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0 Introduction

The main construction in this paper is presented in terms of hypergraphs,
i.e., structures consisting of just a universe together with a collection of sub-
sets of the universe. The main motivation behind the construction, however,
arises in the context of ordinary relational structures; and here primarily
their model theory with respect to guarded logics and extension properties
for partial automorphisms.

Guarded logics, as introduced by Andréka, van Benthem and Németi
in [1], play an important role in transferring some of the good algorithmic
properties of modal logics to the setting of general relational structures. In
particular, they provide natural decidable fragments of first-order logic at
an interesting level of expressiveness. The guarded fragment GF of first-
order logic, and its further generalisation to the clique guarded fragment
CGF, capture relativised modes of quantification that restrict the access to
certain configurations of elements in a structure. For GF, only guarded con-
figurations, consisting of elements that coexist within some relational ground
atom (their guard), are simultaneously accessible. For CGF, more general
configurations consisting of elements that are pairwise guarded (cliques in
the Gaifman graph, see below) are accessible.

Just as bisimulation equivalence is the fundamental invariance for modal
logic, there is a corresponding notion of guarded bisimulation equivalence
which provides the crucial invariance for GF. The study of guarded bisim-
ulation invariance gives rise to tree-like guarded bisimilar companion struc-
tures — indistinguishable from the given structure in GF but coming with a
natural tree decomposition. They are obtained through a process of guarded
unravelling, analogous to bisimilar unravellings of graphs or transition sys-
tems into actual trees. These tree-like companions feature prominently in
many model theoretic arguments for GF; compare, for instance, [9, 10, 11].
But guarded unravellings, even of finite structures, are infinite in general.
They therefore do not usually lend themselves to arguments in the finite
model theory of guarded logics.

Recall that the Gaifman graph G(2) of a relational structure 2 = (4, ...)
has for its vertex set the universe A of 2, and edges between any two distinct
elements that occur together in a common relational ground atom of 2. We
are here interested in cliques in the Gaifman graph, or Gaifman clique for
short. A Gaifman clique in 2 is formed by any subset of A such that any two
distinct elements inside this subset are linked by an edge of G(2l), i.e., occur
together in a ground atom of 2. There are two motivations for looking at



Gaifman cliques. From the point of view of guarded logics, Gaifman cliques
are precisely the configurations accessible in the clique guarded fragment
CGF. More importantly, Gaifman cliques arise as natural obstacles for tree
decompositions of relational structures — in fact certain kinds of Gaifman
clique, besides certain kinds of cycle, are the only types of obstacle (see
section 1.2 below).

There are two essentially different kinds of Gaifman clique. Cliques of
the first kind are those induced by an individual relational ground atom;
any such clique is therefore guarded, and thus cannot be avoided in guarded
bisimilar companion structures, not even in the guarded unravelling of the
given structure.

Cliques of the second kind are incidental in the sense that several rela-
tional ground atoms play together to induce a clique configuration in the
Gaifman graph, but no ground atom covers the entire clique. Such cliques
are not guarded, they are obstacles for tree decompositions, and they would
be broken up in the guarded unravelling of the given structure. Of course,
the existence of this second kind of clique is precisely what makes CGF more
expressive than plain GF.

When looking at hypergraphs rather than relational structures we mainly
abstract away from the actual relational information and only retain the hy-
pergraph structure induced by the guarded subsets, i.e. the subsets covered
by single relational ground atoms. As remarked above, the hypergraph point
of view directly relates to accessibility via guarded quantification, since the
hyperedges are precisely the guarded subsets.

Note that in general this filtered view of a relational structure still re-
tains strictly more information than the Gaifman graph, at least for vocab-
ularies which have relations of arities greater than 2. One way to look at
conformality of hypergraphs (in our case, the induced hypergraph), is that
precisely in the conformal case the hypergraph structure is fully determined
by the induced graph structure (in our case, the Gaifman graph). By defini-
tion, conformality means that the hyperedges are precisely the cliques (the
guarded subsets are precisely the Gaifman cliques). In the world of guarded
logics, then, a conformal hypergraph pattern corresponds to a structure in
which clique guarded quantification is no stronger than ordinary guarded
quantification, since all cliques are (covered by) hyperedges.

In this paper, we will construct finite conformal companions (covers) for
finite hypergraphs. Our construction serves as a partial finite analogue of
the generally infinite tree-like unravellings. As with unravellings, the rela-
tionship between these conformal covers and the base structure is simulta-



neously one of a “cover” and one of bisimilarity, mediated by local bijections
governed by back-and-forth conditions with respect to hyperedges. The hy-
pergraph construction lifts to the level of relational structures, where we
obtain a cover which induces a guarded bisimulation, mediated by local iso-
morphisms governed by back-and-forth conditions with respect to guarded
sets.

The central hypergraph construction is detailed in section 2, proving
our main theorem for hypergraphs, Theorem 7. This section can be read
independently, as it is based only on some preliminaries from sections 1.1,
1.2 and 1.3. The remainder of the paper links the main theorem to relational
structures. The relational counterpart of the main theorem, in particular, is
stated as Corollary 20 and further explored with respect to the two major
applications in section 3.

