p;) C G(R;) C G([p;]).

Consequently, all the R; for j € Jy are fixed by G(m) for any (not, at first, necessarily
finite) tuple m such that [m] = (J; ¢, [p;]- Hence, also v itself is fixed by G(m). This m is
also minimal in the sense that any permutation which does not fix [m] must move v: Any
such permutation must move at least one []5]»], therefore R;, hence also v. Thus, by local
polynomiality, [] is after all finite, in fact 70 can have at most k different components. This
establishes the first part of Claim 1 for v itself.

Let now T be a tuple of variables of the appropriate arity for the base m just obtained
for v. Let, for j € Jo, J; be a tuple of variables of the arity of R; (i.e. of the same arity as
m;), disjoint from . By Lemma 3.2/Corollary 3.1, R; is quantifier-free equality definable
from p;. Since p; is a subtuple of T, R; s in particular quantifier free equality definable as
R; = {y]» | nj(yj,m)}, for a suitable formula 7;, for each j € Jy. Recall that v = w;, so
that 7 may serve as the 77;, in the sense of the statement (ii) of the claim. Note that then,
by symmetry, R;;, = {w(yj,m) | TG,y € Rj} for all j € Jy. For j & Jo, R;;, is empty.
This proves (ii) for all pairs (j,j') with j € J and j° = jg: For the non-trivial case, j € Jy,
we find

Rjjr = {@j,f) | 77]'@]',5)}'
Q.E.D.

Towards the logical definability of the values computed in the nodes, it turns out that a base
for v corresponds to the tuple of instantiations for the free variables in the defining formula
for that node.

Let C be a locally polynomial [w, 7]- or [n, 7]-circuit as above, let the polynomial p which
bounds the orbit size be of degree k, and assume that n is sufficiently large in relation to p
in the [n, 7]-case. Let G be the appropriate symmetry group for C, Sy, or S,. Let also the
system of representatives {wj | jE J} of all nodes in C' with respect to the operation of GG
be fixed as above. For each w; fix a base m; according to the last claim.

Claim 2 For any node v of depth o and with base m as in Claim 1, there is a formula
©(F) € L*[r] of quantifier rank at most max(1, ka) such that p[m] defines the boolean value
computed at v:

If C is an [w, T]-circuil, then for all inputs A € strfw, 7], the boolean value computed by C al
v over input U is the boolean value of A |= p[m].

18

If C is an [n, 7]-circuil, then for all inputs A € ste[n, 7], the boolean value computed by C' al
v over input U is the boolean value of A |= p[m].

It follows from symmetry, that then also, for all # € G, the boolean value computed at
7(v) is defined by o[w(T)].

Before giving the proof, let us see how Claim 2 applies to the implication (ii) = (iii) in
Theorem 3.1. Let @ be a query over stry,[r], C a locally polynomial [w, 7]-circuit that
computes @ (cf. Definition 2.3 (i)). Apply the above claim to the output node of C, to obtain
a sentence ¢ € L?*[ry] that defines the value computed by C over any input in stt[w, 7).
With Lemma 2.2, ¢ can be transformed into a sentence ¢’ € L?*[7] that is equivalent with ¢
over all structures in sttfw, 7i7]*. Thus, @ is definable in L?* as claimed in the main theorem.
Since finite depth of C' yields finite quantifier rank, an application of Lemma 2.1 proves the
corresponding implication in Theorem 3.2.

Proof

The proof is by induction over depth, in parallel with the proof of the last claim. Depth 0 is
trivial: Either v is an input node, then for ¢ we take the atom corresponding to that input
node, or v corresponds to a boolean constant in which case we can take any universally false,
respectively valid, sentence of quantifier rank 1 for .

So assume that v = wj, is of depth o > 0, and that the claim holds for all nodes of lesser
depth. Let v for instance be a A-node. Let W@ = m;, be the chosen base at v. Let Jy be
the set of indices j for which w; is related to a direct predecessor of v. By the inductive
hypothesis, there is a formula ¢; (y]») for each j € Jy, satisfying the requirements of the claim
for w; and its fixed base m;. From Claim 1 we know that the predicates R;;, are quantifier
free equality definable by formulae njj/(yj,y]»,). Recall from the definition of the R;;. that
the immediate predecessors of v = w;, in the orbit of w; are exactly those nodes m(w;) for
which (7(m;),m) € Rjj,. It follows that the formula

P(T) = /\ vy, (nj50(T;, ®) — ¢;(;))

is again in L2* and defines the value computed at v. Observe that the quantifier rank of this
new formula is bounded by the supremum of the quantifier ranks of the ¢;, each increased
by k. Inductively, this leads to the bound formulated in the claim. Q.E.D.

We have now established the implications (ii) = (iii) in both, Theorem 3.1 and its restriction
to finite depth, Theorem 3.2. It remains to construct the defining formula for a coherent
sequence of circuits. This is possible on the basis of the defining formulae for each individual
member C,.

