
Martin Otto

Bounded Variable Logics

and Counting

A Study in Finite Models

November 6, 1996

Springer-Verlag

Berlin Heidelberg NewYork

London Paris Tokyo

HongKong Barcelona

Budapest

Preface

Viewed as a branch of model theory, finite model theory is concerned with
finite structures and their properties under logical, combinatorial, algorithmic
and complexity theoretic aspects. The connection of classical concerns of logic
and model theory with issues in complexity theory has contributed very much
to the development of finite model theory into a field with its own specific
flavour.

I like to think of this monograph as a study which — with a partic-
ular theme of its own — exemplifies and reflects some central ideas and
lines of research in finite model theory. The particular theme is that of
bounded variable infinitary logics, with and without counting quantifiers,
related fixed-point logics, and corresponding fragments of Ptime. The re-
lations with Ptime exhibit that fruitful exchange between ideas from logic
and from complexity theory that is characteristic of finite model theory and,
more specifically, of the research programme of descriptive complexity.

Among the main particular topics and techniques I would emphasize:

– the importance of games as a fundamental tool from classical logic; their
use in the analysis of finite structures also with respect to algorithmic and
complexity theoretic concerns is amply illustrated.

– the rôle of cardinality phenomena, which clearly are amongst the most
fundamental guidelines in the analysis of finite structures.

– the importance of combinatorial techniques, and of dealing with concrete
combinatorial problems over finite domains. Examples here range from
applications of the stable colouring technique in the formation of structural
invariants to certain colourings of squares that come up in canonization for
logics with two variables.

In order that this study may be useful also as an introduction to some
of the important concepts in the field, I have tried to treat the particular
theme in a detailed and mostly self-contained manner. On the other hand
this treatment leads up to specific results of a more technical nature, and I
welcome the opportunity to present some contributions in a broader context.

VI

With respect to the work presented here, I personally owe much to two
sources that I would like to mention. One is the Freiburg logic group where
I had the opportunity to participate in an intensified engagement in finite
model theory after finishing my doctorate with Professor Ebbinghaus. Pro-
fessor Flum and Professor Ebbinghaus created an encouraging atmosphere
for taking up this new field actively. The second important source is the col-
laboration with Professor Grädel which has had much impact on the research
presented here. I am grateful to Erich Grädel for this collaboration and also
for his advice and support.

The text itself is a revised version of my Habilitationsschrift, presented
at the RWTH Aachen in 1995. I am grateful to Professor Ebbinghaus for
numerous comments on the earlier version of this text.

Aachen, October 1996 Martin Otto

Table of Contents

Preface . V

0. Introduction . 1
0.1 Finite Models, Logic and Complexity . 1

0.1.1 Logics for Complexity Classes . 1
0.1.2 Semantically Defined Classes . 4
0.1.3 Which Logics Are Natural? . 7

0.2 Natural Levels of Expressiveness . 7
0.2.1 Fixed-Point Logics and Their Counting Extensions . . . 8
0.2.2 The Framework of Infinitary Logic 9
0.2.3 The Rôle of Order and Canonization 11

0.3 Guide to the Exposition . 12

1. Definitions and Preliminaries . 15
1.1 Structures and Types . 15

1.1.1 Structures . 15
1.1.2 Queries and Global Relations . 17
1.1.3 Logics . 18
1.1.4 Types . 19

1.2 Algorithms on Structures . 21
1.2.1 Complexity Classes and Presentations 22
1.2.2 Logics for Complexity Classes . 23

1.3 Some Particular Logics . 24
1.3.1 First-Order Logic and Infinitary Logic 24
1.3.2 Fragments of Infinitary Logic . 25
1.3.3 Fixed-Point Logics . 30
1.3.4 Fixed-Point Logics and the Lk∞ω 33

1.4 Types and Definability in the Lk∞ω and Ck∞ω 35
1.5 Interpretations . 38

1.5.1 Variants of Interpretations . 38
1.5.2 Examples . 40
1.5.3 Interpretations and Definability . 41

VIII Table of Contents

1.6 Lindström Quantifiers and Extensions . 43
1.6.1 Cardinality Lindström Quantifiers 43
1.6.2 Aside on Uniform Families of Quantifiers 44

1.7 Miscellaneous . 47
1.7.1 Canonization and Invariants . 47
1.7.2 Orderings and Pre-Orderings . 49
1.7.3 Lexicographic Orderings . 49

2. The Games and Their Analysis . 51
2.1 The Pebble Games for Lk∞ω and Ck∞ω . 51

2.1.1 Examples and Applications . 54
2.1.2 Proof of Theorem 2.2 . 60
2.1.3 Further Analysis of the Ck-Game 62
2.1.4 The Analogous Treatment for Lk 66

2.2 Colour Refinement and the Stable Colouring 67
2.2.1 The Standard Case: Colourings of Finite Graphs 67
2.2.2 Definability of the Stable Colouring 68
2.2.3 C2

∞ω and the Stable Colouring . 71
2.2.4 A Variant Without Counting . 72

2.3 Order in the Analysis of the Games . 73
2.3.1 The Internal View . 74
2.3.2 The External View . 76
2.3.3 The Analogous Treatment for Lk 77

3. The Invariants . 79
3.1 Complete Invariants for Lk and Ck . 80
3.2 The Ck-Invariants . 81
3.3 The Lk-Invariants . 85
3.4 Some Applications . 87

3.4.1 Fixed-Points and the Invariants . 87
3.4.2 The Abiteboul-Vianu Theorem . 90
3.4.3 Comparison of ICk and ILk . 91

3.5 A Partial Reduction to Two Variables . 93

4. Fixed-Point Logic with Counting . 97
4.1 Definition of FP+C and PFP+C . 98
4.2 FP+C and the Ck-Invariants . 106
4.3 The Separation from Ptime . 109
4.4 Other Characterizations of FP+C . 111

5. Related Lindström Extensions . 115
5.1 A Structural Padding Technique . 117
5.2 Cardinality Lindström Quantifiers . 124

5.2.1 Proof of Theorem 5.1 . 125
5.3 Aside on Further Applications . 128

Table of Contents IX

6. Canonization Problems . 131
6.1 Canonization . 131
6.2 Ptime Canonization and Fragments of Ptime 134
6.3 Canonization and Inversion of the Invariants 136
6.4 A Reduction to Three Variables . 139

6.4.1 The Proof of Theorems 6.16 and 6.17 141
6.4.2 Remarks on Further Reduction . 147

7. Canonization for Two Variables . 149
7.1 Game Tableaux and the Inversion Problem 150

7.1.1 Modularity of Realizations . 156
7.2 Realizations for IC2 . 160

7.2.1 Necessary Conditions . 160
7.2.2 Realizations of the Off-Diagonal Boxes 162
7.2.3 Magic Squares . 163
7.2.4 Realizations of the Diagonal Boxes 166

7.3 Realizations for IL2 . 169
7.3.1 Necessary and Sufficient Conditions 169
7.3.2 On the Special Nature of Two Variables 174

Bibliography . 177

Index . 181

0. Introduction

0.1 Finite Models, Logic and Complexity

Finite model theory deals with the model theory of finite structures. As a
branch of model theory it is concerned with the analysis of structural prop-
erties in terms of logics. The attention to finite structures is not so much
a restriction in scope as a shift in perspective. The main parts of classical
model theory (the model theory related to first-order logic) as well as of ab-
stract model theory (the comparative model theory of other logics) almost
exclusively concern infinite structures; finite models are disregarded as triv-
ial in some respects and as intractable in others. In fact, the most successful
tools of classical model theory fail badly in restriction to finite structures.
The compactness theorem in particular, which is one of the corner stones of
classical model theory, does not hold in the realm of finite structures. Several
examples of other important theorems from classical model theory that are
no longer true in the finite case are discussed in [Gur84].

There are on the other hand specific new issues to be considered in the
finite. These issues mainly account for the growing interest in finite model
theory and promote its development into a theory in its own right. One of the
specific issues in a model theory of finite structures is complexity. Properties
and transformations of finite structures can be considered under algebraic and
combinatorial aspects, under the aspect of logical definability, and also under
the aspect of computational complexity. Issues of computational complexity
form one of the main links also between finite model theory and theoretical
computer science.

In this introduction I merely intend to indicate selectively some main
ideas and lines of research that motivate the present investigations. There
are a number of surveys that also cover various other aspects of finite model
theory — see for instance [Fag90, Gur84, Gur88, Imm87a, Imm89]. A general
reference is the new textbook on finite model theory by Ebbinghaus and Flum
[EF95].

0.1.1 Logics for Complexity Classes

The study of the relationship between logical definability and computational
complexity of structural properties is an essential branch of finite model the-

2 0. Introduction

ory. This topic is most pronounced in the search for semantic matches be-
tween levels of computational complexity and logics. The search for logics for
complexity classes, also suggestively described as capturing complexity classes
[Imm87b] or tailoring logic for complexity [Gur84], has lead to an active re-
search programme in finite model theory.

Consider any of the standard classes in computational complexity as a
class of problems for finite structures, say for finite graphs. The class of all
properties of finite graphs that can be recognized by Ptime algorithms is a
typical example. A logical characterization of Ptime on finite graphs would
have to provide a logic for Ptime on graphs in the sense that exactly all
Ptime properties of finite graphs are definable by sentences of this logic. For
the present purposes we work with a slightly informal notion of a logic for
Ptime. The exact definition underlying our treatment is due to Gurevich
[Gur88]. A more detailed discussion will be provided with Definition 1.7 in
the next chapter. It is also shown in [Gur88] that the restriction to graphs
rather than finite structures of arbitrary type is inessential for the present
issue.

Definition 0.1 (Sketch). A logic L is a logic for Ptime if exactly those
properties of finite graphs that are Ptime recognizable are L-definable.
Minimal requirements on candidate logics to be imposed are the following:
L has recursive syntax and recursive semantics that associates with each L-
sentence a Ptime algorithm for checking its truth in finite models.

It is a central open problem in the field whether there is a logic for Ptime.

Relationships between computational complexity classes and definability
in logical systems are interesting for a number of reasons:

(a) The potential for theoretical transfer between different fields. Techniques
from complexity theory may be brought to bear on logical and model
theoretic issues and vice versa. To give an example, several of the out-
standing open problems of complexity theory like the Ptime = NPtime?
or Ptime = Pspace? questions have found appealing non-trivial model
theoretic reformulations in terms of semantic equivalences of particular
logical systems over finite structures (compare [AV91, DLW95, Daw95b]).
Short of solving the original problems this offers new perspectives, and
investigations of related logical issues may at least lead to a better under-
standing of these problems.

(b) Logical analysis of the required kind may yield deeper insights into the
fundamental notion of complexity. Definability in logical systems can be
viewed as a kind of complexity in itself. Whereas computational com-
plexity controls the computational resources required in the solution of
a problem, definability considerations control the logical or descriptive
resources required in the specification of the problem: hence the term
descriptive complexity as used in [Imm89]. The relationship between the

0.1 Finite Models, Logic and Complexity 3

structure imposed by these completely different resources thus becomes
part of a broader view of complexity theory.

(c) Exact matches between computational complexity classes and logics pro-
vide an appealing notion of semantic completeness for model theoretic
considerations. A logic for Ptime say would be a logic that is complete
for the world of Ptime computability over structures — or for compu-
tationally feasible problems, if Ptime computability is identified with
efficient solvability or feasibility. The classical classes of computational
complexity have emerged as natural levels of computational power, certi-
fied by robustness criteria and the existence of natural complete problems.
Matching logics constitute naturally distinguished levels of expressiveness.

(d) In this connection there is also a strong theoretical interest from computer
science. Problems related to structures like graphs (and more generally ar-
bitrary relational structures corresponding to instantiations of relational
databases) are ubiquitous in computer science applications and in par-
ticular in the theory of databases. A natural logic for Ptime would be
a theoretically ideal database language for exactly all feasible queries:
anything that can be specified in this language is guaranteed to have an
efficient algorithmic solution; by semantic completeness for Ptime such
a logic constitutes a universal language for all efficient tasks. And indeed
this context is one of the original sources for the problem of capturing
Ptime, as formulated by Chandra and Harel in [CH82].

The following are some of the well known results concerning complete matches
between distinguished levels of computational complexity and logical systems.

Regular languages and monadic second-order logic: words over any finite al-
phabet can in a canonical way be identified with linearly ordered struc-
tures over an otherwise monadic vocabulary (one unary predicate for each
letter to mark its occurrences in the word). Monadic second-order logic
LIImon for the resulting word models defines exactly the regular languages,
i.e. those languages that are recognized by finite automata. This is a clas-
sical result of Büchi [Büc60], Elgot [Elg61] and Trakhtenbrot [Tra61] that
fits into the present framework as a precursor to the recent development
of finite model theory (compare the treatment in [EF95]).

NPtime and existential second-order logic: Fagin’s theorem [Fag74] is the
first result of this branch of finite model theory proper. It equates non-
deterministic polynomial time recognizability with definability in exis-
tential second-order logic Σ1

1 .
Ptime and fixed-point logic with order: in restriction to linearly ordered fi-

nite structures Ptime has been characterized logically by Immerman
[Imm86] and Vardi [Var82] through the very natural extension of first-
order logic to fixed-point logic FP by means of an operator for monotone
relational induction.

So there are the following semantic equivalences:

4 0. Introduction

Finite Automata ≡ LIImon (for word models)

NPtime ≡ Σ1
1

Ptime ≡ FP (in the presence of linear order)

It is remarkable that all major complexity classes, in particular Logspace,
NLogspace, Ptime and Pspace, are captured by very natural extensions of
first-order logic in the presence of order. The fundamental question whether
similar matches can be found in the general case of not necessarily ordered
structures is open. In particular the question whether there is a logic for
Ptime, as raised by Chandra and Harel in [CH82], is a notorious open prob-
lem in finite model theory. In fact there is no capturing result at all for any
standard complexity class below NPtime that applies to the general case.
Fagin’s theorem NPtime ≡ Σ1

1 essentially remains the only general result
on a strict match between a complexity class and a logic on finite structures.
This phenomenon will be further discussed below.

0.1.2 Semantically Defined Classes

Consider the class of all Ptime recognizable graph properties — for the
moment denote it graph-Ptime. It serves as a typical example of a complexity
class on finite structures.

Why is it difficult to find a logic for graph-Ptime?

Recall that ordinary Ptime is the class of all problems that can be solved by
polynomially time bounded Turing machines. A priori Turing machines work
with words or strings as inputs. As far as recognition (i.e. decision) problems
are concerned a problem is a set of words over some alphabet. Words over
this alphabet are rejected or accepted, according to membership in the set,
in time polynomial in their length.

In particular a Turing machine does not work with abstract graphs as
inputs but rather with encodings of these. The standard encoding scheme for
finite graphs uses adjacency matrices for the input representation. The ad-
jacency matrix of a graph whose vertices are labelled v1, . . . , vn is the n× n
boolean matrix with entries aij = 0 or 1 according to whether (vi, vj) is
an edge. But obviously different adjacency matrices may encode the same,
more precisely isomorphic, graphs. Any rearrangement of the vertices in a
different order induces an equivalent representation that is different from the
given one unless the rearrangement happens to be an automorphism of the
abstract graph. Any graph algorithm, i.e. any algorithm that recognizes a
graph property, must therefore satisfy a non-trivial semantic invariance con-
dition: a graph algorithm must produce the same result on any two inputs
that represent isomorphic abstract graphs. In other words it may not reject
one graph and accept an isomorphic copy of that same graph. We adopt
the terminology of complexity theory as presented in [Pap94] to distinguish

0.1 Finite Models, Logic and Complexity 5

semantic presentations and syntactic presentations of complexity classes, or
semantic and syntactic classes according to their presentation. Semantic pre-
sentations are given in terms of semantic constraints on algorithms. Owing
to the invariance condition, graph-Ptime is clearly a semantically presented
class. A syntactic presentation of a complexity class in contrast consists of a
recursive or at least recursively enumerable set of algorithms of the required
complexity, that contains at least one realization for every problem in the
given class.1 We shall mostly speak of recursive presentations in this sense.

For an example of a class that is not a priori syntactically defined but
nevertheless admits a simple recursive presentation consider Ptime in the
ordinary sense as a class of problems for words over finite alphabets. It is
clearly presentable by the set of algorithms that limit their computation
time by means of a step counter that is initialized in each computation to a
polynomial in the input size. This presentation is suggestively referred to as
through polynomially clocked machines.

Semantic invariance conditions like the one for graph-Ptime are non-
recursive conditions on algorithms. In fact the set of all (syntactic descrip-
tions of) graph algorithms is not even recursively enumerable (as an index
set). It can furthermore be shown that the same applies to any of its intersec-
tions with standard complexity classes. In particular the ad-hoc presentation
of graph-Ptime through the set of all Ptime graph algorithms does not pro-
vide a recursively enumerable presentation.

A logic L for Ptime in the sense of Definition 0.1 above, however, would
induce the following recursive presentation for graph-Ptime. Let S be the
recursive semantic mapping that associates a Ptime algorithm with each sen-
tence of L (in the language of graphs). Obviously image(S) consists of Ptime
graph algorithms. By semantic completeness of L for Ptime on graphs, any
Ptime graph property is realized by some member of image(S). The recur-
sively enumerable subset image(S) ⊆

{
A
∣∣ A a Ptime graph algorithm

}

therefore provides a recursive presentation for graph-Ptime. In the termi-
nology of complexity theory, image(S) is a syntactic presentation of the se-
mantically defined class graph-Ptime. In fact it can be shown that there is a
logic for Ptime (in the sufficiently general sense of Definition 0.1) if and only
if graph-Ptime admits a syntactic, i.e. recursive or recursively enumerable,
presentation.

For properties of linearly ordered structures — properties of linearly or-
dered graphs say — these problems do not arise because there are canonical
encodings for ordered structures. For ordered graphs we may use the adja-
cency matrix based on the natural labelling of the vertices as v1, . . . , vn in
increasing order. This observation is easily turned into a recursive presenta-
tion for the class of all Ptime properties of ordered finite graphs.

1 The difference between recursive and recursively enumerable syntax is not impor-
tant in this kind of question. If A1, A2, . . . is a recursive enumeration of syntactic
descriptions of algorithms, then the syntax (A1, 1), (A2, 2), . . . is recursive.

6 0. Introduction

This crucial difference between the ordered and the unordered case is
at the root of the apparent mismatch with respect to capturing complexity
classes in the case of ordered structures or in the general case of not nec-
essarily ordered structures. For the standard complexity classes it is almost
trivial to see that the induced classes over ordered structures are presentable
as syntactic classes and therefore can be captured by logics. The point of
the corresponding capturing results indeed rather is that moreover they are
captured by very natural logical systems.

As mentioned above, no complexity class below NPtime has been cap-
tured or shown to be recursively presentable in the general case.NPtime here
marks a threshold because in NPtime and above, the invariance problem can
be side-stepped as follows. Consider the class graph-NPtime of all NPtime

graph properties. From a graph property Q ∈ graph-NPtime we may pass to
its ordered version Q<, the class of all ordered graphs that possess the given
property:

Q< =
{
(G,<)

∣∣ G ∈ Q,< a linear ordering of the vertices
}
.

Q< is NPtime recognizable, essentially through the algorithm for Q itself.
But a plain graph G belongs to Q if and only if any expansion (G,<) by
a linear ordering of its vertices belongs to Q< (and also if and only if all
such expansions belong to Q<). It follows that graph-NPtime is presentable
through the class of all NPtime algorithms that first guess a linear ordering
and then evaluate an NPtime property of ordered graphs on the result.
From this observation we obtain a recursive presentation for graph-NPtime

in a standard manner. It is worth noting that this trick is also directly used
in Fagin’s proof that graph-NPtime coincides with the class of all graph
properties that are definable in existential second-order logic. The existential
quantification over linear orderings < that is implicit in the passage from Q<
to Q is explicitly available in existential second-order logic.

Note that capturing results for complexity classes in the general case of
not necessarily ordered structures are not merely of theoretical interest. The
challenge is well motivated by the potential applications in database theory.
Natural abstract databases often are not ordered. Their realizations at the
machine level may involve an implicit linear ordering for representational
purposes (naively: a numbering of memory cells). Even though an ordering is
present then, it is not considered part of the intended data. A sound database
query in this case corresponds to a property of unordered relational struc-
tures. In the query specification it is desirable to hide this ordering. Logically,
one would have to have a query language corresponding to a logic for Ptime
on unordered structures in order to achieve semantic completeness within
Ptime and simultaneously to guarantee soundness — soundness in the sense
of independence of a linear ordering that is an artifact of the realization.

0.2 Natural Levels of Expressiveness 7

0.1.3 Which Logics Are Natural?

Consider possible solutions, positive or negative, to the problem whether
there is logic for Ptime. The above definition with its very liberal conditions
on candidate logics is theoretically appealing because of its connection with
recursive presentability. A negative solution in the sense of this definition
would be a strong result to the effect that no reasonable logic at all can
possibly capture Ptime. A positive result, however, might still leave much to
be desired owing to the liberal notion of a logic. In other words, a recursive
presentation of graph-Ptime might intuitively be far from constituting a
natural logical system. As with the known positive results in the ordered
case or for NPtime much may depend on the style of the logic obtained.

The logics to be considered are extensions of first-order logic, as first-order
sentences can be evaluated in Logspace. The systematic study of extensions
of first-order logic belongs to the domain of abstract model theory. It is
worth to pursue this systematic study with particular focus on logics for finite
structures. A systematic study of this kind is a possible approach to problems
like that concerning the existence of a logic for Ptime. In particular if one
conjectures that the problem of a logic for Ptime has a negative solution,
then results that state the impossibility of capturing Ptime by logics that
satisfy certain stronger criteria can be interesting approximations.

To some extent the formal framework available in abstract model theory is
not necessarily well adapted to the finite case. Complexity considerations and
considerations that concern logics under a procedural aspect are not a priori
accommodated. The standard formalism in abstract model theory is that of
Lindström extensions or of extensions by generalized quantifiers (Lindström
quantifiers); compare the overview in [Ebb85]. Roughly, each such quantifier
incorporates one single new structural property and the resulting extension is
a minimal one to make this new property available under some natural closure
conditions. While this formalism is universally applicable for many purposes
— any extension of first-order logic that satisfies some corresponding closure
properties is equivalent with a Lindström extension — it may be argued that
it is not always optimally adapted to the demands of finite model theory.
It seems that a framework for extensions of logics for finite structures that
is sufficiently fine grained to reflect algorithmic constraints is still lacking.
This issue is connected with the above-mentioned lack of criteria for the
‘naturalness’ of a logic for finite structures.

0.2 Natural Levels of Expressiveness

First-order logic is not well adapted to the programme of logics for com-
plexity classes. While any individual finite structure is characterized up to
isomorphism by a single sentence of first-order logic, natural properties that
are of very low complexity are not first-order definable. For instance neither

8 0. Introduction

connectedness nor regularity are first-order properties of finite graphs. In fact
these examples are typical of the two most apparent defects in the expres-
sive power of first-order logic: first-order logic does not provide expressive
means to capture any relational process that requires true recursion (like the
generation of the transitive closure of the edge predicate required for connect-
edness), and first-order logic has no means to express non-trivial cardinality
properties (like the equality of the numbers of direct neighbours required for
regularity). In short, first-order logic lacks recursion and counting.

0.2.1 Fixed-Point Logics and Their Counting Extensions

The first defect is taken care of in the extension to fixed-point logics. The
adjunction of fixed-point operators leads to logics that capture certain levels
of relational recursion. Least or inductive fixed-point logic FP in particular
is a very natural logic that has been studied extensively. Inductively defined
and increasing relational processes are captured by FP. The generation of the
transitive closure is a simple but typical example for the expressive power of
FP above that of first-order logic. An important point is that the increasing
nature of these relational processes guarantees termination in a stationary
value within polynomially many steps. A further extension in terms of rela-
tional recursion for arbitrary rather than increasing processes (that therefore
may or may not terminate in a stationary value) is partial fixed-point logic
PFP. The interest in FP is justified because by the theorem of Immerman
and Vardi it captures Ptime for ordered structures. Similarly, PFP captures
Pspace in the presence of order [Var82, AV89]. In particular, in the presence
of order, FP and PFP automatically remedy the second shortcoming of first-
order logic: on ordered structures FP and PFP also capture all counting and
Ptime, respectively Pspace, cardinality properties of definable predicates.
In the absence of order, however, this is not at all true. In the extreme case
of pure sets (graphs without edges) it is easy to see that relational recursion
and all of FP and PFP collapse to first-order. Simple cardinality properties
of the size of sets like evenness of the number of vertices are not definable
in FP or PFP. Moreover, all the simple examples of properties that are not
FP-definable but may be recognized in Ptime involve such cardinality prop-
erties.

One of the themes underlying our present investigations is the attempt
to treat these two most apparent shortcomings of first-order logic over finite
structures — recursion and counting — on an equal footing and to consider
the extensions FP and PFP to a framework that incorporates counting.

We thus obtain fixed-point logic with counting FP+C and partial fixed-
point logic with counting PFP+C. Roughly speaking we deal with two-sorted
variants of the given finite structures, augmented by a second ordered arith-
metical sort. A link between the sorts is induced by counting terms that
associate cardinality values with formulae that define sets. The usual fixed-

0.2 Natural Levels of Expressiveness 9

point operations can now be applied in this framework to combine relational
recursion with the processing of cardinalities.

The conception of fixed-point logic with counting is due to Immerman
[Imm87a]. It has not been studied in its own right or even rigorously formal-
ized in the work of Immerman though. The fact that counting is the most
obvious defect in FP as compared with Ptime had led Immerman to conjec-
ture that an appropriate extension of FP to FP+C should even be a logic for
Ptime in the general case. This conjecture was disproved in a strong sense
by Cai, Fürer and Immerman [CFI89]. The sophisticated nature of their ex-
ample for the separation of FP+C from Ptime indicates on the other hand
that FP+C may still be regarded as an interesting level of expressiveness
within Ptime that captures many Ptime properties that naturally arise for
instance in graph theory. This view has since been corroborated by model
theoretic as well as complexity oriented results in [GO93, Ott96a] and we
shall see much of this in the sequel. The claim for the naturalness of FP+C
mainly rests on the following:

• The expressive power of FP+C can be understood very well in terms of
certain FP+C-definable structural invariants. An analogous phenomenon
was first discovered and exploited in the analysis of FP itself in the work
of Abiteboul and Vianu [AV91] and lead to their beautiful result that FP
collapses to PFP if and only if Pspace = Ptime. This approach could
successfully be extended to FP+C and PFP+C. In some respects the link
between the expressive power of FP+C and PFP+C and the associated
invariants is even neater than for FP and PFP themselves. The result-
ing characterization of the expressive power of FP+C and its relation to
PFP+C show that even though FP+C falls short of Ptime it extends to
the general case some of the computational and model theoretic features
that apply to FP only in the ordered case.

• FP+C and PFP+C are very robust with respect to the actual formalization
of the counting extension. There are a number of equivalent characteriza-
tions of the expressive power of FP+C, both in terms of logical systems
that turn out to be equivalent with FP+C and in computational terms.

Intuitively these show that FP+C constitutes a natural level of expressiveness
that at the same time corresponds to some natural level in complexity — even
though it is clear that this level is strictly contained in standard Ptime.

0.2.2 The Framework of Infinitary Logic

A different but related approach to the investigation of logics with respect to
complexity classes focuses on the a priori logical framework given by certain
fragments of infinitary logic. Consider firstly full-fledged infinitary logic L∞ω,
the logic generated by the usual first-order rules for the formation of formulae
together with infinite disjunctions and conjunctions over arbitrary sets of

10 0. Introduction

formulae. Now any finite graph is characterized up to isomorphism by a first-
order sentence. It follows that every property of finite graphs is definable in
L∞ω by a countable disjunction over first-order sentences that characterize
all positive instances of this property. L∞ω is a universal logic for finite
structures — and overshoots all sensible levels of expressiveness.

Particular fragments of infinitary logic, however, have emerged as very
useful tools in finite model theory. These are defined in terms of restrictions
on the number of variables that may occur (bound or free). These restrictions
are well adapted to the study of relational recursion since the processes con-
sidered in relational recursion always involve a fixed bound on the maximal
arity of auxiliary relations. Thus pure relational recursion is fully contained
within Lω∞ω, the fragment of L∞ω that consists of all formulae that use a fi-
nite number of variable symbols each. In particular fixed-point logic FP and
partial fixed-point logic PFP are properly embedded in Lω∞ω. It is important
to note that the completely non-uniform constructors of infinite disjunctions
and conjunctions allow to define non-recursive properties of finite structures
as well. Lω∞ω, too, is completely at odds with complexity on finite structures.
Here this may be seen as an advantage. If we consider problems related to log-
ics for complexity in restriction to the framework of Lω∞ω then it is important
that this restriction in itself does not trivialize the issues. Since Lω∞ω allows to
define properties of arbitrary complexity, the class of all those Ptime proper-
ties of finite graphs, that at the same time are Lω∞ω-definable, is a non-trivial
subclass of graph-Ptime for our purposes. Furthermore the restriction to
bounded arity auxiliary relations can be considered as a natural restriction
also in terms of the computational complexity of relational problems.

The points made about the inclusion of counting in connection with FP
versus FP+C also apply to the framework of Lω∞ω. Evenness of the number
of vertices or regularity of graphs are not Lω∞ω-definable. The reason is that
although each individual expression of the from ∃=mxϕ(x) asserting the ex-
istence of exactly m elements that satisfy ϕ is in first-order logic, the number
of variables required in its formalization grows unboundedly with m. Lω∞ω

compensates completely all defects of first-order that concern relational re-
cursion but fails for the defects related to counting. It is natural therefore
to study also the fragment Cω∞ω of infinitary logic with only finitely many
variables in each formula but allowing all counting quantifiers ∃=m instead of
the usual existential quantifier. These were also first considered in the work
of Immerman on the counting extension of FP. FP+C and PFP+C are com-
prised in Cω∞ω just as FP and PFP are in Lω∞ω. We denote the constituent
sublogics with a fixed finite bound k on the number of variables Ck∞ω and
Lk∞ω so that Cω∞ω =

⋃
k C

k
∞ω and Lω∞ω =

⋃
k L

k
∞ω. The infinitary logics Cω∞ω

and Lω∞ω and their constituents Ck∞ω and Lk∞ω will be used extensively as
frameworks in our exposition. On the one hand they are used in the analysis
of mostly still open restricted problems on capturing complexity classes. On

0.2 Natural Levels of Expressiveness 11

the other hand they provide the setting for the comparative analysis of the
expressive powers of FP+C, PFP+C, FP and PFP.

The main asset of the fragments Ck∞ω and Lk∞ω is in fact a methodologi-
cal point. Both possess very elegant and tractable Ehrenfeucht-Fräıssé style
characterizations in terms of games. Such games that capture the expres-
sive power of a logic are an important tool in classical model theory. The
classical Ehrenfeucht-Fräıssé theorem relates first-order equivalence of two
structures to the existence of a strategy in a game played on these struc-
tures. See [EFT94] for a textbook treatment of this technique in the classical
context. Variants of these games have been found and employed for various
other logics besides first-order. It is remarkable that such games are among
the few tools from classical or abstract model theory that are fully available
in restriction to finite structures without any alteration. See also [EF95].

A large part of the present work is devoted to the detailed analysis of
corresponding games for the Ck∞ω and Lk∞ω. The games are due to Barwise
[Bar77] and Immerman [Imm82], and Immerman and Lander [IL90] respec-
tively. The analysis of the games leads to the abstraction of concise Ptime

computable structural invariants that characterize finite relational structures
exactly up to equivalence in Ck∞ω or Lk∞ω. As mentioned above such invari-
ants were first considered by Abiteboul and Vianu in [AV91] in the context
of a computational model for relational recursion and applied to the study
of fixed-point logics. A formalization in terms of the underlying fragments
of infinitary logic has been presented in Dawar’s dissertation [Daw93] and in
[DLW95] for the Lk∞ω and in [GO93, Ott96a] for the Ck∞ω. The relationship
between the expressive power of FP+C and the invariants for the Ck∞ω is
also one of the main topics here. We shall investigate this relationship in
comparison with FP and the invariants for the Lk∞ω as well.

0.2.3 The Rôle of Order and Canonization

Consider once more the problem of logics for complexity classes. As out-
lined above the essential difficulty in capturing classes below NPtime in the
absence of order can be attributed to the ambiguity in the input representa-
tion — it is this ambiguity that imposes the problematic semantic invariance
condition on graph algorithms.

Canonization addresses the problem of providing well defined and unique
representatives up to a given equivalence relation. Consider canonization up
to isomorphism for finite graphs. Suppose there were a Ptime functor defined
on the class of all finite graphs that maps each graph of size n to an isomor-
phic representative over the standard universe {0, . . . , n − 1} in such a way
that any two isomorphic graphs get mapped to the same representative. Such
a mapping would constitute what is called Ptime canonization up to isomor-
phism or Ptime normalization. It is not known whether finite graphs admit
Ptime normalization. It is clear that Ptime normalization would induce a
Ptime algorithm for graph isomorphism; whether the graph isomorphism

12 0. Introduction

problem itself is in Ptime is not known. Note that the entire problem of
capturing Ptime is solved trivially if there should be Ptime normalization.
Any algorithm applied to the standard encoding of a normalized version of
the input graph becomes a graph algorithm. Ptime normalization would in
fact reduce the capturing of Ptime in the general case to the ordered case.

Some of our investigations concern the variant of this approach in re-
striction to the framework of the Ck∞ω and Lk∞ω, respectively. We consider
canonization up to equivalence in these logics rather than up to isomorphism.
There is a direct connection between Ptime canonization for these rougher
equivalences and the capturing of the Ptime fragments of these fragments
of infinitary logic. Linking these considerations with the above-mentioned
Ptime invariants for the Ck∞ω we find appealing sufficient criteria that FP+C
indeed captures Ptime in restriction to all of Cω∞ω. It remains a challeng-
ing open problem whether these conditions are fulfilled. A reduction proce-
dure furthermore shows that the general cases hinge on the three-dimensional
cases, i.e. on canonization up to equivalence in the three-variable fragments
of L∞ω.

A main result that will be treated in full detail in the last chapter concerns
the two-variable case [Ott95a, Ott95b]. For L2

∞ω and C2
∞ω we exhibit a strong

form of Ptime canonization and thus obtain non-trivial capturing results.
The classes of all Ptime properties that are C2

∞ω- or L2
∞ω-definable are

indeed recursively presentable and may be captured naturally in terms of the
complete invariants for C2

∞ω or L2
∞ω, respectively.

0.3 Guide to the Exposition

We summarize the investigations and results that are presented here in order
to provide an outlook that may also help to make the overall organization of
the material transparent.

• Chapter 1 reviews and introduces basic terminology, summarizes some
facts and simple results related in particular to the fragments of infinitary
logic and fixed-point logics. Typical examples illustrate the expressive power
of these basic logics.

• Chapter 2 provides an introduction to the games for the bounded variable
fragments of infinitary logic with and without counting quantifiers. Proofs of
the corresponding Ehrenfeucht-Fräıssé type theorems are given. The analysis
of these games is carried further to support the definition of the associated
invariants in Chapter 3.

• Chapter 3 is devoted to the definition and discussion of the invariants
associated with the games. We review those known applications to fixed-
point logic without counting that will later be paralleled by, and contrasted
with, the corresponding picture for fixed-point logic with counting.

