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0 IntrodutionThe main onstrution in this paper is presented in terms of hypergraphs,i.e., strutures onsisting of just a universe together with a olletion of sub-sets of the universe. The main motivation behind the onstrution, however,arises in the ontext of ordinary relational strutures; and here primarilytheir model theory with respet to guarded logis and extension propertiesfor partial automorphisms.Guarded logis, as introdued by Andr�eka, van Benthem and N�emetiin [1℄, play an important role in transferring some of the good algorithmiproperties of modal logis to the setting of general relational strutures. Inpartiular, they provide natural deidable fragments of �rst-order logi atan interesting level of expressiveness. The guarded fragment GF of �rst-order logi, and its further generalisation to the lique guarded fragmentCGF, apture relativised modes of quanti�ation that restrit the aess toertain on�gurations of elements in a struture. For GF, only guarded on-�gurations, onsisting of elements that oexist within some relational groundatom (their guard), are simultaneously aessible. For CGF, more generalon�gurations onsisting of elements that are pairwise guarded (liques inthe Gaifman graph, see below) are aessible.Just as bisimulation equivalene is the fundamental invariane for modallogi, there is a orresponding notion of guarded bisimulation equivalenewhih provides the ruial invariane for GF. The study of guarded bisim-ulation invariane gives rise to tree-like guarded bisimilar ompanion stru-tures { indistinguishable from the given struture in GF but oming with anatural tree deomposition. They are obtained through a proess of guardedunravelling, analogous to bisimilar unravellings of graphs or transition sys-tems into atual trees. These tree-like ompanions feature prominently inmany model theoreti arguments for GF; ompare, for instane, [9, 10, 11℄.But guarded unravellings, even of �nite strutures, are in�nite in general.They therefore do not usually lend themselves to arguments in the �nitemodel theory of guarded logis.Reall that theGaifman graph G(A) of a relational struture A = (A; : : :)has for its vertex set the universe A of A, and edges between any two distintelements that our together in a ommon relational ground atom of A. Weare here interested in liques in the Gaifman graph, or Gaifman lique forshort. A Gaifman lique in A is formed by any subset of A suh that any twodistint elements inside this subset are linked by an edge of G(A), i.e., ourtogether in a ground atom of A. There are two motivations for looking at2



Gaifman liques. From the point of view of guarded logis, Gaifman liquesare preisely the on�gurations aessible in the lique guarded fragmentCGF. More importantly, Gaifman liques arise as natural obstales for treedeompositions of relational strutures { in fat ertain kinds of Gaifmanlique, besides ertain kinds of yle, are the only types of obstale (seesetion 1.2 below).There are two essentially di�erent kinds of Gaifman lique. Cliques ofthe �rst kind are those indued by an individual relational ground atom;any suh lique is therefore guarded, and thus annot be avoided in guardedbisimilar ompanion strutures, not even in the guarded unravelling of thegiven struture.Cliques of the seond kind are inidental in the sense that several rela-tional ground atoms play together to indue a lique on�guration in theGaifman graph, but no ground atom overs the entire lique. Suh liquesare not guarded, they are obstales for tree deompositions, and they wouldbe broken up in the guarded unravelling of the given struture. Of ourse,the existene of this seond kind of lique is preisely what makes CGF moreexpressive than plain GF.When looking at hypergraphs rather than relational strutures we mainlyabstrat away from the atual relational information and only retain the hy-pergraph struture indued by the guarded subsets, i.e. the subsets overedby single relational ground atoms. As remarked above, the hypergraph pointof view diretly relates to aessibility via guarded quanti�ation, sine thehyperedges are preisely the guarded subsets.Note that in general this �ltered view of a relational struture still re-tains stritly more information than the Gaifman graph, at least for voab-ularies whih have relations of arities greater than 2. One way to look atonformality of hypergraphs (in our ase, the indued hypergraph), is thatpreisely in the onformal ase the hypergraph struture is fully determinedby the indued graph struture (in our ase, the Gaifman graph). By de�ni-tion, onformality means that the hyperedges are preisely the liques (theguarded subsets are preisely the Gaifman liques). In the world of guardedlogis, then, a onformal hypergraph pattern orresponds to a struture inwhih lique guarded quanti�ation is no stronger than ordinary guardedquanti�ation, sine all liques are (overed by) hyperedges.In this paper, we will onstrut �nite onformal ompanions (overs) for�nite hypergraphs. Our onstrution serves as a partial �nite analogue ofthe generally in�nite tree-like unravellings. As with unravellings, the rela-tionship between these onformal overs and the base struture is simulta-3