Let (Cp)n»1 be a coherent and locally polynomial [n, 7]-sequence of circuits. We begin with
some preparatory remarks that exploit the coherence of this sequence.

Recall that C), is embedded into Cy, for m > n, m sufficiently large. Owing to Proviso 1
and the completeness condition, this embedding is in fact unique: The range of the embedding
is fixed, since by completeness it must consist exactly of those nodes of (), that are fixed
by all permutations of m \ n. There cannot be any internal automorphisms of C,, that fix

19

the iput field of C),. But the images of the input nodes are uniquely prescribed for any
embedding.

We shall therefore identify nodes across the C), in the following manner: v € (), and
v' € C, are identified if they are mapped to the same node of C,, under the complete
embeddings of), and C), into Oy, for sufficiently large m. Saying that a node v occurs in
C, means that there is a node in), which is identified with v in this precise sense.

For the symmetries we regard S, as a subgroup of S,, for n < m, and all the S, as
subgroups of Sy,. We say that v is Sg,-related to v’, or that v is in the same Sy, -orbit as v/,
if v is Sp-related to v/ in C), for all sufficiently large n. Speaking of Sy,-orbits in this sense,
we can again introduce a system of representatives of nodes {wj | jE J}, such that all nodes
belong to one of the orbits O; of a w; under Sy,.

Let p of degree k& be the polynomial that bounds orbit size in the C,.

Claim 3 For any node v € (Cp)n»1 there is a tuple T € w of at most k components, pairwise
distinct, such that:

(i) For all Cp, in which v occurs:
Sp () C Sp(v) C Sy ([m]).

As above ™ s called a base for v.
(ii) v is in Cy exactly for those n that contain the base .

(iii) The boolean value computed at v in C,, is defined by a formula o(T) € L**[r]: For
all inputs A € ste[n, 7] the boolean value computed by C,, at v over inpul U is the boolean
value of A = p[m].

Proof

The proof 1s an adaptation of Claims 1 and 2. Some points are immediate:

1) Each node v has a base in each C), for sufficiently large n. This was proved in Claim 1;
sufficiently large means large enough that v occurs in ', and, more importantly, large enough
in relation to the polynomial p so that Claim 1 applies.

2) Let T be a base for v in Cy,, m sufficiently large. We claim that then 77 is a base for v
in each C), that contains v, and that these are exactly the C,, with m € n.

We first show that whenever m is sufficiently large in relation to n, and 7 is a base in
Cim, then v occurs in C), if and only if @ € n: From the complete embedding of C), into C,
we have

veEC, < Spn CSn(v)
& Spon CSn([m]) <« [m] Cn.

For the last equivalence, assume that m is at least n + |[m]| + 1.

We turn to the uniformity of bases across all n. It is obvious that Sy, (m) C Sn(v) C
Sm([m]) in Cy,, m sufficiently large, implies that S, () C S, (v) C Sp([]) in C,, for all n <
m that contain m. The crucial point, therefore, i1s upward agreement of bases as is expressed in
the following observation: If S, () C S, (v) C Su([m]) in Cy, Sp (') C Sm(v) C S ([R])
in Cy,, n > |[M]] 4+ 1, m sufficiently large with respect to n, then [m] = [m’]. This follows
with a complete embedding of C,, into Cy,. First observe that [f’] must be contained in

20

n, because v in Cy, cannot be affected by Sy,\,, by completeness. That two bases within n
must agree setwise is obvious.

We can thus choose bases that satisfy (i) and (ii) of the claim for all the representatives
wj, j € J, of orbits with respect to S;,. Let m; be such base for w;. Note that bases are
compatible with the operation of Sy,: If v = m(w;), then 7(7;) is a base for v.

Recall that O; is the orbit of w; under Sy,. It follows from the above that O; N, the set
of nodes in C), that are Sy,-related to wy, is the same as the set {ﬂ'(w]') | T E S, m(;) € n};
note however, that w; need not occur in C), or that m; need not be in n.

Consider now the predicates that describe the edge relation. Put, just as in Claim 1 (ii),

Rjjr= {(w(m]»), 7' (m;1)) | 7,7 € Sga, m(w;) € pred(n’(wj+)) in Cy, n sufficiently large }

We claim that these predicates uniformly describe the edge relations in all the C,. More
precisely: Their restrictions to n are the correct edge predicates for C,,. Let n(m;), #'(7;.) €
n. Then m(w;), 7' (w;/) € C,, and, through embeddability, there is an edge connecting 7 (w;)
to m’'(w;/) in Cy if and only if this is the case in all C, in which these nodes both occur.

It follows from the arguments in Claims 1 and 2, that the corresponding predicates R;;/
are uniformly definable by the formulae 5;;, in all C,,. We thus find inductively, that also the
formulae ¢; defining the values computed at w; and constructed as in the proof of Claim 2
are uniformly applicable in all C),. This finishes the proof of Claim 3. Q.E.D.