0.3 Guide to the Exposition 13

• Chapter 4 is about fixed-point logic with counting. The formal definitions
of FP+C and PFP+C are provided here. Some material is collected to cor-
roborate the view of fixed-point logic with counting as a distinguished level
of expressiveness within Ptime. The central results rest on applications of
the invariants for the Ck∞ω.

• Chapter 5 considers the formalism of Lindström quantifiers and exten-
sions of fixed-point logic in restriction to cardinality properties. A structural
padding technique is developed which among other applications shows that
the extension of fixed-point logic by all cardinality Lindström quantifiers is
still to weak to comprise the full power of proper fixed-point logic with count-
ing.

• Chapter 6 provides the general treatment of the connection between can-
onization up to equivalence in the bounded variable fragments of infinitary
logic and recursive presentations of the related fragments of Ptime.

• Chapter 7 finally is concerned with the positive results related to the two-
variable fragments. In particular there are detailed proofs that the Ptime

fragments of both L2
∞ω and C2

∞ω can be captured.

Throughout the entire text I have attempted to give an almost self-
contained exposition. In the first four chapters in particular numerous ex-
amples are given and comments and background material provided towards
a thorough introduction to the leading concepts, along with the technical
development. The last three chapters on the other hand are more specifically
devoted to individual results and correspondingly are of a more technical
nature.

The main ideas that concern fixed-point logics and the bounded vari-
able fragments of infinitary logic without counting quantifiers are reviewed
and developed along with the corresponding notions for the counting case.
This seems justified because the results in the case without counting may be
obtained through obvious specializations. And also because the comparison
between the two scenarios is a major source of motivation for our investiga-
tions.

This two-tiered treatment is also intended to make the main results con-
cerning either individual case individually accessible as far as possible. This
is true in particular of those new results that concern the case without count-
ing, mainly in Chapters 6 and 7. The only chapters that are devoted to the
counting case proper are Chapters 4 and, to some extent, 5.

The main dependencies between chapters are the following. Chapters 2–4
each build on their predecessors. Chapters 5, 6 and 7 are to a large extent

14 0. Introduction

independent of each other. For those developments of Chapters 6 and 7, that
concern the case without counting, all major prerequisites can be found in
Chapters 1–3.

I should also point out that several sections of Chapter 1 (in particular
1.5–1.7) become essential only for the understanding of specific further devel-
opments. Chapter 1 may therefore be read selectively and called upon again
where necessary.

In the beginning of each chapter there is a brief summary of its contents.
Where appropriate I have appended to the individual chapters short sections
that discuss summarily the main sources of ideas and results reported or
clarify connections with other work.

1. Definitions and Preliminaries

A major part of this chapter serves to review and fix notation and terminol-
ogy. The material is standard. Readers familiar with the notions addressed
might therefore only want to refer back to particular definitions at later
points. The main issues of the individual sections are the following:

• Section 1.1 sums up the basics about structures, global relations, logics
and types that are relevant for our purposes.

• In Section 1.2 we consider algorithms that deal with structures as inputs
and fix some corresponding conventions. Recognizability of classes of finite
structures and computability of global relations are discussed.

• The bounded variable fragments of infinitary logic, and the fixed-point
logics, are presented in Section 1.3. We also provide some typical examples
for the expressive power of these logics.

• Section 1.4 contains some preliminary material about types and definability
in the relevant fragments of infinitary logic.

• Section 1.5 deals with interpretations, a concept that plays an important
rôle in many definability considerations.

• In Section 1.6 we review the notions of generalized quantifiers and Lind-
ström extensions. In particular we define the class of cardinality Lindström
quantifiers.

• Section 1.7 fixes some terminology with respect to the notion of can-
onization and of complete invariants for arbitrary equivalence relations. We
also sketch some technicalities and conventions concerning orderings and pre-
orderings.

1.1 Structures and Types

1.1.1 Structures

We deal with finite structures exclusively. fin[τ] is the class of all finite τ -
structures. Unless explicitly stated otherwise, τ stands for some finite and

16 1. Definitions and Preliminaries

purely relational vocabulary. A structure in fin[τ] consists of its universe
together with interpretations for the symbols in τ . If τ =

{
R1, . . . , Rs

}
, where

Ri is a relation or predicate symbol of arity ri, we write A =
(
A,RA

1 , . . . , R
A
s

)

for a τ -structure. Thus RA
i ⊆ Ari . The superscripts A are mostly omitted

when there is no danger of confusion.
It is sometimes convenient in special circumstances to admit some varia-

tions and extensions of the basic concept of structures:

(i) In order to deal with fixed tuples of parameters over some structure A,
one may think of those parameters as interpretations for a correspond-
ing tuple of extra constant symbols. We here prefer to stick with an
entirely relational vocabulary and treat parameters as interpretations
for variable symbols. The distinction between parameters and variables
becomes purely intentional. The class of all τ -structures with fixed tu-
ples of r parameters is denoted

fin[τ ; r] =
{
(A, a)

∣∣∣ A ∈ fin[τ], a ∈ Ar
}
.

(ii) In our formalization of fixed-point logic with counting in Chapter 4 we
deal with two-sorted structures. These are structures over two disjoint
universes, one for each sort. Each relation symbol comes with a specifi-
cation telling which components range over the first sort and which over
the second. Similarly terms and in particular variables have a designated
status with respect to the sorts. There is a standard way to represent
two-sorted structures by ordinary one-sorted structures that have two
additional unary predicates to distinguish the sorts. A structure of the
form (

A,U1, U2, . . .
)

with A = U1 ∪̇U2

can thus naturally encode a two-sorted structure with universes Ui for
the two sorts. A binary relation R for instance whose i-th component
ranges over the i-th sort for i = 1, 2 then gets interpreted as a binary
relation over A that satisfies ∀x∀y

(
Rxy → U1x ∧ U2y

)
.

(iii) At some places we consider weighted structures. These are structures
together with some functions from their domains to some external stan-
dard domain, mostly and without loss of generality to the set ω of the
natural numbers. A standard example is that of graphs (V,E) with
weights put on the edges, formalized by a weight function ν:V 2 → ω.

Linearly ordered structures play a special rôle. Assume that τ contains a
designated binary relation symbol < for a linear ordering. Then the class of
all finite τ -structures which are linearly ordered is denoted

ord[τ] =
{
A ∈ fin[τ]

∣∣∣ <A a linear ordering of A
}
.

When talking of classes of finite structures it is generally understood that
these are closed with respect to isomorphism. The only exception in our treat-
ment being that in places we restrict attention to structures over standard

1.1 Structures and Types 17

domains, meaning structures with an initial segment of the natural numbers
for their universe. We denote by stan[τ] the set of all finite τ -structures over
standard domains n = {0, . . . , n− 1} 1:

stan[τ] =
{
A ∈ fin[τ]

∣∣∣ A = n, n > 1
}
.

There is a direct correspondence between linearly ordered structures and
structures over standard domains. Each structure (A, <A) in ord[τ ∪̇ {<}] has
a unique representative 〈A〉 in stan[τ] determined by the requirement that
A ≃ 〈A〉 and that the linear ordering <A translates into the natural ordering
on the standard domain of 〈A〉 under the isomorphism. Obviously the map-
ping (A, <A) 7→ 〈A〉 induces a bijective correspondence between isomorphism
classes of linearly ordered structures and structures over standard domains

〈 〉: ord[τ ∪̇ {<}]
/
≃ −→ stan[τ].

1.1.2 Queries and Global Relations

A class Q of finite τ -structures may be identified with a boolean valued
functor χ on fin[τ] that maps structures to 1 or 0 according to membership
in Q: Q =

{
A ∈ fin[τ]

∣∣ χ(A) = 1
}
. The term boolean queries for classes of

structures stresses this functorial view. Since classes of structures are tacitly
assumed to be closed under isomorphisms, their characteristic functions χ
are invariant under isomorphisms.

Consider similarly an isomorphism-invariant boolean valued function on
fin[τ ; r], χ: fin[τ ; r] → {0, 1}. Such a functor constitutes an r-ary query on
fin[τ]. An alternative view is that of a mapping from A ∈ fin[τ] to a new
r-ary predicate RA over A:

RA =
{
a ∈ Ar

∣∣∣ χ(A, a) = 1
}
.

The mapping R:A 7→ RA is a global relation of arity r. At the level
of this mapping isomorphism invariance of χ turns into equivariance under
isomorphisms: if π:A → B is an isomorphism, then π(RA) = RB. This
is in fact the standard defining condition on global relations or queries as
introduced in [CH80]. We note in particular that the value of a global relation
over A must be invariant under all automorphisms of A.

Definition 1.1. A global relation or query R of arity r over fin[τ] is a map-
ping sending each structure A ∈ fin[τ] to an r-ary predicate RA ⊆ Ar in
≃-compatible fashion. Whenever π : A → B is an isomorphism, then π also
preserves R: π(RA) = RB. The characteristic functor χR of R is the boolean
valued mapping on fin[τ ; r] that sends (A, a) to 1 if a ∈ RA. Compatibility

1 We apply the usual convention to identify the natural number n ∈ ω with the
set of its predecessors {0, . . . , n− 1} ⊆ ω.

18 1. Definitions and Preliminaries

of R with isomorphisms is equivalent with invariance of χR under isomor-
phisms.

It is often convenient to regard boolean queries (boolean global relations)
as special, namely 0-ary cases of r-ary queries. To accommodate this view
formally, we may naturally identify 0-ary predicates with boolean values and
fin[τ ; 0] with fin[τ].

Some remark on our usage of the term functor is in order. We generally
apply it to a mapping f whose domain is a class of structures (or of struc-
tures with parameters and the like) if f is required to be invariant under
isomorphisms: A ≃ B ⇒ f(A) = f(B). If also the range of f consists of
structures, for instance f : fin[τ]→ fin[σ] then the appropriate form of invari-
ance is A ≃ B⇒ f(A) ≃ f(B).

1.1.3 Logics

Let L be a logic. We do not require any formal general notion of a logic;
the apparent generality here only serves to collect some notions, that we
later apply to a few individual concrete logics, into common statements. L[τ]
denotes the class of all formulae of L in vocabulary τ . A formula ϕ ∈ L[τ]
without free variables (one that semantically evaluates to a boolean value
over each τ -structure) is a sentence. Sentences define classes of structures,
concentrating on finite structures we put

fmod(ϕ): =
{
A ∈ fin[τ]

∣∣∣ A |= ϕ
}
.

We mostly use letters ϕ,ψ, χ, . . . to denote formulae. Let ϕ ∈ L[τ]. Vari-
ables displayed in brackets like the xi in ϕ(x1, . . . , xr) indicate that semanti-
cally we consider ϕ as defining a global relation of arity r on fin[τ]. Over A,
ϕ(x1, . . . , xr) evaluates to the predicate

ϕ[A]: =
{
a ∈ Ar

∣∣∣ A |= ϕ[a]
}
.

A |= ϕ[a] says that ϕ is satisfied over A when the free variables are interpreted
as indicated. In this usage the notation ϕ(x1, . . . , xk) does not imply that the
displayed xi must all be syntactically free in ϕ, but that the free variables of ϕ
are among those displayed. We speak of a formula in free variables x1, . . . , xk
with this meaning: free(ϕ) ⊆ {x1, . . . , xk}. For instance, we allow to regard
the formula x1 = x2 also as a formula in free variables x1, x2, x3, and write
ϕ(x1, x2, x3) = x1=x2 if this view is intended.

Similar conventions apply to second-order variables (predicate variables)
where such occur. In particular notation like ϕ(X,x) ∈ L[τ] indicates that
given a τ -structure plus additional interpretations for the second-order vari-
ables X by extra predicates and for the x by elements, ϕ evaluates to a
boolean value. A |= ϕ[P , a] expresses that ϕ is satisfied in A with the indi-
cated interpretations for X and x.

1.1 Structures and Types 19

It is sometimes convenient to consider interpretations for some free first-
or second-order variables as momentarily fixed. The notation (A, Γ) for some
partial interpretation of free variables through Γ indicates this meaning.

Definition 1.2. (i) The sentence ϕ ∈ L[τ] defines the boolean query Q ⊆
fin[τ] if Q = fmod(ϕ).

(ii) The formula ϕ(x1, . . . , xr) ∈ L[τ] defines the global relation R on fin[τ]
if RA = ϕ[A] for all A ∈ fin[τ].

The expressive power of a logic is determined in terms of those global
relations that are definable in this logic.

Definition 1.3. Two logics are semantically equivalent if they define exactly
the same global relations on finite structures.

L1 ≡ L2

denotes this semantic equivalence over finite relational structures. The possi-
ble weakening of this requirement, that the two logics define the same classes
of finite structures is explicitly indicated. We write “L1 ≡ L2 for sentences”
or “L1 ≡ L2 for boolean queries”.

Observe that L1 ≡ L2 says that for every formula of L1 there is a formula
of L2 that is equivalent over finite structures, and vice versa. The weaker
notion of equivalence expresses the same requirement in restriction to sen-
tences. The distinction between the two notions of equivalence is of a purely
formal nature for our considerations. Most natural logics admit a faithful re-
duction from definable global relations to definable boolean global relations
so that their expressive power is fully determined by their strength in defining
classes, i.e. by their sentences.

The notation ≡ for semantic equivalence extends with analogous meaning
to classes of queries that are not specified by logics. For instance if C is a class
of queries and L a logic then C ≡ L says that every query in C is definable
by a formula of L and that conversely all L-definable queries are in C.

1.1.4 Types

We are interested in L-definable properties of element tuples. The L-type
of a tuple a = (a1, . . . , ak) of elements of a τ -structure A is the class of all
L-formulae in free variables x = (x1, . . . , xk) that are satisfied by a in A:

tpLA
(
a
)
=
{
ϕ(x) ∈ L[τ]

∣∣∣ A |= ϕ[a]
}
.

TpL(τ ; k) is the class of all L[τ]-types in variables x1, . . . , xk:

TpL(τ ; k) =
{
tpLA
(
a
) ∣∣∣ A ∈ fin[τ], a ∈ Ak

}
.

TpL(A; k) denotes the set of all L[τ]-types of k-tuples over a particular A:

20 1. Definitions and Preliminaries

TpL(A; k) =
{
tpLA
(
a
) ∣∣∣ a ∈ Ak

}
.

We use Greek letters α, β, . . . to denote types. If α ∈ TpL(τ ; k) then α |= ϕ
means that A |= ϕ[a] whenever A and a are such that tpLA

(
a
)
= α. In case ϕ

is also in L[τ] this is just to say that ϕ ∈ α.
We often think of TpL(τ ; r) for 1 6 r < k as embedded into TpL(τ ; k)

via
tpLA
(
a1, . . . , ar

)
7−→ tpLA

(
a1, . . . , a1︸ ︷︷ ︸

k−r

, a1, . . . , ar
)
.

Some of the logics that play a central rôle in the following possess only
a bounded supply of variable symbols. If L only has variables x1, . . . , xk we
agree to apply the notion of L-type only to tuples a of length at most k. We
adopt the convention that TpL(τ ; r) = ∅ for r > k in this context.

The most basic types considered are the atomic or quantifier free types.
They are obtained in the above formalism if L is chosen to be the quantifier
free fragment of first-order logic. We write atpA

(
a
)
for the collection of all

quantifier free formulae that hold true of a in A. Note that each such type
can be fully represented by the set of atomic formulae contained in it. In
this sense, and for finite relational vocabularies, each atomic type is finite
and we may identify an atomic type θ with a single quantifier free formula:
the conjunction over all atomic formulae contained in θ together with the
negations of all those not contained in θ. Some such syntactic normal form is
tacitly assumed when we deal with sets of atomic types. The set of all atomic
τ -types in variables x1, . . . , xk is denoted by Atp(τ ; k):

Atp(τ ; k) =
{
atpA

(
a
) ∣∣∣ A ∈ fin[τ], a ∈ Ak

}
.

Clearly only structures of size up to k need be considered since τ is purely
relational. For finite τ therefore, Atp(τ ; k) is obviously finite. In fact a finite
representation of Atp(τ ; k) in terms of the above syntactic normalization is
immediately obtained.

Atomic types in vocabulary ∅ — in the language of pure sets, where only
equality is available — are here called equality types. We write eq

(
a
)
for the

equality type of a and Eq(k) for the finite set of all equality types in variables
x1, . . . , xk.

For indistinguishability of structures or structures with parameters in a
logic we use the following notation.

Definition 1.4. For the logic L we denote by ≡L the equivalence relation of
indistinguishability in L or L-equivalence both of structures and of structures
with parameters:

(i) A ≡L A′ if A and A′ satisfy exactly the same L-sentences.
(ii) (A, a) ≡L (A′, a′) if a and a′ satisfy exactly the same L-formulae over

A and A′ respectively — equivalently if tpLA
(
a
)
= tpLA′

(
a′
)
.

Note that TpL(τ ; k) may be identified with fin[τ ; k]
/
≡L.

1.2 Algorithms on Structures 21

1.2 Algorithms on Structures

The informal notion of algorithms on structures simply refers to algorithms
that are intended to take finite structures as inputs. Algorithms do not deal
with abstract structures directly but with presentations or encodings of these.
In standard models of computation — we mainly think of Turing machines
— algorithms directly deal with words, ordered strings of symbols over some
fixed finite alphabet. Straightforward encoding schemes that faithfully map
structures to words are available for structures over standard domains. The
implicit ordering of the standard domain allows to enumerate all instantia-
tions of atoms lexicographically. The entire structural information can thus
be coded in a binary string that lists the boolean values of all instantiations
of atoms in this ordering. Having fixed any such convention for the direct en-
coding of standard structures we can identify standard structures with their
encodings as bit-strings. Without loss of generality we may thus pretend that
algorithms for computations on finite τ -structures directly accept elements
of stan[τ] as inputs. We think of such an algorithm A as realizing a mapping

A: stan[τ] −→ range(A)

A 7−→ A(A).

The same considerations apply to algorithms that take structures with pa-
rameters as inputs; we replace stan[τ] by stan[τ ; r] for some r. With respect
to the range of A we may distinguish two cases (the distinction is purely
intentional): either we regard range(A) simply as a set of words, or we simi-
larly identify output words with standard objects they encode. In particular
we adopt the latter view if we want A to realize a mapping from structures
to structures. As for the input domain, we identify the output domain with
some stan[σ] and pretend for instance that A directly realizes a mapping
A: stan[τ] → stan[σ]. Similar conventions can be employed to algorithms
which are to output natural numbers: A: stan[τ]→ ω.

Algorithms are unproblematic as far as they realize mappings between
certain domains of standard objects (objects with standard encodings). The
picture becomes fundamentally different if we want to realize functors on
structures. Consider the algorithmic evaluation of a boolean query on fin[τ].
No matter whether we restrict the domain to stan[τ] or not, there remains
the crucial invariance condition that A(A) = A(A′) whenever A and A′ are
isomorphic. Note that this condition really arises from two sources:

(a) when encoding even a single abstract A ∈ fin[τ] through an element of
stan[τ] then a priori the representative in stan[τ] is determined only up
to isomorphism.

(b) since a boolean query by definition corresponds to an isomorphism in-
variant functor, its restriction to stan[τ] still has to be invariant under
isomorphisms.

22 1. Definitions and Preliminaries

Of course there are situations in which uniquely determined representa-
tives of abstract input structures by elements of stan[τ] are available. Most
notably this applies to linearly ordered structures. As pointed out above we
may identify ord[τ ∪̇ {<}]/≃ with stan[τ]. Linearly ordered structures, even
when viewed only up to isomorphism, therefore are themselves objects with
standard encodings — whence their notorious special status in considerations
concerning logics for complexity classes arises. Somewhat more generally such
exceptions occur wherever there is some adequate normalization or canon-
ization procedure available. Variations on this issue will concern us in later
chapters.

Entirely similar considerations apply of course to the evaluation of r-ary
queries that we choose to realize in the boolean format

A: stan[τ ; r] −→ {0, 1}

which is also subject to invariance under isomorphism. Finally, functors from
structures to structures are realized as

A: stan[τ] −→ stan[σ]

with invariance condition A ≃ B⇒ A(A) ≃ A(B).

Definition 1.5. (i) The algorithm A: stan[τ]→ {0, 1} computes the bool-
ean query Q ⊆ fin[τ] if for all A ∈ stan[τ]: A(A) = 1 if and only if
A ∈ Q. We also say that A recognizes the class Q.

(ii) An algorithm A: stan[τ ; r]→ {0, 1} computes the r-ary query R on fin[τ]
if for all (A, a) ∈ stan[τ ; r]: A(A, a) = 1 if and only if a ∈ RA.

(iii) An algorithm A: stan[τ] → stan[σ] computes the functor F : fin[τ] →
fin[σ] if for all A ∈ stan[τ]: A(A) ≃ F (A).

(iv) An algorithm A: stan[τ]→ S computes the functor F : fin[τ]→ S whose
range is some domain of standard objects S if for all A ∈ stan[τ]:
A(A) = F (A).

1.2.1 Complexity Classes and Presentations

We are interested in the complexity of problems that concern structures.
Consider a structural problem, any of the several kinds of computational
problems considered in Definition 1.5. The complexity of such problems is
the complexity in the standard sense of its algorithmic realizations A. When
dealing with relational input structures we identify the input size with the
size of the universe of the input structure. Although this parameter may differ
from the length of an actual encoding of the input structure, the difference
does not matter for our purposes because the complexity classes considered —
mainly Ptime and Pspace, but the same applies to all standard classes from
Logspace upward — are robust under polynomially bounded re-scalings of
the input size.

1.2 Algorithms on Structures 23

A boolean query Q ⊆ fin[τ], for instance, is in Ptime if there is a Ptime

algorithm A that computes Q in the sense of Definition 1.5 (i). More precisely,
if there is an algorithm A for Q that terminates its computation on all A =
(n, . . .) ∈ stan[τ] in time polynomial in n. It is customary to denote the class
of all Ptime queries again by Ptime, and similar conventions apply to all
the usual complexity classes. It should always be clear from context whether
we think of for instance Ptime either as the class of all polynomial time
computable functions (on the natural numbers, or on some other domain
of objects with standard encodings), or as the class of all polynomial time
computable queries on finite relational structures. In order to emphasize the
latter interpretation we shall sometimes speak of Ptime or other complexity
classes as complexity classes of queries, a notion introduced by Chandra and
Harel [CH80].

As pointed out in the introduction the issue of logics for complexity classes
is closely related with the abstract notion of recursive presentations for com-
plexity classes of queries.

Definition 1.6. Let C be a complexity class of queries. C is recursively pre-
sented by a recursive or recursively enumerable set M of algorithms if each
A ∈M is an algorithmic realization of a query in complexity C, and ifM is
semantically complete for C: C = {Q |Q realized by some A ∈M }.

We write C ≡ M to stress the underlying semantic equivalence and speak
of M as a recursive presentation for C. For short we also just call C recur-
sively enumerable if it admits a recursive presentation.

This notion of a recursive presentation similarly applies to any class of
problems C that is specified by algorithmic criteria. Recall from the intro-
duction that ordinary Ptime, as the class of all polynomial time computable
problems on natural numbers say, is recursively presentable through the
subclass of polynomially clocked Ptime machines (compare Section 0.1.2).
Ptime as a class of queries is a paradigmatic semantic class. As a subclass of
ordinary Ptime, Ptime as a class of queries is characterized by the semantic
condition of invariance under isomorphism. The problem whether there are
logics for complexity classes of queries essentially is the problem of finding
recursive presentations of these semantically defined classes.

1.2.2 Logics for Complexity Classes

This following notion was first presented in precise terms in [Gur88].

Definition 1.7. Let C be a complexity class of queries. Assume that L is
a logic with recursive syntax and semantics: for finite τ the set L[τ] of τ -
formulae of L is recursive2 and there is a recursive mapping from L[τ] to

2 Note that just as for recursive presentations it does not really matter whether
we require recursive or recursively enumerable syntax. If (ϕi)i>1 is a recursive
enumeration then the recursive set {(ϕi, i)|i > 1} can replace the original syntax
if necessary.

24 1. Definitions and Preliminaries

algorithms, ϕ 7→ Aϕ such that Aϕ evaluates (the query defined by) ϕ over
fin[τ].
L is a logic for C or captures C if C coincides with the class of queries that

are definable in L, C ≡ L, and if the recursive semantics ϕ 7→ Aϕ maps L[τ]
to algorithmic realizations within C.

Of course the same notion applies to other classes of queries that are
defined in terms of algorithmic criteria, in particular to subclasses of com-
plexity classes of queries. The well known theorem of Immerman and Vardi
for instance says that the class of all Ptime queries on ordered structures is
captured in exactly this sense by fixed-point logic.

Sometimes it is useful to strengthen these requirements so that other
important data also become recursive in terms of the formulae of L, compare
[Gur88, EF95]. For instance one may require that data describing complexity
bounds on Aϕ be recursive in ϕ. While such strengthenings are crucial for
certain arguments we can here stick to the basic notion.

It is worth to note the essential equivalence between the notions of cap-
turing by some logic and that of a recursive presentation. It is clear that a
logical representation as in the last definition provides a recursive presenta-
tion through

{
Aϕ

∣∣ ϕ ∈ L
}
. Conversely, any recursive set of algorithms may

be regarded as a logic with recursive syntax in the abstract sense; for the
semantics choose the obvious one embodied in the algorithms. In this way
any recursive presentation of C can essentially be regarded as a logic that
captures C. There are some fine points to be considered if as usual we want
abstract logics to satisfy some appropriate regularity criteria as outlined in
[Ebb85]. For this it is obviously necessary that C itself as a set of queries
satisfies corresponding closure criteria. At least for classes C that are natural
in such respects it follows that indeed the two notions are equivalent. We
do not here enlarge on this issue, in fact an informal concept of ‘logics for
complexity classes’ will be quite sufficient for our purposes.

1.3 Some Particular Logics

1.3.1 First-Order Logic and Infinitary Logic

We write Lωω for first-order logic. The expressive power of first-order logic
over finite structures is very unsatisfactory in terms of computational com-
plexity. While all Lωω-definable queries are Logspace computable, first-
order logic fails to define fundamental structural properties in Logspace

or even below. This was briefly discussed in the introduction. First-order
equivalence ≡Lωω , however, turns out to be too strong a notion of equiva-
lence over finite structures. Two finite structures are first-order equivalent
if and only if they are isomorphic: a first-order sentence, that uses enough
variables to enumerate all elements of a given structure and specify all basic
relations between them, characterizes that structure up to isomorphism.

1.3 Some Particular Logics 25

Full infinitary logic is the logic L∞ω that has the usual first-order rules
for the formation of formulae and in addition is closed under infinitary con-
junctions and disjunctions: if Ψ is any set (!) of formulae of L∞ω then

∧
Ψ ,

the conjunction over Ψ , and
∨
Ψ , the disjunction over Ψ , are also formulae of

L∞ω. Their semantics is the obvious one:
∧
Ψ evaluates to true if all formulae

in Ψ evaluate to true and
∨
Ψ evaluates to true if at least one formula in Ψ

does. Note that one often has to deal with families of formulae (ψi)i∈I and
then writes for instance

∧
i∈I ψi instead of

∧{
ψi
∣∣ i ∈ I

}
.

As mentioned in the introduction any query on finite structures is defin-
able in L∞ω. This follows from the observation that any finite structure A is
characterized up to isomorphism by some first-order sentence ϕA. If Q is a
boolean query, for instance, then the infinite disjunction ψ =

∨
ϕA over all

ϕA for A ∈ Q ∩ stan[τ] clearly defines Q. Recall, however, that ϕA typically
requires n+ 1 variables if the size of A is n. This motivates the introduction
of the finite variable fragments of L∞ω.

1.3.2 Fragments of Infinitary Logic

Definition 1.8. Lk∞ω is the fragment of L∞ω that consists of formulae us-
ing only variable symbols from {x1, . . . , xk}. The union of the Lk∞ω is denoted
Lω∞ω. It consists of all formulae of L∞ω that use finitely many variable sym-
bols (from the standard supply {xi|i > 1}).

We also consider the corresponding bounded variable fragments of Lωω:
let Lkωω denote first-order logic with variable symbols {x1, . . . , xk}.

The union of the Lkωω is full first-order logic Lωω. In actual formalizations
we often use variable symbols x, y, z, . . . instead of the standardized xi
for the sake of easier readability. The official restriction to standard sets of
variables is convenient, however, to have syntactic closure under conjunctions
and disjunctions for each Lk∞ω. We give some examples for the expressive
power of the Lk∞ω. Formalizations with few variable symbols typically require
clever re-use of already quantified variables. Examples 1.9 and 1.11 are from
[KVa92a], Example 1.16 plays an important rôle in [DLW95] in a context
that will also concern us here later.

Example 1.9. Over linear orderings (A,<) two different variable symbols
suffice to produce first-order formulae ϕi(x), for i > 0, which express that x
is the i-th element with respect to <. Equivalently, for the standard linear
orderings (n,<):

(n,<) |= ϕi[m] exactly for m = i.

To obtain these formulae put ϕ0(x) := ¬∃y y<x to define the bottom element
in any linear ordering (A,<). Inductively let

ϕi+1(x): =
∧

j6i

¬ϕj(x) ∧ ∀y
(
y < x→

∨

j6i

ϕj(y)
)
,

26 1. Definitions and Preliminaries

where ϕj(y) is the result of exchanging x and y throughout the formula ϕj(x).

Example 1.10. The class of acyclic directed graphs (A,E) is definable by
a sentence of L2

∞ω. Observe that a finite graph is acyclic if it has no infinite
E-paths, or equivalently if there is some finite bound on the length of E-
paths. Put ξ0(x) := ¬∃yEyx to characterize those vertices that have no
E-predecessors. Inductively let

ξi+1(x): = ∀y
(
Eyx→ ξi(y)

)
.

Then (A,E) |= ξi[v] if and only if there is no E-path of length greater than
i reaching v. It follows that

ξ: =
∨

i∈ω

∀xξi(x)

characterizes acyclic directed finite graphs as desired.

The sequence of formulae ξi from Example 1.10 can be extended to ordinal
indices to form formulae ξα(x) asserting (over arbitrary structures) that the
E-rank of x is at most α: inductively ξα(x) = ∀y

(
Eyx→

∨
β<α ξβ(y)

)
. E is

well-founded if there are no infinite descending E-paths, which is equivalent
with the existence of some λ such that (A,E) |=

∨
α<λ ∀xξα(x). It follows

that the class of well-founded relations of rank less than λ is L2
∞ω-definable

over arbitrary structures, for each λ. We shall return to two variables, linear
orderings, and well-foundedness in Example 1.12 and Corollaries 1.13 and
1.14 below.

Example 1.11. The reflexive transitive closure of a binary relation E is
definable in L3

∞ω. The formula ψ1(x, y) := x=y ∨Exy describes the pairs of
E-distance at most 1. Inductively, ψi+1(x, y) := ψi(x, y)∨∃z

(
ψi(x, z)∧Ezy

)

defines those pairs (x, y), whose E-distance is at most i+ 1. Thus ξ(x, y) :=∨
i>1 ψi(x, y) defines the reflexive transitive closure of E.

It is a well known fact (that will also be illustrated in Example 2.6 with a
typical game argument) that two variables do not suffice to define transitive
closures or to assert transitivity of a given binary relation. The following
observation, which is also a direct consequence of the very first exercise in
Poizat’s [Poi82], is therefore quite intriguing. The way it is proved here is
inspired by an argument from [GOR96a].

Example 1.12. The class of finite linear orderings is L2
∞ω-definable (even

over not necessarily finite structures). Let ξ′ be an L2
∞ω[<]-sentence asserting

that < is acyclic (obtained from ξ in Example 1.10 through replacing E by
<). We claim that

ϕord : = ξ′ ∧ ϕ0 ,

where ϕ0 : = ∀x∀y
(
x=y ∨ x<y ∨ y<x

)
,

1.3 Some Particular Logics 27

defines the class of all finite linear orderings. It remains to argue that ϕord

enforces

(i) irreflexivity — ∀x¬x < x : it does since ξ′ forbids loops.
(ii) antisymmetry — ∀x∀y¬

(
x < y ∧ y < x

)
: it does since ξ′ also forbids

cycles of length two.
(iii) transitivity — ∀x∀y∀z

(
x < y ∧ y < z → x < z

)
: if x < y and y < z

then x 6= z (forbidden cycle of length two) and z 6< x (forbidden cycle
of length three), whence ϕ0 forces x < z.

In fact, over not necessarily finite structures and for any ordinal λ the class
of all well-orderings of order type less than λ is L2

∞ω-definable. It follows
that for instance the class of all countable well-orderings is L2

∞ω-definable
over arbitrary structures. This claim is justified just as in the last example,
if we replace ξ′ by a sentence that expresses that < is a well-founded rela-
tion of rank less than λ (compare the remark following Example 1.10). ξ′ in
particular forbids loops and cycles, so that irreflexivity, antisymmetry and
transitivity follow as above.

Returning to finite structures, we have the following:

Corollary 1.13. Let <∈ τ and let τ have no relation symbols of arity greater
than 2. Then any query of linearly ordered finite τ -structures Q ⊆ ord[τ] is
L2
∞ω-definable.

Sketch of Proof. Consider without loss τ = {<,E} with one extra binary
relation E besides <. Let A = (n,<,E) have standard domain with the
natural interpretation of <. Put, for formulae ϕi as in Example 1.9 that
characterize the i-th element of the ordering,

ϕA : = ϕord ∧ ∀x
∨

i<n

ϕi(x)∧
∧

(i,j)∈E

∃x∃y
(
ϕi(x) ∧ ϕj(y) ∧ Exy

)

∧
∧

(i,j) 6∈E

∃x∃y
(
ϕi(x) ∧ ϕj(y) ∧ ¬Exy

)
.

Then ϕA characterizes A up to isomorphism. The disjunction
∨
ϕA over those

of these A that are in Q defines Q. ⊓⊔

In particular, for any set W ⊆ ω \ {0}, the class of those linear orderings
whose size is in W is definable in L2

∞ω. This immediately gives the following:

Corollary 1.14. L2
∞ω is sufficiently expressive to define arbitrarily complex

and even non-recursive queries.

Example 1.15. The class of all finite trees is definable in L3
∞ω. A structure

(A,E) is a tree if E is acyclic and if

(i) there is exactly one element without E-predecessors (the root).
(ii) each element has at most one E-predecessor.

28 1. Definitions and Preliminaries

Note that connectedness is implied by (i) and (ii) if there cannot be cycles.
Now cycles can be forbidden in L2

∞ω according to Example 1.10. (i) can even
be formalized in L2

ωω through

∃x∀y¬Eyx ∧ ∀x∀y
((
∀y¬Eyx ∧ ∀x¬Exy

)
−→ x = y

)
.

(ii) actually needs a third variable for mere counting, as for instance in the
formalization

∀x∀y∀z
(
Eyx ∧ Ezx→ y = z

)
.

A binary tree is a tree in which all nodes have out-degree 0 or 2. A full
binary tree is a binary tree in which all leaves (nodes of out-degree 0) are at
the same distance from the root (at the same height).

Example 1.16. The class of all full binary trees is definable in L3
∞ω. The

condition on equal height of all leaves is formalized in three variables us-
ing auxiliary formulae ϕi that define the set of vertices at height i. These
are constructed inductively similar to the formulae used in Example 1.9.
ϕ0(x) := ¬∃yEyx defines the root. Inductively ϕi+1(x) := ∃y(ϕi(y) ∧ Eyx)
is as desired. The L2

∞ω-sentence
∨
i ∀x

(
¬∃yExy → ϕi(x)

)
forces all leaves to

be at the same height.
It might look surprising that the condition on out-degree 2 should also

be expressible in just three variables. It is however, and quite simply, in the
context of trees. The sentence

¬∃x1∃x2∃x3
(∧

i6=j

xi 6= xj ∧
∧

i=1,2,3

(
∃xi

∧

j 6=i

Exixj

))

expresses that there are no three vertices with common direct predecessors
for any two of them. If the in-degree can at most be 1 then this is equivalent
with a bound of 2 on the out-degree. The condition that the out-degree of
all vertices apart from the leaves must be at least 2 is trivially first-order
expressible in three variables.