neously one of a \over" and one of bisimilarity, mediated by loal bijetionsgoverned by bak-and-forth onditions with respet to hyperedges. The hy-pergraph onstrution lifts to the level of relational strutures, where weobtain a over whih indues a guarded bisimulation, mediated by loal iso-morphisms governed by bak-and-forth onditions with respet to guardedsets.The entral hypergraph onstrution is detailed in setion 2, provingour main theorem for hypergraphs, Theorem 7. This setion an be readindependently, as it is based only on some preliminaries from setions 1.1,1.2 and 1.3. The remainder of the paper links the main theorem to relationalstrutures. The relational ounterpart of the main theorem, in partiular, isstated as Corollary 20 and further explored with respet to the two majorappliations in setion 3.As to the two appliations mentioned above, setion 3.3 deals with aredution from the lique guarded fragment CGF to the guarded fragmentGF, whih (unlike guarded unravellings) is appliable in restrition to �nitemodels. So we obtain a diret redution for �nite satis�ability and hene anew proof of the �nite model property for CGF.In setion 3.1 we apply our results in the onstrution of �nite exten-sions of partial automorphisms of the base struture to automorphisms of anextended struture (EPPA: extension property for partial automorphisms).Herwig's EPPA onstrution [12, 14℄, an be taken further to yield an exten-sion whose only Gaifman liques are the (unavoidable) automorphi imagesof Gaifman liques already present in the base struture. See Theorem 9for the statement of our main result in this ontext. Suh a rami�ation ofEPPA has repeatedly been pointed out as an interesting open problem, notleast beause of its bearing on the �nite model property for CGF. Furtherorollaries provide a simpli�ed route to the EPPA for the lasses of Kn-free�nite graphs and Henson digraphs, as well as the EPPA for the lass ofonformal �nite relational strutures of any relational type.1 Preliminaries1.1 Hypergraphs and relational struturesWe onsider hypergraphs H = (A;S) where A is any set and S � P(A) anyolletion of subsets. The members of S are alled hyperedges. Oasionallywe write S(H) for the set S of hyperedges in H = (A;S).Relational strutures are denoted A = (A; �R), A the universe of A, �R the4



tuple of relations as interpreted in A. We shall exlusively onsider �niteand purely relational voabularies. The width of a relational voabulary isthe maximum of the arities of its relations.We are mainly interested in the behaviour of relational strutures withrespet to guarded logis (see setion 1.5), where only guarded subsets andtuples are diretly aessible by quanti�ation; the relevant basi de�nitionsare given in the �rst of the two following de�nitions. Muh of the guardedbehaviour of relational strutures is aptured at the level of the assoiatedhypergraph, whih just desribes the pattern of the aessible pathes devoidof the atual relational information, as de�ned in the seond de�nition below.De�nition 1 Let A = (A; �R) be a relational struture.(i) A subset s � A is guarded if s is a singleton or s = fa : a in ag forsome a 2 R, R in �R.(ii) A guarded subset is maximally guarded if it is not a proper subset ofany other guarded subset.(iii) A subset s � A is lique guarded if for any two a; a0 2 s there is someguarded subset ontaining a and a0.(iv) A k-tuple a 2 Ak is (lique) guarded in A if a 2 sk for some (lique)guarded set s � A.De�nition 2 The hypergraph assoiated with a relational struture A is thehypergraph H(A) = (A;S(A)) whereS(A) = �s � A : s maximally guarded in A	:As is ommon in hypergraph theory (f. [4℄), we assoiate an induedgraph G(H) with every hypergraph H. Note that if H = H(A) is the hy-pergraph indued by a relational struture A, then G(H) is just the Gaifmangraph G(A) assoiated with A (f. [6℄).De�nition 3 The graph assoiated with a hypergraph H = (A;S) is theundireted graph G(H) = (A;E) whereE = �(a; a0) 2 A2 : a 6= a0 and a; a0 2 s for some s 2 S	:De�nition 4(i) A hypergraph H = (A;S) is alled onformal if every lique of G(H)is ontained within some hyperedge of H.(ii) A relational struture A is alled onformal if all its lique guardedsubsets are ontained in guarded sets, i.e., if H(A) is a onformalhypergraph. 5



1.2 Tree deompositionsThe notion of onformality as expressed in De�nition 4 omes from lassialhypergraph theory, f. [4℄. The relational ounterpart is just a diret ana-logue. Conformality is losely linked to the notion of tree-deomposabilityand ayliity of hypergraphs. We briey outline these onnetions for thesake of bakground and ontext, not beause we shall diretly draw on themin the sequel. A �nite hypergraph is tree-deomposable if it is reduible tothe empty hypergraph by repeated appliation of the following (f. Graham'salgorithm in [2℄ or the GYO-reduts in [7℄):{ delete (from the set of hyperedges) some hyperedge that is ontainedwithin some other hyperedge;{ delete (from the universe and any hyperedge) some vertex a that isovered by at most one hyperedge.An in�nite hypergraph is tree-deomposable if all its �nite indued sub-hypergraphs are.It is not hard to see that onformality is neessary for tree-deomposa-bility. Another neessary ondition for H to be tree-deomposable is thatits assoiated graph G(H) (f. De�nition 3) is hordal : any yle in G(H)of length greater than 3 must have a hord, i.e., an edge linking two vertiesthat are not next neighbours along the yle. Together these two ondi-tions in fat haraterise tree-deomposability: a hypergraph H is tree-deomposable if and only if it is onformal and (the assoiated graph G(H)is) hordal, see e.g. [2℄. In the literature, onformal hordal hypergraphs aremostly alled ayli.The onept of tree-deomposability of relational strutures, whih isof great importane in the theory of relational databases [2℄ and also �g-ures prominently in the model theory of guarded logis [9℄, is losely re-lated to the hypergraph theoreti notion. Indeed, the usual notion of tree-deomposability of relational strutures an be aptured as follows. A re-lational struture A is tree-deomposable (of width k) if there is a tree-deomposable hypergraph (A;S) over the universe A of A suh that S �S(A) and jsj 6 k + 1 for all s 2 S. This is equivalent to the hara-terisation that A is tree-deomposable of width k if its Gaifman graph istree-deomposable of width k, i.e., has tree width at most k, in the graphtheoreti sense [5℄. The notions of tree-deomposability and tree-width forrelational strutures are thus straightforward extensions of the underlyingnotions for plain graphs. Tree-deomposability of the hypergraph H(A) as-soiated with a relational struture A, however, is a stronger notion. While6