Strict matches for each L’éow

A last remark in this section concerns the apparent mismatch between the degree &k of the
polynomial that is responsible for local polynomiality, and the number of variables in formulae
of L% . In Lemma 3.1, local polynomiality of degree k was established for circuits evaluating
formulaein L% but only definability in L2*_ could be shown in Claims 1 and 3 for symmetric
circuits whose orbit size is bounded by a polynomial of degree k.

Observe, however, that up to 2k variables were essentially needed in the description of the
links between nodes in the proofs of Claims 1, 2 and 3: The formulae 7;;, defining the edge
relations R;;s used up to 2k variables. This is not surprising, however: Single nodes require
a tuple of at most k parameters for their identification within their orbit in a circuit whose
orbit sizes are bounded by a degree k polynomial. Edges correspond to pairs of nodes and
thus may require up to 2k parameters. This also indicates a way to obtain an exact match,
for each k separately, in Theorem 3.1: We have to redefine local polynomiality — or rather
its degree — in terms of bounds on the orbit size of edges or wires, rather than in terms of
nodes! To obtain this refinement we now define the following, cf. Definition 2.6:

Definition 3.1 An explicitly symmelric [w,7]- or [n,7]-circuit C' is locally polynomial of
degree k if there is a polynomial p of degree k such that for all finite s C w and for all
edges e of C': |eSS < p(|s]). An analogous definition applies to [n, 7]-sequences of symmetric
circuils.

Note that a circuit is locally polynomial in the sense of a polynomial bound on the orbits of
nodes, if it is locally polynomial in the sense of a polynomial bound on the orbits of edges.

21

Thus, this new definition of the degree of local polynomiality really just is a refinement. The
point is that in this way we obtain matches at each level k:

Theorem 3.3 The following are equivalent for any query Q C stvg,[7] and for each k:

(i) @ can be computed in a coherent [n, T]-sequence of explicitly symmetric circuits, that
15 locally polynomaial of degree k.

(ii) @ can be computed in a single symmetric [w, Ty]-circuit that is locally polynomial of
degree k.

(iii) Q is definable in LF, .

Sketch of proof
We refer to the corresponding parts of the proofs of Lemma 3.1 and Claims 1, 2 and 3.

First consider a boolean query that is definable in L% . We claim that the circuits
constructed in Lemma 3.1 are locally polynomial of degree k. The construction of the circuits
was by induction over the formula rank. The operation of the symmetry group on any node
is the operation on the parameters that instantiate the subformula belonging to that node.
Thus, the former proof led to tuples of at most k& parameters in each node. Now we have
to consider edges. These occur between nodes that link an instantiation of a subformula
p[m] to nodes belonging to certain instantiations of its direct constituents. If ¢ is a boolean
combination of subformulae, then the parameter set [m] is the union of the parameter sets
at the immediate predecessor nodes. Therefore, in this case, all edges into the node of ¢[m]
are fixed relative to ™. Consider now the existential step. Let ¢(Z) = Jz¢(2,7). Edges
now link nodes belonging to instantiations 1[m, m] to the node associated with ¢[m]: Again,
since ¢ has only k variables, the tuple (m,) has at most £ components, and the edge under
consideration is fixed relative to these.

Now for the opposite direction, i.e. the analysis of the corresponding steps in the proofs
of Claims 1, 2 and 3. Assume now local polynomiality of degree k. The defining formulae
are obtained in the proof of Claim 2 by induction on the depth of nodes. In the construction
of the formula (T) defining the the value at wj,, those formulae ¢;(y;) are used, that define
the values at direct predecessor nodes of v. The njjo(yj,yju) define the R;;, that exactly
describe the occurrences of edges between nodes. If ' is locally polynomial of degree k, then
each n;;, must enforce sufficiently many equalities between variables in (y]» , yjo) so that these
consist in fact of at most & distinct components. But these equalities can be exploited in the
construction of the new formula ¢, that in the case of a conjunctive node w;, was of the form

e(T;,) = /\ VT (05305, T30) — #5(T;))-

Contraction of different variable symbols that are equated by n;;, into the same symbol
therefore yields ¢ € L*__ if the @; are in LF_, by inductive hypothesis. Q.E.D.

oW

22

4 Boolean networks

4.1 Basic definitions

Boolean circuits generalize to a certain kind of computational networks if the condition of
acyclicity is dropped. A boolean network is a connected directed graphs with a labelling
completely analogous to that required for circuits. The computation of a network N on some
input is described in terms of a sequence of assignments of truth values to the nodes of N,
T;:N — {0,1}, for ¢ > 0. Intuitively these assignments corresponds to a description of
the time-dependent evolution of the network under stepwise flow of information. The input
corresponds to an assignment to the input nodes. The initial assignment 7y on all of N
is obtained through setting the values of all non-input nodes to 0. Inductively a sequence
(T)t»0 is generated as follows. On all nodes of in-degree 0, the initial assignment is kept
throughout. For any node v of in-degree at least 1, the assignment T;41(v) is determined
in the obvious way on the basis of the assignments T;(u) of all direct predecessors u of v.
The computation terminates if this sequence of assignments becomes ultimately constant,
1.e. if for some ¢ we have T;y1 = T;. The value computed by N on an input, over which the
computation terminates, is the boolean value given to the output node in the terminating
truth assignment.