In Example 1.15 some variables had to be spent for mere counting in the
conditions on the degree of vertices. In general the explicit formalization of
∃>mxϕ(x) requires at least m variables as for instance in

∃x1 . . . ∃xm
(∧

16i<j6m

xi 6= xj ∧
∧

16i6m

ϕ(xi)
)
.

Indeed, over the empty vocabulary it follows easily from game arguments that
are treated in Chapter 2, that no sentence of Lm−1

∞ω can express the existence
of at least m distinct elements. It is therefore natural to consider fragments
of first-order and infinitary logic with a bounded supply of variables that
admit, however, arbitrary counting quantifiers ∃>m.

1.3 Some Particular Logics 29

Definition 1.17. Ck∞ω is the fragment of L∞ω that consists of formulae
using only variable symbols from {x1, . . . , xk} but allows arbitrary counting
quantifiers ∃>m, m > 1, instead of the standard existential quantifier ∃. The
union of the Ck∞ω is denoted Cω∞ω.

Some simplifications in actual formalizations are achieved with the fol-
lowing agreements. We write ∃=mxϕ(x) as an abbreviation for ∃>mxϕ(x) ∧
¬∃>m+1xϕ(x). This notation may be extended to allow ∃=0xϕ(x) as short-
hand for ¬∃xϕ(x). Quantifiers ∃>m, ∃6m and ∃<m are similarly introduced.

We give a few simple examples for the expressive power of C2
∞ω. A much

more central example, the expressibility of the stable colouring of graphs in
C2

∞ω, is presented in detail in Chapter 2.

Example 1.18. The class of regular graphs is definable in C2
∞ω. Apart from

the standard axioms for graphs, which are in two variables, take

χ: = ∀x∀y
∧

m∈ω

(
∃>myExy ↔ ∃>mxEyx

)

to express regularity.

Example 1.19. Even C2
ωω does not have the finite model property, i.e. there

are sentences of C2
ωω without finite models that are satisfiable in infinite

structures. For instance it is expressible in C2
ωω that a binary relation E is

the graph of an injective total function that is not surjective:

∀x∃=1yExy ∧ ∀y∃61xExy ∧ ∃y∀x¬Exy.

First-order logic with two variables L2
ωω on the other hand is known to have

the finite property by a result of Mortimer’s, see Theorem 7.35.

Example 1.20. Any finite equivalence relation is characterized up to iso-
morphism among all finite equivalence relations by its C2

∞ω-theory. The ax-
iomatization of equivalence relations, however, needs at least three variables.
Let A = (A,∼) where ∼ is an equivalence relation over A. A complete in-
variant that characterizes any finite equivalence relation up to isomorphism
is its spectrum, the set of pairs

(
i, νi

)
such that there are exactly νi classes

of size i in (A,∼). This information is expressed in two variables by
∧

i

∃=iνix ∃=iy x ∼ y.

That two variables even with counting quantifiers do not suffice to express
transitivity of a binary relation E is shown easily with games discussed in
Chapter 2, see Example 2.6.

Example 1.21. The classes of all trees and of all full binary trees are de-
finable in C2

∞ω. In fact we observed in Example 1.15 and 1.16 that a third
variable was only needed for counting purposes. For instance (ii) of Exam-
ple 1.15 now simply becomes ∀x∃61yEyx.

30 1. Definitions and Preliminaries

1.3.3 Fixed-Point Logics

Fixed-point logics provide extensions of first-order logic that capture some
recursion on relations. Consider a formula ϕ(X,x) in free variables X and x
of matching arities, X a second-order variable for a predicate of arity r and
x = (x1, . . . , xr). Over structures A that interpret ϕ up to X and the x the
formula ϕ induces a mapping on r-ary predicates:

FA
ϕ : P(Ar) −→ P(Ar)

P 7−→
{
a ∈ Ar

∣∣ A |= ϕ[P, a]
}
.

P(Ar) denotes the power set of Ar. For any mapping F :P(Ar) → P(Ar)
consider the following two recursive processes.

The partial fixed point of F . Inductively, a sequence of r-ary predicates
is generated through iterated application of F to the empty predicate:

X0 := ∅
Xi+1 := F (Xi).

With this sequence the partial fixed point of F is defined to be either the
stationary value of this sequence if such exists or the empty set otherwise:

PFP[F] :=

{
Xi if Xi+1 = Xi

∅ if Xi+1 6= Xi for all i.

The inductive or inflationary fixed point associated with F . Induc-
tively, the following increasing sequence of r-ary predicates is generated:

X0 := ∅
Xi+1 := Xi ∪ F (Xi).

Note that this sequence may alternatively be obtained through iterated ap-
plication of a modified operation Finfl to the empty predicate. Finfl is the
inflationary variant of F , defined by Finfl(P) := P ∪ F (P); generally an op-
eration G on sets is called inflationary if always G(P) ⊇ P .

Since the domain A is finite, the sequence of the Xi must become station-
ary within polynomially many steps of the iteration. The limit reached is the
inductive or inflationary fixed point :

IFP[F] := Xi0 where i0 = min{i|Xi+1 = Xi}.

Equivalently: IFP[F] =
⋃
iXi,

or IFP[F] = PFP[Finfl].

The Xi in these definitions are referred to as the stages in the generation of
the respective fixed points.

Fixed-point logics provide constructors for the definition of those predi-
cates that are obtained as fixed points of operators F = Fϕ as above. For the

1.3 Some Particular Logics 31

inductive definition of their syntax and semantics it is important to consider
formulae ϕ that may have other free first- and second-order variables than
X and x. To make clear which variables are those involved in the fixed-point
process, we write PFPX,xϕ for the partial fixed point associated with the
operator Fϕ, where free variables other than X and x in ϕ are kept fixed
as parameters with respect to the operation Fϕ. The same applies to the
inductive fixed point.

Syntax and semantics of partial fixed-point logic PFP are defined as fol-
lows. Syntactically, PFP is the closure of atomic formulae (where second-
order variables are admitted) under the usual first-order constructions and
the partial fixed-point constructor. The latter allows to construct a new for-
mula ψ =

[
PFPX,xϕ

]
x from any formula ϕ ∈ PFP, whereX is a second-order

variable of some arity r and x an r-tuple of distinct first-order variables. For
the free occurrence of variables put free(ψ) :=

(
free(ϕ) ∪ {x}

)
\ {X}.

The semantics for the PFP-constructor is that induced by the partial fixed
point of the corresponding operator. If (A, Γ) is a structure of the appropriate
vocabulary together with interpretations for all variables in free(ϕ) \ {X,x},
then

(A, Γ) |= ψ[a] if a ∈ PFP[FA,Γ
ϕ],

where FA,Γ
ϕ :P(Ar)→ P(Ar) is the operation induced over (A, Γ) by ϕ.

Definition 1.22. Partial fixed-point logic PFP is the smallest logic closed
under the usual first-order constructors and the PFP-constructor.

Clearly PFP ⊆ Pspace. Recall that first-order queries are in Logspace.
Over structures of size n PFP-processes in arity r terminate within at most
2m + 1 steps, where m = nr. A corresponding step counter can be run in
Pspace and only two stages of the fixed-point generation need be kept si-
multaneously.

For fixed-point logic FP one considers the inductive or inflationary fixed-
point operator instead of the partial fixed-point operator. The syntax is ex-
actly the same as for PFP, only that we write FP instead of PFP in fixed-point
formulae and choose the semantics based on the inductive fixed point of the
underlying operation: for ϕ and (A, Γ) as above, and ψ =

[
FPX,xϕ

]
x put

(A, Γ) |= ψ[a] if a ∈ IFP[FA,Γ
ϕ].

Definition 1.23. Fixed-point logic FP is the smallest logic closed under first-
order constructors and the FP-constructor.

It is obvious that FP ⊆ Ptime as IFP-processes terminate within a poly-
nomial number of iterations.

We regard FP as a sublogic of PFP in the sense that
[
FPX,xϕ

]
x may

be identified with
[
PFPX,x(Xx ∨ ϕ)

]
x, since the inflationary variant of the

operation Fϕ is the same as Fϕ′ for ϕ′ = Xx ∨ ϕ.

32 1. Definitions and Preliminaries

Theorem 1.24 (Immerman, Vardi). Over the class of linearly ordered fi-
nite structures FP captures Ptime: a class of linearly ordered structures is
recognized by a Ptime algorithm if and only if it is the class of finite mod-
els of some sentence of FP; a global relation on ordered structures is Ptime

computable if and only if it is definable in FP.

Theorem 1.25 (Abiteboul, Vardi, Vianu). Over linearly ordered finite
structures PFP captures Pspace: a class of linearly ordered structures is
recognized by a Pspace algorithm if and only if it is the class of finite models
of some sentence of PFP; a global relation on ordered structures is Pspace

computable if and only if it is definable in PFP.

Theorem 1.24 was obtained in [Imm86] and [Var82]. Theorem 1.25 com-
bines results from [Var82] and [AV89] (via equivalences with relational While-
queries).

Let us briefly indicate how the fixed-point processes available in FP and
PFP can be used to code Ptime, respectively Pspace, computations over
linearly ordered structures — an observation that is the key to the preceding
theorems.

Example 1.26. Polynomially space bounded configurations of a Turing ma-
chine can be encoded by predicates over the ordered domains of the input
structures. The arity of the predicate depends on the degree of the space
bound. A definable indexing of the tape cells is provided by the lexicographic
ordering on an appropriate power of the universe. In terms of these encodings
by predicates it is easily seen that the successor step from one configuration
to the next becomes first-order definable.

For a Pspace machine that computes a boolean query say, consider the
partial fixed-point process based on this first-order formalization of the com-
putational successor (with a corresponding definition of the initial configura-
tion). Provided that we adapt the transition function of the machine in such
a way that an eventual halting configuration is formally repeated indefinitely,
the limit value of this partial fixed-point process is an encoding of the halting
configuration if the machine halts on the given input structure.

For a Ptime machine we may pass from the encoding of individual con-
figurations to a cumulative encoding of initial segments of the computation
path. We use a fixed-point variable with additional entries for a lexicographic
indexing also for a polynomial number of time steps. This leads to an induc-
tive fixed-point process whose i-th level describes the computation path up
to step i. The limit reached in this process is an encoding of the entire com-
putation path on the given input structure.

In either case the actual result of the computation (acceptance or rejection
in the case of a boolean query) is first-order definable in terms of the final
configuration.

The original and intuitively also very appealing definition of fixed-point
logic FP in terms of a least fixed-point operator LFP rather than the in-

1.3 Some Particular Logics 33

ductive or inflationary operator IFP is equivalent in expressive power. This
equivalence between the least fixed-point extension of first-order logic and the
formalization using IFP is shown by Gurevich and Shelah [GS86], see also
[Lei90]. The formalization using inductive fixed points will be more convenient
in connection with the counting extensions to be introduced in Chapter 4.

As a further indication of the versatility of fixed-point constructs we
briefly consider systems of simultaneous fixed points.

Example 1.27. Let ϕ = (ϕi(X1, . . . , Xm, x
(i)))i=1,...,m be a tuple of formu-

lae in which the arities ri of the x
(i) match those of the Xi. With ϕ one may

associate an operation Fϕ on P(Ar1) × · · · × P(Arm), over structures that
interpret the ϕi up to the Xi and x

(i), through:

P 7−→
({
a(i)

∣∣ (A, P) |= ϕi[a
(i)]
})

i=1,...,m
.

Iteration in the spirit of IFP or PFP yields inflationary or partial fixed points
for such systems of interrelated relational transformations. Standard tech-
niques for the encoding of tuples of relations through a single relation of
higher arity can be employed to show that fixed-point logic FP and partial
fixed-point logic PFP are closed under the formation of respective fixed points
for systems.

1.3.4 Fixed-Point Logics and the L
k

∞ω

The fixed-point logics PFP and FP both are sublogics of Lω∞ω. Since FP itself
is a sublogic of PFP it suffices to review the argument that yields PFP ⊆
Lω∞ω. Since we have already seen that Lω∞ω expresses queries of arbitrary
complexity, whereas PFP-definable queries obviously are in Pspace, it follows
that PFP Lω∞ω.

For a convenient statement of the following arguments it is useful to elimi-
nate first-order parameters in fixed-point processes. This is easily done at the
expense of an increase in the arity of the second-order fixed-point variable.

Lemma 1.28. Any formula in PFP is equivalent with one in which fixed-
point operators are applied only in the form PFPX,xϕ, where all free first-
order variables of ϕ are among those in x. The same holds of FP.

Sketch of Proof. Consider ϕ with free first-order variables x, z. Assume that
x and z together consist of pairwise distinct variables and that no variable in z
is bound in ϕ. Let ϕ′ be the result of replacing any atom Xu in ϕ by the atom
Zz u, where Z is a new second-order variable whose arity is that of X plus
arity of z. It is easily seen that

{
z x
∣∣ [PFPX,xϕ]x

}
=
{
z x
∣∣ [PFPZ,z xϕ′]z x

}
.
⊓⊔

Lemma 1.29. Let ϕ ∈ Lk∞ω be a formula, possibly with free second-order
variables. Let X be a second-order variable of arity r, and x an r-tuple of

34 1. Definitions and Preliminaries

pairwise distinct variables from {x1, . . . , xk}. Assume that all free first-order
variables of ϕ are among those in x. Then ψ :=

[
PFPX,xϕ

]
x is equivalent

with a formula in Lk∞ω.

Proof. Let us write ϕ(X,x) for the given ϕ, second-order variables apart
from X are irrelevant in the argument. Without loss of generality we assume
that all X-atoms in ϕ are of the form Xy for an r-tuple of mutually distinct
variables y. An atom Xxixiy

′ for instance can be replaced by the formula
∃xj(xj = xi ∧Xxjxiy

′) for a variable xj different from xi and the y′.
It is shown inductively that the stages Xi in the generation of the fixed

point PFPX,xϕ(X,x) are definable by L
k
∞ω-formulae ϕi(x). ϕ0(x) is the result

of replacing each X-atom in ϕ(x) by some universally false expression like
¬x = x in the same variables. Inductively assume that ϕi(x) is as desired.
Semantically ϕi+1(x) has to be the result of substituting

{
x
∣∣ ϕi(x)

}
for X

in ϕ(x). Consider a single atom Xy in ϕ(x), y a tuple of mutually distinct
variables. Choose a permutation of the set of variables {x1, . . . , xk} that
maps x to y. An application of this permutation to all variables in ϕi(x)
yields a formula ϕi(y) with Xi =

{
y
∣∣ ϕi(y)

}
that can be substituted in

place of Xy in ϕ(x) without any clashes with bound variables. ϕi+1(x) is the
result of corresponding substitutions for all X-atoms in ϕ(x). It follows that[
PFPX,xϕ(X,x)

]
x is equivalent with

∨
i>0

(
∀x(ϕi(x) ↔ ϕi+1(x)) ∧ ϕi(x)

)
.

⊓⊔

Corollary 1.30. FP ⊆ PFP Lω∞ω.

The first semantic inclusion is strict if and only if Ptime Pspace by a
theorem of Abiteboul and Vianu. We shall come back to this in Chapter 3.

Note that the Lk∞ω are indeed not closed with respect to PFP or FP,
since fixed points may involve first-order parameters. The elimination of these
according to Lemma 1.28 may need extra variables. An easy example to this
effect is the following one in the language of a single binary relation E.

Example 1.31. The formula ϕ(x, y) :=
[
FPX,x(x=y∨∃y(Xy∧Eyx))

]
x de-

fines the reflexive transitive closure of E. If ϕ were equivalent with a formula
in L2

∞ω it would follow that transitivity of a symmetric reflexive relation E
is expressible in L2

∞ω since it is expressed by ∀x∀yϕ(x, y). As we shall see in
Example 2.6 below, transitivity is not even definable in C2

∞ω.

Another corollary to Lemma 1.29 concerns a frequently used collapsing
argument over structures that realize few Lk∞ω-types.

Corollary 1.32. Let K ⊆ fin[τ] be a class such that for some d each
A ∈ K realizes at most d different Lk∞ω-types. Then any fixed point over
an Lk∞ω-formula without first-order parameters as considered in Lemma 1.29
is reached after at most 2d +1 iterations. It follows in particular that Lkωω is
closed with respect to fixed points without first-order parameters over K.

1.4 Types and Definability in the Lk
∞ω and Ck

∞ω 35

Sketch of Proof. Under the assumptions and for ϕ(X,x) as in Lemma 1.29,
there are no more than 2d different Lk∞ω-definable k-ary relations over any
A ∈ K that can occur as stages in the fixed-point iteration. This is because
each Lk∞ω-definable relation over A corresponds to a union of Lk∞ω-types over
Ak. Therefore, in the notation of the proof of Lemma 1.29, [PFPX,xϕ]x is
equivalent over K with

ψ(x): = ∀x
(
ϕm(x)↔ ϕm+1(x)

)
∧ ϕm(x),

for m = 2d. If ϕ is in Lkωω, then so is ψ. ⊓⊔

1.4 Types and Definability in the L
k

∞ω
and C

k

∞ω

The following lemma applies to the fragments of infinitary logic considered
above. Since they provide conjunctions and disjunctions over arbitrary sets of
formulae, they are in particular closed with respect to countable conjunctions
and disjunctions. Generally, a logic L is closed with respect to countable con-
junctions and disjunctions if for any family

(
ϕi
)
i∈ω

of formulae in L there are
L-formulae with semantics corresponding to the conjunction and disjunction
over the ϕi, respectively. As usual we write

∧
i∈ω ϕi and

∨
i∈ω ϕi for these.

Closure under negation is similarly defined. The lemma is a consequence of
the fact that, for fixed finite vocabulary τ , fin[τ] and fin[τ ; k] are countable
up to isomorphism.

Lemma 1.33. Let L be closed under negation and with respect to countable
conjunctions and disjunctions, τ a finite vocabulary. Then

(i) each A ∈ fin[τ] is characterized up to ≡L by some sentence ϕA ∈ L[τ],
i.e. for all A′ ∈ fin[τ]: A′ ≡L A⇐⇒ A′ |= ϕA.

(ii) each L-type over fin[τ] is isolated by a formula of L, i.e. for all α ∈
TpL(τ ; r) there is a formula ϕα(x1, . . . , xr) ∈ L[τ] such that for all
(A, a) ∈ fin[τ ; r]: tpLA

(
a
)
= α⇐⇒ A |= ϕ[a].

(iii) a global relation on fin[τ] is definable in L if and only if it is closed with
respect to ≡L.
In the boolean case, Q ⊆ fin[τ] is L-definable if for all A, A′ ∈ fin[τ]:
A ≡L A′ =⇒

(
A ∈ Q⇔ A′ ∈ Q

)
.

For an r-ary global relation R on fin[τ], R is L-definable if for all (A, a),
(A′, a′) ∈ fin[τ ; r]: (A, a) ≡L (A′, a′) =⇒

(
a ∈ RA ⇔ a′ ∈ RA

′
)
.

Recall that by convention for logics like Lk∞ω and Ck∞ω, which only have
variables x1, . . . , xk, we do not consider types in more than k variables:
TpL(τ ; r) = ∅ for r > k. The statement in (iii) has to to be restricted to
arities r 6 k accordingly.

36 1. Definitions and Preliminaries

Proof. (i) Since L, as any logic, cannot distinguish between isomorphic struc-
tures, and since fin[τ]/ ≃ is countable, it follows that also fin[τ]/ ≡L is
countable. Let (Ai)i∈I , for I finite or I = ω, be a system of representatives
for fin[τ]/ ≡L. For i, j ∈ I, i 6= j let ϕij ∈ L[τ] be such that Ai |= ϕij
and Aj |= ¬ϕij . It follows that each Ai is characterized up to ≡L by the
L-sentence ϕi :=

∧
j 6=i ϕij . For the claim about boolean global relations in

(iii) assume that Q is ≡L-closed. Then the disjunction
∨
ϕi over those i, for

which Ai ∈ Q, defines Q.
(ii) and that part of (iii) that concerns r-ary queries are proved in exactly
the same way using a system of representatives for TpL(τ ; r) = fin[τ ; r]

/
≡L

instead of fin[τ]
/
≡L. ⊓⊔

Corollary 1.34. For L = Lk∞ω or Ck∞ω:

A ≡L A′ if and only if TpL(A; k) = TpL(A′; k).

Sketch of Proof. Let ϕA characterize A up to ≡L as in (i) of Lemma 1.33.
Then A ≡L A′ iff α |= ϕA for some (any) type α ∈ TpL(A′; k). Therefore
TpL(A; k) = TpL(A′; k) implies A ≡L A′.

Conversely assume that there is some α ∈ TpL(A; k) \ TpL(A′; k). Let
ϕα(x) be as in (ii) of Lemma 1.33. Then A |= ∃xϕα(x) whereas A′ |=
¬∃xϕα(x). ⊓⊔

We apply the observations of Lemma 1.33 to the Lk∞ω, C
k
∞ω, and to

their fragments of bounded quantifier rank. Note that these are all closed
with respect to infinitary conjunctions and disjunctions (as well as under
negation) while Lω∞ω and Cω∞ω are not!

Definition 1.35. The quantifier rank of a formula in L∞ω is given by an
ordinal-valued function qr that is inductively defined by:

qr(ϕ) = 0 for atomic ϕ, qr(
∧
Ψ) = qr(

∨
Ψ) = sup

{
qr(ψ)

∣∣ ψ ∈ Ψ
}
,

qr(¬ϕ) = qr(ϕ), qr(∃xϕ) = qr(∀xϕ) = qr(ϕ) + 1.

The quantifier rank of formulae in Cω∞ω is defined similarly, with the last
clause replaced by qr(∃>mxϕ) = qr(ϕ) + 1 for all m.

Definition 1.36. For L = Lk∞ω, L
k
ωω, C

k
∞ω or Ckωω and m ∈ ω let L;m de-

note the fragment defined through restriction to those formulae that have
quantifier rank at most m.

In the absence of counting quantifiers, infinitary logic of finitely bounded
quantifier rank collapses to the corresponding fragment of first-order logic as
follows.

Lemma 1.37. Let τ be finite and relational, m ∈ ω. Any Lk∞ω;m[τ]-formula

is equivalent with a formula in Lkωω;m[τ]. There are only finitely many for-

mulae in Lkωω;m[τ] up to logical equivalence. It follows that for L := Lk∞ω;m

1.4 Types and Definability in the Lk
∞ω and Ck

∞ω 37

also fin[τ]
/
≡L and fin[τ ; k]

/
≡L are finite. Hence each structure in fin[τ]

is characterized up to ≡L even by a sentence of Lkωω;m and all L-types are

isolated by formulae in Lkωω;m.

Sketch of Proof. The proof is by induction on m. The case of quantifier free
formulae is clear. For the induction let Ψm ⊆ Lkωω;m[τ] be a finite system of

representatives for all of Lk∞ω;m[τ]. Then up to logical equivalence all formulae
of quantifier rank at most m+1 are boolean combinations over the finite set
Ψ ∪

{
∃xiψ

∣∣ ψ ∈ Ψ, 1 6 i 6 k
}
. ⊓⊔

The same claim cannot be made for the Ck∞ω;m, because there are in-
finitely many counting quantifiers. Over structures of fixed finite size n, how-
ever, only quantifiers ∃>s for s 6 n are non-trivial. This fact is used in the
following lemma.

Lemma 1.38. Let L := Ck∞ω;m, m ∈ ω, τ finite and relational. Then each

α ∈ TpL(τ ; k) is isolated by a formula ϕα(x1, . . . , xk) ∈ Ckωω;m and each

A ∈ fin[τ] is characterized up to ≡L by a sentence of Ckωω;m.

Proof. Consider the claim for types. The claim is trivial for m = 0; so assume
m > 1. Let α = tpLA

(
a
)
, (A, a) ∈ fin[τ ; k] with |A| = n. Let finn[τ] and

finn[τ ; k] denote the restrictions of fin[τ] and fin[τ ; k] to structures of size
n. It is obvious that in restriction to finn[τ], each formula in Ck∞ω;m[τ] is

equivalent with one that only uses quantifiers ∃>s for s 6 n, since any ∃>sxiϕ
with s > n is universally false on finn[τ]. An adaptation of the argument in the
proof of Lemma 1.37 shows that up to equivalence there are only finitely many
formulae in Ck∞ω;m[τ] of this kind, and that these can all be represented up to

equivalence by formulae in Ckωω;m[τ]. Therefore again, finn[τ ; k]
/
≡L is finite,

and each such type is isolated by a formula of Ckωω;m[τ] within finn[τ ; k]
/
≡L.

Let ψα ∈ C
k
ωω;m[τ] isolate α in finn[τ ; k]

/
≡L. Then ϕα := ∃=nxx=x ∧ ψα

is in Ckωω;m[τ] and isolates α in TpL(τ ; k) = fin[τ ; k]
/
≡L. ⊓⊔

We sum up these observations as follows.

Lemma 1.39. Let τ be a finite relational vocabulary.

(i) For L = Ck∞ω or Lk∞ω, each type in TpL(τ ; k) is isolated by some for-
mula of L[τ].

(ii) If L = Ck∞ω;m or L = Lk∞ω;m, m ∈ ω, then furthermore each type in

TpL(τ ; k) is isolated by a formula of Ckωω;m[τ] or Lkωω;m[τ], respectively.

As an immediate consequence of (ii) in the lemma we get the following.

Corollary 1.40. Let τ be finite and relational, m ∈ ω. Then over fin[τ]
and over all fin[τ ; r] for r 6 k, Ck∞ω;m-equivalence coincides with Ckωω;m-

equivalence and Lk∞ω;m-equivalence coincides with Lkωω;m-equivalence.

38 1. Definitions and Preliminaries

The analysis of the games for Ck∞ω and Lk∞ω in the next chapter will
extend this observation from the bounded quantifier fragments to the logics
Ck∞ω, C

k
ωω and Lk∞ω, L

k
ωω themselves. See Corollaries 2.3 and 2.4.

1.5 Interpretations

Interpretations concern the definition of one structure within another. The
basic form is that of a direct interpretation. An L[τ]-formula ϕ(x1, . . . , xr) in
free variables x1, . . . , xr defines an r-ary global relation on fin[τ]: the value
of this relation over A ∈ fin[τ] is

ϕ[A] =
{
a ∈ Ar

∣∣∣ A |= ϕ[a]
}
.

Alternatively, ϕ may be viewed as defining a structure of vocabulary {R}, R
an r-ary relation symbol, over each A ∈ fin[τ], namely the structure

(
A,ϕ[A]

)
.

To obtain defined structures in an arbitrary finite relational vocabulary σ we
use tuples of formulae, one for each relation symbol in σ.

Definition 1.41. Let σ =
{
R1, . . . , Rl

}
, Ri of arity ri. An L-definable

(σ, τ)-interpretation is given by a tuple ϕ =
(
ϕi(x

(i))
)
16i6l

of formulae

in L[τ], with x(i) = (x1, . . . , xri). The σ-structure interpreted by ϕ over
A ∈ fin[τ] is (

A,ϕ[A]
)
:=
(
A,ϕ1[A], . . . , ϕl[A]

)
.

1.5.1 Variants of Interpretations

One may first of all allow other free variables in the ϕi to obtain interpre-
tations with parameters (first- and second-order). This is also true of all the
variants considered in the following.

Relativized interpretations. Relativizations serve to restrict the universe
of the interpreted structure to a definable subset of the parent structure. Let
σ and ϕ be as above, ϕ0(x) an extra τ -formula in one free variable. The
σ-structure interpreted by ϕ over ϕ0 on A is defined if ϕ0[A] 6= ∅. It is the
restriction of the above to ϕ0[A]:
(
A,ϕ[A]

)
↾ ϕ0[A] =

(
ϕ0[A], ϕ1[A] ∩

(
ϕ0[A]

)r1
, . . . , ϕl[A] ∩

(
ϕ0[A]

)rl).

1.5 Interpretations 39

Interpretations in powers. It is often natural to regard not the given
universe but some power of it as the domain for the interpreted structure.
This leads to the concept of an interpretation over some power of the universe.
Let σ be as above. Let ϕ =

(
ϕi(x

(i))
)
16i6l

be a tuple of formulae in L[τ],

where now ϕi has to be in sri distinct free variables. We index these so as to
indicate a natural identification of the sri-tuple with an ri-tuple of s-tuples:

x(i) =
(
x(1,1), . . . , x(1,s), . . . , x(ri,1), . . . , x(ri,s)

)
.

Definition 1.42. The σ-structure interpreted by ϕ over the s-th power of
A ∈ fin[τ] is (

As, ϕ[A]
)
=
(
As, ϕ1[A], . . . , ϕl[A]

)
,

where ϕi[A] ⊆ A
sri is regarded as an ri-ary predicate over As.

Interpretations in quotients. Another variant that occurs in many natu-
ral applications further admits that the universe of the interpreted structure is
represented as the quotient with respect to a definable equivalence relation.
In order to yield a well defined σ-structure, the given equivalence relation
must be compatible with the defined σ-predicates. An equivalence relation ∼
is a congruence for some r-ary predicate R if the following is satisfied for all
x = (x1, . . . , xr) and x

′ = (x′1, . . . x
′
r):

∧
i xi ∼ x

′
i −→

(
Rx↔ Rx′

)
.

Let σ be as above, ϕ in a format appropriate for the direct interpretation of
a σ-structure. Let in addition ψ(x, x′) be in the format for the interpretation
of a binary relation ∼.

Definition 1.43. The σ-structure interpreted as a quotient with respect to
ψ by ϕ over A ∈ fin[τ] is defined if the binary relation ψ[A] is a congruence
with respect to the predicates ϕ[A]. In this case it is the quotient structure(
A,ϕ[A]

) /
ψ[A].

It is instructive to think of the congruence defined by ψ as a definition of
the equality relation for the interpreted structure.

Note that these variants are not mutually exclusive. Quite to the contrary
all combinations are possible and in fact occur naturally, see Example 1.45
below. One may speak for instance of an interpretation as a quotient over
the s-th power of the universe, meaning that what is interpreted in the s-th
power is itself the interpretation of a σ-structure as a quotient. The most
general notion of interpretation we want to consider is that of a relativized
interpretation as a quotient in some power. It subsumes the others as special
cases.

Definition 1.44. A generalized (σ, τ)-interpretation is an interpretation of
σ-structures as relativizations in a quotient over some s-th power of τ -
structures.

40 1. Definitions and Preliminaries

For σ as above such an interpretation is specified by formulae ϕ0, ϕ and ψ
where the ϕi in ϕ are of arities sri, ϕ0 and ψ of arities s and 2s, respectively.
Let i = (ϕ0;ϕ;ψ) denote this interpretation itself and i(A) the interpreted
structure over A:

i(A) =
((
As, ϕ[A]

)
↾ ϕ0[A]

) /
ψ[A].

i(A) is defined if ϕ0[A] is non-empty and if ψ[A] interprets a congruence with
respect to the ϕ[A] ↾ ϕ0[A]. It is useful to note that as a (partially defined)
mapping

i: fin[τ] −→ fin[σ]
A 7−→ i(A)

an interpretation i is a functor that preserves isomorphism. In particular
the interpreted structure must be invariant under all automorphisms of the
parent structure.

1.5.2 Examples

Example 1.45. The dual of a symmetric graph is interpretable in first-order
logic as the relativization of a quotient in the second power. Let G = (V,E)
be a symmetric graph. Its dual is the graph G, whose vertices are the edges of
G, with an edge connecting two different ones of these if they share a common
vertex of G. An edge of G is an element of E/∼ where two different pairs
(v1, v2) and (v′1, v

′
2) in E represent the same edge of G, if {v1, v2} = {v

′
1, v

′
2}.

Two different edges represented by (v1, v2) and (v′1, v
′
2) share a common ver-

tex if {v1, v2} ∩ {v
′
1, v

′
2} 6= ∅. Thus the dual of G is the quotient

((
V 2, ϕ1[G]

)
↾ ϕ0[G]

) /
ψ[G] , where

ϕ0(v1, v2) = Ev1v2 ,
ϕ1(v1, v2, v

′
1, v

′
2) = “{v1, v2} 6= {v

′
1, v

′
2}” ∧ “{v1, v2} ∩ {v

′
1, v

′
2} 6= ∅”,

ψ(v1, v2, v
′
1, v

′
2) = “{v1, v2} = {v

′
1, v

′
2}”.

With i =
(
ϕ0;ϕ1;ψ

)
this is an interpretation of the dual. Explicit first-order

formulae for the expressions in quotes are immediately supplied.

Example 1.46. A pre-ordering is a binary relation 4 that is reflexive, tran-
sitive, and connex, see Definition 1.62 below. It is easily checked, that (A,4)
satisfies these axioms if and only if (i) – (iii):

(i) ψ(x, y) = x 4 y ∧ y 4 x interprets an equivalence relation ∼ on A.
(ii) ∼ is a congruence with respect to 4.
(iii) ϕ(x, y) = x 4 y interprets a linear ordering in the sense of 6 in the

quotient of A with respect to ∼.

The following example restates the theorem of Immerman and Vardi,
Theorem 1.24, in the terminology of interpretations.

1.5 Interpretations 41

Example 1.47. Let σ1 and σ2 both contain a binary predicate < for a linear
ordering. Recall that ord[σ] stands for the class of all finite σ-structures that
are linearly ordered by <. Let f be a Ptime functor

f : ord[σ1] −→ ord[σ2].

Then there is a FP-definable (σ2, σ1)-interpretation i, more precisely a rel-
ativized interpretation in some power, such that for all sufficiently large
A ∈ ord[σ1]:

f(A) ≃ i(A).

The proof is a standard application of the Immerman-Vardi Theorem.
In a situation where g1 and g2 are two functors with the same domain

and with classes of ordered structures for their ranges

gi: fin[τ] −→ ord[σi]

we shall say that g2 is FP-interpretable in terms of g1, or that g2(A) is
uniformly FP-interpretable over g1(A), if there is a (σ2, σ1)-interpretation
i in FP such that i

(
g1(A)

)
= g2(A) for all A ∈ fin[τ]. By the above this is the

case if and only if there is a Ptime computable functor h which makes the
following diagram commute:

������1

PPPPPPq ?
fin[τ]

ord[σ1]

ord[σ2]

g1

g2

h

All these considerations apply analogously to Pspace computable functors
and PFP-interpretability, by the theorem of Abiteboul, Vianu and Vardi,
Theorem 1.25.

1.5.3 Interpretations and Definability

Natural logics are often semantically closed with respect to definable prop-
erties of definably interpreted structures. For an example think of first-order
properties of the dual of a graph. These are first-order definable on the graph
itself, since the dual is interpretable over the original graph by first-order
means.

Closure under direct interpretations and under relativized interpretations
are standard regularity requirements on logics in abstract model theory. They
correspond to the substitution property and relativization property, compare
[Ebb85]. Closure properties related to interpretations in quotients are also
sometimes considered as an abstract criterion under the name of congruence
closure.

42 1. Definitions and Preliminaries

Let i be a (σ, τ)-interpretation, R a global relation on fin[σ]. With R we
may associate a global relation i(R) defined on all those structures A ∈ fin[τ]
for which i(A) is defined. The value of i(R) on A is the interpretation over A
of the value of R on i(A).