As to the two applications mentioned above, section 3.3 deals with a
reduction from the clique guarded fragment CGF to the guarded fragment
GF, which (unlike guarded unravellings) is applicable in restriction to finite
models. So we obtain a direct reduction for finite satisfiability and hence a
new proof of the finite model property for CGF.

In section 3.1 we apply our results in the construction of finite exten-
sions of partial automorphisms of the base structure to automorphisms of an
extended structure (EPPA: extension property for partial automorphisms).
Herwig’s EPPA construction [12, 14], can be taken further to yield an exten-
sion whose only Gaifman cliques are the (unavoidable) automorphic images
of Gaifman cliques already present in the base structure. See Theorem 9
for the statement of our main result in this context. Such a ramification of
EPPA has repeatedly been pointed out as an interesting open problem, not
least because of its bearing on the finite model property for CGF. Further
corollaries provide a simplified route to the EPPA for the classes of K,,-free
finite graphs and Henson digraphs, as well as the EPPA for the class of
conformal finite relational structures of any relational type.

1 Preliminaries

1.1 Hypergraphs and relational structures

We consider hypergraphs H = (A, S) where A is any set and S C P(A) any
collection of subsets. The members of S are called hyperedges. Occasionally
we write S(H) for the set S of hyperedges in H = (4, S).

Relational structures are denoted 2 = (A4, R), A the universe of 2, R the



tuple of relations as interpreted in 2{. We shall exclusively consider finite
and purely relational vocabularies. The width of a relational vocabulary is
the maximum of the arities of its relations.

We are mainly interested in the behaviour of relational structures with
respect to guarded logics (see section 1.5), where only guarded subsets and
tuples are directly accessible by quantification; the relevant basic definitions
are given in the first of the two following definitions. Much of the guarded
behaviour of relational structures is captured at the level of the associated
hypergraph, which just describes the pattern of the accessible patches devoid
of the actual relational information, as defined in the second definition below.

Definition 1 Let 2 = (4, R) be a relational structure.

(i) A subset s C A is guarded if s is a singleton or s = {a: a in a} for
some a € R, R in R.

(ii) A guarded subset is mazimally guarded if it is not a proper subset of
any other guarded subset.

(i) A subset s C A is clique guarded if for any two a,a’ € s there is some
guarded subset containing a and a’.

(iv) A k-tuple a € A¥ is (clique) guarded in 2 if a € s* for some (clique)
guarded set s C A.

Definition 2 The hypergraph associated with a relational structure 2 is the
hypergraph H(2() = (A, S(2()) where

S(A) = {s C A: s maximally guarded in 2}.

As is common in hypergraph theory (cf. [4]), we associate an induced
graph G(H) with every hypergraph H. Note that if H = H(2) is the hy-
pergraph induced by a relational structure 2, then G(H) is just the Gaifman
graph G(2l) associated with 2 (cf. [6]).

Definition 3 The graph associated with a hypergraph H = (A, S) is the
undirected graph G(H) = (A, E) where

E = {(a,d’) € A% a#d and a,d’ € s for some s € S}.

Definition 4
(i) A hypergraph H = (A, S) is called conformal if every clique of G(H)
is contained within some hyperedge of H.

(ii) A relational structure A is called conformal if all its clique guarded
subsets are contained in guarded sets, i.e., if H(2) is a conformal
hypergraph.



1.2 Tree decompositions

The notion of conformality as expressed in Definition 4 comes from classical
hypergraph theory, cf. [4]. The relational counterpart is just a direct ana-
logue. Conformality is closely linked to the notion of tree-decomposability
and acyclicity of hypergraphs. We briefly outline these connections for the
sake of background and context, not because we shall directly draw on them
in the sequel. A finite hypergraph is tree-decomposable if it is reducible to
the empty hypergraph by repeated application of the following (cf. Graham’s
algorithm in [2] or the GYO-reducts in [7]):

— delete (from the set of hyperedges) some hyperedge that is contained
within some other hyperedge;

— delete (from the universe and any hyperedge) some vertex a that is
covered by at most one hyperedge.

An infinite hypergraph is tree-decomposable if all its finite induced sub-
hypergraphs are.

It is not hard to see that conformality is necessary for tree-decomposa-
bility. Another necessary condition for H to be tree-decomposable is that
its associated graph G(H) (cf. Definition 3) is chordal: any cycle in G(H)
of length greater than 3 must have a chord, i.e., an edge linking two vertices
that are not next neighbours along the cycle. Together these two condi-
tions in fact characterise tree-decomposability: a hypergraph H is tree-
decomposable if and only if it is conformal and (the associated graph G(H)
is) chordal, see e.g. [2]. In the literature, conformal chordal hypergraphs are
mostly called acyclic.