arbitrary sets may be used as pathes in a tree-deomposition of A or of itsGaifman graph G(A), only hyperedges { i.e., guarded sets { are admissibleas pathes in tree-deompositions of H(A). Thus, tree-deomposability ofH(A) implies tree-deomposability of A (of tree width less than the widthof the voabulary of A), but not vie versa. Consider for instane a yleof length n, with nodes f0; 1; : : : ; n� 1g and edges fi; i+ 1g (for i < n� 1)and fn� 1; 0g. This has tree width 2 as a graph (using pathes f0; i; i + 1g(0 < i < n� 1) of size 3), but it is not tree-deomposable as a hypergraph.1.3 Hypergraph bisimulations and oversThe following notion of bisimilarity between hypergraphs is the naturaladaptation of the usual Ehrenfeuht{Fra��ss�e style notion of strutural equiv-alene to the setting where \struture" is indued by hyperedges. Its rela-tionship with the notion of guarded bisimilarity is apparent when we thinkof hypergraphs assoiated with relational strutures, as will be made expliitin setion 1.6, in partiular Observation 16 and Lemma 19.De�nition 5 A bisimulation between hypergraphs H = (A;S) and H 0 =(A0; S0) is a non-empty olletion Z of partial 1{1 maps between A and A0whose domains and ranges are hyperedges in H and H 0, respetively, withthe following bak-and-forth property w.r.t. hyperedges:forth if p : s! s0 is in Z and if t 2 S, then there is some q : t! t0 in Z suhthat p and q agree on their ommon domain.bak if p : s ! s0 is in Z and if t0 2 S0, then there is some q : t ! t0 in Zsuh that p�1 and q�1 agree on their ommon domain.We write Z : H � H 0 if Z is a bisimulation between H and H 0, and justH � H 0 if there is suh a bisimulation.De�nition 6 A over of a hypergraph H is a hypergraph Ĥ together witha surjetive map � : Ĥ ! H whih indues a hypergraph bisimulation:Z(�) : Ĥ � H where Z(�) = ���ŝ : ŝ 2 S(Ĥ)	:We write � : Ĥ � H to indiate this.It should be noted that the familiar (tree-like) unravelling of a hyper-graph, whih results in a onformal (indeed ayli, i.e., onformal andhordal) hypergraph, atually yields an ayli over, whih in general isin�nite. At least as far as onformality is onerned, our main result pro-vides a substitute that is appliable within the ontext of �nite hypergraphs.7



Theorem 7 Every �nite hypergraph H admits a over � : Ĥ � H by a �niteand onformal hypergraph Ĥ.We do not know whether this an be strengthened to onformal and k-hordal overs for every k, where k-hordality would forbid hordless ylesof lengths less than k. Suh a parameterised version of hypergraph ayliitywould be the most one an hope for in �nite hypergraphs.Before going into the details of our onstrution, whih is suÆientlyanonial to satisfy some additional nie automorphism properties, we pre-pare the stage for the two appliations mentioned above { one dealing withthe relationship between the guarded fragment GF and its more expressiveextension CGF; the other one fousing on extension properties for partialautomorphisms over �nite relational strutures.Note The following three setions, whih pave the way for those two appli-ations, an be read or skipped seletively without loss of oherene.1.4 Extension properties for partial automorphismsA partial isomorphism between relational strutures A and B of the sametype is a partial 1{1 map fromA to B whih indues an isomorphism betweenthe substrutures indued on its domain and range. We write Part(A;B)for the set of partial isomorphisms between A and B. For a single relationalstruture A, partial isomorphisms p 2 Part(A;A) are referred to as partialautomorphisms. Aut(A) stands for the automorphism group of A. If A� � Ais an extension of A, we say that an automorphism f 2 Aut(A�) extendsp 2 Part(A;A) if p = f�dom(p).For the seond part of the following de�nition let # be some globallyde�ned lass of objets over relational strutures of the type of A. Examplesare (Gaifman-)edges, tuples in a spei� relation R, guarded tuples, liqueguarded tuples (Gaifman liques). EPPA stands for Extension Property forPartial Isomorphisms.De�nition 8 Let A � A�.(i) A� is an EPPA extension of A if every p 2 Part(A;A) extends to anautomorphism of A�.(ii) A� is a #-faithful extension of A if every # over A� is the image ofsome # over A under some automorphism of A�.
8



(iii) A lass of relational strutures has the #-faithful extension propertyfor partial automorphisms, or #-EPPA, if for every struture A in thatlass there is a #-faithful EPPA extension A� also in that lass. 1The fundamental EPPA results are the following. They are usuallystated without partiular attention to levels of faithfulness. However, onean prune an arbitrary EPPA extension in a straightforward way to obtainone that is faithful as stated. Indeed, if in an arbitrary EPPA extensionA� � A, we replae relation RA� by the Aut(A�)-losure of RA, then theresulting struture is an EPPA extension of A that is faithful with respetto tuples in R, f. [14℄.Hrushovski's EPPA Theorem [16℄ The lass of �nite graphs has theEPPA; faithfulness with respet to edges is impliit. A greatly simpli�edand elegant proof of Hrushovski's theorem { ombinatorial rather than grouptheoreti { is presented in [14, setion 4.1℄.Herwig's EPPA Theorem [12℄ The lass of �nite relational strutures(of any �xed �nite relational type) has the EPPA; faithfulness with respetto guarded tuples (or guarded sets) is impliit.We shall show the following by way of subjeting the result of a HerwigEPPA extension to a suitably adapted onformal over onstrution.Theorem 9 The lass of �nite relational strutures (of any �xed �nite re-lational type) has the Gaifman lique faithful EPPA.Corollary 10 The following lasses have the EPPA:(i) Finite triangle-free graphs. [12℄(ii) Finite Kn-free graphs, for every n > 3. [13℄(iii) `Henson digraphs': �nite direted graphs with no subgraph isomorphito a tournament in K, where K is an arbitrary lass of �nite tourna-ments. [13℄(iv) Finite onformal � -strutures, for every relational type � .Note that (i){(iii), even though not new, are here obtained by a muhsimpler and entirely ombinatorial onstrution, if we use our onstrution1In fat this is a simpli�ed version of EPPA, ompared to the notion introdued in [14℄;for the lasses to be onsidered here, however, this auses no loss of generality.9