Formally, for a generalized interpretation i = (ϕ0;ϕ;ψ) in the sense of
Definition 1.44 and for A such that i(A) is defined, let π : ϕ0[A]→ ϕ0[A]/ψ[A]
be the natural projection with respect to the equivalence relation interpreted
by ψ. Then i(R)A := π−1

(
Ri(A)

)
. We may put i(R)A = ∅ for those A for

which i(A) is not defined. That i(R)A is well defined as a value for a global
relation follows from the fact that Ri(A) is closed under isomorphisms of i(A).

Definition 1.48. Let σ and τ be finite relational. We say that L is closed
under (σ, τ)-interpretations (of a certain kind) if the following is satisfied.

If i is an L-definable (σ, τ)-interpretation (of the respective kind) and R
is an L-definable global relation on fin[σ], then i(R) is L-definable as a global
relation over fin[τ].

Consider the boolean case: for any L-definable class Q of σ-structures,
the class of those τ -structures for which the interpreted σ-structure is in Q
is L-definable itself.

Lemma 1.49. First-order logic Lωω, the infinitary logics L∞ω,L
ω
∞ω,C

ω
∞ω,

and the fixed-point logics FP, PFP are each closed under generalized inter-
pretations.

The proofs by syntactic induction are technically tedious though not dif-
ficult at all. In the case of interpretations in some power s one replaces all
first-order variables by s-tuples of variables. For atomic expressions involv-
ing predicates from σ the corresponding defining formulae are substituted.
Equality is replaced by the defined equivalence relation. Quantification trans-
lates to higher arity quantification (relativized where necessary) in an obvious
manner.

Consider for instance a relativized first-order interpretation, of struc-
tures in the vocabulary E of graphs, as a quotient in power 2. Let i =(
ϕ0(v1, v2);ϕ1(v1, v2, v

′
1, v

′
2);ψ(v1, v2, v

′
1, v

′
2)
)
. The graph axiom ∀x∀y(Exy →

¬x = y) then translates into

∀v1∀v2∀v
′
1∀v

′
2

((
ϕ0(v1, v2) ∧ ϕ0(v

′
1, v

′
2) ∧ ϕ1(v1, v2, v

′
1, v

′
2)
)

→ ¬ψ(v1, v2, v
′
1, v

′
2)

)
.

Second-order variables of arity r are accordingly replaced by second-order
variables of arity sr over interpretations in power s. Fixed-point processes are
also modelled in correspondingly higher arity in a natural way.

It is obvious that the Lk∞ω and Ck∞ω on the other hand cannot be robust
with respect to interpretations in powers, owing to the bounded supply of
variables. This is the only restriction, however, so that the straightforward
arguments give the following.

1.6 Lindström Quantifiers and Extensions 43

Lemma 1.50. Let Lk = Lk∞ω, C
k
∞ω, L

k
ωω or Ckωω, respectively. Let accord-

ingly Lsk stand for the respective logic with sk variables instead of k. For any
Lsk-definable generalized (σ, τ)-interpretation i in the s-th power and any
Lk-definable global relation R on fin[σ], the global relation i(R) on fin[τ] —
whose value on A is the interpretation of Ri(A) over A — is Lsk-definable in
restriction to all those A ∈ fin[τ] for which i(A) is defined.3

1.6 Lindström Quantifiers and Extensions

Lindström quantifiers provide the means to assert structural properties of
definably interpreted structures. Let Q be any isomorphism-closed class of
structures of type σ = {R1, . . . , Rl}, Ri of arity ri. With Q we associate a
Lindström quantifier of type σ, for which we also write Q. The quantifier Q
binds a tuple ϕ of formulae apt for a direct interpretation of σ-structures,
possibly with parameters. For a logic L the syntax is extended to allow the
construction of a formula

ψ := Q
(
x(i);ϕi(x

(i))
)
i=1...l

from formulae ϕi. Put free(ψ) =
⋃
i(free(ϕi)\{x

(i)}). The semantics is defined
such that

A |= ψ if (A,ϕ[A]) ∈ Q.

Here we have suppressed parameters and assumed that A itself interprets
the ϕi up to the free variables x(i). The “closure” of L under this new rule
of formula formation is denoted L(Q). As we are only interested in such
extensions of first-order and fixed-point logics it suffices to give the following
precise definition.

Definition 1.51. If Q is a class of Lindström quantifiers, we denote by
FP(Q) and PFP(Q) the logics obtained as the simultaneous closure of first-
order logic under the respective fixed-point constructor, the usual first-order
constructors, and Q-quantification for all quantifiers Q ∈ Q. Lωω(Q) simi-
larly is obtained from first-order constructors together with Q-quantification
for Q ∈ Q.

1.6.1 Cardinality Lindström Quantifiers

The class of cardinality Lindström quantifiers is an example of a semantically
defined class of quantifiers with natural closure properties. Cardinality Lind-
ström quantifiers express purely numerical relations about the cardinalities
of definable predicates.

3 In non-trivial quotient interpretations more variables may be necessary to express
that the interpreted structure is well defined.

44 1. Definitions and Preliminaries

Definition 1.52. Let S ⊆ ωl+1 be a numerical predicate, r = (r1, . . . , rl) a
tuple of arities. Let σ =

{
R1, . . . , Rl

}
, Ri of arity ri. With S and r associate

a cardinality Lindström quantifier QS,r of type σ whose defining class is

QS,r =
{
(B,R1, . . . , Rl) ∈ fin[σ]

∣∣∣ (|B|, |R1|, . . . , |Rl|) ∈ S
}
.

Let Qcard be the family of all cardinality Lindström quantifiers.

Note that there is no restriction with respect to the number of formu-
lae bound, their arities, or even recursiveness of the underlying numerical
relation. Two important cardinality properties which are naturally rendered
as Lindström quantifiers are those that express equality of two cardinalities
and comparison in the sense of <, respectively. For the original sources see
[Här65] and [Res62], respectively.

Definition 1.53. QH and QR are the Lindström quantifiers of type σ =
{U1, U2}, U1 and U2 unary, with the following defining classes.

(i) For the Härtig quantifier: QH =
{
(A,U1, U2)

∣∣∣ |U1| = |U2|
}
.

(ii) For the Rescher quantifier: QR =
{
(A,U1, U2)

∣∣∣ |U1| < |U2|
}
.

It is natural to extend these quantifiers to higher arities and to introduce
for instance a variant of the Härtig quantifier that expresses equicardinality
for two definable predicates of arity k. All these natural variants are cardinal-
ity quantifiers themselves. A further extension that goes beyond the power of
ordinary cardinality Lindström quantifiers replaces the counting of tuples in
a relation by the counting of equivalence classes within a relation, relative to
a given congruence. Let us call the quantifiers thus obtained quotient cardi-
nality Lindström quantifiers. We give an ad-hoc definition here and indicate
a more systematic treatment as an aside below.

Definition 1.54. Let S ⊆ ωl+1, r = (r1, . . . , rl) a tuple of arities. Let σ
consist of ri-ary relation symbols Ri and 2ri-ary relation symbols ∼i for i =
1, . . . , l. With S and r associate a cardinality Lindström quantifier Q∼

S,r of
type σ whose defining class is

{
(B,R1, . . . , Rl,∼1, . . . ,∼l)

∣∣∣ ∼i a congruence of (Bri , Ri) and
(|B|, |R1/ ∼1 |, . . . , |Rl/ ∼l |) ∈ S

}
.

Q∼
card is the family of all quotient cardinality Lindström quantifiers.

1.6.2 Aside on Uniform Families of Quantifiers

The material presented in this aside will not be used explicitly in the se-
quel. According to the definitions a Lindström quantifier Q can express the
structural property of belonging to the class Q of structures that are directly

1.6 Lindström Quantifiers and Extensions 45

interpreted over the structure at hand. It is often reasonable to make this
same property available in application to structures interpreted according to
one of the natural variants of interpretations considered above. Formally this
can be achieved with derived quantifiers. Suppose for instance that Q is of
type σ =

{
R1, . . . , Rl

}
and that we want to capture the property of belong-

ing to Q for relativized interpreted σ-structures. The derived quantifier that
does exactly this is one of type σ ∪̇ {U} for a new unary relation symbol U
and with defining class

Qrel =
{
(B, U)

∣∣∣ B ↾ U ∈ Q
}
.

The other variants of interpretations are treated similarly. Thus, for ex-
ample a quantifier that corresponds to Q in interpretations in the s-th power
is one of type

{
R(s)

1 , . . . , R(s)

l

}
, where R(s)

i is of arity sri if ri is the arity of
Ri. Its defining class is

Q(s) =
{
(B,R(s)

1 , . . . , R(s)

l)
∣∣∣ (Bs, R(s)

1 , . . . , R(s)

l) ∈ Q
}
.

Q(s) is called the s-th power of Q. The countable set of all quantifiers Q(s)

for s > 1 is called the uniform sequence generated by Q in [Daw95a]. Let Qω

stand for this uniform sequence generated by Q and Qω for the union of the
Qω for Q ∈ Q.

To deal with interpretations as quotients we can further pass to type
σ ∪̇ {∼} for a new binary relation symbol ∼ and consider the quantifier with
defining class

Q∼ =
{
(B,∼)

∣∣ ∼ a congruence of B and B/∼∈ Q
}
.

If Q is any quantifier, let Q stand for the class of all quantifiers obtained
by translating Q to generalized interpretations so that Q consists of all powers
of
(
Qrel

)∼
. Similarly, let for a class Q of quantifiers Q denote all quantifiers

obtained in this manner from quantifiers Q ∈ Q.

A very weak and fundamental notion of reducibility between quantifiers
is that of quantifier free reducibility. Q is said to be quantifier free reducible
to Q′ if Q is quantifier free definable from Q′ in the sense that

Q =
{
B
∣∣ (B,ϕ

[
B]) ∈ Q′

}

for quantifier free formulae ϕ in the vocabulary of Q. Write Q ⊳ Q′ for this
reducibility, and Q ⊳ Q′ if each Q ∈ Q is quantifier free reducible to some
Q′ ∈ Q′. It is instructive to check that ⊳ is preserved in the passage to Q:
Q ⊳ Q′ implies Q ⊳ Q′.

The class of all cardinality Lindström quantifiers has nice closure proper-
ties. If Q ∈ Qcard, then Q

rel and all Q(s) are quantifier free reducible to Qcard.
Consider the relativization Qrel

S,r of a cardinality quantifier QS,r to find that

46 1. Definitions and Preliminaries

Qrel

S,r =
{
(B,R1, . . . , Rl, U)

∣∣∣ (B,U,R1 ∩ U, . . . , Rl ∩ U) ∈ QS′,r′

}

with r′ = (1, r) and S′ =
{
(n,m0,m)

∣∣ (m0,m) ∈ S
}
.

Let Qmon be the class of Lindström quantifiers of monadic type . Q ∈ Qmon

asserts some property of a tuple of unary predicates. Qmon and Qcard are
closely related.

Lemma 1.55. Any quantifier in Qmon is quantifier free reducible to a cardi-
nality quantifier, in fact to one in Qcard ∩ Qmon. Conversely, any quantifier
in Qcard is quantifier free reducible to some power of a monadic quantifier:

Qmon ⊳ Qcard ⊳ Qωmon.

Sketch of Proof. Both claims are obvious. For the first claim consider Q of
type {U1, . . . , Ul}, all Ui unary. Any monadic structure (B,U1, . . . , Ul) is
characterized up to isomorphism by the cardinalities of B and all boolean
combinations of the Ui. The corresponding cardinality quantifier is in a type
that has one unary predicate for each boolean combination over the Ui. In its
numerical predicate collect all tuples of characteristic cardinalities of struc-
tures in Q.

For the second claim observe that first of all a cardinality quantifier QS,r
is quantifier free reducible to one of homogeneous type (r, . . . , r), r the maxi-
mum of the arities in r. For instance if r = (1, 2), then (B,R1, R2) ∈ QS,(1,2)
if
(
B, {(x, y)|x = y ∧ R1x}, R2

)
∈ QS,(2,2). Further QS,(r,...,r) = Q(r)

S′,(1,...,1)

for S′ = {(nr,m)|(n,m) ∈ S}. ⊓⊔

It is easy to show that the quotient variant of a cardinality quantifier or
of a unary quantifier is not in general reducible to a cardinality quantifier.

The above definition of quotient cardinality quantifiers, Definition 1.54,
may seem to be more general even than the extension of Qcard to generalized
interpretations, Qcard. Up to quantifier free reducibility, however, these classes
coincide. We only give a brief sketch of the argument. Note first, that by
arguments as in the proof of Lemma 1.55, any quotient cardinality quantifier
reduces to one of homogeneous type. In a further reduction process one may
also achieve reduction to applications to disjoint predicates Ri. For this the
arities are further increased, and some components are used to attach labels
consisting of different equality types to the individual predicates. An example
would be the passage from R1 and R2 to R′

1 =
{
(x1, x2, x)

∣∣ x1=x2 ∧ R1x
}

and R′
2 =

{
(x1, x2, x)

∣∣ x1 6=x2 ∧ R2x
}
. In this situation the several ∼i may

be reduced to a single ∼ by piecewise definition over the individual R′
i. The

combined reduction leads to a quantifier in Qcard.

Remark 1.56. Up to quantifier free reducibility the following classes of
quantifiers coincide: Qcard, Q

∼
card, and Qmon.

1.7 Miscellaneous 47

1.7 Miscellaneous

1.7.1 Canonization and Invariants

Generally the canonization problem for an equivalence relation ∼ is the prob-
lem of assigning unique representatives to each ∼-class.

Definition 1.57. A function H:X −→ X is called a canonization with re-
spect to the equivalence relation ∼ over X if it satisfies the following two
conditions:

∀x H(x) ∼ x,
∀x ∀x′ x ∼ x′ → H(x) = H(x′).

Note that the converse implication in the second condition is implied by
the first condition, so that H satisfies x ∼ x′ ⇔ H(x) = H(x′). In particular
therefore, a canonization function H for ∼ classifies objects in X exactly up
to ∼. In the sense of the following definition it is a complete invariant for ∼
as well.

Definition 1.58. A function I:X −→ S is a complete invariant for ∼ if it
satisfies

∀x ∀x′ x ∼ x′ ↔ I(x) = I(x′).

The difference between canonizations and complete invariants is that can-
onizations must map elements to representatives of their class.

Definition 1.59. Let I:X −→ S be a complete invariant for ∼. A mapping
F : image(I) −→ X is regarded as an inverse to I if I ◦ F is the identity on
image(I), equivalently if

∀x F
(
I(x)

)
∼ x.

Assume that I:X → S and I ′:X → S′ are both complete invariants for
∼ and that both mappings are surjective. It follows that there is a bijection
σ:S → S′ between the ranges such that I ′ = σ ◦ I. Let now H be a can-
onization and I any complete invariant for ∼. Since H also is a complete
invariant, there is a bijection from image(I) to image(H) that relates the
two. It follows directly from the definition that this bijection is an inverse
to I. Conversely, given any complete invariant I and any inverse F to this
invariant it is immediate that their composition F ◦ I is a canonization. We
thus have the following little lemma.

Lemma 1.60. Given any canonization H and any complete invariant I for
∼, there is a uniquely determined inverse F of I such that H = F ◦ I. If
F is an inverse to any complete invariant I for ∼ then H := F ◦ I is a
canonization function with respect to ∼.

It is important to note that under complexity considerations some invari-
ants might be easier to invert than others. It is obvious that the problem of

48 1. Definitions and Preliminaries

computing some complete invariant reduces to that of computing a canon-
ization function, and that the decision problem for ∼ reduces to the compu-
tation of any invariant. That the converse reductions are not to be expected
for instance as regards Ptime computability and polynomial time Turing
reductions in general is shown in [BG84]. General Ptime equivalence of the
canonization problem and the problem of the computation of a complete in-
variant for instance is equivalent with a “shrinking principle” for NP sets
that is introduced in [BG84]. Blass and Gurevich also construct an equiva-
lence relation and an oracle relative to which the canonization problem and
the problem of computing a complete invariant are not Ptime equivalent.
These general results do not have any immediate implications, however, in
the case of particular individual equivalence relations.

We shall consider the notions of complete invariants and of canonization
for classes of finite relational structures with respect to equivalence relations
≡L on these. As any ≡L is compatible with isomorphisms, it is clear that
canonizations as well as invariants have to be functors that are compatible
with isomorphisms.

For computable invariants we also require these to take values in some
domain of canonically encoded objects. With respect to computability it is
moreover natural to require canonization functors on fin[τ] to take canonically
encoded structures as their values: the point of canonization is that we get
unique representatives and not just representatives up to isomorphism.

A complete invariant for ≡L on stan[τ] or a canonization with respect to
≡L on stan[τ] immediately extend to corresponding functors on all of fin[τ].
Algorithmically a computable invariant on stan[τ] is an invariant on fin[τ]
and the same is true of computable canonization. This is simply because
algorithmic realizations of functors on fin[τ] take (encodings of) structures in
stan[τ] as inputs anyway.

Definition 1.61. Let ∼ be an equivalence relation on fin[τ] that is invariant
under isomorphism.

(i) A computable complete invariant for ∼ is a computable function I from
stan[τ] to some domain S of standard objects such that

A ∼ A′ ⇐⇒ I(A) = I(A′).

(ii) A computable canonization functor with respect to ∼ is a computable
function H from stan[τ] to stan[τ] such that

H(A) ∼ A and A ∼ A′ ⇒ H(A) = H(A′).

Extensions to domains fin[τ ; k] are straightforward.

1.7 Miscellaneous 49

1.7.2 Orderings and Pre-Orderings

Usually we reserve the binary symbol < for linear orderings. 6 then stands
for the corresponding weak ordering x 6 y ↔ x < y ∨ x = y, which we call a
linear ordering in the sense of 6.

Definition 1.62. A pre-ordering 4 is a binary relation that is transitive,
reflexive and connex:

∀xyz(x 4 y ∧ y 4 z → x 4 z) ∧ ∀x(x 4 x) ∧ ∀xy(x 4 y ∨ y 4 x).

We always write ≺ for the associated strict pre-ordering and ∼ for the induced
equivalence relation:

x ≺ y :↔ x 4 y ∧ ¬y 4 x,
x ∼ y :↔ x 4 y ∧ y 4 x.

It is readily checked that the axioms for 4 are equivalent with the statement
“∼ is an equivalence relation and 4

/
∼ is an ordering in the sense of 6”.

Therefore, pre-orderings exactly are the interpretations of linear orderings as
quotients, cf. Example 1.46 above.

Obviously ≺ and 4 are quantifier free definable in terms of each other. ∼
is quantifier free definable form both, but contains strictly less information
than ≺ and 4 (unless ∼, ≺ and 4 are trivial).

1.7.3 Lexicographic Orderings

The standard way to construct new orderings in products from given ones in
the factors is by lexicographic orderings. It is useful to fix one definite conven-
tion regarding these. Consider first the case of the product set D1×D2, where
Di is linearly ordered by <i. We write <lex for the lexicographic ordering on
D1×D2 with dominant first component: (d1, d2) <lex (d1

′, d2
′) if d1 <1 d1

′ or
if d1 = d2 and d2 <2 d2

′. We employ similar conventions to products with any
number of components: entries further to the left always dominate those to
the right. The lexicographic ordering is always understood if we are dealing
with multiply indexed objects. For instance matrices (dij) = (dij)16i6t,16j6s
are interpreted as tuples where the ordering of the components is the lexico-
graphic one on {1, . . . , t} × {1, . . . , s}. If the entries dij themselves are from
an ordered domain (D,<) we further obtain the lexicographic ordering on{
(dij)

∣∣ dij ∈ D for 1 6 i 6 t, 1 6 j 6 s
}
according to (dij) <lex (dij

′) if
dij < dij

′ for the least index pair (i, j) such that dij 6= dij
′.

Note that lexicographic orderings are always first-order definable from the
constituent orderings in the components and the ordering of the components.

50 1. Definitions and Preliminaries

2. The Games and Their Analysis

This chapter serves to review the Ehrenfeucht-Fräıssé style analysis of the
logics Lk∞ω and Ck∞ω by means of the corresponding pebble games. Emphasis
is on the games and their algebraic analysis rather than on the more syntactic
descriptions in terms of Hintikka formulae and Scott sentences. The main
result of this algebraic analysis is a definable ordering with respect to types.
We obtain ordered representations of the quotients TpL(A; k) = Ak/ ≡L for
L = Lk∞ω or Ck∞ω on finite relational structures A.

• Section 2.1 contains the definition of the games and the statement and
proofs of the corresponding Ehrenfeucht-Fräıssé theorems which here are due
to Barwise [Bar77], Immerman [Imm82], and Immerman and Lander [IL90],
respectively. We present some typical examples that apply the game charac-
terizations to derive non-expressibility results. Most notably a construction
due to Cai, Fürer and Immerman proves that the logics Ck∞ω form a strict
hierarchy with respect to k.

A refined analysis of the games shows that ≡C
k
∞ω and ≡C

k
ωω , and similarly

≡L
k
∞ω and ≡L

k
ωω , coincide in restriction to finite structures.

• In Section 2.2 we review the colour refinement technique for graphs and
discuss some variants and their definability properties.

• Ideas related to the colour refinement are employed in Section 2.3 to
introduce the ordered quotients with respect to Ck∞ω- or L

k
∞ω-types through

a fixed-point process for the classification of game positions.

2.1 The Pebble Games for L
k

∞ω
and C

k

∞ω

The setting for the games is the usual one for comparison games. There
are two players denoted I and II for first and second player. The game is
played on a pair of finite structures A and A′ of the same finite relational
vocabulary τ . In the k-pebble game there are k marked pebbles for each of
the two structures. Let both sets of pebbles be numbered 1, . . . , k. A stage of
the game, or an instantaneous description of a game situation, is determined
by a placement of the pebbles on elements of the corresponding structures.

52 2. The Games and Their Analysis

Formally a stage is given by a tuple (A, a;A′, a′), with a ∈ Ak and a′ ∈ A′k

denoting the current positions of the pebbles. A position describes a pebble
placement over one of the structures. The position over A for instance in
stage (A, a;A′, a′) is (A, a). Formally a position is an element of fin[τ ; k]: a
structure with a designated k-tuple of elements. A stage in the game is a pair
of positions, or an element of fin[τ ; k]× fin[τ ; k].

In each round of the game exactly one pair of corresponding pebbles is
repositioned in the respective structures. This repositioning is governed by
an exchange of moves between the two players. The game for Lk and that for
Ck differ with respect to the rules for this exchange.

The single round in the L
k-game.

I chooses a pebble index j ∈ {1, . . . , k} and moves the corresponding
pebble in one of the structures to an arbitrary element of that structure,
for instance to b ∈ A.

II responds by moving the corresponding pebble over the opposite struc-
ture to an arbitrary element of that structure, here to some b′ ∈ A′.

If this exchange is carried out in stage (A, a;A′, a′) then the resulting stage

after this round is (A, a b

;A′, a′ b

′

). We write a b

for the tuple a with j-th

component replaced by b.

The single round in the C
k-game.

I chooses a pebble index j ∈ {1, . . . , k} and a subset of the universe of
one of the structures, say B ⊆ A.

II must choose a subset of exactly the same size in the opposite structure,
here some B′ ⊆ A′ with |B′| = |B|.

I now places the j-th pebble within the subset designated by II, here on
some b′ ∈ B′.

II responds by moving the corresponding pebble over the opposite struc-
ture to any element within the subset designated by I, here to some
b ∈ B.

If this exchange is carried out in stage (A, a;A′, a′) then the resulting stage

is (A, a b

;A′, a′ b

′

).

In both cases the game may continue as long as player II can maintain
the following condition:

(W)
The mapping associating the pebbled elements in A with those in
A′ must be a partial isomorphism, i.e. atpA

(
a
)
= atpA′

(
a′
)
for the

current positions (A, a) and (A′, a′).

I wins the game as soon as II violates this condition, and also if II cannot
move according to the rules as may happen in the Ck-game owing to different
sizes of the two structures.

Player II has a winning strategy in the infinite game on (A, a;A′, a′) if II
has a strategy to maintain condition (W) indefinitely in the game starting

2.1 The Pebble Games for Lk
∞ω and Ck

∞ω 53

from stage (A, a;A′, a′). Similarly we say that II has a winning strategy for
i rounds in the game on (A, a;A′, a′) if (W) can be maintained by II for at
least i rounds starting from (A, a;A′, a′). More formal characterizations are
developed in an inductive fashion below.

Intuitively the ability of player II to respond to challenges of I is a measure
for the similarity of the underlying positions. In each individual round IImust
preserve atomic indistinguishability of the resulting positions (W), otherwise
the game is lost. The ability to maintain (W) for longer sequences of rounds
and in response to any manoeuvres of I requires a higher degree of similarity
of the initial positions. The point of the above rules for single rounds is
that they make the games adequate for Lk∞ω and Ck∞ω, respectively. The
following two important theorems state that the degree of indistinguishability
corresponding to the existence of a strategy precisely is equality of types in
the respective logic.

Theorem 2.1 (Barwise, Immerman). Let A and A′ be finite structures
of the same finite relational vocabulary. Player II has a winning strategy in
the infinite Lk-game on (A, a;A′, a′) if and only if the the positions (A, a)

and (A′, a′) cannot be distinguished in Lk∞ω, i.e. if (A, a) ≡L
k
∞ω (A′, a′).

Theorem 2.2 (Immerman, Lander). Let A and A′ be finite structures of
the same finite relational vocabulary. Player II has a winning strategy in the
infinite Ck-game on (A, a;A′, a′) if and only if the the positions (A, a) and

(A′, a′) cannot be distinguished in Ck∞ω, i.e. if (A, a) ≡C
k
∞ω (A′, a′).

From the analysis of the games it will further follow that the conditions
in Theorems 2.1 and 2.2 are also equivalent with indistinguishability in the
finitary logics Lkωω and Ckωω.

Corollary 2.3. Let τ be finite and relational. The following are equivalent
for all (A, a), (A′, a′) ∈ fin[τ ; k]:

(i) Player II has a strategy in the infinite Lk-game on (A, a;A′, a′).

(ii) (A, a) ≡L
k
∞ω (A′, a′), i.e. tp

Lk
∞ω

A

(
a
)
= tp

Lk
∞ω

A′

(
a′
)
.

(iii) (A, a) ≡L
k
ωω (A′, a′), i.e. tp

Lk
ωω

A

(
a
)
= tp

Lk
ωω

A′

(
a′
)
.

In particular any Lk∞ω-type over fin[τ] is fully determined by its Lkωω-part.

Corollary 2.4. Let τ be finite and relational. The following are equivalent
for all (A, a), (A′, a′) ∈ fin[τ ; k]:

(i) Player II has a strategy in the infinite Ck-game on (A, a;A′, a′).

(ii) (A, a) ≡C
k
∞ω (A′, a′), i.e. tp

Ck
∞ω

A

(
a
)
= tp

Ck
∞ω

A′

(
a′
)
.

(iii) (A, a) ≡C
k
ωω (A′, a′), i.e. tp

Ck
ωω

A

(
a
)
= tp

Ck
ωω

A′

(
a′
)
.

Each Ck∞ω-type is fully determined by its Ckωω-part over fin[τ].

54 2. The Games and Their Analysis

With these equivalences proved, we shall simply speak of the Lk-type and

Ck-type, and write for instance tpL
k

A

(
a
)
and tpC

k

A

(
a
)
for these; and also ≡L

k

and ≡C
k

for the corresponding notions of Lk- and Ck-equivalence.
The following section is devoted to applications of the game characteriza-

tions. In the consecutive sections we shall then present a detailed theoretical
treatment for the case of the Ck-game. In Section 2.1.2 a direct and straight-
forward proof of Theorem 2.2 is presented. Section 2.1.3 presents a deeper
analysis of the Ck-game, proving among other things Corollary 2.4. The anal-
ogous treatment for Lk is easily obtained along the same lines through obvious
simplifications; this is summed up in Section 2.1.4.

2.1.1 Examples and Applications

We present examples that employ Theorems 2.1 and 2.2 to show inexpress-
ibility in Lk∞ω or Ck∞ω.

Example 2.5. As a trivial application of the Lk-game we find the following.
Any two k-tuples a and a′ over two plain sets A and A′ of size at least k
are Lk∞ω-equivalent if and only if they have the same equality type: eq

(
a
)
=

eq
(
a′
)
⇒ tpL

k

A

(
a
)
= tpL

k

A′

(
a′
)
if |A|, |A′| > k. It follows that Lk∞ω cannot

distinguish between any two plain sets that have at least k elements. In
particular the Lk∞ω form a strict hierarchy in expressiveness: L1

∞ω L2
∞ω

· · · ⊆ Lω∞ω. The same applies to the corresponding fragments of first-order
logic: L1

ωω L2
ωω · · · ⊆ Lωω.

The following simple and elegant example is taken from [IL90].

Example 2.6 (Immerman, Lander). Consider the following two coloured
directed graphs with six nodes each. G =

(
{0, . . . , 5}, E, Ur, Ub, Ug

)
. The

colours are interpreted Ug = {0, 3} for green, Ur = {1, 4} for red and
Ub = {2, 5} for blue. The edge relation E of G connects the nodes 0, . . . , 5 in
cyclic fashion. G′ is the same as G as far as its universe and the colours are
concerned. With respect to its edge relation E′, however, G′ splits into two
disjoint cycles 0, 1, 2 and 3, 4, 5 respectively. Compare the sketches in Fig-
ure 2.1. Note that these two graphs realize exactly the same atomic 2-types,
Atp(G; 2) = Atp(G′; 2). Furthermore we observe that each of these atomic
2-types is realized exactly twice in each structure.

We claim that G and G′ are indistinguishable in C2
∞ω. In this special case

it can be shown that player II actually has a strategy to maintain atomic
equivalence of positions. By Theorem 2.2 this implies that (a1, a2) from G

and (a′1, a
′
2) from G′ are C2-equivalent if they satisfy the same atomic type.

G ≡C
2

G′ follows by Lemma 1.34 since Atp(G; 2) = Atp(G′; 2) now im-

plies TpC
2

(G; 2) = TpC
2

(G′; 2). Before exhibiting a strategy for maintaining
atomic equivalence, let us state the following consequences.

2.1 The Pebble Games for Lk
∞ω and Ck

∞ω 55

Fig. 2.1

@
@
@@R

?
�

�
��	@

@
@@I

6
�
�

���

G

red

blue

green

red

blue

green

1

2

3

4

5

0

@
@

@@R�

�
�

��	@
@

@@I
-

�
�

���

G′

red

blue

green

red

blue

green

1

2

3

4

5

0

(i) The transitive closure of a binary relation is not definable in C2
∞ω. If

the transitive closure of the binary relation E were definable by some
formula ϕ(x, y) of C2

∞ω[E] then the C2
∞ω[E]-sentence χ := ∀x∀yϕ(x, y)

would distinguish G from G′.
(ii) Transitivity of a binary relation is not C2

∞ω-definable and the class of all
equivalence relations is not C2

∞ω-definable. C
2-equivalence of G and G′

directly implies C2-equivalence also of those structures obtained from G

and G′ by removing the colours and replacing the edge relation E by its
reflexive and symmetric closure, which is atomically definable from E.
From G′ we thereby obtain an equivalence relation, not from G. Note
that transitivity and the class of equivalence relations are first-order
definable with 3 variables.

Let us return to the claim that II can maintain atomic equivalence. A
strategy for player II is extracted from the following observation. Let a ∈ G

and a′ ∈ G′ be of the same colour. Then there is a unique bijection π from
G to G′ that maps a to a′ and preserves colours as well as edges that are
incident with a or a′. This is checked directly; if without loss of generality
we consider the case a = a′, then the identical mapping on {0, . . . , 5} is as
desired.

Suppose now that in the current stage (G, a1, a2;G
′, a′1, a

′
2) of the game

atpG
(
a1, a2

)
= atpG′

(
a′1, a

′
2

)
. We want to show that II can defend this prop-

erty against any challenge by player I. Assume without loss of generality
that player I chooses to play with the second pebble. Let π be chosen with
respect to a1 and a′1 as above. Let then II play according to π: if for instance
I proposes B ⊆ {0, . . . , 5} as a subset of G then II responds with B′ = π(B)
and upon any choice for b′ ∈ B′ by I player II may answer with π−1(b′) ∈ B.
The defining condition on π guarantees that atpG

(
a1, b

)
= atpG′

(
a′1, b

′
)
.

56 2. The Games and Their Analysis

The next example gives an account of the essential features of the
construction by Cai, Fürer and Immerman of non-isomorphic but Ck∞ω-
equivalent finite graphs [CFI89]. We shall later also apply the result of these
considerations — Theorem 2.9 below — to show that the counting extension
of fixed-point logic does not capture Ptime. See Corollary 4.23 of Chapter 4.

The construction uses certain highly symmetric graphs with a parity-
sensitive automorphism group. These “gadgets” were first employed by Im-
merman in [Imm81] to prove lower bounds on the number of variables needed
for expressing certain reachability properties in graphs (without counting
quantifiers).

Example 2.7 (Immerman and Cai, Fürer, Immerman). Main build-
ing blocks for the construction are the following gadgets. Fix somem > 2. Let
P(m) denote the power set of the set m = {0, . . . ,m− 1}. We identify P(m)
with the set of functions s:m → {0, 1}. Let H be the following undirected
graph with node set H = I ∪̇O where I = P(m), O = m×{0, 1}. The names
I and O stand for inner and outer nodes, respectively. The edge relation of
H encodes the rôle of the inner nodes as subsets over m: s ∈ I = P(m) is
joined exactly with all pairs (u, s(u)) ∈ O for u ∈ m. For each u ∈ m we refer
to the two nodes (u, 0), (u, 1) as a pair of corresponding outer nodes. The
outer nodes of H will serve as ports for gluing several copies of H together.
The crucial properties of the resulting graphs exploit the behaviour under
automorphisms of H that exchange pairs of corresponding outer nodes. Each
t ⊆ m induces an automorphism γt of H that is determined by its behaviour
on outer nodes

γt: (u, i) 7−→
(
u, i⊕ t(u)

)

where ⊕ is addition modulo 2. Note that γt preserves the set of inner nodes
and also each pair of corresponding outer nodes set-wise. On the outer nodes
it swaps exactly those pairs of corresponding outer nodes (u, 0), (u, 1) for
which u ∈ t. Inner nodes are mapped according to s 7→ s⊕ t where ⊕ applied
to the functions s and t is pointwise addition modulo 2.

We now split the set I of inner nodes into two disjoint subsets Ii :=
{
s ⊆

m
∣∣ |s| ≡ imod2

}
, for i = 0, 1. Note that γt preserves the subsets Ii if and

only if |t| is even. For odd |t| on the other hand γt induces a bijection between
I0 and I1.

Let G =
(
V,E,6) be any symmetric connected graph that is regular of

degree m and linearly ordered by 6. Let G⊗ H be the result of substituting
a copy of H for each node of G and joining outer nodes by a pair of edges in
the natural fashion. In detail let G⊗H =

(
V̂ , Ê,4

)
. V̂ = V ×H and 4 is the

pre-ordering induced by 6 on this product. Ê consists of all edges from the
respective copies of H together with the following new links between outer
nodes. If (v, v′) ∈ E with v′ being the u-th neighbour of v in G and v being the
u′-th neighbour of v′ (with respect to 6) we include edges between

(
v, (u, 0)

)

and
(
v′, (u′, 0)

)
as well as between

(
v, (u, 1)

)
and

(
v′, (u′, 1)

)
. We refer to

2.1 The Pebble Games for Lk
∞ω and Ck

∞ω 57

these extra edges as connecting edges. Each edge of G thus gets replaced
by a pair of connecting edges. This is sketched in Figure 2.2. We denote by
π:G ⊗ H → G the natural projection to the first factor. Let Hv := π−1(v)
denote the subset of nodes of G ⊗ H that belong to that copy of H that is
substituted for v.

