
Finite Conformal Hypergraph Coversand Gaifman Cliques in Finite Stru
turesIan Hodkinson� Martin OttoyMar
h 2003We provide a 
anoni
al 
onstru
tion of 
onformal 
overs for �nitehypergraphs and present two immediate appli
ations to the �nite modeltheory of relational stru
tures. In the setting of relational stru
tures,
onformal 
overs serve to 
onstru
t guarded bisimilar 
ompanion stru
-tures that avoid all in
idental Gaifman 
liques { thus serving as a par-tial analogue in �nite model theory for the usually in�nite guardedunravellings. In hypergraph theoreti
 terms, we show that every �nitehypergraph admits a bisimilar 
over by a �nite 
onformal hypergraph.In terms of relational stru
tures, we show that every �nite relationalstru
ture admits a guarded bisimilar 
over by a �nite stru
ture whoseGaifman 
liques are guarded. One of our appli
ations answers an openquestion about a 
lique 
onstrained strengthening of the extension prop-erty for partial automorphisms (EPPA) of Hrushovski, Herwig and Las-
ar. A se
ond appli
ation provides an alternative proof of the �nitemodel property (FMP) for the 
lique guarded fragment of �rst-orderlogi
 CGF, by redu
ing (�nite) satis�ability in CGF to (�nite) satis�a-bility in the guarded fragment, GF.AMS 2000 
lassi�
ation: primary 03C13, se
ondary 03B45, 03B70,05C65, 05C69.Keywords: �nite model theory, extension property for partial isomor-phisms, guarded logi
s, �nite model property.�Department of Computing, Imperial College London, London SW7 2AZ, UK;imh�do
.i
.a
.uk; www.do
.i
.a
.uk/~imh;resear
h partially supported by EPSRC grant GR/R45369/01yDepartment of Computer S
ien
e, University of Wales Swansea, SA2 8PP, UK;m.otto�swan.a
.uk; www-
omps
i.swan.a
.uk/~
smartin;resear
h partially supported by EPSRC grant GR/R11896/01The authors thank the referee for helpful suggestions.1



0 Introdu
tionThe main 
onstru
tion in this paper is presented in terms of hypergraphs,i.e., stru
tures 
onsisting of just a universe together with a 
olle
tion of sub-sets of the universe. The main motivation behind the 
onstru
tion, however,arises in the 
ontext of ordinary relational stru
tures; and here primarilytheir model theory with respe
t to guarded logi
s and extension propertiesfor partial automorphisms.Guarded logi
s, as introdu
ed by Andr�eka, van Benthem and N�emetiin [1℄, play an important role in transferring some of the good algorithmi
properties of modal logi
s to the setting of general relational stru
tures. Inparti
ular, they provide natural de
idable fragments of �rst-order logi
 atan interesting level of expressiveness. The guarded fragment GF of �rst-order logi
, and its further generalisation to the 
lique guarded fragmentCGF, 
apture relativised modes of quanti�
ation that restri
t the a

ess to
ertain 
on�gurations of elements in a stru
ture. For GF, only guarded 
on-�gurations, 
onsisting of elements that 
oexist within some relational groundatom (their guard), are simultaneously a

essible. For CGF, more general
on�gurations 
onsisting of elements that are pairwise guarded (
liques inthe Gaifman graph, see below) are a

essible.Just as bisimulation equivalen
e is the fundamental invarian
e for modallogi
, there is a 
orresponding notion of guarded bisimulation equivalen
ewhi
h provides the 
ru
ial invarian
e for GF. The study of guarded bisim-ulation invarian
e gives rise to tree-like guarded bisimilar 
ompanion stru
-tures { indistinguishable from the given stru
ture in GF but 
oming with anatural tree de
omposition. They are obtained through a pro
ess of guardedunravelling, analogous to bisimilar unravellings of graphs or transition sys-tems into a
tual trees. These tree-like 
ompanions feature prominently inmany model theoreti
 arguments for GF; 
ompare, for instan
e, [9, 10, 11℄.But guarded unravellings, even of �nite stru
tures, are in�nite in general.They therefore do not usually lend themselves to arguments in the �nitemodel theory of guarded logi
s.Re
all that theGaifman graph G(A) of a relational stru
ture A = (A; : : :)has for its vertex set the universe A of A, and edges between any two distin
telements that o

ur together in a 
ommon relational ground atom of A. Weare here interested in 
liques in the Gaifman graph, or Gaifman 
lique forshort. A Gaifman 
lique in A is formed by any subset of A su
h that any twodistin
t elements inside this subset are linked by an edge of G(A), i.e., o

urtogether in a ground atom of A. There are two motivations for looking at2



Gaifman 
liques. From the point of view of guarded logi
s, Gaifman 
liquesare pre
isely the 
on�gurations a

essible in the 
lique guarded fragmentCGF. More importantly, Gaifman 
liques arise as natural obsta
les for treede
ompositions of relational stru
tures { in fa
t 
ertain kinds of Gaifman
lique, besides 
ertain kinds of 
y
le, are the only types of obsta
le (seese
tion 1.2 below).There are two essentially di�erent kinds of Gaifman 
lique. Cliques ofthe �rst kind are those indu
ed by an individual relational ground atom;any su
h 
lique is therefore guarded, and thus 
annot be avoided in guardedbisimilar 
ompanion stru
tures, not even in the guarded unravelling of thegiven stru
ture.Cliques of the se
ond kind are in
idental in the sense that several rela-tional ground atoms play together to indu
e a 
lique 
on�guration in theGaifman graph, but no ground atom 
overs the entire 
lique. Su
h 
liquesare not guarded, they are obsta
les for tree de
ompositions, and they wouldbe broken up in the guarded unravelling of the given stru
ture. Of 
ourse,the existen
e of this se
ond kind of 
lique is pre
isely what makes CGF moreexpressive than plain GF.When looking at hypergraphs rather than relational stru
tures we mainlyabstra
t away from the a
tual relational information and only retain the hy-pergraph stru
ture indu
ed by the guarded subsets, i.e. the subsets 
overedby single relational ground atoms. As remarked above, the hypergraph pointof view dire
tly relates to a