The concept of tree-decomposability of relational structures, which is
of great importance in the theory of relational databases [2] and also fig-
ures prominently in the model theory of guarded logics [9], is closely re-
lated to the hypergraph theoretic notion. Indeed, the usual notion of tree-
decomposability of relational structures can be captured as follows. A re-
lational structure 2 is tree-decomposable (of width k) if there is a tree-
decomposable hypergraph (A, S) over the universe A of 2 such that S D
S() and |s| < k+ 1 for all s € S. This is equivalent to the charac-
terisation that 2 is tree-decomposable of width k if its Gaifman graph is
tree-decomposable of width &, i.e., has tree width at most k, in the graph
theoretic sense [5]. The notions of tree-decomposability and tree-width for
relational structures are thus straightforward extensions of the underlying
notions for plain graphs. Tree-decomposability of the hypergraph H (2l) as-
sociated with a relational structure 2, however, is a stronger notion. While



arbitrary sets may be used as patches in a tree-decomposition of 2 or of its
Gaifman graph G(21), only hyperedges — i.e., guarded sets — are admissible
as patches in tree-decompositions of H(2). Thus, tree-decomposability of
H(2l) implies tree-decomposability of 2 (of tree width less than the width
of the vocabulary of ), but not vice versa. Consider for instance a cycle
of length n, with nodes {0,1,...,n — 1} and edges {i,i + 1} (fori <n —1)
and {n — 1,0}. This has tree width 2 as a graph (using patches {0,4,i + 1}
(0 <i < n—1) of size 3), but it is not tree-decomposable as a hypergraph.

1.3 Hypergraph bisimulations and covers

The following notion of bisimilarity between hypergraphs is the natural
adaptation of the usual Ehrenfeucht—Fraissé style notion of structural equiv-
alence to the setting where “structure” is induced by hyperedges. Its rela-
tionship with the notion of guarded bisimilarity is apparent when we think
of hypergraphs associated with relational structures, as will be made explicit
in section 1.6, in particular Observation 16 and Lemma 19.

Definition 5 A bisimulation between hypergraphs H = (A,S) and H' =
(A", S") is a non-empty collection Z of partial 1-1 maps between A and A’
whose domains and ranges are hyperedges in H and H', respectively, with
the following back-and-forth property w.r.t. hyperedges:
forth if p: s — s’ isin Z and if t € S, then there is some ¢: t — ' in Z such
that p and ¢ agree on their common domain.
back if p: s — s’ isin Z and if ¢’ € S’, then there is some ¢: t — ' in Z
such that p~! and ¢! agree on their common domain.
We write Z: H ~ H' if Z is a bisimulation between H and H', and just
H ~ H' if there is such a bisimulation.

Definition 6 A cover of a hypergraph H is a hypergraph H together with
a surjective map 7w: H — H which induces a hypergraph bisimulation:

Z(m): H~H where Z(r) = {m15: 5 € S(f[)}
We write 7: H ~ H to indicate this.

It should be noted that the familiar (tree-like) unravelling of a hyper-
graph, which results in a conformal (indeed acyclic, i.e., conformal and
chordal) hypergraph, actually yields an acyclic cover, which in general is
infinite. At least as far as conformality is concerned, our main result pro-
vides a substitute that is applicable within the context of finite hypergraphs.



Theorem 7 Fwvery finite hypergraph H admits a cover w: H~H by a finite
and conformal hypergraph H.

We do not know whether this can be strengthened to conformal and k-
chordal covers for every k, where k-chordality would forbid chordless cycles
of lengths less than k. Such a parameterised version of hypergraph acyclicity
would be the most one can hope for in finite hypergraphs.

Before going into the details of our construction, which is sufficiently
canonical to satisfy some additional nice automorphism properties, we pre-
pare the stage for the two applications mentioned above — one dealing with
the relationship between the guarded fragment GF and its more expressive
extension CGF; the other one focusing on extension properties for partial
automorphisms over finite relational structures.

Note The following three sections, which pave the way for those two appli-
cations, can be read or skipped selectively without loss of coherence.

1.4 Extension properties for partial automorphisms

A partial isomorphism between relational structures 2 and B of the same
type is a partial 1-1 map from A to B which induces an isomorphism between
the substructures induced on its domain and range. We write Part(2, B)
for the set of partial isomorphisms between 2l and 2. For a single relational
structure 2, partial isomorphisms p € Part (2, ) are referred to as partial
automorphisms. Aut(2l) stands for the automorphism group of . Tf A* D A
is an extension of 2, we say that an automorphism f € Aut(2*) extends
p € Part(, ) if p = fldom(p).

For the second part of the following definition let # be some globally
defined class of objects over relational structures of the type of 2. Examples
are (Gaifman-)edges, tuples in a specific relation R, guarded tuples, clique
guarded tuples (Gaifman cliques). EPPA stands for Extension Property for
Partial Isomorphisms.

Definition 8 Let 2 C A*.
(i) A* is an EPPA extension of 2 if every p € Part(2(,2() extends to an
automorphism of 2*.
(ii) A* is a #-faithful extension of 2 if every # over 2* is the image of
some # over 2 under some automorphism of 2*.



(iii) A class of relational structures has the #-faithful extension property
for partial automorphisms, or #-EPPA, if for every structure 2l in that
class there is a #-faithful EPPA extension 2* also in that class. !

The fundamental EPPA results are the following. They are usually
stated without particular attention to levels of faithfulness. However, one
can prune an arbitrary EPPA extension in a straightforward way to obtain
one that is faithful as stated. Indeed, if in an arbitrary EPPA extension
2A* D A, we replace relation R*" by the Aut(*)-closure of R¥, then the
resulting structure is an EPPA extension of 2 that is faithful with respect
to tuples in R, cf. [14].

Hrushovski’s EPPA Theorem [16] The class of finite graphs has the
EPPA; faithfulness with respect to edges is implicit. A greatly simplified
and elegant proof of Hrushovski’s theorem — combinatorial rather than group
theoretic — is presented in [14, section 4.1].