Fig. 2.2

G⊗ H

G

◦
◦
◦
◦

◦
◦

&%
'$

&%
'$

Hv Hv′◦
◦

◦
◦

◦
◦

• •
v v′����

��

��� �
��

?
π

?
π

?

π

Let Iiv ⊆ Hv denote the respective subsets of the set of inner nodes within
Hv, i = 0, 1. Consider automorphisms of G⊗H with respect to their behaviour
on the sets Iiv. If v0, . . . , vl is a simple path inG then there is an automorphism
γ of G ⊗ H with the following properties: γ fixes all Hv for v 6= v0, . . . , vl
pointwise, γ preserves the subsets Iivj for j = 1, . . . , l − 1 and exchanges I0vj
with I1vj for j = 0, l. Such γ is pieced together from automorphisms γt of the
individual embedded H. For the copy of H over vj choose t to be the subset
of m that contains u if the given path connects vj to its u-th neighbour in
G. Thus |t| is even for all inner nodes of the path and odd for the end points
of the path.

For U ⊆ V let (G⊗H)U be the subgraph ofG⊗H that results from deleting
all inner nodes in I0v for v ∈ U and those in I1v for v 6∈ U . Since G is connected,
it follows from the above automorphism argument that all the (G⊗H)U fall
into at most two classes up to isomorphisms. If the symmetric difference
between U1 and U2 is even, then (G ⊗ H)U1

≃ (G ⊗ H)U2
. We claim that

otherwise indeed (G⊗ H)U1
and (G⊗ H)U2

are non-isomorphic. This can be
seen by means of the following numerical invariant on the (G⊗H)U . Suppose
a given graph is isomorphic to some (G⊗H)U . Note that the projection π to
G and in particular therefore the node sets π−1(v), the sets of inner nodes
in π−1(v), and the pairs of connecting edges between outer nodes of different

copies of H are well defined in terms of the given graph. Let S ⊆ Ê be any set

58 2. The Games and Their Analysis

of edges that contains exactly one member from each pair of connecting edges
and let N be any set of inner nodes that contains exactly one member from
each π−1(v). Call a connecting edge incident with an inner node if there is an
edge that joins that node with one of the end-points of the given edge. Let i
be the result of counting modulo 2 the number of edges in S that are incident
with N . We check that i is independent of the choices made. Replacing any
edge in S by its partner edge changes the incidence with N in exactly two
places. Replacing an inner node of π−1(v) by another one changes incidence
with S in an even number of places, since either both nodes are in I0v or both
are in I1v . It is immediate, however, that i = 0 on (G ⊗ H)∅ and i = 1 on
(G⊗ H){v} for any single node v.

For definite representatives of the two isomorphism types put (G⊗H)0 :=
(G ⊗ H)∅ and (G ⊗ H)1 := (G ⊗ H){v0} where v0 is the 6-least node of G.
We use such representatives in the simple case that G is a complete graph
to obtain the desired separation result. Let Km+1 be the ordered complete
graph over m+ 1 nodes:

Km+1 =
(
{1, . . . ,m+ 1}, {(k, l)|k 6= l},6

)
.

Denote the above graph H with node set P(m) ∪̇m × {0, 1} by Hm to
indicate the dependence on m.

Lemma 2.8. Let A = (Km+1 ⊗ Hm)0 and A′ = (Km+1 ⊗ Hm)1. Then for
m > 2:

A ≡C
m

A′ but A 6≡L
m+1

A′.

Proof. It is instructive to consider first the case m = 2. An inspection of the
construction in this simple case shows that A is the disjoint union of two
cycles of length 9, each grouped into three groups of 3 consecutive vertices
that belong to the same class of the pre-ordering. A′ is a single cycle of length
18 with a corresponding grouping into 6 blocks of three vertices each. If we
replace the classes of the pre-ordering by three monadic predicates Ur, Ub
and Ug for colours red, blue and green as in Example 2.6 then the relation
between A and A′ is the same as between the graphs G and G′ in Example 2.6,
only each node of the graphs there is replaced by a path of length 3 to obtain
the present ones. The claim for m = 2 therefore essentially follows from the
considerations in Example 2.6.

We turn to the general case. Let the natural projections from A and
A′ to Km+1 be denoted π and π′, respectively. Note that membership in
π−1(j) (respectively π′−1(j)) is definable in L2

ωω, since π
−1(j) consists of the

j-th class with respect to 4. Concrete formulae are obtained exactly as in
Example 1.9. It follows that in order not to lose, player II must necessarily
respect π and π′ as well as the properties of being an inner node in π−1(j)
or of being an end point of a connecting edge between π−1(i) and π−1(j) for
any 1 6 i, j 6 m+ 1. This is true for both the Ck- and the Lk-games.

2.1 The Pebble Games for Lk
∞ω and Ck

∞ω 59

We first employ the Lm+1-game to show that A and A′ are not Lm+1-
equivalent. By the above considerations, player I can force II into positions
such that the j-th pebbles are placed on inner nodes aj ∈ π

−1(j) and a′j ∈

π′−1(j) for 1 6 j 6 m+1. For each j 6= 1 consider the pair of corresponding
outer nodes in π−1(1) in A that belong to connecting edges between π−1(1)
and π−1(j). Note that exactly one node of this pair has distance 2 from aj ,
the other one has distance greater than 2. Let vj be the one with distance
2. By the construction of A it is clear that the number of vj that are direct
neighbours to a1 is even. Choosing nodes v′j for 2 6 j 6 m + 1 in A′ in the
same manner, we find that the number of v′j that are direct neighbours to
a′1 must be odd. There is therefore at least one index j > 2 such that vj
is a neighbour of a1 while v′j is not a neighbour of a′1 or vice versa. Assume
without loss of generality the former is true of j = 2. Let player I move pebble
3 in A to v2. II must move pebble 3 to a neighbour of a′1 in A′ in order not
to lose immediately. If II places this pebble not on one of the outer nodes
in π−1(1) belonging to a connecting edge to π−1(2) then II loses within one
more round. Choosing the one of these outer nodes that is a neighbour of
a′1 and therefore different from v′2 II still loses in one more round, since now
pebbles 2 and 3 are placed at distance 2 in A and at distance greater 2 in A′.

It remains to exhibit a strategy for player II in the Cm-game on A and
A′. We show that II can maintain the following condition on the stages(
A, a1, . . . , am;A′, a′1, . . . , a

′
m

)
:

(∗)
π(a) = π′(a′) and(
A ↾ π−1

(
π(a)

)
, a
)
≃
(
A′ ↾ π′−1

(
π′(a′)

)
, a′
)
.

We argue that this suffices for A ≡C
m

A′. In any game position (A, a) at
least one π−1(j) remains unpebbled. Consider a position a over A in which
π−1(1) is unpebbled. By construction the identity mapping is an isomorphism
between the induced subgraphs of A and A′ on π−1

(
{2, . . . ,m+ 1}:

A ↾ π−1
(
{2, . . . ,m+ 1}

)
= A′ ↾ π′−1

(
{2, . . . ,m+ 1}

)
.

Thus (∗) is seen to hold of (A, a;A′, a) if a is disjoint from π−1(1). In the
general case there still is an isomorphism between A ↾

(
A \ π−1(j)

)
and

A′ ↾
(
A′\π′−1(j)

)
for any j, because A′ = (Km+1⊗Hm)1 = (Km+1⊗Hm){1} ≃

(Km+1 ⊗ Hm){j}. Therefore, for all a there is some a′ such that (∗) holds of
(A, a) and (A′, a′), and vice versa. If II can maintain (∗), this implies that

TpC
m

(A; 2) = TpC
m

(A′; 2) and, with Lemma 1.34, that indeed A ≡C
m

A′.
Assume now that (∗) is satisfied in the current position. Assume fur-

ther that I chooses pebble 1 to play. Without loss of generality suppose that
π(a2, . . . , am) = π′(a′2, . . . , a

′
m) ⊆ {3, . . . ,m + 1} and that the given isomor-

phism is the identity mapping in restriction to π−1({3, . . . ,m+ 1}):

60 2. The Games and Their Analysis

(
A ↾ π−1

(
{3, . . . ,m+ 1}

)
, a2, . . . , am

)

=
(
A′ ↾ π′−1

(
{3, . . . ,m+ 1}

)
, a′2, . . . , a

′
m

)
.

Consider any potential target position for pebble 1 over A say. If a1 is
placed within π−1({3, . . . ,m+1}) then we want a′1 to be placed according to
the given isomorphism (which happens to be the identity under our assump-
tions). The interesting case is that a1 is moved to either π−1(1) or π−1(2). It
follows from the considerations above that for i = 1, 2 there are isomorphisms
γi between A ↾ π−1

(
{1, . . . ,m+1} \ {i}

)
and A′ ↾ π′−1

(
{1, . . . ,m+1} \ {i}

)

such that γi restricts to the identity mapping over π−1({3, . . . ,m + 1}),
and thus extends the given isomorphism between

(
A ↾ π−1

(
{3, . . . ,m +

1}
)
, a2, . . . , am

)
and

(
A′ ↾ π′−1

(
{3, . . . ,m + 1}

)
, a′2, . . . , a

′
m

)
. Let now γ be

the following bijection between A and A′:

γ(v) :=

v for v ∈ π−1({3, . . . ,m+ 1})
γ2(v) for v ∈ π−1(1)
γ1(v) for v ∈ π−1(2) .

Let II play according to γ: if I proposesB ⊆ A say, then II answersB′ = γ(B)
and upon a move of pebble 1 in A′ to b′ ∈ γ(B), II moves pebble 1 in A to
γ−1(b′). (∗) is satisfied by construction in the resulting stage — the required
isomorphism is provided by the corresponding restriction of γ. ⊓⊔

We thus have in particular the following theorem.

Theorem 2.9. The logics Ck∞ω form a strict hierarchy with respect to k even
for boolean queries on finite graphs:

C1
∞ω C2

∞ω . . . Ck∞ω Ck+1
∞ω . . . ⊆ Cω∞ω.

It follows that Cω∞ω L∞ω — not every query on finite structures is express-
ible in Cω∞ω.

The second claim is provable from the first by diagonalization. A concrete
graph query which is not in Cω∞ω is of course

{
(Km+1 ⊗ Hm)0

∣∣ m > 2
}
, or

rather the closure of this set under isomorphisms.

2.1.2 Proof of Theorem 2.2

The proof is given in two separate lemmas, one for each implication in the
theorem.

Lemma 2.10. If (A, a) 6≡C
k
∞ω (A′, a′) then player I can force a win in the

game on
(
A, a;A′, a′

)
.

2.1 The Pebble Games for Lk
∞ω and Ck

∞ω 61

Proof. Let (A, a) 6≡C
k
∞ω (A′, a′). There is some formula ϕ in Ck∞ω such that

A |= ϕ[a] but A′ |= ¬ϕ[a′]. Let ξ be the quantifier rank of ϕ. ξ > 0 unless I
has already won. We prove that I can in one move force resulting positions
that can be distinguished by a formula of quantifier rank ζ < ξ. This suffices
to give I a strategy, since by repeated application of such moves the ordinal
valued quantifier rank of the distinguishing formula must reach 0 in finitely
many steps — a win for I. Assume without loss of generality that ϕ is of the
form ∃>mxjψ(x). Other cases reduce to this one through the symmetry of
the claim and by replacing ϕ by one of its boolean constituents if necessary.
If I chooses pebble index j and proposes a set B :=

{
b ∈ A

∣∣ A |= ψ[a b

]
}
of

cardinality m, then II cannot help but include at least one element b′ in the
response B′ such that A′ |= ¬ψ[a′ b

′

]. This is simply because by assumption

on ϕ there are less than m positive examples available over (A′, a′). I need
only choose such a b′ from B′ to force a resulting position in which ψ of
quantifier rank less than ξ distinguishes the two tuples. ⊓⊔

Lemma 2.11. Player II has a strategy to maintain ≡C
k
∞ω -equivalence of

game positions.

Proof. Assume (A, a) ≡C
k
∞ω (A′, a′). It has to be shown that in response to

any choices I can make during one round II can achieve ≡C
k
∞ω -equivalence in

the resulting positions. From Lemma 1.39 we know that each Ck∞ω-type α is
isolated by some formula ϕα(x) ∈ C

k
∞ω. For each α and each j, the number

ναj (A, a) =
∣∣∣
{
b ∈ A

∣∣ tpC
k
∞ω

A

(
a b

)
= α

}∣∣∣ =
∣∣∣
{
b ∈ A

∣∣ A |= ϕα[a
b

]
}∣∣∣

is determined by tp
Ck

∞ω

A

(
a
)
: ∃=mxjϕα(x) is in tp

Ck
∞ω

A

(
a
)
exactly for m =

ναj (A, a). (A, a) ≡
Ck

∞ω (A′, a′) therefore implies that for all α and j the corre-
sponding numbers must be equal for (A, a) and (A′, a′): ναj (A, a) = ναj (A

′, a′).
Suppose now that I chooses to play in the j-th component and proposes
B ⊆ A as a challenge. By the above equality II can choose B′ ⊆ A′ such that
for all α:

∣∣∣
{
b ∈ B

∣∣ tpC
k
∞ω

A

(
a b

)
= α

}∣∣∣ =
∣∣∣
{
b′ ∈ B′

∣∣ tpC
k
∞ω

A′

(
a′ b

′

)
= α

}∣∣∣.

But now, no matter which b′ ∈ B′ I chooses, II can make sure to answer
with some b ∈ B such that the resulting tuples, a b

and a′ b

′

again realize the

same Ck∞ω-type, so that ≡C
k
∞ω -equivalence is maintained. ⊓⊔

Before pursuing the analysis of the games, let us remark that unlike the
standard treatment of the k-pebble games for Lk∞ω and Ck∞ω we have chosen
to consider only positions with all k pebbles placed on their respective struc-
tures. The standard treatment allows to start the game with all pebbles out-
side the structures. Until the point where all pebbles have been placed player
I may either choose to play a round using one of the pebbles already placed

62 2. The Games and Their Analysis

or one of those not yet used. Otherwise everything is unchanged. That choice
has the advantage that the main theorems directly apply to naked structures
and characterize the equivalence relations ≡L over fin[τ] rather than over
fin[τ ; k]. The disadvantage is that the games are slightly less uniform during
the initial phase in which only some of the pebbles have been placed and the
formal treatment must make more or less awkward provisions for that. We do
not really lose anything in our restriction to full positions, however, because
by Lemma 1.34 A ≡L A′ if and only if A and A′ realize exactly the same
L-types. As we shall mostly study ≡L as an equivalence relation on fin[τ ; k],
we prefer to deal with the variant introduced above.

2.1.3 Further Analysis of the C
k-Game

An inductive analysis of strategies. Think of an arbitrary but fixed
k throughout the following. The obvious dependence of various introduced
notions on the value of k is mostly suppressed in the notation. Recall that
fin[τ ; k] is the class of all finite τ -structures with a k-tuple of designated
elements.

Definition 2.12. Let ≈0 be the relation of atomic equivalence on fin[τ ; k]:

(A, a) ≈0 (A′, a′) if atpA
(
a
)
= atpA′

(
a′
)
.

Recall that atomic equivalence is what is required in the winning condition
for player II, (W): player II has not yet lost in stage (A, a;A′, a′) if (A, a) ≈0

(A′, a′). Obviously ≈0 is an equivalence relation on positions. A strategy
for II must specify possible moves for II that allow to stay within ≈0 in
response to any moves I might make. Inductively this task reduces to the
specification of strategies for one additional round. Suppose the relation ≈i
on pairs of positions captures the existence of a strategy for at least i moves.
Then the corresponding relation ≈i+1 must exactly contain all stages (pairs of
positions) in which II has a strategy for a single round to enforce a resulting
stage in ≈i. What constitutes a strategy for the single round is governed by
the rules of the game.

Lemma 2.13. Let ∼ be an equivalence relation on fin[τ ; k]. Let ∼′ be the
relation on fin[τ ; k] that contains (A, a;A′, a′) if and only if (A, a) ∼ (A′, a′)
and in a single round of the Ck-game on stage (A, a;A′, a′) player II can
force the resulting stage to be in ∼ again. Then ∼′ is definable as follows:

(A, a) ∼′ (A′, a′) if
(A, a) ∼ (A′, a′)
and for all j ∈ {1, . . . , k} and all α ∈ fin[τ ; k]

/
∼∣∣∣

{
b ∈ A

∣∣ (A, a b

) ∈ α

}∣∣∣ =
∣∣∣
{
b′ ∈ A′

∣∣ (A′, a′ b
′

) ∈ α

}∣∣∣.

In particular ∼′ is also an equivalence relation on fin[τ ; k].

2.1 The Pebble Games for Lk
∞ω and Ck

∞ω 63

Proof. i) Suppose first that the condition on the right hand side is satisfied
by (A, a;A′, a′). The proof that II can force ∼-equivalence in a single round
is very similar to the proof of Lemma 2.11 above. Note that both, the rules
for a round in the game and the condition in the lemma are symmetric with
respect to the constituent positions (A, a) and (A′, a′). Let I in the first
part of the round choose j and B ⊆ A. Split B into disjoint subsets Bα for
α ∈ fin[τ ; k]

/
∼ through: Bα :=

{
b ∈ B

∣∣ (A, a b

) ∈ α

}
. By assumption, there

exists for each Bα a subset B′
α ⊆

{
b′ ∈ A′

∣∣ (A′, a′ b
′

) ∈ α

}
of exactly the

same size as Bα. Note that the sets
{
b′ ∈ A′

∣∣ (A′, a′ b
′

) ∈ α

}
are disjoint for

different α. If II responds with B′ :=
⋃
αB

′
α then, in the second exchange of

moves in this round, II can force ∼-equivalence as desired: I chooses b′ ∈ B′
α0

for some α0; II need merely choose b from Bα0
to ensure (A, a b

) ∼ (A′, a′ b

′

)

since both positions are in α0.
ii) Suppose now that the condition on the right hand side is not satisfied. The
interesting case is that this is not due to ∼-inequivalence. We show how I can
force a successor stage that is not in ∼. By symmetry we may assume that
for some j and α,

∣∣{b ∈ A
∣∣ (A, a b

) ∈ α

}∣∣ >
∣∣{b′ ∈ A′

∣∣ (A′, a′ b
′

) ∈ α

}∣∣. Let I
choose this j and B :=

{
b ∈ A

∣∣ (A, a b

) ∈ α

}
. Whichever B′ of the same size

as B player II chooses, there has to be some b′ ∈ B′ such that (A′, a′ b
′

) is

not in α. If I chooses such b′ a resulting stage with ∼-inequivalent positions
is forced. ⊓⊔

Definition 2.14. Define a family of binary relations ≈i on fin[τ ; k] as fol-
lows:

(A, a) ≈i (A
′, a′) if

Player II has a strategy for at least i rounds
in the Ck-game on (A, a;A′, a′).

Note that the above definition of ≈0 as equality of atomic types is consis-
tent with this new definition. Lemma 2.13 can be applied to generate induc-
tively equivalence relations ≈i that capture the existence of a strategy for at
least i moves. Obviously ≈i+1 is obtained from ≈i through the refinement
step described in Lemma 2.13, ≈i+1 = (≈i)

′.
In particular it follows inductively from the condition in Lemma 2.13 that

all the ≈i are equivalence relations on fin[τ ; k]. For future reference we present
the inductive description of the ≈i in detail.

Proposition 2.15. Let the ≈i on fin[τ ; k] be defined through the existence
of a strategy for player II for at least i rounds in the Ck-game. Then these
are inductively definable in the following process:

(A, a) ≈0 (A′, a′) iff atpA
(
a
)
= atpA′

(
a′
)

(A, a) ≈i+1 (A′, a′) iff
(A, a) ≈i (A

′, a′)
and for all j ∈ {1, . . . , k} and all α ∈ fin[τ ; k]

/
≈i∣∣∣

{
b ∈ A

∣∣ (A, a b

) ∈ α

}∣∣∣ =
∣∣∣
{
b′ ∈ A′

∣∣ (A′, a′ b
′

) ∈ α

}∣∣∣.

64 2. The Games and Their Analysis

As a sequence of successively refined equivalence relations the ≈i possess a
limit or roughest common refinement. Formally this limit ≈ is the intersection
of all ≈i for i ∈ ω:

≈i
i→∞- ≈=

⋂

i

≈i .

We show that ≈ captures the existence of a strategy in the infinite game.

Lemma 2.16. Let ≈ :=
⋂
i ≈i. Then

(A, a) ≈ (A′, a′) iff
Player II has a strategy in the infinite
Ck-game on (A, a;A′, a′).

Proof. This is the first place in the analysis of the games where we use the
finiteness of the underlying structures. Fix two structures A,A′ and let ≈AA

′

and ≈AA
′

i stand for the restrictions of ≈ and ≈i to positions over A and A′.

Thus ≈AA
′

is the limit of the decreasing sequence of subsets ≈AA
′

i of the

finite set Ak × A′k. It follows that ≈AA
′

i+1 =≈AA
′

i =≈AA
′

for some i. But this
means that for such i and in games over A and A′ player II is guaranteed to
have a strategy for at least i + 1 rounds whenever there is a strategy for at
least i rounds. The strategy in the infinite game now simply is to maintain
≈AA

′

i -equivalence: ≈AA
′

i -equivalence implies ≈AA
′

i+1 -equivalence and this can

by definition be used to enforce ≈AA
′

i -equivalence in each consecutive round.
⊓⊔

Equivalence of positions and equality of types. We can now show that
the ≈-classes coincide with the Ckωω-types as well as with the Ck∞ω-types
over fin[τ]. This correspondence in particular yields a proof of Corollary 2.4.
Recall form Definition 1.36 that the Ck∞ω;i consist of all those formulae of

Ck∞ω whose quantifier rank is at most i. By what we already have, it suffices
to show that ≈i is equivalence in Ck∞ω;i for all i ∈ ω. For then, the following
limit equations prove the claim:

≡Ck
ωω;i

i→∞- ≡Ck
ωω

‖

≡Ck
∞ω;i

‖

≈i

i→∞- ≈

The indicated limits are clear: Ckωω =
⋃
i C

k
ωω;i so that Ckωω-equivalence

is the limit of the equivalences with respect to the Ckωω;i. ≈=
⋂
i ≈i by the

definition of ≈.

2.1 The Pebble Games for Lk
∞ω and Ck

∞ω 65

Coincidence between Ckωω;i-equivalence and Ck∞ω;i-equivalence follows
from our preliminary analysis in Chapter 1, see Corollary 1.40. But from
Theorem 2.2 and Lemma 2.16 we already know that ≈ is Ck∞ω-equivalence.
It follows that indeed on fin[τ ; k] all three notions of equivalence

≡C
k
ωω ,≡C

k
∞ω , and ≈

coincide. This is precisely the statement of Corollary 2.4. It remains to prove
inductively the coincidence between ≈i and C

k
∞ω;i-equivalence.

Lemma 2.17. The equivalence relation ≈i coincides with C
k
∞ω;i-equivalence

on fin[τ ; k] for all i ∈ ω.

Proof. By induction on i. The claim is true for i = 0 by definition. Recall
from Proposition 2.15 how ≈i+1 is characterized in terms of ≈i:

(A, a) ≈i+1 (A′, a′) iff
(A, a) ≈i (A

′, a′)
and for all j ∈ {1, . . . , k} and all α ∈ fin[τ ; k]

/
≈i∣∣∣

{
b ∈ A

∣∣ (A, a b

) ∈ α

}∣∣∣ =
∣∣∣
{
b′ ∈ A′

∣∣ (A′, a′ b
′

) ∈ α

}∣∣∣.

It suffices to prove the following, which says that the ≡C
k
∞ω;i are governed by

the same rules:

(A, a) ≡C
k
∞ω;i+1 (A′, a′) iff

(A, a) ≡C
k
∞ω;i (A′, a′)

and for all j ∈ {1, . . . , k} and all α ∈ fin[τ ; k]
/
≡C

k
∞ω;i∣∣∣

{
b ∈ A

∣∣ (A, a b

) ∈ α

}∣∣∣ =
∣∣∣
{
b′ ∈ A′

∣∣ (A′, a′ b
′

) ∈ α

}∣∣∣.

The “only if”–part is clear, since by Lemma 1.39 each ≡C
k
∞ω;i-class α is

isolated by a formula ϕα(x) ∈ C
k
∞ω;i. Therefore, if

ναj (A, a) :=
∣∣∣
{
b ∈ A

∣∣ (A, a b

) ∈ α

}∣∣∣,

then ∃=mxjϕα(x) is in the Ck∞ω;i+1-type of (A, a) for m = ναj (A, a). For the
“if”–part it suffices to show that the numbers ναj (A, a), for all α and j isolate

the Ck∞ω;i+1-type of (A, a). This, however, is clear: whether A |= ∃>mxjψ[a]

for ψ ∈ Ck∞ω;i is determined by
∑
ναj (A, a) for those α that contain ψ. ⊓⊔

Since we only deal with finite structures we henceforth identify ≡C
k
∞ω

and ≡C
k
ωω and indistinguishably write ≡C

k

. Correspondingly, the distinction
between Ck∞ω- and Ckωω-types is dropped and we may simply speak of Ck-
types over finite structures.

Referring back to the inductive generation of the ≈i as characterized in
Proposition 2.15 and combining this with the insight that the limit of the ≈i

66 2. The Games and Their Analysis

is Ck-equivalence, we have the following rather algebraic characterization of

≡C
k

over fin[τ ; k].

Remark 2.18. ≡C
k

on fin[τ ; k] is the roughest equivalence relation ≈ on
fin[τ ; k] that is at least as fine as atomic equivalence and satisfies the following
fixed-point equation:

(A, a) ≈ (A′, a′)
⇐⇒
for all j ∈ {1, . . . , k} and all α ∈ fin[τ ; k]

/
≈∣∣∣

{
b ∈ A

∣∣ (A, a b

) ∈ α

}∣∣∣ =
∣∣∣
{
b′ ∈ A′

∣∣ (A′, a′ b
′

) ∈ α

}∣∣∣.

The fixed-point equation directly corresponds with the equation that gov-
erns the refinement step ≈i 7−→≈i+1 in Proposition 2.15.

2.1.4 The Analogous Treatment for L
k

Both, the proof of Theorem 2.1 and the analysis of the Lk-game that leads to
Corollary 2.3, are carried out along exactly the same lines as for the Ck-game.
The more transparent rules for the single round, however, lead to consider-
able simplifications. The inductive generation of the corresponding equiva-
lence relations ≈i on game positions is formally much simpler, though strictly
analogous in spirit. Instead of Proposition 2.15 we now find the following.

Proposition 2.19. With the ≈i defined through the existence of a strategy
for player II in the Lk-game, these are inductively definable as follows:

(A, a) ≈0 (A′, a′) iff atpA
(
a
)
= atpA′

(
a′
)

(A, a) ≈i+1 (A′, a′) iff
(A, a) ≈i (A

′, a′)
and for all j ∈ {1, . . . , k} and all α ∈ fin[τ ; k]

/
≈i

∃b ∈ A
(
(A, a b

) ∈ α

)
←→ ∃b′ ∈ A′

(
(A′, a′ b

′

) ∈ α

)
.

The limit ≈i
i→∞- ≈, where the equivalence relations ≈i now stand

for equivalence with respect to the Lk-game, becomes equality of Lk∞ω-types
over finite structures. The ≈i also correspond to indistinguishability in the
bounded quantifier rank fragments Lk∞ω;i of L

k
∞ω. L

k
∞ω;i-equivalence is the

same as Lkωω;i-equivalence by Corollary 1.40. Thus,

≡L
k
ωω ,≡L

k
∞ω , and ≈

coincide, where ≈ now is equivalence in the Lk-game. This is precisely the
statement of Corollary 2.3.

It is therefore justified to write ≡L
k

for both, equivalence in Lk∞ω or Lkωω.
Accordingly we identify Lk∞ω-types and L

k
ωω-types over finite structures and

address them as Lk-types.

2.2 Colour Refinement and the Stable Colouring 67

Finally an algebraic characterization of ≡L
k

in the style of Remark 2.18

is obtained: ≡L
k

is the roughest equivalence relation ≈ on fin[τ ; k] that is
at least as fine as atomic equivalence and satisfies the following fixed-point
equation:

(A, a) ≈ (A′, a′)
⇐⇒
for all j ∈ {1, . . . , k} and all α ∈ fin[τ ; k]

/
≈

∃b ∈ A
(
(A, a b

) ∈ α

)
←→ ∃b′ ∈ A′

(
(A′, a′ b

′

) ∈ α

)
.

2.2 Colour Refinement and the Stable Colouring

This section is an intermezzo on our way to obtain definable orderings with
respect to Ck- and Lk-types. The basic technique in the underlying inductive
processes is intimately related to a similar technique in combinatorial graph
theory: the colour refinement technique and the stable colouring, often also
considered under the name of vertex classification. We review these notions in
some detail and consider variants that are useful in the present development.
In particular some definability properties of variants of the stable colouring
can later directly be transferred to definability statements for the invariants.

We use the terminology of pre-orderings as reviewed in Section 1.7. In
particular compare Definition 1.62. We reserve variants of the symbol 4 to
denote pre-orderings; ≺ then denotes the associated strict pre-ordering and
∼ the induced equivalence relation. Recall that the quotient 4

/
∼ is a linear

ordering in the sense of 6, ≺
/
∼ the corresponding linear ordering in the sense

of <. Intuitively ∼ describes the discriminating power of 4. Recall that ≺
and 4 are quantifier free interdefinable and that ∼ is quantifier free definable
form either.

2.2.1 The Standard Case: Colourings of Finite Graphs

Let (V,E) be a finite graph. A colouring of (V,E) with finitely many colours
0, . . . , r − 1 is a function c:V → r, where r = {0, . . . , r − 1} as usual. We
regard this set of colours as ordered in the natural way. To make the order in
the colours explicit, the colouring may be formalized as a pre-ordering on V :
v1 4 v2 if c(v1) 6 c(v2). The associated ∼ is the relation of having the same
colour. A particular refinement of c is induced by the following mapping:

c′: v 7−→
(
c(v),

∣∣{w|Evw ∧ c(w) = 0}
∣∣, . . . ,

∣∣{w|Evw ∧ c(w) = r − 1}
∣∣
)
.

Let ∼′ be the relation of having the same new colour. Obviously v1 ∼
′ v2

if and only if v1 and v2 have the same colour under c and the same numbers
of direct neighbours in any of the c-colours. We note the similarity of this

68 2. The Games and Their Analysis

refinement process with that encountered in the refinement for equivalence
of positions in the Ck-game as expressed in Lemma 2.13.

The new colours can be ordered lexicographically so that one may also
regard c′ as a mapping into some initial subset r′ = {0, . . . , r′− 1} of natural
numbers. With our conventions for lexicographic orderings (see Section 1.7.3)
the colours under c′ get ordered with dominating c-colour.

The new c′ is the colour refinement of c. Let 4′, ≺′ and ∼′ be the char-
acteristic descriptions of c′ in terms of pre-orderings. The colouring c′ is a
refinement of c in the sense that ∼′ is a refinement of ∼ and that for ≺ and
≺′ we have: ≺ ⊆ ≺′. The discriminating power of the colouring is possibly
enhanced in the passage from c to c′, but the new ordering of colours is
compatible with the former one.

Since (V,E) is finite, repeated colour refinement must terminate in a
stationary colouring after at most

∣∣V
∣∣ steps. In the standard graph theoretic

setting this limit process is applied to the trivial monochromatic colouring
c0 : V → {0}. Note that this trivial colouring corresponds to the pre-ordering
40 = V ×V (with associated strict pre-ordering ≺0 = ∅). The limit colouring
obtained in this way is called the stable colouring of the graph. At the level of
the associated strict pre-orderings the stable colouring is the least fixed point
of the monotone operator corresponding to the single colour refinement step
sending ≺ to ≺′:

≺=
⋃

i

≺i where ≺0 = ∅
and ≺i+1 = (≺i)

′.

The first successor level ≺1 is just the pre-ordering according to the degree
of vertices. Note that the description of the refinement process is monotone
increasing in terms of ≺ and monotone decreasing in terms of ∼ and 4.

2.2.2 Definability of the Stable Colouring

A slight generalization of the setting in which the colour refinement technique
is applicable concerns k-graphs with any given initial pre-ordering on the set
of vertices. We use the term k-graph to denote structures with k binary
relations E1, . . . , Ek instead of the single edge relation in the standard case.
Also we here need not require these relations to be irreflexive or symmetric.
An additional arbitrary pre-ordering 40 serves as an initial stage for the
colour refinement. In terms of colourings we now pass from a colouring c:V →
r to a refinement c′ obtained from a lexicographic ordering of the new colours

c′: v 7−→
(
c(v),

(
νsj (v)

)
16j6k,06s<r

)
,

where νsj (v) =
∣∣{w|Ejvw ∧ c(w) = s}

∣∣.
Recall once more our conventions for the lexicographic ordering: a new

colour m = (m, (mjs)) is regarded as a tuple with first component m and

2.2 Colour Refinement and the Stable Colouring 69

consecutive components mjs listed according to the lexicographic ordering
on the index pairs (j, s). For m = (m, (mjs)) and m′ = (m′, (m′

js)) we get
that m < m′ if m < m′ or if m = m′ and mjs < m′

js for the least (j, s) such
that mjs 6= m′

js.
For the description in terms of the associated pre-orderings 4 and 4′ with

corresponding strict ≺ and ≺′ and equivalences ∼ and ∼′ this becomes:

v1 ≺
′ v2 iff
v1 ≺ v2 or
v1 ∼ v2 and

(
νsj (v1)

)
<lex

(
νsj (v2)

)
,

where νsj (v) =
∣∣{w|Ejvw ∧ c(w) = s}

∣∣.

(2.1)

The structural similarity of this refinement process with that in Proposi-
tion 2.15 is most apparent for the associated equivalences ∼ and ∼′:

v1 ∼
′ v2 iff
v1 ∼ v2 and for all j ∈ {1, . . . , k} and all α ∈ V/ ∼∣∣∣
{
u ∈ V

∣∣ Ejv1u ∧ u ∈ α
}∣∣∣ =

∣∣∣
{
u ∈ V

∣∣ Ejv2u ∧ u ∈ α
}∣∣∣.

(2.2)

Definition 2.20. The stable colouring of a pre-ordered finite k-graph is the
limit pre-ordering 4 obtained through application of the above refinement
operation with the given 40 as the initial stage:

4 is the limit 4i
i→∞- 4 where inductively 4i+1 : = (4i)

′.

We regard the 4i and 4 as global relations on finite pre-ordered k-graphs.

The standard version of the stable colouring of graphs is comprised as a
special case for k = 1 and for trivial initial pre-ordering 40 = V × V . In this
form the following result is due to Immerman and Lander, see Theorem 2.23
below.

Lemma 2.21. The stable colouring 4 of finite pre-ordered k-graphs is de-
finable in C2

∞ω.