essibility via guarded quanti�
ation, sin
e thehyperedges are pre
isely the guarded subsets.Note that in general this �ltered view of a relational stru
ture still re-tains stri
tly more information than the Gaifman graph, at least for vo
ab-ularies whi
h have relations of arities greater than 2. One way to look at
onformality of hypergraphs (in our 
ase, the indu
ed hypergraph), is thatpre
isely in the 
onformal 
ase the hypergraph stru
ture is fully determinedby the indu
ed graph stru
ture (in our 
ase, the Gaifman graph). By de�ni-tion, 
onformality means that the hyperedges are pre
isely the 
liques (theguarded subsets are pre
isely the Gaifman 
liques). In the world of guardedlogi
s, then, a 
onformal hypergraph pattern 
orresponds to a stru
ture inwhi
h 
lique guarded quanti�
ation is no stronger than ordinary guardedquanti�
ation, sin
e all 
liques are (
overed by) hyperedges.In this paper, we will 
onstru
t �nite 
onformal 
ompanions (
overs) for�nite hypergraphs. Our 
onstru
tion serves as a partial �nite analogue ofthe generally in�nite tree-like unravellings. As with unravellings, the rela-tionship between these 
onformal 
overs and the base stru
ture is simulta-3



neously one of a \
over" and one of bisimilarity, mediated by lo
al bije
tionsgoverned by ba
k-and-forth 
onditions with respe
t to hyperedges. The hy-pergraph 
onstru
tion lifts to the level of relational stru
tures, where weobtain a 
over whi
h indu
es a guarded bisimulation, mediated by lo
al iso-morphisms governed by ba
k-and-forth 
onditions with respe
t to guardedsets.The 
entral hypergraph 
onstru
tion is detailed in se
tion 2, provingour main theorem for hypergraphs, Theorem 7. This se
tion 
an be readindependently, as it is based only on some preliminaries from se
tions 1.1,1.2 and 1.3. The remainder of the paper links the main theorem to relationalstru
tures. The relational 
ounterpart of the main theorem, in parti
ular, isstated as Corollary 20 and further explored with respe
t to the two majorappli
ations in se
tion 3.As to the two appli
ations mentioned above, se
tion 3.3 deals with aredu
tion from the 
lique guarded fragment CGF to the guarded fragmentGF, whi
h (unlike guarded unravellings) is appli
able in restri
tion to �nitemodels. So we obtain a dire
t redu
tion for �nite satis�ability and hen
e anew proof of the �nite model property for CGF.In se
tion 3.1 we apply our results in the 
onstru
tion of �nite exten-sions of partial automorphisms of the base stru
ture to automorphisms of anextended stru
ture (EPPA: extension property for partial automorphisms).Herwig's EPPA 
onstru
tion [12, 14℄, 
an be taken further to yield an exten-sion whose only Gaifman 
liques are the (unavoidable) automorphi
 imagesof Gaifman 
liques already present in the base stru
ture. See Theorem 9for the statement of our main result in this 
ontext. Su
h a rami�
ation ofEPPA has repeatedly been pointed out as an interesting open problem, notleast be
ause of its bearing on the �nite model property for CGF. Further
orollaries provide a simpli�ed route to the EPPA for the 
lasses of Kn-free�nite graphs and Henson digraphs, as well as the EPPA for the 
lass of
onformal �nite relational stru
tures of any relational type.1 Preliminaries1.1 Hypergraphs and relational stru
turesWe 
onsider hypergraphs H = (A;S) where A is any set and S � P(A) any
olle
tion of subsets. The members of S are 
alled hyperedges. O

asionallywe write S(H) for the set S of hyperedges in H = (A;S).Relational stru
tures are denoted A = (A; �R), A the universe of A, �R the4



tuple of relations as interpreted in A. We shall ex
lusively 
onsider �niteand purely relational vo
abularies. The width of a relational vo
abulary isthe maximum of the arities of its relations.We are mainly interested in the behaviour of relational stru
tures withrespe
t to guarded logi
s (see se
tion 1.5), where only guarded subsets andtuples are dire
tly a

essible by quanti�
ation; the relevant basi
 de�nitionsare given in the �rst of the two following de�nitions. Mu
h of the guardedbehaviour of relational stru
tures is 
aptured at the level of the asso
iatedhypergraph, whi
h just des
ribes the pattern of the a

essible pat
hes devoidof the a
tual relational information, as de�ned in the se
ond de�nition below.De�nition 1 Let A = (A; �R) be a relational stru
ture.(i) A subset s � A is guarded if s is a singleton or s = fa : a in ag forsome a 2 R, R in �R.(ii) A guarded subset is maximally guarded if it is not a proper subset ofany other guarded subset.(iii) A subset s � A is 
lique guarded if for any two a; a0 2 s there is someguarded subset 
ontaining a and a0.(iv) A k-tuple a 2 Ak is (
lique) guarded in A if a 2 sk for some (
lique)guarded set s � A.De�nition 2 The hypergraph asso
iated with a relational stru
ture A is thehypergraph H(A) = (A;S(A)) whereS(A) = �s � A : s maximally guarded in A	:As is 
ommon in hypergraph theory (
f. [4℄), we asso
iate an indu
edgraph G(H) with every hypergraph H. Note that if H = H(A) is the hy-pergraph indu
ed by a relational stru
ture A, then G(H) is just the Gaifmangraph G(A) asso
iated with A (
f. [6℄).De�nition 3 The graph asso
iated with a hypergraph H = (A;S) is theundire
ted graph G(H) = (A;E) whereE = �(a; a0) 2 A2 : a 6= a0 and a; a0 2 s for some s 2 S	:De�nition 4(i) A hypergraph H = (A;S) is 
alled 
onformal if every 
lique of G(H)is 
ontained within some hyperedge of H.(ii) A relational stru
ture A is 
alled 
onformal if all its 
lique guardedsubsets are 
ontained in guarded sets, i.e., if H(A) is a 
onformalhypergraph. 5