Herwig’s EPPA Theorem [12] The class of finite relational structures
(of any fixed finite relational type) has the EPPA; faithfulness with respect
to guarded tuples (or guarded sets) is implicit.

We shall show the following by way of subjecting the result of a Herwig
EPPA extension to a suitably adapted conformal cover construction.

Theorem 9 The class of finite relational structures (of any fized finite re-
lational type) has the Gaifman clique faithful EPPA.

Corollary 10 The following classes have the EPPA:
(1) Finite triangle-free graphs. [12]
(11) Finite K,-free graphs, for everyn > 3. [13]
(113) ‘Henson digraphs’: finite directed graphs with no subgraph isomorphic
to a tournament in K, where IC is an arbitrary class of finite tourna-
ments. [13]

(iv) Finite conformal T-structures, for every relational type T.

Note that (i)—(iii), even though not new, are here obtained by a much
simpler and entirely combinatorial construction, if we use our construction

'In fact this is a simplified version of EPPA, compared to the notion introduced in [14];
for the classes to be considered here, however, this causes no loss of generality.



on top of Lascar’s simple construction for Hrushovski’s theorem in [14, sec-
tion 4.1]. Indeed, this new combinatorial approach to EPPA may be re-
garded as a further stepping stone in the methodological development of
EPPA results so far, which has been markedly dual along group-theoretic
versus combinatorial lines. While Hrushovski’s original EPPA for graphs
[16] as well as Herwig’s generalisation to relational structures of higher arity
[12] are group-theoretic, Lascar’s proof of EPPA for graphs and its gener-
alisation to higher arity in [14] are purely combinatorial. Now EPPA for
K, -free graphs and Henson digraphs, previously only available via group
theory, gains an alternative, fully combinatorial account with the present
construction.

Observation 11 As our construction just adds a further extension layer,
which moreover projects homomorphically onto its base structure, it also
remains compatible with conditions concerning forbidden homomorphic im-
ages, in the sense of [13] and of the Herwig-Lascar ramification of Herwig’s

EPPA theorem, [14].

1.5 Guarded logics

Note This section and the next are not necessary for a coherent account
of our hypergraph construction in section 2 and its EPPA application in
section 3.1. Their topic will only be resumed in sections 3.2 and 3.3.

The guarded fragment of first-order logic, GF, was introduced by Andréka,
van Benthem and Németi [1] as a first-order fragment capturing the spirit
of modal quantification in the broader relational setting. Intuitively, in GF
we may quantify over guarded tuples.

We write FO for first-order logic; for a first-order formula ¢, var(y)
denotes the set of all variables occurring in ¢, free(¢) the set of variables
that have a free occurrence in ¢.

Definition 12 The formulae of GF C FO are obtained inductively as the
closure of atomic formulae (in a relational vocabulary 7, with equality) under
Boolean connectives and the following quantification rules. For every ¢(x) in
GF and every T-atom «(x) and any tuple y such that {y: y in y}Ufree(p) C
var(«), the following are also formulae of GF:

vy (a(x) = ¢(x)),
Ty (a(x) A p(x)).

The semantics is just the usual one for first-order logic.

10



Among the extensions of the guarded fragment that have since been
considered we single out the following, which was introduced under the name
of “clique guarded fragment”, CGF, by Grédel in [8]. Under the name of
“packed fragment”, a similar extension of GF was considered by Marx [17];
indeed the packed and clique guarded fragments are syntactic variants of
the same logic. Essentially, these fragments have quantification over clique
guarded tuples rather than just guarded tuples. Correspondingly, CGF is
known to be strictly more expressive than GF. In fact, CGF subsumes
the loosely guarded fragment LGF of van Benthem [3]. LGF itself was there
introduced as an important proper extension of GF to capture and generalise
quantification patterns like the UNTIL construct in temporal logic. CGF
further extends — arguably in the most natural way — the concept of loosely
guarded quantification to the setting of vocabularies of width greater than 2.

The following syntactic conventions regarding CGF will for our purposes
be superseded by the semantically equivalent ones to be given in Observa-
tion 14 below.

Definition 13 The formulae of CGF C FO are obtained inductively with
the following more liberal quantification rule.

Let y(x) in free variables x be a conjunction A, ,/c, B(z,2') over for-
mulae B(z,z') of the form Jza(z,z’,z), where « is an atom in which the
displayed variables all occur, and the z is disjoint from the x. (Semantically
v forces any instantiation of free(y) to form a Gaifman clique.) Then, if
p(x) € CGF and {y: y in y} U free(y) C free(ry), the following are also in
CGF:

Vy (v(x) = ¢(x)),

Fy (v(x) A p(x)).

It is sometimes useful to resort to the following “normalisation” for
guarded or clique guarded quantification. For a fixed finite vocabulary 7
and variable tuple x = (z1,...,z,) we fix formulae G(x) and CG(x) which
uniformly define the sets of those n-tuples that are guarded, respectively
clique guarded in any 7-structure 2A:

G = {a€ A": A= Gla]} ={a€ A": a guarded in A}
CG[A] = {a€ A": A = CGla]} = {a € A": a clique guarded in A}

Note that G(x) and CG(x) can actually both be formalised in GF, for
instance,

CGo (X) = /\x,x’Ex Va Jz a(x, .CL‘,, Z),

11



where a runs through all 7-atoms in which the displayed variables do occur
and the z are from a fixed supply disjoint from x. Some syntactic overhead
can be avoided, however, in equivalent FO formalisations that do not adhere
to the official syntax of GF, as for instance in

CG(X) - /\z,z’ex VR HZ(RZ A szz z=2zN \/z€z r' = Z)a

where R ranges over all relations in 7 (and equality), and the z are as above.
Similarly, for G(x) we may use

G(x) = VpIz(Rz A Nyex Vioen @ = 2).