Definition 4.1 A network N is formatied for str[w, 7] if the input nodes are labelled injec-
tively by W™, T the tuple of arities in 7. It is formatted for ste[n, 7] if its input nodes are
labelled by n™. We talk of [w,7]- and [n, 7]-networks. A sequence of networks (Ny)ps1 15 an
[n, 7]-sequence if Ny, is an [n, 7]-network for each n.

Computation of a query Q) over stvy,[7], either by a single [w, Ty]-network or by a [n,7]-
sequence of networks, is defined in complete analogy with Definition 2.3 above. For instance,
an [w, Ty]-network computes Q if ils oulpul node compules the characteristic function of @
Jor all encodings of finite T-structures via representations in stefw, 7y]*.

The notion of automorphisms of networks is the same as for circuits. Also, the criterion of
explicit symmetry carries over unchanged, c¢f. Definition 2.5:

Definition 4.2 Let N be an [n, 7]- or [w, 7]-network. N is explicitly symmetric, or symmet-
ric, if the action of S, or Sy, on the respective input field extends to an automorphic action
on the entire circuit C'.

In analogy with Proviso 1 we may restrict attention to networks whose automorphisms are
not due to trivial redundancies:

Proviso 2 For symmeiric boolean networks N we assume the following:
For any automorphism m of N and any node v € N: If w fizes the direct predecessors of v
setwise, then 7 fives v itself.

Definition 4.3 Lel N be a symmelric [w, 7y]-network.

(i) N islocally polynomial if, as for circuits, the size of orbits is locally polynomial.

23

(ii) N is finitary if the number of orbits of nodes under the full automorphism group
aul(N) is finite, i.c. if there are only finitely many isomorphism types of nodes in N.

An embedding between symmetric networks is defined just as for circuits as a label preserving
isomorphic embedding of the underlying graphs. Such an embedding is complete if its image
consists of those nodes that are fixed by all permutations that fix all images of input nodes.

Definition 4.4 Let (N,)n>1 be a [n, 7]-sequence of symmetric networks.

(i) (Np)n»1 is locally polynomial if there is a uniform polynomial bound on the orbit
size across all n.

(i) (Np)n»1 ts coherent, if for all n, there is a complete embedding of N, into Ny, for
all sufficiently large m > n.

(iii) A coherent sequence (Ny)n»1 is finitary, if there is a uniform finite bound on the
number of orbits of nodes under the full automorphism group aut(Ny,) in Ny,.

Just as for circuits, it will turn out that coherent locally polynomial [n,r]-sequences of
networks are equivalent with locally polynomial [w, 77]-networks as far as the evaluation
of boolean queries over stvg,[7] is concerned.

Definition 4.5 A network is positive if all nodes labelled = (for negation) are immediate
successors to iput nodes.

Positive networks obviously have the special property that the truth assignments 7T} are
monotone in the sense that T3(v) = 1 implies that Ty (v) = 1 for all later stages ¢ > ¢.

In connection with networks we shall mainly consider the most expressive of the fixed-point
extensions of first-order logic: Partial fized-point logic, PFP.

Let ¢ = (X, T) be a formula with a free second-order variable X of some arity r matching
the arity of = (#1,...,2,); ¢ may have other free variables, which then are regarded as
parameters in what follows. With ¢ associate a global operator F, on r-ary predicates: Over
a structure 2, which interprets ¢ up to the designated free variables, Ffl is defined through
Ffl R {E | A= @[R,E]}, for all r-ary predicates R C A”. Iteration of this operator on
the empty predicate generates a sequence of predicates (F%)i(ﬁ), where (Ffl)l stands for the
t-fold iteration of the operation Ff‘, with (F%)O = 1id4-. The first elements in the sequence
(F%)Z(ﬁ) are

0, F20), F2(F2(D)),...

The partial fized point of ¢ 1s defined to be either the empty set, if this sequence is ultimately
non-trivially periodic, or the predicate determined as the fixed point reached in this sequence,
if it exists. The predicates (F%)Z(ﬁ) are called the stages of the fixed-point generation.

In the logic PFP we have, in addition to the usual first-order rules for the formation of
formulae, the following rule: With (X,) as above in PFP, the formula ¢(z) := [PFPX;@] zZ
is also a formula of PFP. Its semantic is such that 2 |= ¢[a@] if and only if @ is in the partial
fixed point determined by F,, on 2. It is well known that on linearly ordered structures, PFP

24

captures PSpace, [V 82, AV 89]. On the class of all finite structures PFP is also equivalent
with the language WHILE, see [AV 89, G 92].