on top of Lasar's simple onstrution for Hrushovski's theorem in [14, se-tion 4.1℄. Indeed, this new ombinatorial approah to EPPA may be re-garded as a further stepping stone in the methodologial development ofEPPA results so far, whih has been markedly dual along group-theoretiversus ombinatorial lines. While Hrushovski's original EPPA for graphs[16℄ as well as Herwig's generalisation to relational strutures of higher arity[12℄ are group-theoreti, Lasar's proof of EPPA for graphs and its gener-alisation to higher arity in [14℄ are purely ombinatorial. Now EPPA forKn-free graphs and Henson digraphs, previously only available via grouptheory, gains an alternative, fully ombinatorial aount with the presentonstrution.Observation 11 As our onstrution just adds a further extension layer,whih moreover projets homomorphially onto its base struture, it alsoremains ompatible with onditions onerning forbidden homomorphi im-ages, in the sense of [13℄ and of the Herwig-Lasar rami�ation of Herwig'sEPPA theorem, [14℄.1.5 Guarded logisNote This setion and the next are not neessary for a oherent aountof our hypergraph onstrution in setion 2 and its EPPA appliation insetion 3.1. Their topi will only be resumed in setions 3.2 and 3.3.The guarded fragment of �rst-order logi, GF, was introdued by Andr�eka,van Benthem and N�emeti [1℄ as a �rst-order fragment apturing the spiritof modal quanti�ation in the broader relational setting. Intuitively, in GFwe may quantify over guarded tuples.We write FO for �rst-order logi; for a �rst-order formula ', var(')denotes the set of all variables ourring in ', free(') the set of variablesthat have a free ourrene in '.De�nition 12 The formulae of GF � FO are obtained indutively as thelosure of atomi formulae (in a relational voabulary � , with equality) underBoolean onnetives and the following quanti�ation rules. For every '(x) inGF and every � -atom �(x) and any tuple y suh that fy : y in yg[free(') �var(�), the following are also formulae of GF:8y��(x)! '(x)�;9y��(x) ^ '(x)�:The semantis is just the usual one for �rst-order logi.10



Among the extensions of the guarded fragment that have sine beenonsidered we single out the following, whih was introdued under the nameof \lique guarded fragment", CGF, by Gr�adel in [8℄. Under the name of\paked fragment", a similar extension of GF was onsidered by Marx [17℄;indeed the paked and lique guarded fragments are syntati variants ofthe same logi. Essentially, these fragments have quanti�ation over liqueguarded tuples rather than just guarded tuples. Correspondingly, CGF isknown to be stritly more expressive than GF. In fat, CGF subsumesthe loosely guarded fragment LGF of van Benthem [3℄. LGF itself was thereintrodued as an important proper extension of GF to apture and generalisequanti�ation patterns like the Until onstrut in temporal logi. CGFfurther extends { arguably in the most natural way { the onept of looselyguarded quanti�ation to the setting of voabularies of width greater than 2.The following syntati onventions regarding CGF will for our purposesbe superseded by the semantially equivalent ones to be given in Observa-tion 14 below.De�nition 13 The formulae of CGF � FO are obtained indutively withthe following more liberal quanti�ation rule.Let (x) in free variables x be a onjuntion Vx;x02x �(x; x0) over for-mulae �(x; x0) of the form 9z�(x; x0; z), where � is an atom in whih thedisplayed variables all our, and the z is disjoint from the x. (Semantially fores any instantiation of free() to form a Gaifman lique.) Then, if'(x) 2 CGF and fy : y in yg [ free(') � free(), the following are also inCGF: 8y�(x)! '(x)�;9y�(x) ^ '(x)�:It is sometimes useful to resort to the following \normalisation" forguarded or lique guarded quanti�ation. For a �xed �nite voabulary �and variable tuple x = (x1; : : : ; xn) we �x formulae G(x) and CG(x) whihuniformly de�ne the sets of those n-tuples that are guarded, respetivelylique guarded in any � -struture A:G[A℄ = �a 2 An : A j= G[a℄	 = �a 2 An : a guarded in A	CG[A℄ = �a 2 An : A j= CG[a℄	 = �a 2 An : a lique guarded in A	Note that G(x) and CG(x) an atually both be formalised in GF, forinstane, CG0(x) = Vx;x02xW� 9z �(x; x0; z);11