One can then characterise GF and CGF — or rather logics that are mere
syntactic variants of them — through the stipulation of the following quan-
tification rules. Translations between this modified syntax and the official
standard are straightforward. The idea simply is to cover specific guards
a(x) or y(x) for quantification in GF or CGF by the uniform guards G(x) or
CG(x), as in replacing Yy (y(x) = ¢(x)) by Vy(CG(x) = (y(x) = ¢(x))).

Observation 14 Let formulae G(x) and CG(x) globally define the sets of
guarded, respectively clique guarded tuples x. Then every formula of GF is
logically equivalent to a first-order formula in which all quantifications are
of the form indicated below, and vice versa. (We simultaneously introduce
shorthand for relativised quantification.)

(Vy.G(x))p(x) == Vy (G(x) = ¢(x)),
(Fy.G(x))p(x) =Ty (G(x) A p(x)),

where {y: y iny} Ufree(p) C {z: = in x}.
Similarly for CGF one uses the formulae CG(x).

1.6 Guarded bisimulations

The Ehrenfeucht-Fraissé equivalence associated to GF, guarded bisimulation
equivalence, generalises bisimulation equivalence and is precisely adapted to
capture quantification over guarded tuples. Also compare our hypergraph
bisimulations in Definition 5.

Definition 15 Let 20 and 2’ be relational structures of the same type. A
guarded bisimulation between 2 and 2’ is a non-empty collection of partial
isomorphisms Z C Part(2,2l'), where all p € Z have as domains/ranges
guarded sets in A /2’, with the following back-and-forth property for guarded
sets (s, t and ', ¢’ guarded in 2 and 2, respectively):

12



forth for every p: s — s’ in Z and every ¢ there is some ¢: t — t' in Z such
that p and ¢ agree on their common domain.
back for every p: s — s’ in Z and every t' there is some ¢q: t — ' in Z such
that p~! and ¢! agree on their common domain.
We write Z: A ~, A’ if Z is a guarded bisimulation between 2 and 2,
and A ~, 2" if there is such.

The similarity between hypergraph bisimulations and guarded bisimu-
lations is apparent when we look at hypergraphs associated with relational
structures.

Observation 16 Any guarded bisimulation Z: A ~, A’ induces a hyper-
graph bisimulation between the associated hypergraphs Z: H(2A) ~ H(2A').
Conversely, any hypergraph bisimulation Z: H() ~ H(") such that Z C
Part (A, ") induces a guarded bisimulation. In other words: guarded bisim-
ulations ‘are’ hypergraph bisimulations that respect the relational structure.

The following semantic characterisation theorem is a central result from
[1], underlining the role of guarded bisimulations and the naturalness of GF.

Theorem 17 For every first-order sentence ¢ in a relational vocabulary the
following are equivalent:
(1) ¢ is ivariant under guarded bisimulations:
A~ A implies A = & A = .
(11) ¢ is equivalent to a sentence of GF.

Definition 18 A guarded cover of a relational structure 2 is a structure A
of the same relational type as 2 together with a surjective homomorphism
m: A — A which induces a guarded bisimulation:

Z(m): A~ A where Z(m) = {n]5: 5 €S2}
We write 7: 2 ~ 2 to denote this.

It should be noted that the guarded unravelling of relational structures
results in guarded covers by (generally infinite) structures 2 of bounded tree
width, whose associated hypergraph H (ﬁl) moreover is tree-decomposable.
Gradel’s generalised tree model property of guarded logic GF [9] actually
applies in the stronger sense that every satisfiable sentence of GF has a
model 2 for which H(2l) is tree-decomposable.

It is straightforward to see that guarded covers are related to bisimilar
covers of hypergraphs in the following sense.

13



Lemma 19 Let 2 be a relational structure, H = H (L) the induced hyper-
graph. Then every hypergraph cover w: H ~ H induces a canonical guarded

cover m: A ~, A, where A is a structure of the same relational type as A
over the universe A of H, such that H(2l) = H.

One merely interprets all relations over the universe A of H so as to turn
the restrictions 7[$ into partial isomorphisms, for all hyperedges s € S.
So we have the following corollary to Theorem 7.

Corollary 20 FEvery finite relational structure 24 admits a guarded cover
m: A ~, A where A is finite and conformal.

2 Construction of the conformal cover

2.1 Conformal covers for hypergraphs

This section is devoted to the construction which proves Theorem 7. Fix a
finite hypergraph H = (A, S). We may assume that A ¢ S, else H is already
conformal. Let

U:={u§A: for all s € S, u@s}.