Standard fixed-point logic, FP, can be obtained as a restriction of PFP as follows. Instead
of allowing the above fixed-point generation for all formulae (X, Z) only admit formulae ¢
that are positive in all second-order variables (equivalently, negations may only occur in
front of atoms not involving second-order variables). More intuitive descriptions of this logic
are in terms of least-fized-point or induclive fized-point operators, cf. [G/S 86]. The great
importance of FP in finite model theory is due to the result of Immerman and Vardi that on
ordered structures FP coincides with PTime, [V 82, T 86].

It is not difficult to prove that both, FP and PFP, satisfy the property expressed in
Lemma 2.2 for L% . Definability of a query @ C strg,[r] in PFP or FP over strg,[7] is
equivalent with definability of QY C stt[w, 7p]* in PFP or FP over stt[w, 77]":

Lemma 4.1 Let Q C sty [7] and let QU C ste[w, 7p]* be the class consisting of all repre-

sentations of structures from @ over sttfw, 7y]*. Then the following are equivalent:

(i) There is a sentence of PFP[r] (resp. FP[r]) that defines Q) over stvg,[7].
(i1) There is a sentence of PFP[ry] (resp. FP[ry]) that defines QU over strfw, mp]*.

The following remarks about FP and PFP concern simultaneous fixed-point generations.
Instead of a single ¢(X,Z) one may consider systems of formulae ¢; (X1, .. .,Xl,f(j)), 1<
J <1, where the arity of X; matches that of the tuple 7U) for each j. Regarded as operators
for the simultaneous transformation of an /-tuple of predicates, this system induces stages
according to:

XP = 0

i . ,
Xt = {7V] gxt . XL, 1< <L

Again, this may or may not lead to a stationary assignment to the X;, and the partial fixed
point of the system is defined as in the standard case, with § as the default value for all the
fixed-point predicates if no stationary assignment is reached. We state without proof some
technical facts that will be useful in our applications. The proofs are straightforward coding
arguments.

Remark 4.1 (i) Each component of the simultancous partial fired point of a system is
definable in ordinary PFP.

(ii) (Simultaneous) partial fized points that are generated from some initial assignment
other than 0, that is PFP-definable itself, are also definable in standard PFP.

(iii) It is possible and often natural to admit 0-ary fized-point variables in systems for
the generation of simultaneous partial fized-points, corresponding to boolean fized-point
variables. Modelling these through unary indicator predicates that are either full or
empty, one sees that standard PFP is rich enough to comprise this variation, too.

A system for the simultaneous generation of partial fixed points is regarded as positive if
the constituent formulae are positive in all fixed-point variables. Under the assumption of
positivity all the closure properties stated for PFP above also apply to FP.

25

4.2 Boolean networks and fixed-point logics

Theorem 4.1 For a boolean query @ on stvg,[7], the following are equivalent:

(i) @ can be computed by a finitary coherent locally polynomial [n, 1]-sequence of sym-
metric networks.

(ii) @ is computable by a finitary locally polynomial symmetric [w, Ty]-network.
(iii) @ is definable in PFP.

The following will be an immediate corollary of the proof of Theorem 4.1:
Theorem 4.2 For a boolean query @ on stvg,[7], the following are equivalent:

(i) @ can be computed by a finitary coherent locally polynomial [n,]-sequence of positive
symmetric networks.

(ii) @ is computable by a finitary locally polynomial symmetric positive [w, r7]-network.

(iii) @ is definable in FP.

The proofs can largely be reduced to the treatment of circuits. We give sketches in the two
following sections that deal with the passages form formulae to networks and from networks
to defining formulae separately.

Finitary networks for PFP

We apply a normal form theorem for PFP: Any PFP-sentence is equivalent with one of
the form X([PFPX;d)]), for first-order y(X) and (X, %), where (X, T) is such that the
fixed point induced by F, always exists. See [G 92] for a presentation of this normal form
theorem. The reduction to only one application of the partial fixed-point operator is stan-
dard, the guaranteed termination of the iteration is achieved through an intrinsic check for
termination.

For network evaluation with its time dependent flow of information, the distances between
nodes along different paths obviously matter. It is easy to find examples of circuits that
compute different boolean functions, depending on whether they are evaluated as circuits
or as networks. When we use circuits as building blocks for networks, some care has to be
taken. We call a boolean circuit synchronized if it has the following property: Any two paths
from a node vy to a node vs must have the same length. This immediately implies that the
distance of a node from the sources (depth 0, or in-degree 0) is path independent and equals
its depth.

It 1s easy to see, that synchronized circuits can be evaluated in the time dependent network
manner without affecting the result.

The easiest way to obtain synchronized circuits for first-order formulae is to manipulate
formulae prior to the application of Lemma 3.1. Any first-order formulais equivalent with one
in which any two subformulae that are connected by A or V have the same formula rank. This
can be achieved, for instance, through semantically vacuous repetition of identical conjuncts

26

or disjuncts. Since the depth of nodes in the constructions of Lemma 3.1 corresponds to
formula rank of subformulae, these rank-balanced formulae lead to synchronized circuits
automatically.