1.2 Tree de
ompositionsThe notion of 
onformality as expressed in De�nition 4 
omes from 
lassi
alhypergraph theory, 
f. [4℄. The relational 
ounterpart is just a dire
t ana-logue. Conformality is 
losely linked to the notion of tree-de
omposabilityand a
y
li
ity of hypergraphs. We brie
y outline these 
onne
tions for thesake of ba
kground and 
ontext, not be
ause we shall dire
tly draw on themin the sequel. A �nite hypergraph is tree-de
omposable if it is redu
ible tothe empty hypergraph by repeated appli
ation of the following (
f. Graham'salgorithm in [2℄ or the GYO-redu
ts in [7℄):{ delete (from the set of hyperedges) some hyperedge that is 
ontainedwithin some other hyperedge;{ delete (from the universe and any hyperedge) some vertex a that is
overed by at most one hyperedge.An in�nite hypergraph is tree-de
omposable if all its �nite indu
ed sub-hypergraphs are.It is not hard to see that 
onformality is ne
essary for tree-de
omposa-bility. Another ne
essary 
ondition for H to be tree-de
omposable is thatits asso
iated graph G(H) (
f. De�nition 3) is 
hordal : any 
y
le in G(H)of length greater than 3 must have a 
hord, i.e., an edge linking two verti
esthat are not next neighbours along the 
y
le. Together these two 
ondi-tions in fa
t 
hara
terise tree-de
omposability: a hypergraph H is tree-de
omposable if and only if it is 
onformal and (the asso
iated graph G(H)is) 
hordal, see e.g. [2℄. In the literature, 
onformal 
hordal hypergraphs aremostly 
alled a
y
li
.The 
on
ept of tree-de
omposability of relational stru
tures, whi
h isof great importan
e in the theory of relational databases [2℄ and also �g-ures prominently in the model theory of guarded logi
s [9℄, is 
losely re-lated to the hypergraph theoreti
 notion. Indeed, the usual notion of tree-de
omposability of relational stru
tures 
an be 
aptured as follows. A re-lational stru
ture A is tree-de
omposable (of width k) if there is a tree-de
omposable hypergraph (A;S) over the universe A of A su
h that S �S(A) and jsj 6 k + 1 for all s 2 S. This is equivalent to the 
hara
-terisation that A is tree-de
omposable of width k if its Gaifman graph istree-de
omposable of width k, i.e., has tree width at most k, in the graphtheoreti
 sense [5℄. The notions of tree-de
omposability and tree-width forrelational stru
tures are thus straightforward extensions of the underlyingnotions for plain graphs. Tree-de
omposability of the hypergraph H(A) as-so
iated with a relational stru
ture A, however, is a stronger notion. While6



arbitrary sets may be used as pat
hes in a tree-de
omposition of A or of itsGaifman graph G(A), only hyperedges { i.e., guarded sets { are admissibleas pat
hes in tree-de
ompositions of H(A). Thus, tree-de
omposability ofH(A) implies tree-de
omposability of A (of tree width less than the widthof the vo
abulary of A), but not vi
e versa. Consider for instan
e a 
y
leof length n, with nodes f0; 1; : : : ; n� 1g and edges fi; i+ 1g (for i < n� 1)and fn� 1; 0g. This has tree width 2 as a graph (using pat
hes f0; i; i + 1g(0 < i < n� 1) of size 3), but it is not tree-de
omposable as a hypergraph.1.3 Hypergraph bisimulations and 
oversThe following notion of bisimilarity between hypergraphs is the naturaladaptation of the usual Ehrenfeu
ht{Fra��ss�e style notion of stru
tural equiv-alen
e to the setting where \stru
ture" is indu
ed by hyperedges. Its rela-tionship with the notion of guarded bisimilarity is apparent when we thinkof hypergraphs asso
iated with relational stru
tures, as will be made expli
itin se
tion 1.6, in parti
ular Observation 16 and Lemma 19.De�nition 5 A bisimulation between hypergraphs H = (A;S) and H 0 =(A0; S0) is a non-empty 
olle
tion Z of partial 1{1 maps between A and A0whose domains and ranges are hyperedges in H and H 0, respe
tively, withthe following ba
k-and-forth property w.r.t. hyperedges:forth if p : s! s0 is in Z and if t 2 S, then there is some q : t! t0 in Z su
hthat p and q agree on their 
ommon domain.ba
k if p : s ! s0 is in Z and if t0 2 S0, then there is some q : t ! t0 in Zsu
h that p�1 and q�1 agree on their 
ommon domain.We write Z : H � H 0 if Z is a bisimulation between H and H 0, and justH � H 0 if there is su
h a bisimulation.De�nition 6 A 
over of a hypergraph H is a hypergraph Ĥ together witha surje
tive map � : Ĥ ! H whi
h indu
es a hypergraph bisimulation:Z(�) : Ĥ � H where Z(�) = ���ŝ : ŝ 2 S(Ĥ)	:We write � : Ĥ � H to indi
ate this.It should be noted that the familiar (tree-like) unravelling of a hyper-graph, whi
h results in a 
onformal (indeed a
y
li
, i.e., 
onformal and
hordal) hypergraph, a
tually yields an a
y
li
 
over, whi
h in general isin�nite. At least as far as 
onformality is 
on
erned, our main result pro-vides a substitute that is appli
able within the 
ontext of �nite hypergraphs.7



Theorem 7 Every �nite hypergraph H admits a 
over � : Ĥ � H by a �niteand 
onformal hypergraph Ĥ.We do not know whether this 
an be strengthened to 
onformal and k-
hordal 
overs for every k, where k-
hordality would forbid 
hordless 
y
lesof lengths less than k. Su
h a parameterised version of hypergraph a
y
li
itywould be the most one 
an hope for in �nite hypergraphs.Before going into the details of our 
onstru
tion, whi
h is suÆ
iently
anoni
al to satisfy some additional ni
e automorphism properties, we pre-pare the stage for the two appli
ations mentioned above { one dealing withthe relationship between the guarded fragment GF and its more expressiveextension CGF; the other one fo
using on extension properties for partialautomorphisms over �nite relational stru
tures.Note The following three se
tions, whi
h pave the way for those two appli-
ations, 
an be read or skipped sele
tively without loss of 
oheren
e.1.4 Extension properties for partial automorphismsA partial isomorphism between relational stru
tures A and B of the sametype is a partial 1{1 map fromA to B whi
h indu
es an isomorphism betweenthe substru
tures indu
ed on its domain and range. We write Part(A;B)for the set of partial isomorphisms between A and B. For a single relationalstru
ture A, partial isomorphisms p 2 Part(A;A) are referred to as partialautomorphisms. Aut(A) stands for the automorphism group of A. If A� � Ais an extension of A, we say that an automorphism f 2 Aut(A�) extendsp 2 Part(A;A) if p = f�dom(p).For the se
ond part of the following de�nition let # be some globallyde�ned 
lass of obje
ts over relational stru
tures of the type of A. Examplesare (Gaifman-)edges, tuples in a spe
i�
 relation R, guarded tuples, 
liqueguarded tuples (Gaifman 
liques). EPPA stands for Extension Property forPartial Isomorphisms.De�nition 8 Let A � A�.(i) A� is an EPPA extension of A if every p 2 Part(A;A) extends to anautomorphism of A�.(ii) A� is a #-faithful extension of A if every # over A� is the image ofsome # over A under some automorphism of A�.
8