where � runs through all � -atoms in whih the displayed variables do ourand the z are from a �xed supply disjoint from x. Some syntati overheadan be avoided, however, in equivalent FO formalisations that do not adhereto the oÆial syntax of GF, as for instane inCG(x) = Vx;x02xWR 9z�Rz ^Wz2z x = z ^Wz2z x0 = z�;where R ranges over all relations in � (and equality), and the z are as above.Similarly, for G(x) we may useG(x) = WR 9z�Rz ^Vx2xWz2z x = z�:One an then haraterise GF and CGF { or rather logis that are meresyntati variants of them { through the stipulation of the following quan-ti�ation rules. Translations between this modi�ed syntax and the oÆialstandard are straightforward. The idea simply is to over spei� guards�(x) or (x) for quanti�ation in GF or CGF by the uniform guards G(x) orCG(x), as in replaing 8y�(x)! '(x)� by 8y�CG(x)! ((x)! '(x))�.Observation 14 Let formulae G(x) and CG(x) globally de�ne the sets ofguarded, respetively lique guarded tuples x. Then every formula of GF islogially equivalent to a �rst-order formula in whih all quanti�ations areof the form indiated below, and vie versa. (We simultaneously introdueshorthand for relativised quanti�ation.)(8y:G(x))'(x) := 8y�G(x)! '(x)�;(9y:G(x))'(x) := 9y�G(x) ^ '(x)�;where fy : y in yg [ free(') � fx : x in xg.Similarly for CGF one uses the formulae CG(x).1.6 Guarded bisimulationsThe Ehrenfeuht-Fra��ss�e equivalene assoiated to GF, guarded bisimulationequivalene, generalises bisimulation equivalene and is preisely adapted toapture quanti�ation over guarded tuples. Also ompare our hypergraphbisimulations in De�nition 5.De�nition 15 Let A and A0 be relational strutures of the same type. Aguarded bisimulation between A and A0 is a non-empty olletion of partialisomorphisms Z � Part(A;A0), where all p 2 Z have as domains/rangesguarded sets in A/A0, with the following bak-and-forth property for guardedsets (s, t and s0, t0 guarded in A and A0, respetively):12



forth for every p : s! s0 in Z and every t there is some q : t! t0 in Z suhthat p and q agree on their ommon domain.bak for every p : s! s0 in Z and every t0 there is some q : t! t0 in Z suhthat p�1 and q�1 agree on their ommon domain.We write Z : A �g A0 if Z is a guarded bisimulation between A and A0,and A �g A0 if there is suh.The similarity between hypergraph bisimulations and guarded bisimu-lations is apparent when we look at hypergraphs assoiated with relationalstrutures.Observation 16 Any guarded bisimulation Z : A �g A0 indues a hyper-graph bisimulation between the assoiated hypergraphs Z : H(A) � H(A0).Conversely, any hypergraph bisimulation Z : H(A) � H(A0) suh that Z �Part(A;A0) indues a guarded bisimulation. In other words: guarded bisim-ulations `are' hypergraph bisimulations that respet the relational struture.The following semanti haraterisation theorem is a entral result from[1℄, underlining the role of guarded bisimulations and the naturalness of GF.Theorem 17 For every �rst-order sentene ' in a relational voabulary thefollowing are equivalent:(i) ' is invariant under guarded bisimulations:A �g A0 implies A j= ' , A0 j= '.(ii) ' is equivalent to a sentene of GF.De�nition 18 A guarded over of a relational struture A is a struture Âof the same relational type as A together with a surjetive homomorphism� : Â! A whih indues a guarded bisimulation:Z(�) : Â �g A where Z(�) = ���ŝ : ŝ 2 S(Â)	:We write � : Â �g A to denote this.It should be noted that the guarded unravelling of relational struturesresults in guarded overs by (generally in�nite) strutures Â of bounded treewidth, whose assoiated hypergraph H(Â) moreover is tree-deomposable.Gr�adel's generalised tree model property of guarded logi GF [9℄ atuallyapplies in the stronger sense that every satis�able sentene of GF has amodel A for whih H(A) is tree-deomposable.It is straightforward to see that guarded overs are related to bisimilarovers of hypergraphs in the following sense.13



Lemma 19 Let A be a relational struture, H = H(A) the indued hyper-graph. Then every hypergraph over � : Ĥ � H indues a anonial guardedover � : Â �g A, where Â is a struture of the same relational type as Aover the universe Â of Ĥ, suh that H(Â) = Ĥ.One merely interprets all relations over the universe Â of Ĥ so as to turnthe restritions ��ŝ into partial isomorphisms, for all hyperedges ŝ 2 Ŝ.So we have the following orollary to Theorem 7.Corollary 20 Every �nite relational struture A admits a guarded over� : Â �g A where Â is �nite and onformal.2 Constrution of the onformal over2.1 Conformal overs for hypergraphsThis setion is devoted to the onstrution whih proves Theorem 7. Fix a�nite hypergraph H = (A;S). We may assume that A =2 S, else H is alreadyonformal. Let U := �u � A : for all s 2 S; u 6� s	:So U is non-empty and onsists preisely of the subsets of A that must notbe the projetions of liques in the over. Consider the produtA�Yu2U juj;where we identify a natural number n (in our ase n = juj, the ardinalityof u) with the set n = f0; : : : ; n � 1g. A typial element of the produtthus an be regarded as a pair (a; �a) whose seond omponent is a funtion�a : U ! N suh that �a(u) < juj for all u 2 U . The universe Â of thedesired over will onsist of those elements (a; �a) for whih�a(u) = 0, a 62 u; for all u 2 U:Note that this stipulation leaves a range f1; : : : ; juj� 1g of size smaller thanjuj for the values �a(u) whenever a 2 u.Â := �(a; �a) 2 A�Yu2U juj : for all u 2 U; �a(u) = 0, a 62 u	:We let � be the natural projetion � : Â! A, given by �(a; �a) = a.We say that a subset ŝ � Â is generi if14