From Lemma 3.1, we thus obtain the following for any first-order formula ¢(X, %), which is
regarded as a formula over the vocabulary U {X}:

(i) A locally polynomial [w, U {X }]-circuit C, with the following particular properties: C
is synchronized and of finite depth d; the nodes at depth d correspond in a one-to-one
fashion to the instantiations for Z in ¢(X, %) over w; two such nodes are related by an
automorphism if they correspond to Sy, -related instantiations; the node corresponding
to the instantiation m for T computes the boolean value of ¢[X,m] over any input in
stefw, TU{X}].

(i) A locally polynomial coherent [w, TU{X }]-sequence of circuits of constant finite depth
d, (Cr)n»1, such that for all n: C, is synchronized; the nodes at depth d of C, corre-
spond to the instantiations for # in (X, %) over n; two of these nodes are related by
an automorphism if they correspond to S,,-related instantiations; the node correspond-
ing to the instantiation ™ computes the boolean value of ¢[X,] over any input in
ste[n, TU{X1}].

In both cases we further obtain natural networks that ‘compute the partial fixed-point’
PFPx z¢(X,) as follows. Connect the depth d node corresponding to the instantiation 7m
to the input node corresponding to the same instantiation of the atom XZ. The resulting
network is formatted for str[w, 7] or str[n, 7], since the X-atoms no longer are input nodes.
Symmetry is preserved, since the new links connect nodes which are fixed relative to each
other by all automorphisms of the original circuit. For the same reason, local polynomiality
is not affected. Let N be the resulting network. Let um denote the former input node for
the instantiation m of X=z.

We claim that in a computation over input 2l € strfw, 7] or 2 € stt[n, 7], with truth
assignments T3, these nodes umy compute the stages of the partial fixed-point evaluation in
the following sense: At time steps ¢ with (d+ 1)i <t < (d+1)(¢ + 1), Ty(um) = 1 if and and
only if m € (F%)Z(ﬁ) This is clear for ¢ = 0: By our conventions on network computation,
the umr are all assigned 0 during 0 < ¢ < d. Inductively, assume that the nodes um carry
the correct truth values for (Ffl)l(ﬁ) at time steps (d + 1)i < ¢t < (d+ 1)(¢ + 1). With
respect to the former circuit, this corresponds to the input (Ql, (Ffl)l(w)) Therefore, the
next d + 1 steps in the network computation simulate the stepwise evaluation of the boolean
circuit C' on this input; synchronization is essential to allow step-wise evaluation instead of
the standard evaluation for circuits. It follows that the claim holds for the consecutive time
interval.

If the partial fixed-point evaluation reaches a stationary stage, then the entire network
computation becomes stationary and terminates. The resulting values in the uzy represent
the predicate PFPx 50(X, 7).

Networks for X([PFPX;#)]) are constructed by extending N with an appropriate circuit
C for y(X), as obtained from another application of Lemma 3.1 to the first-order formula

27

X(X). N for PFPx 3¢ and C for x(X) are joined to produce a network for X([PFPX;d)])
as follows. The nodes uzm in N take the place of the input nodes for the X-atoms in C'. All
other input nodes of C' are merged with the corresponding input nodes of N. It is easy to see
that the resulting networks computes the right thing, given that the PFP-evaluation always
reaches a fixed point. Also, this join of N and C' preserves symmetry and local polynomiality
for reasons similar to those given above.

In order to obtain the desired [w, 77]-network for the query) defined by X([PFPX;d)]),

we apply the entire argument to the relativization [X([PFPX;#)])] U, 1.e. to the PFP-sentence
sentence that defines QU in the sense of Lemma 4.1.

To obtain the coherent sequence, we apply the above procedure to each member of a
coherent sequence for ¢ as given in (ii) and join the resulting network in the manner described
with the corresponding member of a coherent sequence for y. It remains to check that
coherence is also preserved in these manipulations. We omit the details.

For the variation concerning FP rather than PFP, we point out that an analogous normal
form for FP allows to focus on FP-sentences of the form X([FPX;d)]), where x(X) and
(X, T) are first-order and ¢ positive in X. W.l.o.g. one may assume that negation signs
occur in ¢ only in front of atoms involving equality or predicates other than X. The circuits
that are obtained for such first-order formulae in Lemma 3.1 have negation gates only as
immediate successors to input nodes and thus immediately lead to positive networks if the
above constructions are applied.

PFP-definability for finitary locally polynomial networks

It remains to prove that any query computable in a finitary locally polynomial network, or
in a finitary coherent locally polynomial sequence of networks, can be defined in PFP. The
argument will be given in some detail for the single networks. It can be adapted to coherent
sequences in close analogy with what has been done for circuits in the last section — the
details, however, are omitted.

We associate with a network N a canonical unfolding as a circuit, which represents the entire
time dependent computation of the network statically.