(iii) A 
lass of relational stru
tures has the #-faithful extension propertyfor partial automorphisms, or #-EPPA, if for every stru
ture A in that
lass there is a #-faithful EPPA extension A� also in that 
lass. 1The fundamental EPPA results are the following. They are usuallystated without parti
ular attention to levels of faithfulness. However, one
an prune an arbitrary EPPA extension in a straightforward way to obtainone that is faithful as stated. Indeed, if in an arbitrary EPPA extensionA� � A, we repla
e relation RA� by the Aut(A�)-
losure of RA, then theresulting stru
ture is an EPPA extension of A that is faithful with respe
tto tuples in R, 
f. [14℄.Hrushovski's EPPA Theorem [16℄ The 
lass of �nite graphs has theEPPA; faithfulness with respe
t to edges is impli
it. A greatly simpli�edand elegant proof of Hrushovski's theorem { 
ombinatorial rather than grouptheoreti
 { is presented in [14, se
tion 4.1℄.Herwig's EPPA Theorem [12℄ The 
lass of �nite relational stru
tures(of any �xed �nite relational type) has the EPPA; faithfulness with respe
tto guarded tuples (or guarded sets) is impli
it.We shall show the following by way of subje
ting the result of a HerwigEPPA extension to a suitably adapted 
onformal 
over 
onstru
tion.Theorem 9 The 
lass of �nite relational stru
tures (of any �xed �nite re-lational type) has the Gaifman 
lique faithful EPPA.Corollary 10 The following 
lasses have the EPPA:(i) Finite triangle-free graphs. [12℄(ii) Finite Kn-free graphs, for every n > 3. [13℄(iii) `Henson digraphs': �nite dire
ted graphs with no subgraph isomorphi
to a tournament in K, where K is an arbitrary 
lass of �nite tourna-ments. [13℄(iv) Finite 
onformal � -stru
tures, for every relational type � .Note that (i){(iii), even though not new, are here obtained by a mu
hsimpler and entirely 
ombinatorial 
onstru
tion, if we use our 
onstru
tion1In fa
t this is a simpli�ed version of EPPA, 
ompared to the notion introdu
ed in [14℄;for the 
lasses to be 
onsidered here, however, this 
auses no loss of generality.9



on top of Las
ar's simple 
onstru
tion for Hrushovski's theorem in [14, se
-tion 4.1℄. Indeed, this new 
ombinatorial approa
h to EPPA may be re-garded as a further stepping stone in the methodologi
al development ofEPPA results so far, whi
h has been markedly dual along group-theoreti
versus 
ombinatorial lines. While Hrushovski's original EPPA for graphs[16℄ as well as Herwig's generalisation to relational stru
tures of higher arity[12℄ are group-theoreti
, Las
ar's proof of EPPA for graphs and its gener-alisation to higher arity in [14℄ are purely 
ombinatorial. Now EPPA forKn-free graphs and Henson digraphs, previously only available via grouptheory, gains an alternative, fully 
ombinatorial a

ount with the present
onstru
tion.Observation 11 As our 
onstru
tion just adds a further extension layer,whi
h moreover proje
ts homomorphi
ally onto its base stru
ture, it alsoremains 
ompatible with 
onditions 
on
erning forbidden homomorphi
 im-ages, in the sense of [13℄ and of the Herwig-Las
ar rami�
ation of Herwig'sEPPA theorem, [14℄.1.5 Guarded logi
sNote This se
tion and the next are not ne
essary for a 
oherent a

ountof our hypergraph 
onstru
tion in se
tion 2 and its EPPA appli
ation inse
tion 3.1. Their topi
 will only be resumed in se
tions 3.2 and 3.3.The guarded fragment of �rst-order logi
, GF, was introdu
ed by Andr�eka,van Benthem and N�emeti [1℄ as a �rst-order fragment 
apturing the spiritof modal quanti�
ation in the broader relational setting. Intuitively, in GFwe may quantify over guarded tuples.We write FO for �rst-order logi
; for a �rst-order formula ', var(')denotes the set of all variables o

urring in ', free(') the set of variablesthat have a free o

urren
e in '.De�nition 12 The formulae of GF � FO are obtained indu
tively as the
losure of atomi
 formulae (in a relational vo
abulary � , with equality) underBoolean 
onne
tives and the following quanti�
ation rules. For every '(x) inGF and every � -atom �(x) and any tuple y su
h that fy : y in yg[free(') �var(�), the following are also formulae of GF:8y��(x)! '(x)�;9y��(x) ^ '(x)�:The semanti
s is just the usual one for �rst-order logi
.10



Among the extensions of the guarded fragment that have sin
e been
onsidered we single out the following, whi
h was introdu
ed under the nameof \
lique guarded fragment", CGF, by Gr�adel in [8℄. Under the name of\pa
ked fragment", a similar extension of GF was 
onsidered by Marx [17℄;indeed the pa
ked and 
lique guarded fragments are synta
ti
 variants ofthe same logi
. Essentially, these fragments have quanti�
ation over 
liqueguarded tuples rather than just guarded tuples. Correspondingly, CGF isknown to be stri
tly more expressive than GF. In fa
t, CGF subsumesthe loosely guarded fragment LGF of van Benthem [3℄. LGF itself was thereintrodu
ed as an important proper extension of GF to 
apture and generalisequanti�
ation patterns like the Until 
onstru
t in temporal logi
. CGFfurther extends { arguably in the most natural way { the 
on
ept of looselyguarded quanti�
ation to the setting of vo
abularies of width greater than 2.The following synta
ti
 
onventions regarding CGF will for our purposesbe superseded by the semanti
ally equivalent ones to be given in Observa-tion 14 below.De�nition 13 The formulae of CGF � FO are obtained indu
tively withthe following more liberal quanti�
ation rule.Let 
(x) in free variables x be a 
onjun
tion Vx;x02x �(x; x0) over for-mulae �(x; x0) of the form 9z�(x; x0; z), where � is an atom in whi
h thedisplayed variables all o