(i) ��ŝ is injetive, i.e., for any two distint elements (a; �a) and (b; �b) ofŝ we have a 6= b.(ii) for any two distint elements (a; �a) and (b; �b) of ŝ and u 2 U : ifa; b 2 u then �a(u) 6= �b(u).Note that (ii) an be rephrased as follows: for every u, the following funtion� (u) is injetive (where (a; �a) is the element above a in ŝ):� (u) : u \ �(ŝ) �! f1; : : : ; juj � 1ga 7�! �a(u):It follows immediately that the projetion �(ŝ) of any generi set ŝ mustbe ontained in some hyperedge s of H. Otherwise we would have �(ŝ) = ufor some u 2 U , and by ondition (ii), for that u, � (u) : u! f1; : : : ; juj�1gwould have to be an injetion whih is learly absurd. For the hyperedgesof Ĥ we now hoosêS := �ŝ � Â : ŝ generi and �(ŝ) 2 S	:In order to establish that � : Ĥ � H is indeed a over, we laim that thesystem Z = ���ŝ : ŝ 2 Ŝ	 : Ĥ � His a hypergraph bisimulation. Note that the ��ŝ are bijetions whose domainsare hyperedges of Ĥ and whose ranges are hyperedges of H.The forth-property is obvious. Consider the bak-property for somep = � � ŝ : ŝ ! s = �(ŝ), and some hyperedge s0 2 S of H. We need to�nd a generi set ŝ0 with �(ŝ0) = s0 and suh that �(ŝ \ ŝ0) = s \ s0, or(equivalently) suh that ŝ0 \ ��1(s \ s0) = ŝ \ ��1(s \ s0). Then � � ŝ0 isas required by the bak property. For the desired ŝ0 it remains to �x, forevery a 2 s0 n s, the values �a(u) suh that � (u) : u \ s0 ! f1; : : : ; juj � 1gis injetive for every single u. Consider a �xed u 2 U . Observe that u 6� s0,whene ju \ s0j < juj. That part of � (u) over u \ s \ s0, whih is already�xed, is injetive by generiity of ŝ. We an therefore extend the injetion� (u) from u\ s\ s0 to an injetion over all of u\ s0 as desired. This �nishesthe proof that � : Ĥ � H is a bisimilar over.Clearly Ĥ is onformal. For, if ŝ � Â is a lique in G(Ĥ), then any twodistint elements (a; �a) 6= (b; �b) of ŝ must be elements of some generi setin Â. It follows that a 6= b and �a(u) 6= �b(u) whenever a; b 2 u. So ŝ isa generi subset. Therefore �(ŝ) � s0 for some s0 2 S. Arguing exatly asin the proof of the bak-property for �, we �nd a hyperedge ŝ0 of Ĥ above15



s0 for whih ŝ � ŝ0. So every lique ŝ is ontained in a hyperedge of Ĥ asrequired.This �nishes the proof of the theorem. We ollet some further usefulproperties of the over � : Ĥ � H in the following lemma. These automor-phism properties reet on the anonial nature of our onstrution and willbe essential for the EPPA appliation.Lemma 21 Let the onformal over � : Ĥ � H be obtained aording to theabove onstrution.(i) For every s 2 S and generi sets ŝ and ŝ0 above s (i.e., with �(ŝ) =�(ŝ0) = s) there is an automorphism f of Ĥ that �xes all �-�bresset-wise and maps ŝ to ŝ0.(ii) Every automorphism f of H admits a lift to an automorphism f̂ of Ĥ:f̂ 2 Aut(Ĥ) and � Æ f̂ = f Æ �.For the �rst laim let ŝ; ŝ0; s be as stated. For every a 2 s let (a; �a) and(a; �0a) be the elements above a in ŝ and ŝ0, respetively. For u 2 U onsiderthe set f(�a(u); �0a(u)) : a 2 s \ ug:Note that this set is the graph of a partial bijetion �0u on f1; : : : ; juj � 1g.This is a diret onsequene of the generiity of ŝ and ŝ0: if a; b 2 u \ sare distint then so are �a(u) and �b(u) (generiity of ŝ) as well as �0a(u)and �0b(u) (generiity of ŝ0). Extend every �0u to a full permutation �u ofjuj whih �xes 0. It is easy to hek that the following mapping, whih isde�ned on all of Â, is a �bre-preserving automorphism that maps ŝ to ŝ0:(a; �a) 7! (a; �0a) where �0a(u) = �u(�a(u)):For the seond laim onsider some f 2 Aut(H). Then the followingmap f̂ is as desired:f̂(a; �a) := (b; �) where � b = f(a)�(u) = �a(f�1(u))That f̂ 2 Aut(Ĥ) relies on the fat that f preserves S and hene also U .2.2 Related overs for relational struturesWhile Corollary 20 diretly follows from Theorem 7, we briey indiatewhat one gets if instead of H(A) we use a di�erent (in partiular, riher)hypergraph over A to onstrut an indued over.16