Proof. Let ≺i and ≺ stand for the associated strict pre-orderings, ∼i and
∼ for the induced equivalences. It is sufficient to show that each level ≺i in
the fixed-point process that generates ≺ is definable by some C2

∞ω-formula
ϕi(x, y). Then the limit of the sequence ≺0 ⊆ ≺1 ⊆ · · · is defined by

ϕ(x, y) :=
∨

i∈ω

ϕi(x, y).

i) Suppose that ϕi defines ≺i. Then for each s > 0 there is a formula ψi,s(x)
of C2

∞ω in a single free variable which defines the s-th equivalence class with
respect to ∼i in the sense of the ordering ≺i. We first generate auxiliary
χi,s(x) that define the union of the classes up to s: χi,0(x) := ¬∃y(ϕi(y, x))

70 2. The Games and Their Analysis

defines the ≺i-least ∼i-class. As usual, ϕi(y, x) is the result of exchanging all
occurrences of x and y in ϕi(x, y). Inductively let χi,s+1(x) := ∀y(ϕi(y, x)→
χi,s(y)). Finally ψi,s(x) := χi,s(x) ∧ ¬χi,s−1(x) is as desired.
ii) Definability of the ≺i is established by an induction with respect to i.
ϕ0(x, y) := x 40 y∧¬ y 40 x defines ≺0 as the strict variant of the given 40.
Recall from the definitions that

x ≺i+1 y iff
x ≺i y or
x ∼i y and

(
νsj (x)

)
<lex

(
νsj (y)

)
.

(2.3)

νsj (x) =
∣∣{z|Ejxz ∧ψi,s(z)}

∣∣ is the number of Ej-neighbours to x that are in
the s-th class with respect to ∼i.

The crucial lexicographic comparison
(
νsj (x)

)
<lex

(
νsj (y)

)
can be ex-

pressed as follows:

∨

(j,s)

(∧

(j′,s′)<(j,s)

νs
′

j′ (x) = νs
′

j′ (y) ∧ νsj (x) < νsj (y)
)
.

Since νsj (x) =
∣∣{y

∣∣ Ejxy∧ψi,s(y)
}∣∣ it only remains to dissolve the cardi-

nality equalities and inequalities in the last formula into infinite disjunctions
according to the following pattern:
∣∣∣{u|χ(x, u)}

∣∣∣ <
∣∣∣{u|χ(y, u)}

∣∣∣ ⇐⇒
∨

m<n

(
∃=my χ(x, y) ∧ ∃=nxχ(y, x)

)
.

⊓⊔

Beside infinitary definability in only two variables with counting we also
get definability in an extension of fixed-point logic just sufficiently expres-
sive to permit cardinality comparison. Recall the definition of the Rescher
quantifier from Definition 1.53.

Lemma 2.22. The stable colouring 4 of finite pre-ordered k-graphs is glob-
ally definable in FP(QR), fixed-point logic with the Rescher quantifier. In
particular it is computable in Ptime.

Proof. Note that equation 2.3 for the inductive refinement is directly ad-
equate for the definition of ≺ as an inductive fixed point. Only, in stan-
dard fixed-point processes we initialize the fixed-point variable to ∅, whereas
here we want to substitute the given ≺0 for the initial stage. This is
possible with the following standard trick. To obtain the inductive fixed-
point for the operator given by χ(X,x) but with initialization to an X0

defined by some ϕ0(x) one may use the usual inductive fixed-point over
χ′(X,x) =

(
¬∃xXx ∧ ϕ0(x)

)
∨
(
∃xXx ∧ χ(X,x)

)
.

It therefore suffices to show that the lexicographic comparison in equa-
tion 2.3 is definable with the Rescher quantifier.

(
νsj (x)

)
<lex

(
νsj (y)

)
can now

be reformulated as follows:

2.2 Colour Refinement and the Stable Colouring 71

(
νsj (x)

)
<lex

(
νsj (y)

)

⇔ ∃(j, s)
[
∀(j′, s′)

(
(j′, s′) < (j, s)→ νs

′

j′ (x) = νs
′

j′ (y)
)
∧ νsj (x) < νsj (y)

]

⇔
k∨

j=1

∃s

∧

j′<j

∀s′
(
νs

′

j′ (x) = νs
′

j′ (y)
)
∧ ∀s′<s

(
νs

′

j (x) = νs
′

j (y)
)

∧ νsj (x) < νsj (y)

 .

The quantifications over s and s′ can be replaced by quantifications over
elements z and z′ that represent the s-th and s′-th classes with respect to ∼i.
If for instance z is in the s-th ∼i-class then ν

s
j (x) =

∣∣{u
∣∣ Ejx ∧ u ∼i z

}∣∣. It
follows that the cardinality equalities and comparisons in the above formulae
can be expressed with applications of QR. Thus

(
νsj (x)

)
<lex

(
νsj (y)

)
is in

first-order logic with the Rescher quantifier in terms of ≺i.
The limit ≺, and with it 4, therefore are definable in FP(QR). ⊓⊔

2.2.3 C
2

∞ω
and the Stable Colouring

For this section we return to the standard case of the stable colouring,
with just one edge relation E and initialization to the trivial pre-ordering.
Lemma 2.21 was first stated by Immerman and Lander [IL90] in this form:

Theorem 2.23 (Immerman, Lander). The stable colouring of graphs is
C2

∞ω-definable in the finite: there is a C2
∞ω-formula η(x, y) defining on all

finite graphs the pre-ordering associated with the stable colouring.

The stable colouring receives special attention in graph theory since on
generic graphs it provides canonization up to isomorphism. On almost all
finite graphs the pre-ordering associated with the stable colouring is a linear
ordering. This result is due to Babai, Erdös and Selkow [BES80]. The ‘almost
all’ is to say that the proportion of graphs of size n satisfying the statement
tends to 1 as n goes to infinity. In [BK80] this result was further used to
provide a graph normalization algorithm that operates in average linear time.

Theorem 2.24 (Babai, Erdös, Selkow). For almost all finite graphs the
stable colouring gives different colours to any two distinct vertices. In other
words, almost all finite graphs are in fact linearly ordered (in the sense of
6) by the pre-ordering 4 associated with the stable colouring. It follows that
almost all finite graphs are characterized up to isomorphism by their C2

∞ω-
theories, hence also by their C2

ωω-theories.

Immerman and Lander proved that not only is the stable colouring C2-
definable, but it exactly classifies vertices up to C2-equivalence:

Theorem 2.25 (Immerman, Lander). The equivalence relation ∼ asso-
ciated with the stable colouring of finite graphs is equality of C2-types of sin-
gletons. The associated pre-ordering 4 therefore is a pre-ordering with respect
to C2-types of single vertices.

72 2. The Games and Their Analysis

Sketch of Proof. Let G = (V,E) be a graph. It suffices to show that u ∼ u′

for u, u′ ∈ V implies that player II has a strategy in the infinite game on(
G, uu;G, u′u′

)
. Then ∼ is at least as fine as equality of C2-types. It cannot

be strictly finer because each ∼-class is C2
∞ω-definable as we have seen in

the proof of Lemma 2.21. We show that player II can maintain the following
condition on game positions (G, uv) and (G, u′v′):

(∗) u ∼ u′ and v ∼ v′ and atpG
(
u, v
)
= atpG

(
u′, v′

)
.

Let this condition be satisfied in the current stage
(
G, uv;G, u′v′

)
. Assume

without loss of generality that player I chooses to play in the second compo-
nent, j = 2, and proposes B ⊆ V as a subset over the first copy of G. Let
the colour classes in V/ ∼ be enumerated as α1, . . . , αl. Split B into colour
classes Bi = B ∩αi. Since u ∼ u

′ and since ∼=∼′ is stationary with respect
to a further colour refinement step, we have for all αi:

∣∣∣
{
w
∣∣ Euw ∧ w ∈ αi

}∣∣∣ =
∣∣∣
{
w′
∣∣ Eu′w′ ∧ w′ ∈ αi

}∣∣∣.

It follows that also
∣∣{w

∣∣ ¬Euw ∧ w ∈ αi
}∣∣ =

∣∣{w′
∣∣ ¬Eu′w′ ∧ w′ ∈ αi

}∣∣.
Therefore II can choose subsets B′

i ⊆ αi such that u′ has exactly as many E-
neighbours and non-neighbours in B′

i as u has in Bi. Let II put B′ =
⋃
iB

′
i.

If I now chooses for instance a neighbour of u′ in B′
i, then II can answer with

a neighbour of u from Bi. Thus (∗) is realized in the resulting stage again.
⊓⊔

2.2.4 A Variant Without Counting

There is also an inductively definable pre-ordering adapted to capture the
refinement that corresponds to the moves in the ordinary pebble game for
Lk. Its definition does not require cardinality comparison so that it turns
out to be FP-definable. In fact, the rôle of cardinality comparisons in the
colour refinement is taken by the boolean distinction whether or not there
are neighbours (no matter how many) of respective kinds. Consider some
colouring c:V → r on a k-graph. For the refinement step pass to a new
colouring

c′: v 7−→
(
c(v),

(
dsj(v)

)
16j6k,06s<r

)
,

where dsj(v): =

{
0 if ¬∃w

(
Ejvw ∧ c(w) = s

)

1 if ∃w
(
Ejvw ∧ c(w) = s

)
.

Note that the entries in all but the first component are boolean values. These
take the place of cardinalities in the colour refinement. The new colours are
ordered lexicographically just as in the colour refinement. The corresponding
refinement in the associated strict pre-orderings can easily be described in a
form analogous to condition 2.1 on page 69.

2.3 Order in the Analysis of the Games 73

Starting from a pre-ordered k-graph and applying this refinement proce-
dure inductively, a limit pre-ordering is obtained. Let us call this resulting
pre-ordering the Abiteboul-Vianu colouring of the pre-ordered k-graph.

In complete analogy with the proofs of Lemmas 2.21 and 2.22 above, we
find that the Abiteboul-Vianu colouring of pre-ordered k-graphs is globally
L2
∞ω-definable as well as FP-definable.
We shall see in the next sections that the Abiteboul-Vianu colouring serves

to construct global pre-orderings with respect to Lk-types just as the stable
colouring serves to construct similar pre-orderings with respect to Ck-types.
We have seen in Theorem 2.25 a first indication in this direction: the stan-
dard stable colouring of graphs provides a global pre-ordering of C2-types of
singletons. It may similarly be shown that the Abiteboul-Vianu colouring is
a pre-ordering of L2-types of singletons.

2.3 Order in the Analysis of the Games

The desired ordering with respect to types is obtained through an ordered
classification of positions in the corresponding game. Formally the ordering
of the quotients Ak/ ≡L gets interpreted over each structure A through a
pre-ordering on the k-th power of the universe. The associated equivalence
relation will be equality of types. We have seen a special case of this idea
in Theorem 2.25. In the following we present the introduction of the desired
pre-orderings in two different approaches, each with its specific advantages.

(a) The first view is an internal one in the sense that the pre-ordering is
defined as a global relation on the game positions over each individual
A without reference to positions over other structures. This development
is a direct application of the stable colouring to some k-graph associated
with each individual A. From Section 2.2 we infer definability properties
of the resulting pre-ordering as a global relation on fin[τ].

(b) The other, and indeed more comprehensive, view defines the desired pre-
ordering as a pre-ordering on fin[τ ; k], i.e. as a relation that serves to
compare game positions over different structures. In this sense it involves
considerations that are external to the individual structures. This is in
good agreement, however, with the game analysis in terms of the equiv-
alence relations ≈. These also primarily are equivalences over fin[τ ; k].
Only their restrictions to the special case that both positions are over the
same structure are global relations over fin[τ].

Both views are presented in the following. The externally defined pre-ordering
agrees with the internally defined one in restriction to each individual struc-
ture so that both views contribute to the understanding of the pre-ordering
as a global relation. In order not to overburden notation we shall not distin-
guish between the two notationally. Wherever it matters it will be clear from
context which view is intended.

74 2. The Games and Their Analysis

We explicitly treat the case with counting quantifiers first and indicate
the analogous treatment for the Lk in the sequel.

2.3.1 The Internal View

We introduce the desired orderings on TpC
k

(A; k) = Ak/ ≡C
k

as the stable
colouring of some k-graph associated with A.

Let us fix some linear ordering 60 on the finite set Atp(τ ; k) of atomic
τ -types in k variables. This induces an initial pre-ordering 40 on the k-th
power of the universe of any A ∈ fin[τ]:

a 40 a
′ if atpA

(
a
)
60 atpA

(
a′
)
.

The associated equivalence relation ∼0 is equality of atomic types, i.e. the
above ≈0. With any finite τ -structure A we associate a k-graph that encodes
the game positions over A in the k-pebble game together with the fixed initial
pre-ordering with respect to atomic types.

Definition 2.26. With structures A ∈ fin[τ] associate the following struc-
tures over universe Ak.

(i) The game k-graph of A, A(k). Its vocabulary τ (k) consists of binary re-
lations Ej, for j = 1, . . . , k, and unary predicates Pθ for each atomic
type θ ∈ Atp(τ ; k). These are interpreted on Ak according to Eja a

′ if∧
i6=j ai = a′i, and Pθa if atpA

(
a
)
= θ.

A(k) =
(
Ak,

(
Ej
)
16j6k

,
(
Pθ
)
θ∈Atp(τ ;k)

)
.

(ii) For the pre-ordered k-graph of A, the identification of the individual
atomic types is replaced be the pre-ordering 40 according to atomic types
(as induced by 60). The pre-ordered k-graph of A is

(
Ak,

(
Ej
)
16j6k

,40

)
.

The Ej encode in both structures the accessibility between positions over
A in a moves that are carried out over the j-th component. It is important
to note that both the game k-graph and the pre-ordered k-graph of A are
quantifier free interpreted over the k-th power of A. Also, the pre-ordering 40

of the pre-ordered k-graphs is atomically definable over the game k-graphs.
From Section 2.2.2 we obtain a stable colouring 4 on the pre-ordered

k-graphs.

Proposition 2.27. The stable colouring of the pre-ordered k-graph of A is
a pre-ordering with respect to Ck-types: its associated equivalence relation is
equality of Ck-types over Ak.

2.3 Order in the Analysis of the Games 75

Proof. Let the 4i be the stages in the generation of the stable colouring 4 on
the associated k-graph. Let ∼ and the ∼i be the corresponding equivalence
relations on Ak. The proposition is equivalent with the statement that ∼
coincides with ≈ over Ak. It suffices to show inductively that ∼i=≈i for all
i, since we know that

∼i
i→∞- ∼ and ≈i

i→∞- ≈ .

Agreement between ∼0 and ≈0 is clear from the definition.
Consider the refinement step in the generation of the stable colouring on

the k-graph associated with A. Recall the inductive definition of the stages
for the stable colouring, in particular the formula governing the refinement
step for the associated equivalence relation from equation 2.2 on page 69:

a ∼i+1 a
′ if a ∼i a

′ and for all j ∈ {1, . . . , k} and all α ∈ Ak/ ∼i∣∣∣
{
b
∣∣ Eja b ∧ b ∈ α

}∣∣∣ =
∣∣∣
{
b
∣∣ Eja′ b ∧ b ∈ α

}∣∣∣.

But obviously
∣∣{b ∈ α

∣∣ Eja b ∧ b ∈ α
}∣∣ =

∣∣{b ∈ A
∣∣ a b

∈ α

}∣∣ so that

a ∼i+1 a
′ if a ∼i a

′ and for all j ∈ {1, . . . , k} and all α ∈ Ak/ ∼i∣∣∣
{
b ∈ A

∣∣ a b

∈ α

}∣∣∣ =
∣∣∣
{
b ∈ A

∣∣ a′ b

∈ α

}∣∣∣.

Comparing Proposition 2.15 for the inductive refinement step in the ≈i —
and specializing to the case that both positions are over the same structure
A — it follows that ∼i=≈i implies ∼i+1 =≈i+1. This yields an inductive
proof of the claim. ⊓⊔

Recall from Lemma 2.21 that the stable colouring of pre-ordered k-graphs
is C2

∞ω-definable. 4 is the stable colouring of a pre-ordered k-graph that
itself is quantifier free interpreted over the k-th power of A. It follows with
Lemma 1.50 that 4 is globally definable as a global relation over fin[τ] in
C2k

∞ω[τ].
By Lemma 2.22 4 is definable in FP(QR). Thus we have the following.

Theorem 2.28. For each k there is a global pre-ordering 4 over the k-th
power of the universe of structures in fin[τ], such that

(i) the associated equivalence relation is equality of Ck-types. Thus 4 is the

quotient interpretation of a global linear ordering of the Ak/ ≡C
k

.
(ii) as a global relation over fin[τ], 4 is definable in C2k

∞ω[τ] as well as in
FP(QR)[τ], fixed-point logic with the Rescher quantifier.

76 2. The Games and Their Analysis

2.3.2 The External View

Recall how the equivalence relation ≈ was introduced as a binary relation on
fin[τ ; k]. Together with its inductive stages ≈i it serves to analyze the equiv-
alence of k-tuples over different structures. ≈ and the ≈i as global relations
on structures in fin[τ] merely are the restrictions of these externally defined
relations. It is possible to treat 4 and its stages 4i under the same exter-
nal view as pre-orderings not only on individual structures in fin[τ], but on
fin[τ ; k]. In this view an inductive definition of the ≺i can be given as follows.
We here choose the strict variants ≺i because their inductive definition is
the formally more transparent one. <0 is the strict variant of the fixed linear
ordering 60 on Atp(τ ; k).

(A, a) ≺0 (A′, a′) if atpA
(
a
)
<0 atpA′

(
a′
)

(A, a) ≺i+1 (A′, a′) if
(A, a) ≺i (A

′, a′) or
(A, a) ∼i (A

′, a′) and
(
ναj (A, a)

)
<lex

(
ναj (A

′, a′)
)

where ναj (A, a) =
∣∣∣
{
b ∈ A

∣∣ (A, a b

) ∈ α

}∣∣∣.

(2.4)

The indices (j, α) range over {1, . . . , k} × fin[τ ; k]
/
≈i. The ordering of the

index sets in the lexicographic comparison is chosen with dominant first com-
ponent j. Note that the tuples involved in this comparison each only have
a finite number of non-zero entries. Only types that are realized over A or
A′ enter non-trivially. Comparison with the inductive generation of the ≈i in
Proposition 2.15 shows that the equivalence relations ∼i associated with the
≺i defined in this manner are indeed the ≈i. It follows that the limit ≺ of
the ≺i is a strict pre-ordering with respect to Ck-types over fin[τ ; k].

Lemma 2.29. The pre-orderings ≺i, as inductively defined on fin[τ ; k] ac-
cording to equations 2.4, and their limit ≺ coincide in restriction to each
individual A ∈ fin[τ] with those defined through the stable colouring of the
k-graph associated with A.

Sketch of Proof. One need only specialize equations 2.4 to a single structure
A = A′. The obvious equality

∣∣{b ∈ A
∣∣ (A, a b

) ∈ α

}∣∣ =
∣∣{b ∈ Ak

∣∣ Eja b ∧
(A, b) ∈ α

}∣∣ shows the agreement of the lexicographic comparison in 2.4
with that of the colour refinement over the k-graph associated with A, cf.
equation 2.1 on page 69. This proves equality for the inductive stages and
implies equality in the limits as well. ⊓⊔

This external view of 4 and the 4i really goes beyond the view of these
as global relations on individual structures: it immediately shows that two
Ck-types that are both realized in two different structures get ordered the
same way in both structures.

2.3 Order in the Analysis of the Games 77

Corollary 2.30. As global relations on fin[τ], the 4 provide a coherent or-
dering with respect to Ck-types across all structures in fin[τ]:

if tpC
k

A

(
a1
)
= tpC

k

A′

(
a′1
)
and tpC

k

A

(
a2
)
= tpC

k

A′

(
a′2
)
, then a1 4A a2 if and only

if a′1 4A
′

a′2.

This is immediate here from Lemma 2.29. The same coherence claim can
also be proved directly on the basis of the global definition of the individual
pre-orderings. Note, however, that it does not follow directly from the fact
that the associated equivalence relation is equality of Ck-types. Even though
it is clear that whenever A and A′ share even a single Ck-type they must be
Ck-equivalent, coherent ordering of the types might a priori seem to require
C2k-equivalence.

2.3.3 The Analogous Treatment for L
k

We sketch the introduction of a pre-ordering with respect to Lk-types. An

inductive characterization of the relation ≡L
k

or equality of Lk-types has
been obtained in the analysis of the Lk-game. Recall Proposition 2.19 for the
inductive generation of equivalences ≈i appropriate for the Lk-game. Their

limit ≈ over fin[τ ; k] is ≡L
k

.
The desired pre-ordering, for which we also write 4, can once more be

defined as a global relation internal to each individual structure, or externally
as a pre-ordering on fin[τ ; k] whose restriction to individual structures is the
same as the former. As global relations internal to each A the pre-ordering 4

and its stages 4i are obtained as the limit and the stages of the Abiteboul-
Vianu colouring applied to the pre-ordered k-graphs associated with A. This
immediately gives the analogous definability results as in the case of the Ck,
cf. Theorem 2.28.

Theorem 2.31. For each k there is a global pre-ordering 4 over the k-th
power of the universe of structures in fin[τ], such that its associated equiv-
alence relation is equality of Lk-types. This pre-ordering is obtained as the
Abiteboul-Vianu colouring of the pre-ordered k-graphs associated with struc-
tures in fin[τ]. As a global relation over fin[τ], 4 is definable in L2k

∞ω[τ] as
well as in FP[τ].

The more general external version of 4 over fin[τ ; k] is obtained in an
inductive definition analogous to equations 2.4:

(A, a) ≺0 (A′, a′) if atpA
(
a
)
<0 atpA′

(
a′
)

(A, a) ≺i+1 (A′, a′) if
(A, a) ≺i (A

′, a′) or
(A, a) ∼i (A

′, a′) and
(
dαj (A, a)

)
<lex

(
dαj (A

′, a′)
)

where dαj (A, a): =

{
0 if ¬∃b(A, a b

) ∈ α

1 if ∃b(A, a b

) ∈ α .

78 2. The Games and Their Analysis

The indices (j, α) range over {1, . . . , k} × fin[τ ; k]
/
≈i.

Recall that ≈i is the i-th stage in the generation of ≈ — where now ≈ is

≡L
k

on fin[τ ; k]. In order to verify that indeed ≈i also is the equivalence rela-
tion associated with 4i as defined here, compare Proposition 2.19. In analogy
with Lemma 2.29 it is shown that in restriction to individual structures this
externally defined pre-ordering coincides with the one obtained internally. In
particular, as a global relation on fin[τ], 4 is a coherent pre-ordering with
respect to Lk-types.

Lemma 2.32. As a global relation on fin[τ] the pre-ordering 4 obtained as
the Abiteboul-Vianu colouring of the k-graphs of structures in fin[τ] provides
a coherent ordering with respect to Lk-types across all structures in fin[τ]:

its associated equivalence relation is equality of Lk-types, and if tpL
k

A

(
a1
)
=

tpL
k

A′

(
a′1
)
and tpL

k

A

(
a2
)
= tpL

k

A′

(
a′2
)
, then a1 4A a2 if and only if a′1 4A

′

a′2.

Sources and attributions. As pointed out above, the Fräıssé style analysis
for finite variable logics in terms of back-and-forth systems is due to Barwise
[Bar77], the introduction of the corresponding pebble games and their anal-
ysis to Immerman [Imm82]. For some more background on the finite variable
fragments of first-order logic see also [Poi82]. The games for finitely many
variables and counting quantifiers were introduced by Immerman and Lan-
der in [IL90]. Cai, Fürer and Immerman applied these games in the analysis of
their construction of non-isomorphic but Ck-equivalent graphs in [CFI89]. In
this construction counting is, however, easily eliminated. A systematic analy-
sis of the Ck-game over graphs is presented in [CFI92] and was independently
developed in [GO93, Ott96a]. Cai, Fürer and Immerman attribute the under-
lying graph theoretic technique connected with the stable colouring in higher
dimension to Lehman and Weisfeiler. The approach in [GO93, Ott96a] grew
out of the generalization of the Abiteboul-Vianu approach to the case with
counting. It should be remarked that the notions of a k-ary stable colouring
underlying [GO93, Ott96a] — which is the one used here as well — differs
in some technical details from the one attributed to Lehman and Weisfeiler
in the work of Cai, Fürer and Immerman. Our k-ary variant is tuned exactly
to yield a classification of k-tuples with respect to Ck; the other one rather
corresponds to the classification of k-tuples with respect to types in Ck+1.
Both ways have their merits but the difference has to be kept in mind to avoid
confusion when comparing the statements. We find our convention more suit-
able in connection with definability issues concerning the pre-orderings with
respect to types and the invariants to be introduced in the next chapter.

The work of Abiteboul and Vianu [AV91] is the essential source for the

introduction of the definable ordered quotients Ak/ ≡L
k

that will form the
backbone of the invariants. An excellent presentation of the related results
for the Lk-game in logical terms is given by Dawar, Lindell and Weinstein in
[Daw93, DLW95].

3. The Invariants

We introduce complete structural invariants that classify finite relational
structures up to Ck- and Lk-equivalence, respectively. These invariants are
based on the definable pre-orderings with respect to Ck- and Lk-types ob-
tained in the analysis of the games in the preceding chapter. The invariants
are Ptime computable and inherit specific definability properties from the
pre-orderings with respect to types. These definability properties and a close
relationship with the fixed-point logics make the invariants extremely useful
in investigations concerning fixed-point logics and complexity issues. This ap-
proach has been initiated and lead to success in the seminal work of Abiteboul
and Vianu. They first introduced a kind of ordered invariants with respect
to their model of relational computation and with this technique derived
important results concerning the relationship between FP and PFP.

• In the introductory Section 3.1 we relate the concept of the proposed
invariants to the abstract notion of complete invariants.

• Section 3.2 provides the definition of our Ck-invariants and states their
fundamental definability properties.

• Section 3.3 similarly treats the invariants for Lk.

• In Section 3.4 we consider applications of the invariants to the analysis
of fixed-point logics. A main point is the discussion of the Abiteboul-Vianu
Theorem on the relation between FP and PFP. As far as the Ck-invariants are
concerned, the corresponding considerations are of a preliminary nature here.
This analysis will be pursued further in Chapter 4 where it becomes possible
to link the Ck-invariants directly with fixed-point logic with counting. We
include here a comparison between the Ck- and the Lk-invariants.

• In Section 3.5 it is indicated that — up to interpretability in powers —
our invariants essentially reduce to the two-dimensional ones, i.e. to those for
C2 and L2.

80 3. The Invariants

3.1 Complete Invariants for L
k and C

k

Recall from Definition 1.58 the notion of a complete invariant for an equiva-
lence relation ∼: I is a complete invariant for ∼ if I classifies objects exactly
up to ∼: x ∼ x′ if and only if I(x) = I(x′). We apply this notion to the equiv-
alence relations ≡L, L = Ck∞ω or Lk∞ω. These may be regarded as equivalence
relations on fin[τ] as well as on the fin[τ ; r] for r 6 k. Accordingly we actually
get two notions of complete invariants in each case.

Definition 3.1. Let L be a logic. A functor I on fin[τ] is a complete L-
invariant if

∀A∀A′ A ≡L A′ ⇐⇒ I(A) = I(A′).

Similarly, I is a complete invariant for L on fin[τ ; r] if for (A, a) and (A′, a′)
in fin[τ ; r]: (A, a) ≡L (A′, a′) ⇔ I(A, a) = I(A′, a′).

A computable complete invariant I is a corresponding mapping from fin[τ]
or fin[τ ; k] to some set S of objects with a standard encoding realized by an
algorithm A: stan[τ]→ S or A: stan[τ ; k]→ S. Compare Definition 1.61. The
Ck- and Lk-invariants considered in the following are Ptime computable and
take as their values linearly ordered structures (or structures over standard
domains n). One of the goals of this chapter is the following theorem.

Theorem 3.2. There are Ptime computable complete L-invariants for L =
Ck∞ω and Lk∞ω.

The backbones of the invariants are the ordered representations of the
Ak/ ≡L derived in the preceding chapter. On fin[τ] we shall have

IL(A) =
(
Ak
/
≡L,6,︸ ︷︷ ︸

(∗)

)
,

where 6 is the linear ordering of the quotient that is interpreted by the
corresponding pre-ordering with respect to types over Ak. (∗) encodes addi-
tional combinatorial information so that exactly the structural information
for L-games over A is retrievable from IL(A). This ensures that IL(A) com-
prises a complete description of the L-theory of A as required of a complete
L-invariant over fin[τ].

By definition the rôle of the invariants over fin[τ] is comparable to that of
Scott sentences — they provide concise abstractions of the complete theories
of structures. While Scott sentences may be regarded as the syntactic cor-
relate of the games, the proposed invariants are structural correlates of the
games. This structural aspect of the invariants has particular advantages in
the further model theoretic applications: these invariants are adapted to sim-
ulate fixed-point processes over the original structures in a natural manner
as we shall see in Section 3.4.

3.2 The Ck-Invariants 81

3.2 The C
k-Invariants

We introduce and discuss the Ck-invariants on fin[τ]. Complete invariants for
Ck-equivalence on fin[τ ; r] for r 6 k are easily derived as extensions of those

on fin[τ]. The invariants are built upon the ordered quotients (Ak/ ≡C
k

,6),
where 6 is the ordering induced by the pre-ordering 4 with respect to Ck-
types, compare Theorem 2.28. In order to put the full information about
the Ck-game over A — or about the complete Ck-theory of A — into the
invariant, this ordered quotient is expanded with the following:

(i) Atomic components of types:
for each atomic type θ ∈ Atp(τ ; k) the unary predicate Pθ is introduced

on Ak/ ≡C
k

. For α ∈ Ak/ ≡C
k

put α ∈ Pθ if atpA
(
a
)
= θ for a ∈ α.

(ii) Accessibility:
for each j the binary predicate Ej , which encodes accessibility in moves

concerning the j-th component, is transferred to Ak/ ≡C
k

as follows.

For α1, α2 ∈ Ak/ ≡C
k

put (α1, α2) ∈ Ej if for a ∈ α1 there is some
b ∈ A with a b

∈ α2.

(iii) Symmetries:
for each permutation ρ in the symmetric group Sk acting on {1, . . . , k}

a binary predicate Sρ is defined on Ak/ ≡C
k

by:
(α1, α2) ∈ Sρ if ρ(a) ∈ α2 for a ∈ α1.

(iv) Multiplicities:

for each j a weight function νj from Ak/ ≡C
k

to natural numbers is
introduced which sends α to

∣∣{b ∈ A
∣∣ a b

∈ α

}∣∣, for a ∈ α.
It has to be checked that the given definitions are independent of choices of

representatives for the ≡C
k

-classes on Ak. Recall that Ak/ ≡C
k

= TpC
k

(A; k).
Clearly for the Pθ, α ∈ Pθ if α |= θ. For the others choose for each Ck-type
α a Ck∞ω-formula ϕα(x) that isolates α (cf. Lemma 1.33). Consider now

the Ej . For any two Ck-types α, β ∈ TpC
k

(A; k), either α |= ∃xjϕβ(x) or
α |= ¬∃xjϕβ(x). Accessibility of a position of type β in the j-th component
is thus determined by the type α of the given position. Similarly for the
multiplicities νj . For each α there must be some natural number m such
that α |= ∃=mxjϕα(x); this m is the value of νj(α). The operation of ρ ∈ Sk
preserves Ck-equivalence so that the representation of ρ as a binary predicate
on the quotient is also sound. Alternatively the operations ρ may actually
be defined syntactically on Ck-types through an operation on the variable
symbols.

Note that the information about atomic types, accessibility and permu-

tations are encoded by relations over Ak/ ≡C
k

whereas for the multiplicities
we have to resort to external weight functions. The values of the νj over

Ak/ ≡C
k

are bounded by |A|.

82 3. The Invariants

Definition 3.3. Let for each k and each fixed finite relational vocabulary τ ,
the Ck-invariant ICk be the functor which sends a finite τ -structure A to the
weighted linearly ordered structure

ICk(A) =
(
Ak
/
≡C

k

,6,
(
Pθ
)
,
(
Ej
)
,
(
Sρ
)
;
(
νj
))
,

where θ ranges over Atp(τ ; k), j over {1, . . . , k}, and ρ over Sk. The inter-
pretations of 6, the Pθ, Ej, Sρ and νj are as defined above.

Obviously ICk is a Ptime computable functor. Formally we regard the
relational part of ICk(A),

(
Ak
/
≡C

k

,6,
(
Pθ
)
,
(
Ej
)
,
(
Sρ
))
,

as a relational structure on the standard universe of size |Ak/ ≡C
k

| 6 |A|k

with its natural ordering. The weight functions νj take values in
{
1, . . . , |A|

}
.

ICk(A) as a whole may therefore in some canonical way be encoded as a
relational structure over the standard universe of size |A|, if k-tuples are

used to encode the elements of Ak/ ≡C
k

.

Remark 3.4. We regard ICk as a Ptime functor that takes standard objects
— namely canonical relational encodings of the weighted ordered structures
ICk(A) over standard domains of size |A| — as its values. The size of ICk is
taken to be |A|.1

The data encoded in ICk(A) are redundant in several respects. In the
presence of the ρ ∈ Sk it would in particular suffice to keep only one of the
Ej and only one of the νj . For instance νj1 = νj2◦ρ where ρ is the permutation
exchanging j1 and j2. We keep this redundancy because the highly symmetric
format is easier to handle in some applications.

It is slightly less obvious that also the Sρ are Ptime computable (and
hence FP-definable) from the complete set of the Ej and νj . To see this
observe that the quotients Ak/ ≈i, that occur in the inductive generation

of ≈, are all naturally interpreted over Ak/ ≡C
k

: the equivalence classes

of the ≈i are unions of ≡C
k

-classes, as ≡C
k

is a refinement of the ≈. At

≈0-level, the classes are just the Pθ over Ak/ ≡C
k

. The operation of Sk on
Atp(A; k) = Ak/ ≈0 is trivially definable in this interpretation. ρ ∈ Sk sends
Pθ to Pρ(θ), where ρ(θ) is obtained by operating with ρ−1 on the variables in

θ. Inductively, in each refinement step, the operation of Sk on Ak/ ≈i+1 is
determined by that on Ak/ ≈i. The refinement is governed by the values of
the functions ναj (a) =

∣∣{b ∈ A
/
a b

∈ α

}∣∣ for α ∈ Ak/ ≈i. And for these we
obviously have

1 The value |A|, rather than for instance |A|k or
∑

j

∑
α
νj(α) is a matter of

convention. The size of ICk (A) is naturally only determined up to polynomial
transformations. The point is that the size of ICk (A), with weights taken into
account, is polynomially related to the size of A, and not to |Ak/≡Ck

|.

3.2 The Ck-Invariants 83

ναj (a) = ν
ρ(α)
ρ(j)

(
ρ(a)

)
for all ρ ∈ Sk.

Furthermore, even the ordering 6 is Ptime computable form the remain-

ing data on Ak/ ≡C
k

, since the entire refinement process in the generation

of the 4i can also be simulated over
(
Ak/ ≡C

k

, (Pθ), (Ej); (νj)
)
.

These facts are stated for future reference in the following remark.

Remark 3.5. The ordering 6 and the interpretations of the Sρ in ICk(A)
are Ptime computable from the reduct of the ICk to vocabulary consisting
only of the Ej and the Pθ together with the weight functions νj.

The relational part of the ICk gets naturally interpreted over the original
structures as a quotient over the k-th power. By definition it is the quotient

of the k-th power of the universe with respect to ≡C
k

. More precisely, we
get the following. Recall that FP(QR) is fixed-point logic with the Rescher
quantifier.