So U is non-empty and consists precisely of the subsets of A that must not
be the projections of cliques in the cover. Consider the product

Ax T ful,
uelU

where we identify a natural number n (in our case n = |u|, the cardinality
of u) with the set n = {0,...,n — 1}. A typical element of the product
thus can be regarded as a pair (a, x,) whose second component is a function
Xa: U — N such that x,(u) < |u| for all u € U. The universe A of the
desired cover will consist of those elements (a, x,) for which

Xa(u) =0< a & u, for allu € U.

Note that this stipulation leaves a range {1,...,|u| — 1} of size smaller than
|u| for the values x,(u) whenever a € u.

A= {(a,xa) € Ax [] lul: forall u € U, xa(u) =0 a ¢ u}.
uelU

We let 7 be the natural projection 7: A — A, given by 7(a, x.) = a.

We say that a subset § C Ais generic if
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(i) m|$ is injective, i.e., for any two distinct elements (a, x,) and (b, x3) of
$ we have a # b.
(ii) for any two distinct elements (a,x,) and (b, xp) of § and u € U: if
a,b € u then x,(u) # xp(u).
Note that (ii) can be rephrased as follows: for every u, the following function
X.(u) is injective (where (a, x,) is the element above a in §):

x(u):unm(§) — {1,...,|ul — 1}
a — Xa(u).

It follows immediately that the projection 7(8§) of any generic set § must
be contained in some hyperedge s of H. Otherwise we would have 7(8) = u
for some u € U, and by condition (ii), for that u, x_(u): v — {1,..., |u|—1}
would have to be an injection which is clearly absurd. For the hyperedges
of H we now choose

S = e A: § generic and 7(8) € S}.

In order to establish that 7: H ~ H is indeed a cover, we claim that the

system . A
Z={7r[§:§€5}:H~H

is a hypergraph bisimulation. Note that the 7[5 are bijections whose domains
are hyperedges of H and whose ranges are hyperedges of H.

The forth-property is obvious. Consider the back-property for some
p=m]8: 8§ — s = 7w(8), and some hyperedge s’ € S of H. We need to
find a generic set § with 7(§') = s’ and such that 7(§N§) = snNs, or
(equivalently) such that & N7~ !(sNs’) = sN7~(sNs'). Then 7|4 is
as required by the back property. For the desired s’ it remains to fix, for
every a € s'\ s, the values x,(u) such that x_(u): uns — {1,...,|u| — 1}
is injective for every single u. Consider a fixed u € U. Observe that u Z s,
whence |u N s'| < |u]. That part of x_(u) over u N s N s’, which is already
fixed, is injective by genericity of §. We can therefore extend the injection
X_(u) from uNsN s’ to an injection over all of uN s’ as desired. This finishes
the proof that m: H ~ H is a bisimilar cover.

Clearly H is conformal. For, if § C A is a clique in G (I—AI ), then any two
distinct elements (a, x4) # (b, x») of § must be elements of some generic set
in A. It follows that a # b and Xa(u) # xp(u) whenever a,b € u. So § is
a generic subset. Therefore 7(3) C s’ for some s’ € S. Arguing exactly as
in the proof of the back-property for m, we find a hyperedge §' of H above
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s' for which § C §. So every clique § is contained in a hyperedge of H as
required.

This finishes the proof of the theorem. We collect some further useful
properties of the cover m: H ~ H in the following lemma. These automor-
phism properties reflect on the canonical nature of our construction and will
be essential for the EPPA application.

Lemma 21 Let the conformal cover m: H ~ H be obtained according to the
above construction.

(i) For every s € S and generic sets § and §' above s (i.e., with m(8) =
m(8') = s) there is an automorphism f of H that fizes all 7-fibres
set-wise and maps 5 to §'.

(11) Every automorphism f of H admits a lift to an automorphism f of H:
fGAut(I:I) and o f = for.

For the first claim let 8, &', s be as stated. For every a € s let (a, x,) and
(a,x,) be the elements above a in § and &', respectively. For u € U consider
the set

{(Xa(u), x5 (w): @ € s Nu}.

Note that this set is the graph of a partial bijection p0 on {1,...,|u| — 1}.
This is a direct consequence of the genericity of 5 and §': if a,b € uNs
are distinct then so are y,(u) and x,(u) (genericity of §) as well as /. (u)
and x}(u) (genericity of §'). Extend every p{) to a full permutation p, of
|u| which fixes 0. It is easy to check that the following mapping, which is
defined on all of 4, is a fibre-preserving automorphism that maps § to §':

(a,Xa) = (a,Xa)  where x5 (u) = pu(Xa(u))-

For the second claim consider some f € Aut(H). Then the following
map f is as desired:

N

f(a:xa) = (b.x)  where { ) (1)

That f € Aut(I:I ) relies on the fact that f preserves S and hence also U.

2.2 Related covers for relational structures

While Corollary 20 directly follows from Theorem 7, we briefly indicate
what one gets if instead of H () we use a different (in particular, richer)
hypergraph over A to construct an induced cover.
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Let 2 be a relational structure and let H = (A, S) be some hypergraph
over the universe A of 2. Let 7: H — H be a conformal cover, obtained as
above. Interpret the relations in 2 = (A, ...) minimal under the requirement
that the restrictions 7[5 to hyperedges § € S (I:I ), and hence its restrictions
to all generic subsets § C A, become partial isomorphisms:

R*:= | (n19) (B (3)).