Let A be a relational struture and let H = (A;S) be some hypergraphover the universe A of A. Let � : Ĥ ! H be a onformal over, obtained asabove. Interpret the relations in Â = (Â; : : :) minimal under the requirementthat the restritions ��ŝ to hyperedges ŝ 2 S(Ĥ), and hene its restritionsto all generi subsets ŝ � Â, beome partial isomorphisms:RÂ := [ŝ2S(Ĥ)(��ŝ)�1�RA��(ŝ)�:Lemma 22 For � : Â! A as above:(i) � : Â ! A is a surjetive homomorphism; moreover, � is a partialisomorphism in restrition to every generi subset ŝ � Â, and thesystem of the ��ŝ has the bak-and-forth properties with respet to thehyperedges of H and the generi subsets of Â.(ii) For every s 2 S, A�s embeds isomorphially into Â, with generi imagein Â.(iii) For all s 2 S and generi sets ŝ and ŝ0 with �(ŝ) = �(ŝ0) = s there isan automorphism of Â that �xes all �-�bres set-wise and maps ŝ to ŝ0.(iv) Every automorphism of A that preserves S admits a lift to an auto-morphism of Â. In partiular, if S is invariant under Aut(A), thenevery automorphism of A lifts to Â.(v) If H = (A;S) is suh that S � S(A), then � : Â ! A is a guardedover.The �rst two laims are obvious from the onstrution. Claims (iii)and (iv) are stritly analogous to the orresponding laims in Lemma 21above. Claim (v) uses the fat that every guarded subset of Â is by on-strution ontained in a generi subset of Â; S � S(A) implies that theguarded subsets of A are ontained in hyperedges of H; the laim thenfollows by the last observation in (i).3 Two appliations3.1 Clique faithful EPPAWe prove Theorem 9. A Gaifman lique faithful EPPA extension is obtainedfrom a Herwig EPPA as a suitable relational over as follows.Given A, let B � A be a Herwig EPPA extension:(i) Every partial automorphism p of A extends to an automorphism of B.17



(ii) Every guarded tuple (or guarded set, or tuple in a relation) of B is theimage under some automorphism of B of a guarded tuple (or guardedset, or tuple in a relation) in A.Now apply the relational over onstrution of setion 2.2 based on thehypergraph H = (B;S) whereS = �s � B : f(s) � A for some f 2 Aut(B)	:Let � : B̂ ! B be the resulting over. As A � B forms a hyperedgeof H, A embeds isomorphially into B̂, aording to Lemma 22 (ii). Let� : A ! B̂ be this embedding, Â = �(A) � B̂ the isomorphi image of Awhose universe Â � B̂ is a generi subset. We further laim that now(iii) every Gaifman lique of B̂ is Aut(B̂)-related to some Gaifman liqueof Â.(iv) every partial automorphism of Â extends to an automorphism of B̂.These laims prove that B̂ provides a Gaifman lique faithful EPPA exten-sion of A, if, without loss of generality we identify A with its isomorphiimage Â in B̂.For (iii), it follows from the general onstrution that every Gaifmanlique ŝ in B̂ forms a generi set in B̂, whene its projetion is ontainedwithin some s 2 S. By the hoie of S, there is an automorphism f of Bwhih maps s into A � B. By Lemma 22 (iv) (our set S of hyperedgesis invariant under Aut(B)), there is a lift f̂ of f to an automorphism ofB̂. f̂ being a lift we �nd that �(f̂(ŝ)) � A. Therefore f̂(ŝ) and �(f(s)) �Â are two generi sets above f(s) � A. By Lemma 22 (iii) there is anautomorphism g of B̂ whih maps f̂(ŝ) to �(f(s)). The omposition g Æ f̂therefore maps ŝ into Â. Clearly then, g(f̂ (ŝ)) is a Gaifman lique in Â.(iv) is proved in a similar way. Let p̂ 2 Part(Â; Â). Clearly p̂ is the liftand isomorphi image of a partial isomorphism p of A. B has an automor-phism f whih extends p. Let f̂ be a lift of f to B̂, obtained aording toLemma 22 (iv). Choose g as a �bre-preserving automorphism that mapsf̂(dom(p̂)) to range(p̂) (both generi above range(p) � A), aording toLemma 22 (iii). Then g Æ f̂ extends p̂.The same argument yields the rami�ed version of Observation 11, if or-respondingly we start with an EPPA extension B � A whih does omit ho-momorphi images of some �nite olletion K of strutures. This additionalrequirement is trivially preserved, sine � : B̂! B is a homomorphism, f.Lemma 22 (i). 18



3.2 FMP and EPPA: the general patternWith the lique faithful variant of EPPA one an prove the �nite modelproperty (FMP) for CGF in omplete analogy with the proof given by Gr�adel[9℄ for GF, whih is based on the use of Herwig's EPPA. Indeed, the issuewhether or not CGF also enjoys the FMP had been one motivation to lookfor a lique faithful strengthening of Herwig's onstrution. This latter issueremained open even when the FMP for CGF was settled in [15℄. Beforewe proeed (in the next setion) to give a new and diret redution fromFINSAT(CGF) to FINSAT(GF), it may be useful to survey the generalpattern in whih (Gaifman lique or guarded tuple) faithful EPPA extensionsgive rise to �nite models for (lique or ordinarily) guarded formulae.We treat GF and CGF in parallel to highlight the uniform nature of theargument. Let ' be in GF or CGF, syntatially presented aording toObservation 14 (normalised quanti�ation pattern). In both ases we �rstlyuse a Skolemisation proedure with respet to (guarded or lique guarded)subformulae of '. In e�et this means that we merely have to deal withformulae of the form:�8z:#(z)� ��(z) ^ �9y:#(x)� (x)� where ( #(x) = CG(x) for CGF#(x) = G(x) for GFwhere �,  are quanti�er-free, var() � fx : x in xg, var(�) � fz : z in zg,y and z disjoint, x = yz (we do not rule out the ase that either z or y isempty, though).Note Skolemisation for lique guarded subformulae of a given ' introduesa new Skolem prediate for eah suh subformula. These new prediatesmust not serve as guards, though. In other words the formulae CG(x) are�xed and only pertain to lique guardedness in (the reduts to) the originalvoabulary of '.Starting from a (supposedly in�nite) model B of the Skolemisation of' we obtain a �nite model as a #-faithful EPPA extension of a suÆientlyrih �nite substruture of B, as follows. Let A � B be �nite and suh thatall isomorphism types of (small) #-substrutures of B are represented assubstrutures of A. In the ase of CGF, more preisely, we limit the size ofthe lique guarded substrutures under onsideration to the maximal widthof lique guards CG(x) in '. This is important as Gaifman liques (unlikeguarded sets) an be of unbounded size even for �xed �nite voabulary.19