Proposition 3.6. The relational part of ICk(A), i.e. the relational structure(
Ak/ ≡C

k

,6,
(
Pθ
)
,
(
Ej
)
,
(
Sρ
))

is FP(QR)-interpretable as a quotient over
the k-th power of A. Moreover, the weights νj are the cardinalities of atomi-
cally definable predicates in this interpretation.

Sketch of Proof. The intended interpretation is straightforward since ICk is
defined as a quotient on the k-th power. FP(QR)-definability of the relational

part is also obvious. FP(QR) is needed to define the equivalence relation ≡C
k

for the quotient and for the linear ordering 6 on this quotient; this is just
FP(QR)-definability of the pre-ordering 4 as stated in Theorem 2.28. The
Pθ, Ej and Sρ are in fact first-order interpretable relative to the interpreted(
Ak/ ≡C

k

,6
)
. The νj finally are defined in terms of this interpretation over

Ak according to νj(α) =
∣∣{b ∈ α|Ejab}

∣∣ for any a ∈ α. ⊓⊔

It remains to establish the ICk as complete invariants for Ck on fin[τ].

Theorem 3.7. The functor ICk is a complete Ck∞ω-invariant on fin[τ]. It
classifies finite τ -structures exactly up to equivalence in Ck:

∀A∀A′ ICk(A) = ICk(A′) ⇐⇒ A ≡C
k

A′.

Proof. By Lemma 1.34 A ≡C
k

A′ if and only if A and A′ realize exactly the
same Ck-types. This is used in the proof.

i) Assume first that A ≡C
k

A′, so that A and A′ realize exactly the same
Ck-types. The crucial fact for the proof that ICk(A) = ICk(A′) is that these
types get ordered in exactly the same way by 4 over A and A′. This follows
from the global view of 4 on fin[τ ; k] as expressed in Lemma 2.29 and Corol-
lary 2.30. It follows that the natural isomorphism between

(
Ak/ ≈,6

)
and(

A′k/ ≈,6
)
as ordered structures is the identity function on Ck-types. Thus

ICk(A) = ICk(A′) follows directly from the definitions, since we have seen

84 3. The Invariants

above that all the extra information encoded in the invariants is determined
by the constituent types.
ii) For the converse implication it suffices to prove that the Ck-type corre-
sponding to an element α ∈ ICk(A) can be recovered from the invariant.

Recall that the universe Ak/ ≡C
k

of ICk(A) is the set TpC
k

(A; k) of Ck-
types realized over A. The claim is clear at the atomic level because of the
unary predicates Pθ. Inductively assume that for each formula ϕ(x) ∈ Ck∞ω

of quantifier rank at most i the subset ϕ :=
{
α ∈ Ak/ ≡C

k ∣∣ ϕ ∈ α
}

has
been determined as a subset of ICk(A). Without loss of generality consider
a formula ∃>mxjϕ(x) with ϕ of quantifier rank at most i for the inductive
step. It follows from the definition of the Ej and νj that (∃>mxjϕ) ∈ α if
and only if ∑

(α,α′)∈Ej ,α′∈ϕ

νj(α
′) > m.

Therefore ICk(A) fully determines the set of Ck-types realized in A, and
thus the complete Ck-theory of A. ⊓⊔

The proof also shows that classification up to ≡C
k

naturally extends from
structures in fin[τ] to structures with parameters, in particular to the classi-

fication of fin[τ ; k] up to ≡C
k

. This is expressed in the following corollary.

Corollary 3.8. The following extension of the ICk to fin[τ ; k] provides a
complete invariant for Ck on fin[τ ; k]:

(A, a) 7−→
(
ICk(A), [a]

)
,

where [a] is that element of ICk(A) representing tpC
k

A

(
a
)
. In terms of the

interpretation of the relational part of ICk(A) over A it is just the equivalence
class of a as induced by 4. The extended invariants share all the above-
mentioned definability and interpretability properties with the standard ones.

Embedding Ar into Ak and TpL(A; r) into TpL(A; k) for r 6 k via
(a1, . . . , ar) 7→ (a1, . . . , a1, a1, . . . , ar), with k − r additional entries of a1
as usual, we similarly obtain complete invariants for Ck on fin[τ ; r] for all
r ∈ {1, . . . , k}.

Corollary 3.9. Ck-equivalence on fin[τ] as well as on fin[τ ; k] is in Ptime.
For any finite relational τ there are Ptime algorithms that decide for A and

A′ in fin[τ] whether A ≡C
k

A′ and for (A, a) and (A′, a′) in fin[τ ; k] whether

(A, a) ≡C
k

(A′, a′).

These algorithms need merely evaluate the corresponding invariants and
check for equality. Ck-equivalence of finite relational structures can also be
shown to be definable in the extension of fixed-point logic by the Härtig
quantifier — when suitably formalized as a query Ck-EQ.

3.3 The Lk-Invariants 85

Let to this end τ ′ consist of τ together with two new unary predicate
symbols U1 and U2. Pairs of structures in fin[τ] are naturally encoded as τ ′-
structures in which the Ui separate the universe into two disjoint subsets for
the universes of the individual τ -structures. Correspondingly put

Ck-EQ ={(
B, U1, U2

)
∈ fin[τ ∪̇{U1, U2}]

∣∣∣ B = U1 ∪̇U2,B ↾ U1 ≡
Ck

B ↾ U2

}
.

It is obvious that this class is definable in FP(QR), fixed-point logic with
the Rescher quantifier. FP(QR) interprets the relational parts of the ICk of
the individual structures over the pair structure. Whether two interpreted
linearly ordered relational structures are isomorphic is even FP-definable.
For agreement also in the weight functions it suffices to check equalities of
the cardinalities that define their values, and this can be done in a fixed-
point process that uses the Rescher quantifier for the individual cardinality
comparisons.

Now this can be strengthened to definability in the weaker extension of FP
by the Härtig quantifier, for cardinality equality (compare Definition 1.53).
In fact the invariants themselves as ordered structures need not actually be
evaluated. We may instead directly consider the inductive generation of the

stages ≈i in the generation of ≈=≡C
k

over positions in A and A′.
Checks for cardinality equality suffice for a fixed-point process whose

stages are the ≈i in restriction to A and A′. Compare Proposition 2.15 where
the refinement step in the inductive definition of the ≈i is formalized in terms
of cardinality equalities. (Formally one should use the complements of the ≈i
to make the inductive process increasing.)

A ≡C
k

A′ if the restriction of ≈ to Ak × A′k induces an isomor-
phism between

(
Ak/ ≈, (Pθ), (Ej); (νj)

)
and

(
A′k/ ≈, (Pθ), (Ej); (νj)

)
. As

these quotients and the candidate isomorphism between them are FP(QH)-
interpretable, FP(QH) also suffices to check the isomorphism property: QH is
here used again for equality checks on the weights. We thus get the following.

Proposition 3.10. Ck-equivalence of structures is definable in FP(QH),
fixed-point logic with the Härtig quantifier, in the sense that the above class
Ck-EQ of encodings of pairs of Ck-equivalent structures is definable in
FP(QH).

3.3 The L
k-Invariants

We sketch the introduction of the corresponding complete invariants ILk for
the Lk. These are based on the pre-orderings with respect to Lk-type as char-
acterized in Theorem 2.31 of the preceding chapter. The ordered quotients(
Ak/ ≡L

k

,6
)
are augmented by exactly the same relational expansions as in

the case of ICk . There are, of course, no numerical weights to be kept here.

86 3. The Invariants

Definition 3.11. For each k and each fixed finite relational vocabulary τ ,
the Lk-invariant ILk is the following Ptime computable functor which sends
a finite τ -structure A to the linearly ordered structure

ILk(A) =
(
Ak
/
≡L

k

,6,
(
Pθ
)
,
(
Ej
)
,
(
Sρ
))
,

where θ ranges over Atp(τ ; k), j over {1, . . . , k}, and ρ over Sk.
6 is the linear ordering induced by the pre-ordering with respect to Lk-

types (Theorem 2.31), the Pθ, Ej and Sρ are defined exactly as for ICk :

– Pθ contains those α ∈ Ak/ ≡L
k

= TpL
k

(A; k), for which α |= θ;
– (α1, α2) ∈ Ej if for a ∈ α1 there is some b ∈ A such that a b

∈ α2;

– (α1, α2) ∈ Sρ if for a ∈ α1 the permuted tuple ρ(a) is in α2.

Formally ILk(A) is regarded as a relational structure on the standard universe

of size
∣∣Ak/ ≡Lk ∣∣ with its natural ordering.

As with the ICk above it would suffice to keep one of the Ej because the
others are definable from any particular one with the help of the Sρ. And
again, in the presence of all the Ej , the Sρ and the ordering 6 are Ptime

computable from the remaining data in ILk (compare Remark 3.5).

In analogy with Proposition 3.6 for the ICk we here obtain the following.

Proposition 3.12. ILk(A) is FP-interpretable as a quotient over the k-th
power of A.

And of course the ILk are complete invariants for Lk.

Theorem 3.13. The functor ILk is a complete invariant for Lk∞ω on fin[τ].
It classifies finite τ -structures exactly up to equivalence in Lk:

∀A∀A′ ILk(A) = ILk(A′) ⇐⇒ A ≡L
k

A′.

The proof can be given along exactly the same lines as that for Theo-
rem 3.7 with the obvious simplifications. Extensions of the ILk to complete
invariants on the fin[τ ; r] for r 6 k are obtained as in Corollary 3.8.

Corollary 3.14. Lk-equivalence over fin[τ] as well as over fin[τ ; k] can be
checked through evaluation of the corresponding invariants and hence is in
Ptime.

We get more, namely FP-definability of Lk-equivalence as a query on pair
structures, a result due to Kolaitis and Vardi [KVa92b]. Putting

Lk-EQ ={(
B, U1, U2

)
∈ fin[τ ∪̇{U1, U2}]

∣∣∣ B = U1 ∪̇U2,B ↾ U1 ≡
Lk

B ↾ U2

}
,

we obtain the following corollary.

3.4 Some Applications 87

Corollary 3.15 (Kolaitis, Vardi). Lk-equivalence is FP-definable in the
sense that the class Lk-EQ is definable in FP. In particular Lk-equivalence
is in Ptime.

Sketch of Proof. The invariants ILk are FP-interpretable and isomorphism of
embedded linearly ordered structures is obviously in FP. The claim follows
with closure of FP under generalized interpretations. ⊓⊔

3.4 Some Applications

3.4.1 Fixed-Points and the Invariants

From Lemma 1.29 we know that the fixed-point logics FP and PFP are
sublogics of Lω∞ω. For any fixed-point process there is some k such that this
fixed-point process and its stages are all Lk∞ω-definable. But this implies in
particular that this fixed-point process does not distinguish between Lk∞ω-
equivalent tuples. In other words, the generation of the fixed point on A

can faithfully be represented on the quotient Ak/ ≡L
k

. This observation is
the key to important insights into the nature of FP and PFP in relation to
computational complexity that are due to Abiteboul and Vianu. In this first
part we present the technical basis.

Let ϕ(Z1, . . . , Zl, x) ∈ L
k
ωω[τ] be free in the indicated variables. Assume

that the arity of the Zi is at most k and that x is a tuple of (at most k)
distinct variables. We want show that there is a first-order formula ϕ that

captures the semantics of ϕ over the quotients Ak/ ≡L
k

, more precisely over
the ILk(A). To make this precise we introduce some ad-hoc conventions.
Predicates of arity k are naturally representable over Ak as unary predicates.
For predicates of arity 1 6 r < k we adopt a representation via the passage
from R ⊆ Ar to R′ :=

{
(a1, . . . , a1︸ ︷︷ ︸

k−r

, a1, . . . , ar)
∣∣ Ra1 . . . ar

}
⊆ Ak.

Since R is first-order definable from R′ and vice versa, we may in partic-
ular restrict second-order parameters Zi as in ϕ above to arity k rather than
ri 6 k. The same convention is applied to global relations. In our consider-
ations about Lk∞ω-definable queries we may here restrict attention to global
relations of arity k. Boolean queries can be represented by these as well if we
identify 0 with ∅ ⊆ Ak and 1 with the full predicate Ak. This translation,
too, is sound up to first-order interdefinability.

For A ∈ fin[τ], call R ⊆ Ak Lk-admissible if it is a union of ≡L
k

-classes
over Ak. Thus by Lemma 1.33, R ⊆ Ak is Lk-admissible if R is Lk∞ω- (and
hence also Lkωω-) definable over A. Note that we are here talking about defin-
ability over an individual structure, not about definability of global relations.

Any Lk-admissible R ⊆ Ak is faithfully represented over Ak/ ≡L
k

by a unary
predicate

88 3. The Invariants

R =
{
α ∈ Ak/ ≡L

k ∣∣ a ∈ α⇒ a ∈ R
}
.

With this translation for admissible interpretations of free second-order
variables we obtain a uniform translation from Lk-formulae over fin[τ] to
L2
ωω-formulae over the ILk as follows. Recall that if ϕ(Z1, . . . , Zl, x) is in free

variables Zi and x as indicated we write ϕ[A,W1, . . . ,Wl] for the predicate
defined by ϕ in variables x over A if the Zi are interpreted by predicates Wi

over A.

Lemma 3.16. Let ϕ(Z1, . . . , Zl, x1, . . . , xk) ∈ L
k
ωω[τ] with second-order vari-

ables Zi of arity k. Then there is an L2
ωω-formula ϕ

(
Z1, . . . , Zl, x

)
in the

language of the ILk and with unary second-order variables Zi that uniformly
captures ϕ over the ILk in the following sense. For all A ∈ fin[τ] and all
Lk-admissible interpretations Wi for the Zi over A:

ϕ[(A,W1, . . . ,Wl] = ϕ
[
ILk(A),W 1, . . . ,W l

]
.

Proof. The proof is a straightforward induction over formulae ϕ. Assume
without loss of generality that there is just one second-order variable Z and
that each Z-atom in ϕ is in a tuple of mutually distinct variables (otherwise
pass for instance from Zx1x1 . . . to ∃x2(x2 = x1 ∧ Zx1x2 . . .)).
i) Consider atomic ϕ. Let ϕ be a Z-atom of the admitted kind. Then ϕ =
Zxρ(1) . . . xρ(k) for some ρ ∈ Sk. The formula ϕ(Z, x) = ∃y

(
Sρxy ∧ Zy

)

is as desired. If ϕ is an atom not involving Z then it is equivalent with a
finite disjunction over atomic τ -types. These translate into a disjunction over
formulae Pθx for the corresponding θ ∈ Atp(τ ; k).
ii) Boolean operations carry over trivially.
iii) It remains to consider existential quantification. Let ϕ = ∃xjψ and assume
that ψ

(
Z, x

)
is as desired for ψ. Let ψ

(
Z, y

)
be the result of exchanging x

and y throughout ψ. Then the formula ϕ(Z, x) = ∃y
(
Ejxy ∧ ψ

(
Z, y

))
is an

adequate translation of ϕ. ⊓⊔

It follows immediately that fixed-point processes over fin[τ] translate into
corresponding fixed-point processes over the ILk .

Lemma 3.17. Let ϕ(Z1, . . . , Zl, x) ∈ PFP[τ]. Then for sufficiently large k
there is a PFP-formula ϕ

(
Z1, . . . , Zl, x

)
in the language of the ILk and with

unary second-order variables Zi that uniformly captures ϕ over the ILk . For
all A ∈ fin[τ] and all admissible interpretations Wi for the Zi over A:

ϕ[(A,W1, . . . ,Wl] = ϕ
[
ILk(A),W 1, . . . ,W l

]
.

The same holds of FP in place of PFP.

Sketch of Proof. The proof is obvious on the basis of the last lemma. Formally
it is by induction on PFP-formulae. The PFP-step is as follows. Assume
ϕ = [PFPX,xψ]x and disregard for convenience second-order parameters.

3.4 Some Applications 89

By the inductive hypothesis there is a PFP-formula ψ(X,x) such that for

appropriate k: ψ[A, X] = ψ
[
ILk(A), X

]
for all Lk-admissible X.

It follows inductively that the stages Xi in any fixed-point generation
based on ψ are Lk-admissible predicates: the empty predicate is Lk-admissible
and ψ[A, X] is Lk-admissible for Lk-admissible X as it admits a representa-

tion over Ak/ ≡L
k

through ψ
[
ILk(A), X

]
.

Let the Xi be the representations of the Xi. It is obvious that the Xi

are the stages of a partial fixed-point process over ILk that is induced by
ψ. It follows that the partial fixed-point of the stages Xi over ILk is the
representation of PFPX,xψ: [PFPX,xψ] = [PFPX,xψ]. ⊓⊔

The Ck-invariants behave much like the Lk-invariants. All the information
expressed in the Lk-invariant about Ak/ ≡L

k

is expressed by the Ck-invariant

about the finer representation Ak/ ≡C
k

. It is immediate therefore that the
statement of the last lemma carries over to ICk in place of ILk . We state
it without (Ck-admissible) second-order parameters, merely for notational
convenience.

Corollary 3.18. Let ϕ ∈ PFP[τ], respectively FP[τ]. Then for sufficiently
large k there is a PFP-formula, respectively FP-formula ϕ(x) in the language
of the ICk that uniformly captures ϕ over the ICk in the sense that for all
A ∈ fin[τ]: ϕ[A] = ϕ

[
ICk(A)

]
.

ICk contains numerical information encoded in the weight functions νj .
In an extension of the statement of the last corollary we thus get that for
instance the Härtig quantifier can also be captured. This will become useful
later. Recall that the Härtig quantifier QH expresses cardinality equality of
two definable unary predicates, cf. Definition 1.53.

Lemma 3.19. Let ϕ ∈ PFP(QH)[τ]. Then for sufficiently large k there is a
PFP-formula ϕ(x) in the language of the ICk that captures ϕ over the ICk in

the sense that for all A ∈ fin[τ]: ϕ[A] = ϕ
[
ICk(A)

]
.2

The same holds of FP(QH) and FP in place of PFP(QH) and PFP.

Sketch of Proof. Above the proofs of Lemma 3.16 and 3.17 we only need to
show that an application of the Härtig quantifier carries over to the repre-
sentation on ICk . Let ϕ = QH

(
(xj ;ψ1); (xj′ ;ψ2)

)
. Semantically this formula

says that
∣∣{xj |ψ1}

∣∣ =
∣∣{xj′ |ψ2}

∣∣. Assume that there are PFP-formulae ψi(x)
satisfying the claim of the lemma for appropriate k. Then

∣∣{xj |ψ}
∣∣ =

∑
x∈ψ νj(x)

is a number whose value is Ptime computable from the unary predicate ψ
over the ordered domain of ICk . Hence this value is fixed-point definable over
ICk , and so is equality of two such values. ⊓⊔

2 Compare Definition 3.3 and Remark 3.4. It is essential that we consider the
relational encoding of the full invariants, the weights νj inclusive.

90 3. The Invariants

3.4.2 The Abiteboul-Vianu Theorem

For the Lk we can already demonstrate the power of the invariants in the
analysis of FP and PFP in relation to computational complexity. This leads
to a theorem of Abiteboul and Vianu which is one of the major results in the
field.

Definition 3.20. Let Ptime
(
ILk

)
, respectively Pspace

(
ILk

)
, stand for the

class of all queries that are Ptime, respectively Pspace computable in terms
of the ILk . More precisely for instance for Ptime

(
ILk

)
:

(i) a boolean query Q on fin[τ] is in Ptime
(
ILk

)
if membership of A in Q

is a Ptime property of ILk(A).
(ii) an r-ary query R on fin[τ] for r 6 k is in Ptime

(
ILk

)
if membership

of a in RA is a Ptime property of ILk(A, a). Here ILk stands for the
extension to an invariant on fin[τ ; r].

Equivalently, a query is in Ptime
(
ILk

)
or Pspace

(
ILk

)
if it is Lk∞ω-

definable (and therefore its values RA will in particular be Lk-admissible over

A) and if the natural representations RA of RA over Ak/ ≡L
k

are Ptime or
Pspace computable over the ILk(A).

Note that these classes are recursively presentable. The Ptime or Pspace
algorithms featuring in the definition are not subject to any semantic con-
straints: unlike the original input structures A, the ILk(A) are objects with
standard encodings.

Ptime
(
ILk

)
and Pspace

(
ILk

)
are natural classes under the following

view. Consider the case of boolean queries Q ⊆ fin[τ]. We identify Q with its
characteristic functor χ: fin[τ] → {0, 1} which is subject to the condition of
invariance under isomorphism. Q is Lk∞ω-definable if and only if χ is in fact

≡L
k

-invariant. This is equivalent with the existence of a presentation of χ as
χ = χ∗ ◦ ILk for a boolean valued mapping χ∗. Note that χ∗ is defined on a
set of objects with standard encodings and is not subject to any additional
constraints. The same considerations apply to k-ary queries, which we may
identify with isomorphism invariant boolean functors on fin[τ ; k]. Ptime

(
ILk

)

and Pspace
(
ILk

)
consist exactly of those queries which are presentable by

χ = χ∗ ◦ ILk with Ptime or Pspace computable functions χ∗.
It follows from the Theorems of Immerman and Vardi (Theorem 1.24)

and of Abiteboul, Vardi and Vianu (Theorem 1.25) that these classes are
semantically equivalent with logical systems based on FP and PFP:

Ptime
(
ILk

)
≡ FP

(
ILk

)
,

Pspace
(
ILk

)
≡ PFP

(
ILk

)
.

The logics on the right-hand side consist of those formulae that are ob-
tained as FP- or PFP-formulae applied to the FP-definable interpretations
of ILk as a quotient over the k-th power. Using the fact that ILk itself is

3.4 Some Applications 91

FP-interpretable and the closure properties of FP and PFP with respect to
interpretations, Lemma 1.49, FP

(
ILk

)
and PFP

(
ILk

)
are seen to be frag-

ments of FP and PFP, respectively. They could obviously be characterized
in purely syntactic terms if one so wishes.

Lemma 3.21. The following semantic equivalences hold on the class of all
finite relational structures:

FP ≡
⋃
k FP

(
ILk

)
≡

⋃
k Ptime

(
ILk

)
,

PFP ≡
⋃
k PFP

(
ILk

)
≡

⋃
k Pspace

(
ILk

)
.

Proof. The inclusions FP
(
ILk

)
⊆ FP and PFP

(
ILk

)
⊆ PFP follow from the

closure of FP and PFP under definable interpretations, Lemma 1.49. For FP-
interpretability of ILk(A) over A see Proposition 3.12. The converse inclusions
FP ⊆

⋃
k FP

(
ILk

)
and PFP ⊆

⋃
k PFP

(
ILk

)
follow from Lemma 3.17. ⊓⊔

As a corollary to these equivalences we finally obtain the following.

Theorem 3.22 (Abiteboul, Vianu). FP ≡ PFP on the class of all finite
relational structures if and only if Ptime = Pspace.

Proof. FP ≡ PFP ⇒ Ptime = Pspace follows by considering the class of
ordered structures and applying the theorems of Immerman, Vardi and of
Abiteboul, Vardi, Vianu that equate FP with Ptime and PFP with Pspace

over these.
The real content of the theorem is the converse: if Ptime = Pspace

then FP ≡ PFP over the class of all finite relational structures. Lemma 3.21
yields the necessary reduction of the general case to the ordered case. If
Ptime = Pspace then FP ≡

⋃
k Ptime

(
ILk

)
≡
⋃
k Pspace

(
ILk

)
≡ PFP.

⊓⊔

3.4.3 Comparison of ICk and ILk

There is an obvious formal difference between the Lk- and the Ck-invariants.
ILk(A) is interpretable as a purely relational structure over the given struc-
tures A. For ICk(A) this applies only to the relational part to which weight
functions have to be added to obtain an invariant that characterizes up to

≡C
k

. A complete relational representation of ICk(A) has size |A|, the same as
A itself. Setting aside our particular encoding convention, its size is at least
polynomially related to the size of the original structure. The size of ILk(A)

on the other hand is |Ak/ ≡L
k

|. Below, an example is reviewed of a theory
in L3

∞ω which forces the size of ILk(A) to be logarithmically small in terms
of |A| in all its finite models. We have seen in the case of Lk∞ω in the last
sections that the size of the invariants is directly related to the expressive
power of FP. Lemma 3.21 implies that FP-evaluations over A close within
polynomially many steps — not in the size of A but in the size of ILk(A)

92 3. The Invariants

for some sufficiently large k. A similar dependence of fixed-point logic with
counting on the size of the ICk will be derived in the next chapter. That this
distinction is a logical phenomenon (and not just an artifact of the partic-
ular formalizations of the invariants) follows even in the very trivial case of
pure sets, i.e. for τ = ∅. Note that in this case the size of ILk is bounded
by a constant, namely the number of equality types in k variables. Corre-
spondingly, FP and all of Lω∞ω collapse to first-order logic over pure sets,
see Corollary 1.32. The Ck∞ω on the other hand define arbitrarily complex
classes of pure sets, and any reasonable formalization of fixed-point logic with
counting has to render definable all Ptime arithmetical properties of the size
of pure sets.

We review Example 1.16 concerning L3
∞ω-definability of the class of full

binary trees. It serves to show that even three variables suffice to force a loga-
rithmic collapse in the size of ILk . The example is presented and discussed in
this context by Dawar, Lindell and Weinstein in [DLW95]. The formalization
in just three variables indicated in Example 1.16 is interesting because we
shall see in the last chapter that no L2

∞ω-theory can force a similar collapse:
k = 3 in fact delineates the border-line for this phenomenon.

Example 3.23. By Example 1.16 there is a sentence ϕ in L3
∞ω[E] defining

the class of full finite binary trees. Obviously the size of full binary trees is
exponential in their height. The number of Lk∞ω-types, however, is bounded
by a polynomial in the height, since even the number of isomorphism types
of k-tuples is bounded by a polynomial. The isomorphism type of a k-tuple
(v1, . . . , vk) within a given full binary tree is completely characterized by
the heights of the vertices vij , 1 6 i 6 j 6 k, where vij is that vertex
in which the paths from vi and vj to the root meet. It follows that the
number of Lk∞ω-types in models A |= ϕ and therefore the sizes of all ILk(A)
are polylogarithmic in the size of these models. For suitable polynomials pk:

|ILk(A)| =
∣∣TpLk

(A; k)
∣∣ 6 pk

(
log(|A|)

)
for all A |= ϕ.

Dawar, Lindell and Weinstein also employ tree structures with this log-
arithmic collapse in a padding argument to prove the second main result of
Abiteboul and Vianu about the relationship between FP and PFP stated
below. For the proof we refer to [DLW95]. The statement of this result is im-
portant here because we shall find the opposite for the counting extensions
— the reason for this fundamental difference is that the ILk may collapse the
size of structures while the ICk do not.

Let PFP|poly stand for the subclass of PFP which admits PFP-applications
only where the limit is reached in a polynomially bounded number of steps. In
particular FP ⊆ PFP|poly. Intuitively FP captures Ptime relational recursion,
PFP captures Pspace relational recursion. It would be tempting therefore
to conjecture that PFP|poly = FP.

Theorem 3.24 (Abiteboul, Vianu).
If PFP|poly ⊆ FP then Ptime = Pspace.

3.5 A Partial Reduction to Two Variables 93

Note that the converse implication holds as a consequence of the first
theorem of Abiteboul-Vianu, Theorem 3.22.

3.5 A Partial Reduction to Two Variables

The invariants ICk and ILk have as their backbones pre-orderings defined
as the stable colourings of certain graphs interpretable over the k-th power
of the given structures. In the standard setting these pre-orderings them-
selves can be defined in C2

∞ω and L2
∞ω, respectively, as shown in Section 2.2.

Pursuing this connection further one can show that ICk and ILk are in fact
FP-interpretable over the two-variable invariants of the game k-graphs of the
underlying structures. These results later play a rôle in potential reductions
for canonization problems.

Recall from Definition 2.26 that the game k-graph A(k) associated with
A ∈ fin[τ] is the structure with universe Ak and with binary predicates Ej
for the accessibility relations in each component and unary predicates Pθ for
the identification of atomic types θ ∈ Atp(τ ; k). The vocabulary of A(k) is
denoted τ (k). For the technical notion of interpretability of functors compare
the remarks made in connection with Example 1.47.

Proposition 3.25. ILk(A) is uniformly FP-interpretable in IL2(A(k)).
ICk(A) is uniformly FP-interpretable in IC2(A(k)).

The mere functional dependencies expressed in these interpretability
statements imply in particular that

A(k) ≡C
2

A′(k) =⇒ A ≡C
k

A′,

A(k) ≡L
2

A′(k) =⇒ A ≡L
k

A′.

The claim of the proposition goes beyond these implications, since it requires
FP-interpretability or Ptime computability of one invariant in terms of the
other.

Sketch of Proof. The proof is somewhat technical though not difficult. We
indicate the proof for the interpretability of ICk(A) in IC2(A(k)). Since we
are dealing with ordered structures it suffices to show that ICk(A) is Ptime
computable from IC2(A(k)), compare Example 1.47.

Consider the generation of the 4i with limit 4, where 4 is the quotient

interpretation over Ak of the ordering (Ak/ ≡C
k

,6) underlying ICk(A). For
each i let (Ak/ ≈i,6i) be the ordered quotient induced by 4i.

We first show inductively how (Ak/ ≈i,6i) is interpretable in the re-
lational part of IC2(A(k)). For this interpretation we use those elements of
IC2(A(k)) that represent types of singletons over A(k), i.e. that have x1 = x2
in their atomic τ (k)-type. We denote this subset of the universe of IC2(A(k))

by ∆ and identify it with TpC
2

(A(k); 1). Recall that singletons over A(k) are

94 3. The Invariants

k-tuples over A. The desired interpretation is such that the ≈i-class of a ∈ A
k

is represented by the set of all tpC
2

A(k)

(
b
)
for b ≈i a. It can be described by

the mapping
Ak/ ≈i −→ P(∆)

α 7−→ α :=
{
tpC

2

A(k)

(
b
) ∣∣ b ∈ α

}
,

where P(∆) stands for the power set of ∆.
(Ak/ ≈0,60) = (Atp(A; k),60) is quantifier free interpretable over ∆

since each atomic type θ ∈ Atp(A; k) corresponds to those elements of ∆
whose atomic τ (k)-type contains Pθx1:

θ =
{
β ∈ TpC

2

(A(k); 1)
∣∣ β |= Pθx1

}
.

Now for the inductive step from (Ak/ ≈i,6i) to (Ak/ ≈i+1,6i+1). Recall
that 4i+1 is determined in terms of the numbers

ναj (a) =
∣∣∣
{
b ∈ A

∣∣ a b

∈ α

}∣∣∣

for a ∈ Ak and α ∈ Ak/ ≈i. By the inductive hypothesis any such α is
interpreted by a subset α of ∆ in IC2(A(k)). Obviously ναj (a) is represented
over A(k) as

ναj (a) =
∣∣∣
{
b ∈ Ak

∣∣ Eja b ∧ b ∈ α
}∣∣∣.

This shows that these numbers can only depend on tpC
2

A(k)

(
a
)
and therefore

are directly computable on IC2(A(k)) from tpC
2

A(k)

(
a
)
and α. Thus the desired

interpretation of (Ak/ ≈i+1,6i+1) over IC2(A(k)) is Ptime computable from
that of (Ak/ ≈i,6i).

This refinement process terminates after polynomially many many steps

and its limit is the interpretation of the ordered quotient (Ak/ ≡C
k

,6) needed
for ICk(A). The other data in ICk(A) are easily definable and computable in
terms of this interpretation as follows.

The Pθ are trivially represented by atomic formulae over A(k).
The Ej are also atomically represented in A(k) and can be transferred

to the interpreted ICk(A) as follows: α and α′ are Ej-related in ICk(A) if
they are realized by some a and a′ that are Ej-related in A(k). Therefore
(α, α′) ∈ Ej in ICk(A) if there is some

β ∈ TpC
2

(A(k); 2) such that β |= Ejx1x2 , β|x1 ∈ α and β|x2 ∈ α
′.

Here β|xi denotes the restriction of the 2-type β to the i-th component, which

is an element of ∆ = TpC
2

(A(k); 1).
The weights νj of ICk(A) reduce to numerical data that are available on

IC2(A(k)) in the manner exhibited for the ναj (a) above.
The Sρ are Ptime computable from the remaining data anyway according

to Remark 3.5. ⊓⊔

3.5 A Partial Reduction to Two Variables 95

Sources, attributions and remarks. As pointed out above the impor-
tant concept of an ordered invariant is due to Abiteboul and Vianu [AV91].
Their invariants were abstracted from a model of relational computation and
employed in an analysis FP, PFP|poly and PFP over arbitrary relational struc-
tures in terms of complexities of computations over ordered structures. The
major results are the theorems of Abiteboul and Vianu, Theorems 3.22 and
3.24 above. The systematic formalization of this approach in terms of the Lk∞ω

is due to Dawar [Daw93] and Dawar, Lindell and Weinstein [DLW95]. The
extension and logical formulation for the Ck∞ω is presented in [GO93, Ott96a].
The corresponding applications to fixed-point logics with counting will form
a main topic of the following chapter.

96 3. The Invariants

4. Fixed-Point Logic with Counting

This chapter is devoted to the introduction and analysis of the natural ex-
tensions of the fixed-point logics FP and PFP that have expressive means for
cardinality properties.

• The actual formalization of fixed-point logics with counting, FP+C and
PFP+C, in a two-sorted framework is given in Section 4.1.

• In Section 4.2 the relation of FP+C and PFP+C with the Ck∞ω and with
the Ck-invariants is investigated. In particular we obtain the analogue of the
first theorem of Abiteboul and Vianu (Theorem 3.22 above) in the presence
of counting. In contrast with the second theorem of Abiteboul and Vianu
(Theorem 3.24) we here find that FP+C is the polynomial restriction of
PFP+C.

• Section 4.3 deals with the separation result FP+C Ptime, which is due
to Cai, Fürer and Immerman, in a framework that lends itself to relativiza-
tion. In restriction to classes with certain closure properties FP+C can only
capture Ptime if some ICk provides a complete invariant up to isomorphism
(equivalently, if some Ck∞ω coincides with L∞ω) over this class.

• Section 4.4 summarizes some results on equivalent characterizations of the
expressive levels of FP+C and PFP+C.

As pointed out in the introduction, first-order logic at first sight suffers
from two independent shortcomings over finite structures: it completely lacks
mechanisms to model recursion — the fixed-point operations provided in FP
and PFP answer this requirement; and it also lacks expressive means to as-
sess cardinalities of definable sets. The latter defect is obviously overcome
automatically together with the former over ordered structures. By the theo-
rems of Immerman, Vardi and Abiteboul, Vardi, Vianu, FP and PFP capture
Ptime and Pspace over ordered structures. In particular all Ptime, respec-
tively Pspace, properties of cardinalities are expressible in FP, respectively
PFP, over ordered structures. Not so in the case of not necessarily ordered
structures: in fact the most obvious examples that FP and PFP do not corre-
spond to standard complexity classes in the general case all involve counting.
Over pure sets for instance FP, PFP and even Lω∞ω collapse to first-order

98 4. Fixed-Point Logic with Counting

logic and cannot express low complexity cardinality properties like “there is
an even number of elements”. For some time therefore it had been conjec-
tured, mainly by Immerman, that FP enriched with counting might capture
Ptime in the general case. This expectation was later disproved by Cai, Fürer
and Immerman, who showed that not even Cω∞ω comprises all of Ptime.
There remains good motivation to study the extensions of FP and PFP by
expressive means for counting, however.

(a) FP and PFP are successful extensions of first-order logic and capture an
interesting notion of relational recursion on finite structures even in the
absence of order. Without order, however, they do not add to the power of
first-order with respect to cardinality properties. Many natural structural
properties involve counting in addition to relational recursion.