3€S(H)

Lemma 22 For 7: A — 2 as above:

(i) : A — Ais a surjective homomorphism; moreover, ™ is a partial
isomorphism in restriction to every generic subset § C A, and the
system of the m[§ has the back-and-forth properties with respect to the
hyperedges of H and the generic subsets of A.

(ii) For every s € S, U|s embeds isomorphically into él, with generic image
in A.

(iii) For all s € S and generic sets § and §' with w(8) = w(8') = s there is
an automorphism onAl that fizes all w-fibres set-wise and maps § to §'.

(1v) Every automorphism of A that preserves S admits a lift to an auto-
morphism of A. In particular, if S is invariant under Aut(), then
every automorphism of U lifts to 2.

(v) If H = (A,S) is such that S D S(A), then m: A — A is a guarded

COVEr.

The first two claims are obvious from the construction. Claims (iii)
and (iv) are strictly analogous to the corresponding claims in Lemma 21
above. Claim (v) uses the fact that every guarded subset of 2 is by con-
struction contained in a generic subset of A; S O S(2A) implies that the
guarded subsets of 2l are contained in hyperedges of H; the claim then
follows by the last observation in (i).

3 Two applications

3.1 Clique faithful EPPA

We prove Theorem 9. A Gaifman clique faithful EPPA extension is obtained
from a Herwig EPPA as a suitable relational cover as follows.
Given 2, let B D 2 be a Herwig EPPA extension:

(i) Every partial automorphism p of 2 extends to an automorphism of 8.
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(ii) Every guarded tuple (or guarded set, or tuple in a relation) of 9B is the
image under some automorphism of 9B of a guarded tuple (or guarded
set, or tuple in a relation) in 2.

Now apply the relational cover construction of section 2.2 based on the
hypergraph H = (B, S) where

S ={s C B: f(s) C A for some f € Aut(B)}.

Let m: B — B be the resulting cover. As A C B forms a hyperedge
of H, A embeds isomorphically into B, according to Lemma 22 (ii). Let
p: A — B be this embedding, A = p(2A) C B the isomorphic image of A
whose universe A C B is a generic subset. We further claim that now

(iii) every Gaifman clique of B is Aut(B)-related to some Gaifman clique
of .

(iv) every partial automorphism of 2 extends to an automorphism of B.

These claims prove that B provides a Gaifman clique faithful EPPA exten-
sion of 2, if, without loss of generality we identify 2 with its isomorphic
image 2 in B.

For (iii), it follows from the general construction that every Gaifman
clique § in B forms a generic set in B, whence its projection is contained
within some s € S. By the choice of S, there is an automorphism f of B
which maps s into A C B. By Lemma 22 (iv) (our set S of hyperedges
is invariant under Aut(B)), there is a lift f of f to an automorphism of
B. f being a lift we find that 7(f(3)) € A. Therefore f(3) and p(f(s)) C
A are two generic sets above f(s) C A. By Lemma 22 (iii) there is an
automorphism ¢ of B which maps f(é) to p(f(s)). The composition g o f
therefore maps & into A. Clearly then, g(f(3)) is a Gaifman clique in 2.

(iv) is proved in a similar way. Let p € Part(ﬁl, ﬁl) Clearly p is the lift
and isomorphic image of a partial isomorphism p of 2. 96 has an automor-
phism f which extends p. Let f be a lift of f to ‘3, obtained according to
Lemma 22 (iv). Choose g as a fibre-preserving automorphism that maps
f(dom(p)) to range(p) (both generic above range(p) C A), according to
Lemma, 22 (iii). Then g o f extends p.

The same argument yields the ramified version of Observation 11, if cor-
respondingly we start with an EPPA extension 98 D 2 which does omit ho-
momorphic images of some finite collection K of structures. This additional
requirement is trivially preserved, since : B — Bisa homomorphism, cf.
Lemma 22 (i).
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3.2 FMP and EPPA: the general pattern

With the clique faithful variant of EPPA one can prove the finite model
property (FMP) for CGF in complete analogy with the proof given by Grédel
[9] for GF, which is based on the use of Herwig’s EPPA. Indeed, the issue
whether or not CGF also enjoys the FMP had been one motivation to look
for a clique faithful strengthening of Herwig’s construction. This latter issue
remained open even when the FMP for CGF was settled in [15]. Before
we proceed (in the next section) to give a new and direct reduction from
FINSAT(CGF) to FINSAT(GF), it may be useful to survey the general
pattern in which (Gaifman clique or guarded tuple) faithful EPPA extensions
give rise to finite models for (clique or ordinarily) guarded formulae.

We treat GF and CGF in parallel to highlight the uniform nature of the
argument. Let ¢ be in GF or CGF, syntactically presented according to
Observation 14 (normalised quantification pattern). In both cases we firstly
use a Skolemisation procedure with respect to (guarded or clique guarded)
subformulae of ¢. In effect this means that we merely have to deal with
formulae of the form:

CG(x) for CGF
G(x) for GF

#(x)

(VZ.#(Z)) (,B(Z) A (Ely.#(x)) fy(x)) where {

x)

where 3, v are quantifier-free, var(y) C {z: z in x}, var(f) C {z: z in z},
y and z disjoint, x = yz (we do not rule out the case that either z or y is
empty, though).