ur, and the z is disjoint from the x. (Semanti
ally
 for
es any instantiation of free(
) to form a Gaifman 
lique.) Then, if'(x) 2 CGF and fy : y in yg [ free(') � free(
), the following are also inCGF: 8y�
(x)! '(x)�;9y�
(x) ^ '(x)�:It is sometimes useful to resort to the following \normalisation" forguarded or 
lique guarded quanti�
ation. For a �xed �nite vo
abulary �and variable tuple x = (x1; : : : ; xn) we �x formulae G(x) and CG(x) whi
huniformly de�ne the sets of those n-tuples that are guarded, respe
tively
lique guarded in any � -stru
ture A:G[A℄ = �a 2 An : A j= G[a℄	 = �a 2 An : a guarded in A	CG[A℄ = �a 2 An : A j= CG[a℄	 = �a 2 An : a 
lique guarded in A	Note that G(x) and CG(x) 
an a
tually both be formalised in GF, forinstan
e, CG0(x) = Vx;x02xW� 9z �(x; x0; z);11



where � runs through all � -atoms in whi
h the displayed variables do o

urand the z are from a �xed supply disjoint from x. Some synta
ti
 overhead
an be avoided, however, in equivalent FO formalisations that do not adhereto the oÆ
ial syntax of GF, as for instan
e inCG(x) = Vx;x02xWR 9z�Rz ^Wz2z x = z ^Wz2z x0 = z�;where R ranges over all relations in � (and equality), and the z are as above.Similarly, for G(x) we may useG(x) = WR 9z�Rz ^Vx2xWz2z x = z�:One 
an then 
hara
terise GF and CGF { or rather logi
s that are meresynta
ti
 variants of them { through the stipulation of the following quan-ti�
ation rules. Translations between this modi�ed syntax and the oÆ
ialstandard are straightforward. The idea simply is to 
over spe
i�
 guards�(x) or 
(x) for quanti�
ation in GF or CGF by the uniform guards G(x) orCG(x), as in repla
ing 8y�
(x)! '(x)� by 8y�CG(x)! (
(x)! '(x))�.Observation 14 Let formulae G(x) and CG(x) globally de�ne the sets ofguarded, respe
tively 
lique guarded tuples x. Then every formula of GF islogi
ally equivalent to a �rst-order formula in whi
h all quanti�
ations areof the form indi
ated below, and vi
e versa. (We simultaneously introdu
eshorthand for relativised quanti�
ation.)(8y:G(x))'(x) := 8y�G(x)! '(x)�;(9y:G(x))'(x) := 9y�G(x) ^ '(x)�;where fy : y in yg [ free(') � fx : x in xg.Similarly for CGF one uses the formulae CG(x).1.6 Guarded bisimulationsThe Ehrenfeu
ht-Fra��ss�e equivalen
e asso
iated to GF, guarded bisimulationequivalen
e, generalises bisimulation equivalen
e and is pre
isely adapted to
apture quanti�
ation over guarded tuples. Also 
ompare our hypergraphbisimulations in De�nition 5.De�nition 15 Let A and A0 be relational stru
tures of the same type. Aguarded bisimulation between A and A0 is a non-empty 
olle
tion of partialisomorphisms Z � Part(A;A0), where all p 2 Z have as domains/rangesguarded sets in A/A0, with the following ba
k-and-forth property for guardedsets (s, t and s0, t0 guarded in A and A0, respe
tively):12



forth for every p : s! s0 in Z and every t there is some q : t! t0 in Z su
hthat p and q agree on their 
ommon domain.ba
k for every p : s! s0 in Z and every t0 there is some q : t! t0 in Z su
hthat p�1 and q�1 agree on their 
ommon domain.We write Z : A �g A0 if Z is a guarded bisimulation between A and A0,and A �g A0 if there is su
h.The similarity between hypergraph bisimulations and guarded bisimu-lations is apparent when we look at hypergraphs asso
iated with relationalstru
tures.Observation 16 Any guarded bisimulation Z : A �g A0 indu
es a hyper-graph bisimulation between the asso
iated hypergraphs Z : H(A) � H(A0).Conversely, any hypergraph bisimulation Z : H(A) � H(A0) su
h that Z �Part(A;A0) indu
es a guarded bisimulation. In other words: guarded bisim-ulations `are' hypergraph bisimulations that respe
t the relational stru
ture.The following semanti
 
hara
terisation theorem is a 
entral result from[1℄, underlining the role of guarded bisimulations and the naturalness of GF.Theorem 17 For every �rst-order senten
e ' in a relational vo
abulary thefollowing are equivalent:(i) ' is invariant under guarded bisimulations:A �g A0 implies A j= ' , A0 j= '.(ii) ' is equivalent to a senten
e of GF.De�nition 18 A guarded 
over of a relational stru
ture A is a stru
ture Âof the same relational type as A together with a surje
tive homomorphism� : Â! A whi
h indu
es a guarded bisimulation:Z(�) : Â �g A where Z(�) = ���ŝ : ŝ 2 S(Â)	:We write � : Â �g A to denote this.It should be noted that the guarded unravelling of relational stru
turesresults in guarded 
overs by (generally in�nite) stru
tures Â of bounded treewidth, whose asso
iated hypergraph H(Â) moreover is tree-de
omposable.Gr�adel's generalised tree model property of guarded logi
 GF [9℄ a
tuallyapplies in the stronger sense that every satis�able senten
e of GF has amodel A for whi
h H(A) is tree-de
omposable.It is straightforward to see that guarded 
overs are related to bisimilar
overs of hypergraphs in the following sense.13