We then get, for any #-faithful EPPA extension A� � A:B j= �8z:#(z)� ��(z) ^ �9y:#(x)� (x)�=) A� j= �8z:#(z)� ��(z) ^ �9y:#(x)� (x)�:For this laim, onsider an instantiation a for z in A� with A� j= #(a).As A� is #-faithful over A we may without loss of generality assume that ais in A.Therefore, a ounter example to �8z:#(z)� �(z) in A� would immediatelygive a ounter example in A and hene in B.Similarly, if B j= �8z:#(z)� �9y:#(x)� (x) and we onsider a in Asuh that A� j= #(a) we know that B;a j= �9y:#(x)� (x). Let b besuh that B;a;b j= #(x) ^ (x). Let B0 = B�ab. By the hoie of Awe have an isomorphi opy (B00;a0;b0) of (B0;a;b) inside A. Let p be thepartial automorphism of A that maps a0 to a. Let f be an extension of pto an automorphism of A�. Then A�;a; f(b0) j= #(x) ^ (x), and heneA�;a j= �9y:#(x)� (x) as desired.3.3 A redution from FINSAT(CGF) to FINSAT(GF)Finally, we present the promised translation from CGF to GF, based onSkolemisation for Gaifman liques. This translation ' 7! '� will be suhthat every model of ' an be expanded to a model of '�. Moreover, '�implies ' over onformal strutures. This translation then obviously servesas a redution from SAT(CGF) to SAT(GF), beause we merely have tounravel a model of '� to obtain a onformal model of '�, whih then alsois a model of '. Thus, we obtain:' 2 SAT(CGF) , '� 2 SAT(GF):In more detail, from ' 2 CGF we obtain '� 2 GF as follows. Forformulae of CGF and GF we appeal to the syntati normalisation of Ob-servation 14. Let r be the maximal width of lique guards CG(x) ourringin ' and let R be a new relation symbol of arity r. Let G�(x) be for-mulae expressing guardedness with respet to the extended voabulary, Rinlusive.In ' we replae any lique guarded quanti�ations of the form(8y:CG(x))�(x) or (9y:CG(x))�(x)by their simply guarded forms over the extended voabulary(8y:G�(x))�(x) or (9y:G�(x))�(x);20



respetively. Finally add, as a onjunt in '�, a formalisation in GF of'0 := 8x�Rx! CG(x)�;where CG(x) is for the old voabulary, R exlusive.Clearly every model of ' has an expansion that is a model of '0 andhene of '�: interpret R as the set of all lique guarded tuples of arity r.Conversely, a model of '� is also a model of ' provided it does nothave \false liques". If (A; R) j= '�, then all tuples in R are indeedGaifman liques (i.e., lique guarded) in A as (A; R) j= '0. But A ouldhave \false" Gaifman liques that are not overed by any guarded set of(A; R). If, however, (A; R) is onformal then (A; R) j= '� implies A j= '.Indeed, in onformal models of '0, all lique guarded tuples are guarded,whene G�(x), CG(x), CG�(x) are all equivalent: G�(x)) CG(x) uses '0;CG(x)) CG�(x) is trivial; CG�(x)) G�(x) is onformality.Therefore, as the usual �g-unravelling of any struture yields a guardedbisimilar struture that is onformal (albeit generally in�nite), we see that' is satis�able if and only if '� is satis�able. As Corollary 20 similarlyprovides �nite onformal guarded bisimilar ompanion strutures, we �ndthat in omplete analogy also ' 2 FINSAT(CGF) , '� 2 FINSAT(GF).Corollary 23 The translation ' 7! '� provides a simultaneous redutionfrom SAT(CGF) to SAT(GF) and from FINSAT(CGF) to FINSAT(GF).In partiular, the �nite model property for GF, [9℄, diretly implies the�nite model property for CGF, [15℄.Note The above translation is polynomial if we use a suint formalisationof G(x) as indiated in onnetion with Observation 14. Passage throughnon-standard syntax for GF and CGF may be avoided with an alternativetranslation, whih an also be kept polynomial in terms of the oÆial syntaxfor both GF and CGF. Syntati normalisation aording to Observation 14has been hosen here for the sake of larity and to enable a more uniformpresentation of the entral idea in the translation. These onsiderations maybe important if one wants to make sure that the translation is ompatiblewith the omplexities established for SAT(CGF) and SAT(GF) in [8, 9℄.Referenes[1℄ Hajnal Andr�eka, Johan van Benthem, and Istvan N�emeti,Modal languages and bounded fragments of prediate logi, Journal ofPhilosophial Logi 27, 1998, pp. 217-274.21
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