Note Skolemisation for clique guarded subformulae of a given ¢ introduces
a new Skolem predicate for each such subformula. These new predicates
must not serve as guards, though. In other words the formulae CG(x) are
fixed and only pertain to clique guardedness in (the reducts to) the original
vocabulary of ¢.

Starting from a (supposedly infinite) model B of the Skolemisation of
¢ we obtain a finite model as a #-faithful EPPA extension of a sufficiently
rich finite substructure of B, as follows. Let 2 C B be finite and such that
all isomorphism types of (small) #-substructures of 9B are represented as
substructures of 2. In the case of CGF, more precisely, we limit the size of
the clique guarded substructures under consideration to the maximal width
of clique guards CG(x) in ¢. This is important as Gaifman cliques (unlike
guarded sets) can be of unbounded size even for fixed finite vocabulary.
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We then get, for any #-faithful EPPA extension 20* D :

B = (Vz.4#(2)) (B(z) A Fy-#(x)) 7(x))
= A = (Vz.#(2)) (B(2) A (Fy-#(x)) 7(x)).

For this claim, consider an instantiation a for z in 2* with 2* |= #(a).
As 2* is #-faithful over 2 we may without loss of generality assume that a
is in 2.

Therefore, a counter example to (Vz.#(z)) B(z) in A* would immediately
give a counter example in 2 and hence in B.

Similarly, if B | (Vz.#(z)) (3y.#(x)) v(x) and we consider a in A
such that A* = #(a) we know that B,a = (Jy.#(x)) y(x). Let b be
such that B,a,b = #(x) A y(x). Let By = B [ab. By the choice of A
we have an isomorphic copy (9Bj,a’,b’) of (B, a,b) inside 2. Let p be the
partial automorphism of 2 that maps a’ to a. Let f be an extension of p
to an automorphism of 2*. Then 2* a, f(b’') = #(x) A y(x), and hence

A*,a = (Jy.#(x)) y(x) as desired.

3.3 A reduction from FINSAT(CGF) to FINSAT(GF)

Finally, we present the promised translation from CGF to GF, based on
Skolemisation for Gaifman cliques. This translation ¢ — ¢* will be such
that every model of ¢ can be expanded to a model of ¢*. Moreover, p*
implies ¢ over conformal structures. This translation then obviously serves
as a reduction from SAT(CGF) to SAT(GF), because we merely have to
unravel a model of ¢* to obtain a conformal model of ¢*, which then also
is a model of . Thus, we obtain:

0 € SAT(CGF) & ¢ € SAT(GF).

In more detail, from ¢ € CGF we obtain ¢* € GF as follows. For
formulae of CGF and GF we appeal to the syntactic normalisation of Ob-
servation 14. Let r be the maximal width of clique guards CG(x) occurring
in ¢ and let R, be a new relation symbol of arity r. Let G*(x) be for-
mulae expressing guardedness with respect to the extended vocabulary, R,
inclusive.

In ¢ we replace any clique guarded quantifications of the form

(Vy.CG(x))E(x)  or  (Fy.CG(x))E(x)

by their simply guarded forms over the extended vocabulary

(Vy.G*(x))¢(x)  or  (Fy.G*(x))¢(x),
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respectively. Finally add, as a conjunct in ¢*, a formalisation in GF of
@0 := Vx(Rx — CG(x)),

where CG(x) is for the old vocabulary, R, exclusive.

Clearly every model of ¢ has an expansion that is a model of ¢y and
hence of ¢*: interpret R, as the set of all clique guarded tuples of arity r.

Conversely, a model of ¢* is also a model of ¢ provided it does not
have “false cliques”. If (A, R.) E ¢*, then all tuples in R, are indeed
Gaifman cliques (i.e., clique guarded) in 2 as (A, R.) E ¢o. But 2 could
have “false” Gaifman cliques that are not covered by any guarded set of
(2, R;). If, however, (2, R.) is conformal then (2, R.) |= ¢* implies 2 |= ¢.
Indeed, in conformal models of ¢y, all clique guarded tuples are guarded,
whence G*(x), CG(x), CG*(x) are all equivalent: G*(x) = CG(x) uses gp;
CG(x) = CG*(x) is trivial; CG*(x) = G*(x) is conformality.

Therefore, as the usual ~,-unravelling of any structure yields a guarded
bisimilar structure that is conformal (albeit generally infinite), we see that
¢ is satisfiable if and only if ¢* is satisfiable. As Corollary 20 similarly
provides finite conformal guarded bisimilar companion structures, we find
that in complete analogy also ¢ € FINSAT(CGF) < ¢* € FINSAT(GF).

Corollary 23 The translation ¢ — ©* provides a simultaneous reduction
from SAT(CGF) to SAT(GF) and from FINSAT(CGF) to FINSAT(GF).

In particular, the finite model property for GF, [9], directly implies the
finite model property for CGF, [15].

Note The above translation is polynomial if we use a succinct formalisation
of G(x) as indicated in connection with Observation 14. Passage through
non-standard syntax for GF and CGF may be avoided with an alternative
translation, which can also be kept polynomial in terms of the official syntax
for both GF and CGF. Syntactic normalisation according to Observation 14
has been chosen here for the sake of clarity and to enable a more uniform
presentation of the central idea in the translation. These considerations may
be important if one wants to make sure that the translation is compatible
with the complexities established for SAT(CGF) and SAT(GF) in [8, 9].
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