Definition 4.6 Let N be a boolean network. The canonical unfolding of N is the boolean
circutt defined as follows: The set of nodes of C 1sw x N. For nodes v of depth 0 in N we
introduce edges from (t,v) to (t + 1,v) for allt. For an internal node v € N, the node (t,v)
is joined to the node (t+1,v") if v is joined to v' in N. Labels carry over in the obvious way,
with the following stipulation for nodes at depth 0:

The labelling of a node v at depth 0 in N is transferred to the node (0,v). All other nodes
(0,v), v of depth greater than 0 in N, receive the label F'. Nodes (t,v) for v of depth 0 in N
and t > 0 have in-degree 1 in C' and recewve no label.

It is not difficult to see that for all ¢ € w, the node (¢,v) of C' computes the truth value T;(v)
of the network evaluation at v at time step t.

For each node v of N we call the set of nodes (¢,v), t € w, the fibre of v in C. As regards
automorphisms, any 7 € aut(/N) induces an automorphism 7’ € aut(C'), which is uniquely

28

determined with the property that it preserves fibres and acts as 7 on these. In fact aut(N)
is naturally isomorphic with the subgroup auto(C) of aut(C') consisting of fibre-preserving
automorphisms. The strategy to adapt our previous results to networks consists in replacing
ordinary circuits with these fibred circuits. Rather than give a formal definition, we shall talk
of fibred circuits just to stress that we replace the full automorphism group aut(C') of the
circuit by its subgroup auto(C'). Few facts about the origin of auty(C') will actually matter.
These are:

(i) For symmetric [n, 7]- or [w, T7]-networks, there is a unique extension of the action of

Sy, or Sk, to autg(C).

(ii) Instead of Proviso 1 the circuits considered now satisfy the corresponding property only
for automorphisms in aute(C): If « € autg(C) fixes the set of direct predecessors of a
node v then it fixes v itself.

It 1s easy to see that not only symmetry but also local polynomiality carries over from the
network to its unfolding. The same is true of the coherence of sequences: Embeddability is
obviously preserved, completeness of the embedding as well. We employ the results about
circuits with the slight modification in the proof to take care of (ii) above, in order to get
the following as a corollary to Claim 1 of the last section.

Fix alocally polynomial stt[w, 7]- or stt[n, 7]-network N. Let C be its canonical unfolding.
Let the polynomial which bounds the orbit size be of degree k. Let G be the appropriate
symmetry group for N and C, Sy, or S,. Note that (¢ acts in auty(C') according to (i) above.

Corollary 4.1 For every node v € N there are a tuple m € w (for [w, T]-format) or M € n
(for [n,]-format) of at most k components, pairwise distinct, such that for each node (t,v)
wn the fibre of v in C':

G(m) C G((t,v)) C G([m])

with respect to the action of G on C. It follows that G(m) C G(v) C G([m]) with respect to
the action of G on N.

Let {wj | jE J} be a set of representatives for all orbits of nodes under ¢, O; the orbit of
w;. Fix a base m; for each w; according to the above corollary. Let s; be the arity of m;.
Note that J x w is a system of representatives for the orbits in C' under auty(C').

Let us introduce the notation [w]® for the set of all s-tuples with pairwise distinct compo-
nents over w, similarly for [n]* over n. If N is an [w, T]-network, then the set ;¢ ;{j} x [w]*/
parameterizes the nodes of N: (j,m) is taken as an address of the node w(w;), where
7 is chosen such that w(7;) = . Similarly for an [n, 7]-network, the parameter set is
Ujej{j} x [n]®7. Note, however, that this parameterization is not in general injective, owing
to the possibility that G(v) # G(7) for bases T of v. The parameterization extends to the
associated unfolding C' of N, simply through adding a component w for the depth in C.

Just as in the proof of Claim 1, we further find that the connections between nodes
are quantifier-free equality definable in terms of this parameterization. Consider a node
(t+1,v) € C. Tts direct predecessors are of the form (¢, w), with w a direct predecessor of v

29

in N. In C we find that the following predicates are quantifier-free equality definable:

R jyirgn = (@)’ (m;) | (¢, 7(w;)) € pred(t + 1, 7'(w;1)) in C'}
= {(@@;)n' (1)) | 7(w;) € pred(x’(w;1)) in N} =0 Ry

The independence of ¢ that is indicated in the second equality is due to the definition of the
canonical unfolding. Just as for circuits, these R;;» encode the edge relation of the network.
Applying Claim 1 (ii) to C' therefore yields quantifier-free equality formulae n;; (¥;,7;/) that
define the sets R;;, appropriate for N.

We turn to the logical description of the computation of finitary N by PFP-formulae. From
now on we deal entirely with the networks themselves once more.

As we assume NN is finitary, the set J is finite. Introduce predicate variables X; of arity
s; for each j € J. Let %; be a tuple of distinct element variables of arity s;, j € J. The
intention is to use the Z; as addresses for the nodes in O; and the X, or rather their stages
in a PFP-evaluation, to describe the collections of those nodes in O; that are assigned the
truth value 1 in the corresponding stage of the network evaluation. For j with empty base,
we appeal to the remarks about boolean fixed-point variables in Remark 4.1: Think of the
corresponding X; as boolean values that are modelled by unary indicator predicates.
For explicit notation let J = {1,... {}.