Lemma 19 Let A be a relational stru
ture, H = H(A) the indu
ed hyper-graph. Then every hypergraph 
over � : Ĥ � H indu
es a 
anoni
al guarded
over � : Â �g A, where Â is a stru
ture of the same relational type as Aover the universe Â of Ĥ, su
h that H(Â) = Ĥ.One merely interprets all relations over the universe Â of Ĥ so as to turnthe restri
tions ��ŝ into partial isomorphisms, for all hyperedges ŝ 2 Ŝ.So we have the following 
orollary to Theorem 7.Corollary 20 Every �nite relational stru
ture A admits a guarded 
over� : Â �g A where Â is �nite and 
onformal.2 Constru
tion of the 
onformal 
over2.1 Conformal 
overs for hypergraphsThis se
tion is devoted to the 
onstru
tion whi
h proves Theorem 7. Fix a�nite hypergraph H = (A;S). We may assume that A =2 S, else H is already
onformal. Let U := �u � A : for all s 2 S; u 6� s	:So U is non-empty and 
onsists pre
isely of the subsets of A that must notbe the proje
tions of 
liques in the 
over. Consider the produ
tA�Yu2U juj;where we identify a natural number n (in our 
ase n = juj, the 
ardinalityof u) with the set n = f0; : : : ; n � 1g. A typi
al element of the produ
tthus 
an be regarded as a pair (a; �a) whose se
ond 
omponent is a fun
tion�a : U ! N su
h that �a(u) < juj for all u 2 U . The universe Â of thedesired 
over will 
onsist of those elements (a; �a) for whi
h�a(u) = 0, a 62 u; for all u 2 U:Note that this stipulation leaves a range f1; : : : ; juj� 1g of size smaller thanjuj for the values �a(u) whenever a 2 u.Â := �(a; �a) 2 A�Yu2U juj : for all u 2 U; �a(u) = 0, a 62 u	:We let � be the natural proje
tion � : Â! A, given by �(a; �a) = a.We say that a subset ŝ � Â is generi
 if14



(i) ��ŝ is inje
tive, i.e., for any two distin
t elements (a; �a) and (b; �b) ofŝ we have a 6= b.(ii) for any two distin
t elements (a; �a) and (b; �b) of ŝ and u 2 U : ifa; b 2 u then �a(u) 6= �b(u).Note that (ii) 
an be rephrased as follows: for every u, the following fun
tion� (u) is inje
tive (where (a; �a) is the element above a in ŝ):� (u) : u \ �(ŝ) �! f1; : : : ; juj � 1ga 7�! �a(u):It follows immediately that the proje
tion �(ŝ) of any generi
 set ŝ mustbe 
ontained in some hyperedge s of H. Otherwise we would have �(ŝ) = ufor some u 2 U , and by 
ondition (ii), for that u, � (u) : u! f1; : : : ; juj�1gwould have to be an inje
tion whi
h is 
learly absurd. For the hyperedgesof Ĥ we now 
hoosêS := �ŝ � Â : ŝ generi
 and �(ŝ) 2 S	:In order to establish that � : Ĥ � H is indeed a 
over, we 
laim that thesystem Z = ���ŝ : ŝ 2 Ŝ	 : Ĥ � His a hypergraph bisimulation. Note that the ��ŝ are bije
tions whose domainsare hyperedges of Ĥ and whose ranges are hyperedges of H.The forth-property is obvious. Consider the ba
k-property for somep = � � ŝ : ŝ ! s = �(ŝ), and some hyperedge s0 2 S of H. We need to�nd a generi
 set ŝ0 with �(ŝ0) = s0 and su
h that �(ŝ \ ŝ0) = s \ s0, or(equivalently) su
h that ŝ0 \ ��1(s \ s0) = ŝ \ ��1(s \ s0). Then � � ŝ0 isas required by the ba
k property. For the desired ŝ0 it remains to �x, forevery a 2 s0 n s, the values �a(u) su
h that � (u) : u \ s0 ! f1; : : : ; juj � 1gis inje
tive for every single u. Consider a �xed u 2 U . Observe that u 6� s0,when
e ju \ s0j < juj. That part of � (u) over u \ s \ s0, whi
h is already�xed, is inje
tive by generi
ity of ŝ. We 
an therefore extend the inje
tion� (u) from u\ s\ s0 to an inje
tion over all of u\ s0 as desired. This �nishesthe proof that � : Ĥ � H is a bisimilar 
over.Clearly Ĥ is 
onformal. For, if ŝ � Â is a 
lique in G(Ĥ), then any twodistin
t elements (a; �a) 6= (b; �b) of ŝ must be elements of some generi
 setin Â. It follows that a 6= b and �a(u) 6= �b(u) whenever a; b 2 u. So ŝ isa generi
 subset. Therefore �(ŝ) � s0 for some s0 2 S. Arguing exa
tly asin the proof of the ba
k-property for �, we �nd a hyperedge ŝ0 of Ĥ above15



s0 for whi
h ŝ � ŝ0. So every 
lique ŝ is 
ontained in a hyperedge of Ĥ asrequired.This �nishes the proof of the theorem. We 
olle
t some further usefulproperties of the 
over � : Ĥ � H in the following lemma. These automor-phism properties re
e
t on the 
anoni
al nature of our 
onstru
tion and willbe essential for the EPPA appli
ation.Lemma 21 Let the 
onformal 
over � : Ĥ � H be obtained a

ording to theabove 
onstru
tion.(i) For every s 2 S and generi
 sets ŝ and ŝ0 above s (i.e., with �(ŝ) =�(ŝ0) = s) there is an automorphism f of Ĥ that �xes all �-�bresset-wise and maps ŝ to ŝ0.(ii) Every automorphism f of H admits a lift to an automorphism f̂ of Ĥ:f̂ 2 Aut(Ĥ) and � Æ f̂ = f Æ �.For the �rst 
laim let ŝ; ŝ0; s be as stated. For every a 2 s let (a; �a) and(a; �0a) be the elements above a in ŝ and ŝ0, respe
tively. For u 2 U 
onsiderthe set f(�a(u); �0a(u)) : a 2 s \ ug:Note that this set is the graph of a partial bije
tion �0u on f1; : : : ; juj � 1g.This is a dire
t 
onsequen
e of the generi
ity of ŝ and ŝ0: if a; b 2 u \ sare distin
t then so are �a(u) and �b(u) (generi
ity of ŝ) as well as �0a(u)and �0b(u) (generi
ity of ŝ0). Extend every �0u to a full permutation �u ofjuj whi
h �xes 0. It is easy to 
he
k that the following mapping, whi
h isde�ned on all of Â, is a �bre-preserving automorphism that maps ŝ to ŝ0:(a; �a) 7! (a; �0a) where �0a(u) = �u(�a(u)):For the se
ond 
laim 
onsider some f 2 Aut(H). Then the followingmap f̂ is as desired:f̂(a; �a) := (b; �) where � b = f(a)�(u) = �a(f�1(u))That f̂ 2 Aut(Ĥ) relies on the fa
t that f preserves S and hen
e also U .2.2 Related 
overs for relational stru
turesWhile Corollary 20 dire
tly follows from Theorem 7, we brie
y indi
atewhat one gets if instead of H(A) we use a di�erent (in parti
ular, ri
her)hypergraph over A to 
onstru
t an indu
ed 
over.16