Claim 4 Let N be of [w,1]-format. There are first-order formulae ¢;(Xq,..., X1, %;) and
x;(F;), for 1 < j <, such that the following are true in the computation of N on any input
A € strw, 7]:

(i) For allm € [w]*i: A = x;[7] if and only if the input node determined by (j, /) is
set to 1 in N on wmput 2.

(ii) The sequence of predicates (Pf, ce Pf) which s inductively generated through

teEw

|Q[':X]]}

P? = {m
= {m|AEglP,.. Pm}, 1<i<]

J
141
By

wndicates the truth assignments in the computation of N on 2U:
™ 1S i P]»t if and only if the node determined by (j,m) evaluates to 1 under Ty in the
computation on .

The same applies to computations of [n, 7]-networks over A € ste[n, 7].

Observe that this suffices to prove that any query @ C stt[w, 7]* that can be evaluated by
a finitary locally polynomial [w, 77]-network is PFP-definable over str,[r]: Apply the claim
to the given [w, ry]-network. The system for a simultaneous partial fixed point from (ii)
can be transformed into a single PFP[ry]-formula for the definition of each component X;
of the simultaneous partial fixed point. Termination of the computation 1s equivalent with
the existence of a fixed-point for the system, and the eventual value computed in the output
node v of IV is encoded in that component X; of the resulting fixed point, that belongs to

30

the orbit of v — actually this component is the encoding of a boolean fixed-point variable,
since v has empty base, ¢f. Remark 4.1.

We thus find that QY C ste[w, 7i7]* is PFP-definable, but this is enough to obtain PFP-
definability of @ itself by Lemma 4.1.

Sketch of proof
The existence of the x; is obvious, in fact these are chosen to be atomic formulae correspond-
ing to the role of the different input nodes, or universally valid or false sentences in the case
of source nodes labelled 7" or F'.

Consider the requirements on the ¢;. Let (jo,7) be an address for v. The direct prede-
cessors of v in O; are those with addresses {y]» | njjo(yj,m)}. Suppose that v is a A-node.
@io(X1,...,X;, %) can then be chosen as

SDJD(Xl""’Xl’E) = /\ Vyj(njju(yj’f)_) jyj)'
j=1..1

That these formulae satisfy the requirements is proved in an easy induction. Q.E.D.

Note also that positivity of the network leads to formulae ¢; that are positive in all X;
with the possible exception of indices j of orbits of input nodes. But the predicates X; for
these orbits can be dispensed with anyway: Input nodes keep their initial truth assignment
throughout. These initial assignments are defined by the corresponding x;, and these can
completely replace X; in the fixed-point system. This shows, that for positive N we can get
a positive system and finally a defining formula in FP.

Acknowledgments

I am grateful to Erich Gradel for suggesting the extension to networks. Thanks are due to
Martin Grohe for his very careful reading of a preliminary version of this paper, and for
suggesting a substantial simplification in the proof of Lemma 3.2.

31

References

[AV 89

[AV 91]

[BIS 86]

[CL 86]

[DGS 86]

[GL 81]

(G 92]

[GL 84]

[G/S 86]

[T 86]

[T 89

[V 82]

[W 87]

S. Abiteboul, V. Vianu, Fizpoint Extensions of First-Order Logic and Datalog-
Like Languages, Proc. 4th IEEE Symp. on Logic in Computer Science (1989),
71-79

S. Abiteboul, V. Vianu, Generic Computation and Its Complezity, Proc. 23rd
ACM Symp. on Theory of Computing (1991), 209-219

D.A.M. Barrington, N. Immerman, H. Straubing On Uniformity within NC!,
Journal of Computer and System Sciences 41 (1990), 274-306

K. Compton, C. Laflamme An Algebra and a Logic for NC'| Information and
Computation 87 (1990), 241-263

L. Denenberg, Y. Gurevich, S. Shelah Definability by Constant-Depth Polyno-
mial-Size Circuits, Information and Control 70 (1986), 216-240

P. Gacs, L.A. Levin Causal Nets or What s a Deterministic Computation,
Information and Control 51 (1981), 1-19

M. Grohe,
Diplomarbeit, Universitat Freiburg (1992)

Y. Gurevich, H.R. Lewis A Logic for Constant-Depth Circuits, Information
and Control 61 (1984), 65-74

Y. Gurevich, S. Shelah, Fized Point Extensions of First Order Logic Annals
of Pure and Applied Logic 32 (1986), 265-280

N. Immerman, Relational Queries Computable in Polynomial Time, Informa-

tion and Control 68 (1986), 86-104

N. Immerman, Fzpressibility and Parallel Complezity, STAM Journal of Com-
putation 18 (1989), 625-638

M. Vardi, Complezity of Relational Query Languages, Proc. 14th ACM Symp.
on Theory of Computing (1982), 137-146

I. Wegener, The Complezity of Boolean Functions, Teubner (1987)

32