Let A be a relational stru
ture and let H = (A;S) be some hypergraphover the universe A of A. Let � : Ĥ ! H be a 
onformal 
over, obtained asabove. Interpret the relations in Â = (Â; : : :) minimal under the requirementthat the restri
tions ��ŝ to hyperedges ŝ 2 S(Ĥ), and hen
e its restri
tionsto all generi
 subsets ŝ � Â, be
ome partial isomorphisms:RÂ := [ŝ2S(Ĥ)(��ŝ)�1�RA��(ŝ)�:Lemma 22 For � : Â! A as above:(i) � : Â ! A is a surje
tive homomorphism; moreover, � is a partialisomorphism in restri
tion to every generi
 subset ŝ � Â, and thesystem of the ��ŝ has the ba
k-and-forth properties with respe
t to thehyperedges of H and the generi
 subsets of Â.(ii) For every s 2 S, A�s embeds isomorphi
ally into Â, with generi
 imagein Â.(iii) For all s 2 S and generi
 sets ŝ and ŝ0 with �(ŝ) = �(ŝ0) = s there isan automorphism of Â that �xes all �-�bres set-wise and maps ŝ to ŝ0.(iv) Every automorphism of A that preserves S admits a lift to an auto-morphism of Â. In parti
ular, if S is invariant under Aut(A), thenevery automorphism of A lifts to Â.(v) If H = (A;S) is su
h that S � S(A), then � : Â ! A is a guarded
over.The �rst two 
laims are obvious from the 
onstru
tion. Claims (iii)and (iv) are stri
tly analogous to the 
orresponding 
laims in Lemma 21above. Claim (v) uses the fa
t that every guarded subset of Â is by 
on-stru
tion 
ontained in a generi
 subset of Â; S � S(A) implies that theguarded subsets of A are 
ontained in hyperedges of H; the 
laim thenfollows by the last observation in (i).3 Two appli
ations3.1 Clique faithful EPPAWe prove Theorem 9. A Gaifman 
lique faithful EPPA extension is obtainedfrom a Herwig EPPA as a suitable relational 
over as follows.Given A, let B � A be a Herwig EPPA extension:(i) Every partial automorphism p of A extends to an automorphism of B.17



(ii) Every guarded tuple (or guarded set, or tuple in a relation) of B is theimage under some automorphism of B of a guarded tuple (or guardedset, or tuple in a relation) in A.Now apply the relational 
over 
onstru
tion of se
tion 2.2 based on thehypergraph H = (B;S) whereS = �s � B : f(s) � A for some f 2 Aut(B)	:Let � : B̂ ! B be the resulting 
over. As A � B forms a hyperedgeof H, A embeds isomorphi
ally into B̂, a

ording to Lemma 22 (ii). Let� : A ! B̂ be this embedding, Â = �(A) � B̂ the isomorphi
 image of Awhose universe Â � B̂ is a generi
 subset. We further 
laim that now(iii) every Gaifman 
lique of B̂ is Aut(B̂)-related to some Gaifman 
liqueof Â.(iv) every partial automorphism of Â extends to an automorphism of B̂.These 
laims prove that B̂ provides a Gaifman 
lique faithful EPPA exten-sion of A, if, without loss of generality we identify A with its isomorphi
image Â in B̂.For (iii), it follows from the general 
onstru
tion that every Gaifman
lique ŝ in B̂ forms a generi
 set in B̂, when
e its proje
tion is 
ontainedwithin some s 2 S. By the 
hoi
e of S, there is an automorphism f of Bwhi
h maps s into A � B. By Lemma 22 (iv) (our set S of hyperedgesis invariant under Aut(B)), there is a lift f̂ of f to an automorphism ofB̂. f̂ being a lift we �nd that �(f̂(ŝ)) � A. Therefore f̂(ŝ) and �(f(s)) �Â are two generi
 sets above f(s) � A. By Lemma 22 (iii) there is anautomorphism g of B̂ whi
h maps f̂(ŝ) to �(f(s)). The 
omposition g Æ f̂therefore maps ŝ into Â. Clearly then, g(f̂ (ŝ)) is a Gaifman 
lique in Â.(iv) is proved in a similar way. Let p̂ 2 Part(Â; Â). Clearly p̂ is the liftand isomorphi
 image of a partial isomorphism p of A. B has an automor-phism f whi
h extends p. Let f̂ be a lift of f to B̂, obtained a

ording toLemma 22 (iv). Choose g as a �bre-preserving automorphism that mapsf̂(dom(p̂)) to range(p̂) (both generi
 above range(p) � A), a

ording toLemma 22 (iii). Then g Æ f̂ extends p̂.The same argument yields the rami�ed version of Observation 11, if 
or-respondingly we start with an EPPA extension B � A whi
h does omit ho-momorphi
 images of some �nite 
olle
tion K of stru
tures. This additionalrequirement is trivially preserved, sin
e � : B̂! B is a homomorphism, 
f.Lemma 22 (i). 18



3.2 FMP and EPPA: the general patternWith the 
lique faithful variant of EPPA one 
an prove the �nite modelproperty (FMP) for CGF in 
omplete analogy with the proof given by Gr�adel[9℄ for GF, whi
h is based on the use of Herwig's EPPA. Indeed, the issuewhether or not CGF also enjoys the FMP had been one motivation to lookfor a 
lique faithful strengthening of Herwig's 
onstru
tion. This latter issueremained open even when the FMP for CGF was settled in [15℄. Beforewe pro
eed (in the next se
tion) to give a new and dire
t redu
tion fromFINSAT(CGF) to FINSAT(GF), it may be useful to survey the generalpattern in whi
h (Gaifman 
lique or guarded tuple) faithful EPPA extensionsgive rise to �nite models for (
lique or ordinarily) guarded formulae.We treat GF and CGF in parallel to highlight the uniform nature of theargument. Let ' be in GF or CGF, synta
ti
ally presented a

ording toObservation 14 (normalised quanti�
ation pattern). In both 
ases we �rstlyuse a Skolemisation pro
edure with respe
t to (guarded or 
lique guarded)subformulae of '. In e�e
t this means that we merely have to deal withformulae of the form:�8z:#(z)� ��(z) ^ �9y:#(x)� 
(x)� where ( #(x) = CG(x) for CGF#(x) = G(x) for GFwhere �, 
 are quanti�er-free, var(
) � fx : x in xg, var(�) � fz : z in zg,y and z disjoint, x = yz (we do not rule out the 
ase that either z or y isempty, though).Note Skolemisation for 
lique guarded subformulae of a given ' introdu
esa new Skolem predi
ate for ea
h su
h subformula. These new predi
atesmust not serve as guards, though. In other words the formulae CG(x) are�xed and only pertain to 
lique guardedness in (the redu
ts to) the originalvo
abulary of '.Starting from a (supposedly in�nite) model B of the Skolemisation of' we obtain a �nite model as a #-faithful EPPA extension of a suÆ
ientlyri
h �nite substru
ture of B, as follows. Let A � B be �nite and su
h thatall isomorphism types of (small) #-substru
tures of B are represented assubstru
tures of A. In the 
ase of CGF, more pre
isely, we limit the size ofthe 
lique guarded substru
tures under 
onsideration to the maximal widthof 
lique guards CG(x) in '. This is important as Gaifman 
liques (unlikeguarded sets) 
an be of unbounded size even for �xed �nite vo
abulary.19



We then get, for any #-faithful EPPA extension A� � A:B j= �8z:#(z)� ��(z) ^ �9y:#(x)� 
(x)�=) A� j= �8z:#(z)� ��(z) ^ �9y:#(x)� 
(x)�:For this 
laim, 
onsider an instantiation a for z in A� with A� j= #(a).As A� is #-faithful over A we may without loss of generality assume that ais in A.Therefore, a 
ounter example to �8z:#(z)� �(z) in A� would immediatelygive a 
ounter example in A and hen
e in B.Similarly, if B j= �8z:#(z)� �9y:#(x)� 
(x) and we 
onsider a in Asu
h that A� j= #(a) we know that B;a j= �9y:#(x)� 
(x). Let b besu
h that B;a;b j= #(x) ^ 
(x). Let B0 = B�ab. By the 
hoi
e of Awe have an isomorphi
 
opy (B00;a0;b0) of (B0;a;b) inside A. Let p be thepartial automorphism of A that maps a0 to a. Let f be an extension of pto an automorphism of A�. Then A�;a; f(b0) j= #(x) ^ 
(x), and hen
eA�;a j= �9y:#(x)� 
(x) as desired.3.3 A redu
tion from FINSAT(CGF) to FINSAT(GF)Finally, we present the promised translation from CGF to GF, based onSkolemisation for Gaifman 
liques. This translation ' 7! '� will be su
hthat every model of ' 
an be expanded to a model of '�. Moreover, '�implies ' over 
onformal stru
tures. This translation then obviously servesas a redu
tion from SAT(CGF) to SAT(GF), be
ause we merely have tounravel a model of '� to obtain a 
onformal model of '�, whi
h then alsois a model of '. Thus, we obtain:' 2 SAT(CGF) , '� 2 SAT(GF):In more detail, from ' 2 CGF we obtain '� 2 GF as follows. Forformulae of CGF and GF we appeal to the synta
ti
 normalisation of Ob-servation 14. Let r be the maximal width of 
lique guards CG(x) o

urringin ' and let R
 be a new relation symbol of arity r. Let G�(x) be for-mulae expressing guardedness with respe
t to the extended vo
abulary, R
in
lusive.In ' we repla
e any 
lique guarded quanti�
ations of the form(8y:CG(x))�(x) or (9y:CG(x))�(x)by their simply guarded forms over the extended vo
abulary(8y:G�(x))�(x) or (9y:G�(x))�(x);20



respe
tively. Finally add, as a 
onjun
t in '�, a formalisation in GF of'0 := 8x�R
x! CG(x)�;where CG(x) is for the old vo
abulary, R
 ex
lusive.Clearly every model of ' has an expansion that is a model of '0 andhen
e of '�: interpret R
 as the set of all 
lique guarded tuples of arity r.Conversely, a model of '� is also a model of ' provided it does nothave \false 
liques". If (A; R
) j= '�, then all tuples in R
 are indeedGaifman 
liques (i.e., 
lique guarded) in A as (A; R
) j= '0. But A 
ouldhave \false" Gaifman 
liques that are not 
overed by any guarded set of(A; R
). If, however, (A; R
) is 
onformal then (A; R
) j= '� implies A j= '.Indeed, in 
onformal models of '0, all 
lique guarded tuples are guarded,when
e G�(x), CG(x), CG�(x) are all equivalent: G�(x)) CG(x) uses '0;CG(x)) CG�(x) is trivial; CG�(x)) G�(x) is 
onformality.Therefore, as the usual �g-unravelling of any stru
ture yields a guardedbisimilar stru
ture that is 
onformal (albeit generally in�nite), we see that' is satis�able if and only if '� is satis�able. As Corollary 20 similarlyprovides �nite 
onformal guarded bisimilar 
ompanion stru
tures, we �ndthat in 
omplete analogy also ' 2 FINSAT(CGF) , '� 2 FINSAT(GF).Corollary 23 The translation ' 7! '� provides a simultaneous redu
tionfrom SAT(CGF) to SAT(GF) and from FINSAT(CGF) to FINSAT(GF).In parti
ular, the �nite model property for GF, [9℄, dire
tly implies the�nite model property for CGF, [15℄.Note The above translation is polynomial if we use a su

in
t formalisationof G(x) as indi
ated in 
onne
tion with Observation 14. Passage throughnon-standard syntax for GF and CGF may be avoided with an alternativetranslation, whi
h 
an also be kept polynomial in terms of the oÆ
ial syntaxfor both GF and CGF. Synta
ti
 normalisation a

ording to Observation 14has been 
hosen here for the sake of 
larity and to enable a more uniformpresentation of the 
entral idea in the translation. These 
onsiderations maybe important if one wants to make sure that the translation is 
ompatiblewith the 
omplexities established for SAT(CGF) and SAT(GF) in [8, 9℄.Referen
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