(b) It is reasonable to treat the two obvious defects of first-order logic on
an equal footing and to investigate natural levels of expressiveness that
address both defects.

(c) As indicated in the previous chapter, the relationship between FP and
PFP on the one hand and Lω∞ω on the other leads to valuable insights into
the nature of relational recursion on finite structures. FP and PFP are, in
some intuitive sense, Ptime and Pspace in the world of Lω∞ω. C

ω
∞ω is a

natural richer and still well-behaved fragment of L∞ω. In particular Cω∞ω

shares with Lω∞ω the benefit of elegant game characterizations and the
existence of Ptime computable invariants. It is natural therefore to expect
appropriate counting extensions of FP and PFP to represent Ptime and
Pspace in the world of Cω∞ω.

(d) It turns out that fixed-point logics with counting represent robust levels
of expressive power in the sense that the semantic strength proves to be
independent of several choices in the actual formalization. More impor-
tantly they offer a number of interesting equivalent characterizations.

(e) Finally we shall see that some properties of the counting extensions re-
semble those found for FP and PFP themselves only in the ordered case.
Roughly speaking, with counting one is closer to the ordered case.

4.1 Definition of FP+C and PFP+C

The natural modelling for the counting extensions uses two-sorted structures.
The given relational structure forms the first sort, an ordered numerical do-
main the second. In this way counting terms that take values in the numerical
domain can naturally be introduced. The two-sorted structures can of course
in the standard way be encoded in a one-sorted framework with extra unary
predicates to denote the different universes. We shall at some points appeal
to this possibility. For the basic formalizations, however, the two-sorted pic-
ture is easier to handle and intuitively neater. Let τ be finite and relational
as usual.

4.1 Definition of FP+C and PFP+C 99

Definition 4.1. Let ∗ be the functor that takes A ∈ fin[τ] to the two-sorted
structure A∗ which is the disjoint union of A itself for the first sort and the
canonical ordered structure of size |A|+ 1 for the second sort.

A∗: = A ∪̇ (n+ 1, <n+1) where n = |A|.

Recall that we identify n+1 with {0, . . . , n}. Let fin[τ]∗ :=
{
A∗
∣∣ A ∈ fin[τ]

}
.

We apply the following formalism to the two-sorted structures in fin[τ]
∗
.

Variable symbols x, y, z, . . . range over the elements of the first sort, variables
ν, µ, . . . range over the second sort. Of a second-order variable X we say that
it is of type (r1, r2) if it ranges over subsets of (first sort)

r1 × (second sort)r2 .
All second-order variables come with a definite typing in this sense.

We consider first-order logic and its extensions by FP- and PFP-operators
over fin[τ]

∗
. The first-order constructors comprise

– the formation of atomic expressions, which have to respect the type of
second-order variables in the obvious way,

– boolean connectives and
– quantifications with respect to first-order variables of each type.

For the fixed-point operators we admit the most general kind of fixed-point
generations in the two-sorted framework by allowing fixed-point variables X
of arbitrary mixed types. Otherwise no changes are necessary to accommo-
date fixed-point operations over the A∗. Compare Section 1.3.3 and Defini-
tions 1.22 and 1.23. Let for instance ϕ(X,x, ν) be in the indicated free vari-
ables, where X is of type (r1, r2) and x and ν are tuples of r1, respectively
r2, distinct variables for elements of the first, respectively second, sort.

Over each A∗ ∈ fin[τ]
∗
the formula ϕ induces the following mapping FA

∗

ϕ

(P denotes the power set).

FA
∗

ϕ : P
(
Ar1 ×

{
0, . . . , |A|

}r2) −→ P
(
Ar1 ×

{
0, . . . , |A|

}r2)

P 7−→
{
(a,m)

∣∣∣ A∗ |= ϕ[P, a,m]
}
.

The semantics of formulae
[
PFPX,xνϕ(X,x, ν)

]
x ν and

[
FPX,xνϕ(X,x, ν)

]
x ν

is defined in terms of the partial, respectively inductive or inflationary, fixed
points of Fϕ just as in the one-sorted case.

Definition 4.2. Let L∗
ωω be two-sorted first-order logic for ∗-structures. Sim-

ilarly Lω ∗
∞ω is that fragment of infinitary logic for two-sorted ∗-structures that

consists of formulae using only finitely many first-order variables (of either
sort). FP∗ and PFP∗ stand for the two-sorted variants of fixed-point and
partial fixed-point logic for these two-sorted structures.

Note that these logics admit formulae with free first-order variables of
both sorts, or, where applicable, also free second-order variables of mixed
type. We ultimately only consider formulae that are free over first-order vari-
ables of the first sort and define global relations over the original relational

100 4. Fixed-Point Logic with Counting

structures. This might be regarded as the standard part of the semantics for
these logics. All considerations about the expressive power of these logics con-
cern these standard parts. A statement like Cω∞ω ⊇ FP∗, for instance, means
that any global relation over fin[τ] that is FP∗-definable as a global relation
over the first sort is Cω∞ω-definable. Formulae with other free variables are
important, however, for the inductive generation of formulae and accordingly
play some rôle in particular in syntactic arguments by induction.

A technical comment is in order with respect to the standard one-sorted
modelling of two-sorted structures. In the sequel we shall want to apply results
that formally deal with one-sorted structures also in the present two-sorted
formalization. Rather than reproving them in a tedious adaptation of the
standard arguments one may directly apply them on the basis of the following
remark.

Remark 4.3. For L = Lωω, L
ω
∞ω, FP, PFP and with L∗ = L∗

ωω, L
ω ∗
∞ω, FP

∗,
PFP∗ according to Definition 4.2: the expressive power of L on the standard
one-sorted encodings of structures in fin[τ]

∗
is the same as that of L∗.

Sketch of Proof. The argument is via mutual simulations between the one-
sorted and the two-sorted frameworks.
i) First-order constructors. Consider first the simulation of the two-sorted
framework in the one-sorted encodings, where the i-th sort is described by a
unary predicate Ui. The distinction between first-order variables of different
sorts is faithfully simulated through relativizations to the respective sub-
domains. Conversely, a formula ϕ(x1, . . . , xr) of the one-sorted framework,
whose first-order variables range over the combined domain U1 ∪̇U2, trans-
lates into a tuple of 2r formulae ϕs, s ⊆ {1, . . . , r}, of the two-sorted frame-
work — one for each possible typing. For instance if s = {1, 2}, then ϕs =
ϕs(x1, x2, ν3, . . . , νr) takes care of the case that just x1 and x2 get interpreted
over U1. The inductive definition of the ϕs is straightforward. For instance,
if ψ(x1, . . . , xr−1) = ∃xrϕ(x1, . . . , xr), then ψ{1,2} = ∃xrϕ{1,2,r} ∨ ∃νrϕ{1,2}.
ii) Second-order variables and fixed-point processes. A second-order variable
X that is of type (r1, r2) over the two-sorted structures is simulated over
their one-sorted encodings by a second-order variable of arity r1 + r2 which
can easily be relativized to interpretations of the correct type. Fixed-point
processes carry over directly. In the other direction consider an r-ary second-
order variable X over the one-sorted encodings. Since its interpretations do
not come with a fixed typing, it has to be modelled in general by a tuple
of 2r second-order variables (Xs)s⊆{1,...,r}, one for each possible typing. We
think of the original X as the union of the Xs where, for instance, X{1,2}

is the collection of tuples in X whose first two components come from U1.
Obviously X and the Xs are first-order interdefinable (over the one-sorted
encodings). A fixed-point process involving X naturally translates into a si-
multaneous fixed-point process for a system of formulae. In this system there
is one formula ϕs

(
(Xt)t⊆{1,...,r}

)
in first-order variables typed according to s,

4.1 Definition of FP+C and PFP+C 101

for each s. The resulting fixed points of systems can be recast into ordinary
fixed points using standard techniques as discussed in Example 1.27. ⊓⊔

This observation also implies that the usual semantic inclusions carry over
to the two-sorted framework.

Remark 4.4. L∗
ωω ⊆ FP∗ ⊆ PFP∗ ⊆ Lω ∗

∞ω.

The functor ∗: fin[τ] −→ fin[τ]
∗
is isomorphism preserving: A∗ ≃ A′∗ if

and only if A ≃ A′. Similarly it preserves the substructure relation. It does
not, however, preserve definability of substructures even at the atomic level.
As a consequence, FP∗ and PFP∗ do not have the relativization property.
For a simple example consider evenness. Evenness of the universe is obvi-
ously definable in FP∗: |A| is even if the ordered second sort of A∗ has an
odd number of elements, and FP∗-recursion over the second sort suffices for
checking this. Evenness of a unary predicate U ∈ τ , however, is not in FP∗.
The straightforward adaptation of the standard game argument shows that
evenness of U ⊆ A is not even definable in Lω ∗

∞ω. In a sense, only the cardinal-
ity of the universe has yet been made available in the ordered numerical sort.
To introduce counting and to remedy the defects just pointed out, it suffices
to render the cardinalities of definable subsets over the first sort definable
over the second sort. We present below two equivalent ways of doing so. The
first approach introduces counting terms in a straightforward way. The other
one — more elegant maybe from a model theoretic view — uses the extension
by the Härtig quantifier.

Counting terms. Counting terms link the two sorts so that the second,
numerical sort can be used for talking about the size of definable subsets.
It suffices to consider unary subsets of the first sort, for reasons discussed
below.

Definition 4.5. With each formula ϕ and any variable x of the first sort
associate a counting term:

t := #xϕ(x)

of the second sort. Put free(t) = free(ϕ) \ {x}. If (A∗, Γ) interprets all free
variables of ϕ apart from x, then the interpretation of t in (A∗, Γ) is that
element of the second sort that describes the size of the predicate ϕ[A∗, Γ]
defined by ϕ:

tA
∗,Γ : =

∣∣∣
{
a ∈ A

∣∣ (A∗, Γ) |= ϕ[a]
}∣∣∣.

To obtain fixed-point logic with counting, we simultaneously close first-
order logic L∗

ωω for the two-sorted structures under the FP∗-constructor, the
formation of counting terms and substitution of these for variables of the
second sort. The formal definition of the syntax would be via a combined
inductive generation of formulae and terms.

102 4. Fixed-Point Logic with Counting

Definition 4.6. Let FP+C be the smallest extension of FP∗ that is closed
under formation and substitution of counting terms and the FP∗-constructor.
PFP+C is the corresponding closure with respect to PFP∗.

Clearly FP+C ⊆ Ptime and PFP+C ⊆ Pspace.

Using the Härtig quantifier instead. The Härtig quantifier, cf. Defini-
tion 1.53, expresses cardinality equality. Its semantics extends naturally to
two-sorted structures. Over the A∗ it may be used to define counting-terms:

ν = #xϕ(x) is equivalent with

QH

(
(x;ϕ); (µ;ψ)

)
for ψ(µ, ν) = µ<ν.

Denote by FP(QH)
∗ and PFP(QH)

∗ the logics that result from adjoining the
Härtig quantifier in the two-sorted framework. It turns out that these provide
equivalent characterizations for FP+C and PFP+C, respectively.

Lemma 4.7. PFP+C ≡ PFP(QH)
∗ and FP+C ≡ FP(QH)

∗.

Proof. We point out that the statement of Remark 4.3 extends to the exten-
sions of FP and PFP by the Härtig quantifier. Adjoining the Härtig quantifier
over the one-sorted encodings of two-sorted structures, we formally gain car-
dinality equalities for mixed-sorted unary predicates. These however are dis-
solved into equalities for the sums of cardinalities for two unary pure-sorted
predicates each. Sums over the second sort, however, are definable in FP over
the ordered second sort since they are Ptime computable.

For the proof of the lemma note that the inclusions “⊆” follow directly
from the definability of counting terms through the Härtig quantifier. Con-
sider then the converse inclusion for FP. An application of the Härtig quan-
tifier may involve two predicates over the first-sort — this case translates
into an equality for the corresponding counting terms directly. It may also
involve at least one predicate over the second sort — but over ordered do-
mains, values of counting terms of type #νϕ are even FP-definable since they
are Ptime computable. ⊓⊔

FP+C and PFP+C turn out to be very robust with respect to the for-
mal details concerning the introduction of counting terms. For example, it
is natural to allow counting not only for unary predicates but also in higher
arities and over mixed sorts. We have just seen that unary counting over the
second sort is for free. The reason for this robustness is that in FP+C we
already have the full power of Ptime operations over the second sort. This
is at the root of the following model theoretic statement of robustness. It
should be noted that a corresponding counting extension of first-order logic
does not at all share these properties, see Example 4.13 below. For the no-
tion of generalized interpretations and closure with respect to these compare
Definitions 1.44 and 1.48 in Section 1.5.

4.1 Definition of FP+C and PFP+C 103

Proposition 4.8. FP+C and PFP+C are closed with respect to generalized
interpretations.

Proof. Consider for instance FP+C. The statement to be proved is the fol-
lowing. Let i be some FP+C-definable generalized (σ, τ)-interpretation, func-
torially i: fin[τ]→ fin[σ]. Let R be some FP+C-definable global relation over
fin[σ]. Then the global relation i(R) over fin[τ] whose value over A is the
interpretation over A of Ri(A) has to be FP+C-definable as well. Since we
know that FP and PFP have the required closure properties, it suffices to
prove the following.

(∗)

Each definable interpretation of σ-structures over fin[τ] induces a de-
finable interpretation of the corresponding two-sorted structures in
fin[σ]

∗
over fin[τ]

∗
. This interpretation is such that counting terms for

the interpreted fin[σ]
∗
-structures are FP+C-definable over the parent

structures in fin[τ]
∗
.

Sufficiently large numerical domains are interpretable in powers of the given
numerical domain. The set of s-tuples over n+1 together with the first-order
definable lexicographic ordering provides an interpretation of

(
(n+ 1)s, <

)

over (n + 1, <) as always (n + 1)s > ns + 1. This numerical domain is suf-
ficiently large to provide the second sort for interpretations over the s-th
power. The numerical value represented by an s-tuple m in (n + 1)s is the
number of lexicographic predecessors of m:

∣∣{m′|m′ <lex m}
∣∣. Having these

numerical domains, (∗) reduces to the following lemma: FP+C suffices to
simulate counting terms over interpretations in powers and quotients. ⊓⊔

Lemma 4.9. The analogues of counting terms for counting in higher arity
and for counting modulo definable congruences (counting equivalence classes)
are definable over fin[τ]

∗
in FP+C.

Proof. The claim for higher arity counting means that for ϕ(x1, . . . , xs) in
FP+C (where other variables are suppressed without loss of generality) there
is a formula ψ(ν1, . . . , νs) in FP+C such that

A∗ |= ψ[m] ⇐⇒
∣∣ϕ[A∗]

∣∣ =
∣∣{m′|m′ <lex m}

∣∣.

Consider for instance the binary case, a formula ϕ(x, y). For each m,
the number of x such that there are exactly m many y satisfying ϕ with
that x is t(µ) = #x

(
#yϕ(x, y) = µ

)
, where µ is the second-sort variable

for m. But obviously the desired lexicographic representation of the number
l =

∣∣{(x, y)|ϕ}
∣∣ is Ptime computable in terms of the function m 7→ t(m)

through

l =
∑

m

mt(m).

The graph of the function m 7→ t(m) is FP+C-definable over the second sort
so that FP+C-definability of l follows immediately.

104 4. Fixed-Point Logic with Counting

Counting with respect to a definable congruence, or the lexicographic
representation of the number l =

∣∣ϕ[A∗]/ψ[A∗]
∣∣, is treated analogously.

Without loss of generality let now ϕ = ϕ(x) be unary, ψ = ψ(x, y) bi-
nary. Here l is Ptime computable from the function m 7→ t(m) where
t(µ) = #x

(
ϕ(x) ∧ #y(ϕ(y) ∧ ψ(x, y)) = µ

)
, such that t(m) is the number

of elements whose ψ-class in ϕ has exactly m elements and

l =
∑

m

m−1t(m).

⊓⊔

Example 4.10. All (even quotient) cardinality Lindström quantifiers (see
Definitions 1.52 and 1.54) that are based on Ptime computable numerical
predicates are expressible in FP+C. This is an obvious consequence of the
above fact that FP+C has definable counting terms for counting in arbi-
trary arities and with respect to definable congruences together with the
Immerman-Vardi theorem applied to fixed-point definability over the second
sort.

Example 4.11. Since in particular the Rescher quantifier (Definition 1.53)
is definable in FP+C we obtain from Lemma 2.22 that the stable colouring of
graphs is FP+C-definable. It similarly follows from Proposition 3.6 that the
relational parts of the the Ck-invariants are FP+C-interpretable as quotients
over the k-th power. This is further explored in the next section.

Example 4.12. ≡C
k

is in FP+C, just as ≡L
k

is in FP according to Corol-
lary 3.15. This is easier to see than the stronger claim made in Proposi-
tion 3.10 about definability in FP(QH), since one may here argue directly
with interpretability of the relational parts of the ICk together with avail-
ability of counting terms to check equality for the weights.

Aside on first-order logic with unary counting. As pointed out above,
first-order logic is far more sensitive to slight changes in the definition of a
“counting extension” than FP and PFP are. This is not surprising since the
robustness of FP+C and PFP+C is due to their recursive power over the
second sort. Let for the considerations of the following example first-order
logic with unary counting be defined as the closure of L∗

ωω with respect to the
formation and substitution of counting terms in the sense of Definition 4.5.

Example 4.13. First-order logic with unary counting does not capture bi-
nary counting. Consider τ = {U1, U2, U3} consisting of three unary predi-
cates. Let Q be the class of those τ -structures whose universe is partitioned
into three disjoint sets by the Ui. Let alwaysmi stand for the cardinality of Ui,
and n = m1 +m2 +m3 for the overall size of A ∈ Q. The tuple (m1,m2,m3)
characterizes A up to isomorphism, of course. Let Q0 ⊆ Q be the subclass
defined by the condition m2 = m2

1. Clearly Q0 is definable in first-order

4.1 Definition of FP+C and PFP+C 105

logic with counting terms for binary predicates: one need merely equate the
cardinalities of the first-order definable predicates {(x, y)|x= y ∧ U2x} and
{(x, y)|U1x ∧ U1y}.

We claim that Q0 is not definable in L∗
ωω with unary counting terms. Call

this logic L for the purposes of this proof. The proof involves a reduction of
definability in L to ordinary first-order definability over the second, arith-
metical sort of the A∗ expanded with just a fixed finite number of constants
for some particular values of counting terms. Standard Ehrenfeucht-Fräıssé
arguments for linear orderings then apply to show that Q0 cannot be sepa-
rated from Q \Q0 by these first-order means.

A trivial automorphism argument will be used repeatedly. If a and a′ are
such that atpA

(
a
)
= atpA

(
a′
)
then there is an automorphism of A∗ which

maps a to a′ and fixes the second sort of A∗ pointwise. It follows that

(i) for ϕ(x, ν) ∈ L and fixed interpretation m for ν over A∗, the predicate
ϕ[A∗,m] = {a |A∗ |= ϕ[a,m]} is a union of sets θ[A] for θ ∈ Atp(A; k),
(k the arity of x).

(ii) for θ ∈ Atp(A; k) and Θ ⊆ Atp(A; k) the counting values

t(θ,Θ)A =
∣∣{b ∈ A

∣∣ atp
(
a b1
)
∈ Θ}

∣∣

for a ∈ θ[A] only depend on A, θ and Θ (and not on a ∈ θ[A]).
(iii) for θ, Θ as above and for all A ∈ Q with sufficiently large mi = |U

A
i |,

t(θ,Θ) is of the form
∑
i∈smi ± d , where s ⊆ {1, 2, 3} and 0 6 d 6 k,

s and d depending only on θ and Θ.

Consider the second sort of A∗, for A ∈ Q, as equipped with parameters t for
the values of all t(θ,Θ)A (for fixed k, as appropriate).

Claim. For each ϕ(x, ν) ∈ L and θ ∈ Atp(A; k) there is a <-formula ϕ
θ
(ν, µ)

in first-order logic (for the the second sort) such that for all A ∈ Q with
sufficiently large mi and for all interpretations m for the ν:

θ[A] ⊆ ϕ[A∗,m] ⇔ A∗ |= ϕ
θ
[m, t].

This claim is justified inductively. The atomic cases and boolean connec-
tives are trivially dealt with.

If ϕ = ∃xjψ(x, ν), then ϕ
θ
is the disjunction over all ψ

θ′
with θ′ ∈

Atp(τ ; k) such that θ′ and θ agree on {x1, . . . , xk} \ {xj}. For ϕ = ∃νψ(x, ν)
one can simply take ϕ

θ
= ∃νψ

θ
.

Finally let ϕ = #x1
ψ(x, ν) = ν. Then θ[A] ⊆ ϕ[A∗,m,m] if t(θ,Θ)A = m

for Θ =
{
θ′ ∈ Atp(τ ; k)

∣∣ θ′[A] ⊆ ψ[A∗,m]
}
. But by the inductive hypothesis

Θ =
{
θ′
∣∣ A∗ |= ψ

θ′
[m, t]

}
. The equation t(θ,Θ) = m can be put into the

desired form through a distinction of cases: t(θ,Θ) = ν is equivalent with the
disjunction of the following formulae, over all subsets Θ′ ⊆ Atp(τ ; k):

∧

θ′∈Θ′

ψ
θ′
[ν, µ] ∧

∧

θ′ 6∈Θ′

¬ψ
θ′
[ν, µ] ∧ t(θ,Θ′) = ν .

106 4. Fixed-Point Logic with Counting

This proves the claim.
For sentences ϕ ∈ L it follows that there is a formula ϕ of Lωω[<] such

that for all A ∈ Q: A∗ |= ϕ ⇔
(
{0, . . . , |A|}, <, tA

)
|= ϕ.

The standard Ehrenfeucht-Fräıssé analysis of linear orderings shows that
no first-order formula of quantifier rank q can distinguish

(n+ 1, <, t1, . . . , tl) from (n+ 1, <, t′1, . . . , t
′
l)

if 0 = t1 < t2 < · · · < tl = n,
0 = t′1 < t′2 < · · · < t′l = n,

and if for all i, j: either |tj − ti| = |t
′
j − t

′
i| or |tj − ti|, |t

′
j − t

′
i| > 2q.

By (iii) above we see that this degree of similarity is achieved for structures(
n + 1, <, tA

)
and

(
n + 1, <, tA

′
)
whenever 0, m1, m2, m3, and n + 1 =

m1 +m2 +m3 + 1 are spaced sufficiently far apart. Therefore, no first-order
formula can separate those

(
n+ 1, <, tA

)
for A ∈ Q0 from those for A 6∈ Q0,

and Q0 cannot be definable in L either.

4.2 FP+C and the C
k-Invariants

We saw in Section 3.4.1 that interpretability of the Lk-invariants in fixed-
point logic on the one hand and representability of fixed-point processes over
the invariants on the other hand lead to characterizations of the expressive
power of FP and PFP in terms the ILk . An important aspect of this character-
ization is the reduction to ordered domains. FP and PFP over not necessarily
ordered structures can be analyzed in terms of FP and PFP over the linearly
ordered invariants. This section is devoted to the corresponding analysis for
fixed-point logics with counting.

The first lemma concerns FP+C-interpretability of the ICk -invariants.
Essentially this is a restatement of the definability properties of the ICk

expressed in Proposition 3.6 above — now put in terms of FP+C.

Lemma 4.14. ICk(A) is FP+C-interpretable over A∗. More precisely all the
following are FP+C-interpretable:

(i) the relational part of ICk as a quotient over the k-th power over the first
sort.

(ii) ICk as a whole (and being a standard structure) over the second sort.
(iii) the natural projection from the quotient interpretation of the relational

part of ICk over the first sort to its representation over the second sort.

Proof. Proposition 3.6 applies to show (i) since FP(QR) ⊆ FP+C. FP∗ itself
suffices to define the natural projection from the pre-ordering in this interpre-
tation of the relational part of ICkto the ordered quotient structure over the
second sort (iii). Definability of the weight functions through simple counting
terms as stated in Proposition 3.6 completes the interpretability of the full
invariant as expressed in (ii). ⊓⊔

4.2 FP+C and the Ck-Invariants 107

Let I ∗
Ck(A) := ICk(A∗) stand for the Ck-invariant of A∗ ∈ fin[τ]

∗
, more

precisely of the standard one-sorted encoding of A∗.

Lemma 4.15. The I ∗
Ck are FP-interpretable over the ICk .

Proof. Since we are dealing with ordered structures it suffices to show that
there is a Ptime algorithm that computes I ∗

Ck(A) from ICk(A). But the
inductive generation of I ∗

Ck(A) is obviously in Ptime and requires no other
data than those encoded in ICk(A). The initial stage for instance is based
on some fixed ordering of the atomic types of k-tuples in A∗. Since A∗ is
the disjoint union of A with the linear ordering (|A| + 1, <), these atomic
types can be presented by pairs of atomic types, one in vocabulary τ for the
components in the first sort and one in vocabulary < for the components in
the second sort. Note that all the relevant information about r-tuples over A
for r < k is also encoded in ICk(A) since the Ck-type of a tuple (x1, . . . , xr)
is encoded by the Ck-type of the k-tuple (x1, . . . , x1, x1, . . . , xr) with r − k
additional entries x1. In this fashion the inductive steps in the generation of
I ∗
Ck(A) are easily simulated over ICk(A). ⊓⊔

The lemma is in fact a special case of the following more general observa-
tion that can be proved along the same lines. The statement admits further
generalizations in the style of Feferman-Vaught Theorems for the Lk- and
Ck-theories of finite structures.

Remark 4.16. The Lk- and Ck-invariants are modular with respect to dis-
joint unions and direct products in the sense that, for example for ICk and for
disjoint unions, there is a Ptime function Σ such that for all A,B ∈ fin[τ]:

ICk

(
A ∪̇B

)
= Σ

(
ICk(A), ICk(B)

)
.

This implies also that ICk

(
A ∪̇B

)
is FP-interpretable over the disjoint union

of ICk(A) and ICk(B).

Ptime
(
ICk

)
and Pspace

(
ICk

)
are defined in analogy with Definition 3.20:

Definition 4.17. Ptime
(
ICk

)
and Pspace

(
ICk

)
stand for the classes of all

those queries that are Ptime, respectively Pspace, computable in terms of
the ICk .

More precisely, a boolean query Q on fin[τ] is in Ptime
(
ICk

)
if member-

ship of A in Q is a Ptime property of ICk(A). A similar characterization can
be applied to global relations (of arity at most k) using the extensions of the
invariants to the fin[τ ; r].

As in the corresponding treatment of the ILk a query is in Ptime
(
ICk

)

respectively Pspace
(
ICk

)
if it is Ck∞ω-definable and its natural representa-

tion over the relational part of the ICk can be computed in Ptime, respec-
tively Pspace over the ICk . Logically these classes can further be identified

108 4. Fixed-Point Logic with Counting

with classes FP
(
ICk

)
and PFP

(
ICk

)
since FP and PFP capture Ptime and

Pspace over the ordered ICk :

FP
(
ICk

)
≡ Ptime

(
ICk

)
,

PFP
(
ICk

)
≡ Pspace

(
ICk

)
.

Syntactically the formulae of FP
(
ICk

)
or PFP

(
ICk

)
are FP∗-formulae,

respectively PFP∗-formulae, in terms of the interpreted ICk . These logics
may thus be regarded as fragments of FP+C or PFP+C. See the proof of the
following theorem.

Theorem 4.18. With the FP(ICk) and PFP(ICk) as characterized:

FP+C ≡
⋃
k FP

(
ICk

)
≡

⋃
k Ptime

(
ICk

)

PFP+C ≡
⋃
k PFP

(
ICk

)
≡

⋃
k Pspace

(
ICk

)
.

Proof. We prove the equivalences between the logical characterizations. The
arguments for FP+C and PFP+C are completely analogous. Consider FP+C.
By Lemma 3.19 FP(QH) ⊆

⋃
k FP

(
ICk

)
. An application to the one-sorted

encodings of structures in fin[τ]
∗
yields

FP(QH)
∗ ⊆

⋃

k

FP
(
I ∗
Ck

)
.

But FP(QH)
∗ is FP+C by Lemma 4.7. On the right-hand side of the above

inclusion we apply Lemma 4.15 and the closure of FP with respect to interpre-
tations to see that FP

(
I ∗
Ck

)
≡ FP

(
ICk

)
. This proves FP+C ⊆

⋃
k FP

(
ICk

)
.

The converse inclusion follows directly from closure of FP+C with respect
to interpretations (Proposition 4.8) and interpretability of ICk in FP+C
(Lemma 4.14). ⊓⊔

The analogue of the Abiteboul-Vianu Theorem (Theorem 3.22) follows im-
mediately.

Corollary 4.19. FP+C ≡ PFP+C if and only if Ptime = Pspace.

Wemay now also infer the basic inclusion PFP+C ⊆ Cω∞ω from the character-
ization of PFP+C in Theorem 4.18 without getting involved in technicalities.

Corollary 4.20. FP+C ⊆ PFP+C Cω∞ω

Proof. It suffices to show that every PFP-definable global relation is closed

with respect to ≡C
k

for some k, cf. Lemma 1.33. But this is obvious from
PFP+C ≡

⋃
k PFP

(
ICk

)
. Strictness of the inclusion PFP+C Cω∞ω is

clear since PFP+C is in Pspace whereas Cω∞ω expresses even non-recursive
queries. ⊓⊔

4.3 The Separation from Ptime 109

There is of course also a straightforward direct proof of these inclusions
parallel to the proof for FP,PFP ⊆ Lω∞ω, cf. Lemma 1.29 and Corollary 1.30.
Technically these are more tedious, however, since mixed-type predicates over
the A∗ have to be represented in the one-sorted framework of the A them-
selves. A single type (1, 1) formula ϕ(x, ν) of the two-sorted framework for
instance can be decomposed into a family of formulae ϕn,j(x) for j 6 n with
the intended meaning that for all A of size n: ϕ[A∗] =

⋃
06j6n

(
ϕn,j [A]×{j}

)
.

In characterizations like FP+C ≡ Ptime
(
ICk

)
for fixed points with count-

ing, it is important to note that the size of ICk is of the same order as the
size of the original structure. This essential difference between ILk and the
ICk leads to a picture that is in sharp contrast with the second theorem
of Abiteboul and Vianu for FP and PFP without counting (Theorem 3.24
above). Let PFP+C|poly be the sublogic of PFP+C in which all occurrences
of the PFP-constructor must be such that the limit in the partial fixed-point
process is always reached within a polynomial number of steps. The following
very simple theorem shows FP+C to be better behaved as a logic for Ptime
recursion within Cω∞ω than FP is within Lω∞ω.

Theorem 4.21. PFP+C|poly ≡ FP+C.

Sketch of Proof. Let PFPX,xνϕ be such that the fixed-point process is poly-
nomially bounded. This fixed-point process is then represented by a polyno-
mially bounded PFP-process over the ICk for some k. Over the ordered ICk

it must therefore be equivalent with an FP-process. Inductively we obtain
PFP+C|poly ⊆

⋃
k FP(ICk) ≡ FP+C. ⊓⊔

4.3 The Separation from Ptime

It is an important result of Cai, Fürer and Immerman [CFI89] that also FP+C
is too weak to capture the class of all Ptime queries on not necessarily ordered
finite structures. The construction has been reviewed in Example 2.7.

It is worth to note that on the basis of the present analysis we may in-
fer FP+C 6⊇ Ptime from the fact that none of the Ck∞ω defines all queries.
This argument is of some interest in its own because it relativizes to many
subclasses of the class of all finite structures. The only requirement on the
subclass K is that it admits some kind of padding: some simple construction
should be available within K that allows to increase arbitrarily the size of
structures. We choose closure under disjoint unions as a corresponding pre-
requisite on K in the statement of the following theorem. It will be clear from
the proof that a number of other natural closure conditions would serve just
as well.

Theorem 4.22. Let K ⊆ fin[τ] be a class of finite τ -structures that is closed
under disjoint unions. Assume that FP+C captures Ptime on K, in particu-
lar that any Ptime computable boolean query on K is definable by a sentence

110 4. Fixed-Point Logic with Counting

of FP+C and hence also by a sentence in Cω∞ω. Then there is some k satis-
fying the following two (equivalent) conditions.

(i) ICk classifies structures in K up to isomorphism:
for all A,A′ ∈ K: ICk(A) = ICk(A′) ⇐⇒ A ≃ A′.

(ii) In restriction to K, Ck∞ω ≡ L∞ω for sentences; in other words, any
boolean query on K must be definable in Ck∞ω.

Applying this to the class of all finite graphs, and using the result of Cai,
Fürer and Immerman just to the effect that no Ck∞ω coincides with L∞ω on
the class of all finite graphs (as expressed in Theorem 2.9) we obtain the
following.

Corollary 4.23 (Cai, Fürer, Immerman).
FP+C Ptime, in fact even Ptime 6⊆ Cω∞ω.

On the basis of Theorem 4.22 this separation is also obtained as a corollary of
recent results of Gurevich and Shelah [GS96]. They prove that in a suitable
vocabulary τ there are for each k rigid structures in fin[τ] that do not admit a
Ck∞ω-definable linear ordering. Again it follows that on (expansions) of these
structures no Ck∞ω coincides with L∞ω (for sentences even).

Note that the only separation results between FP+C and Ptime that can
be obtained along the lines of Theorem 4.22 — and these are all there are,
as yet — are in fact separations of Cω∞ω ∩ Ptime from Ptime.

Proof (of Theorem 4.22). Let K be as required. Choose some sufficiently fast
growing monotone function f :ω → ω such that f(n) is computable from n in
time polynomial in f(n). Assume that f(n) > n for all n. It follows that there
is a Ptime algorithm that recognizes numbers of the form n

(
f(n) + f(n)2

)

and computes n for these: for given m it suffices to compute n
(
f(n)+ f(n)2

)

for all n with n3 6 m and check for equality with m.
It further follows that m1 and m2 can be computed in Ptime from n and

m1f(n) + m2f(n)
2 for any m1,m2 6 n: simply expand the given number

m = m1f(n) +m2f(n)
2 in base f(n) to obtain the mi as its digits.

We claim that for suitable f the following padded variant of the isomor-
phism query on K becomes a Ptime query:

Q :=
{
C

∣∣∣ C ≃ A ∪̇ . . . ∪̇A︸ ︷︷ ︸
m

, where m = f(n) + f(n)2, n = |A|
}
.

The intended algorithm first checks whether the size of an input C is of
the form n

(
f(n) + f(n)2

)
and computes n in this case. It then checks for

all isomorphism types of connected1 τ -structures D of size at most n how
many connected components of C are isomorphic with D (and that C has no
components of size greater than n). This is done in time polynomial in |C|

1 A structure is called connected if it is not the disjoint union of two other
structures.

4.4 Other Characterizations of FP+C 111

provided f(n) is sufficiently large for n; the precise meaning of ‘sufficiently
large’ has to take into account the arities in τ .

Let ν(D) be the corresponding number for each D. Then C ∈ Q if and
only if all ν(D) are of the form ν(D) = µ(D)

(
f(n) + f(n)2

)
for appropriate

µ(D) 6 n. Necessity of this condition is clear. For sufficiency observe that, if
ν(D) = µ(D)

(
f(n) + f(n)2

)
for all D, then C is of the required form if for A

one takes the disjoint union of µ(D) copies of each D.
By assumption Q therefore is definable in some Ck∞ω. But the above

characterization of C ∈ Q through the ν(D) also implies that for any two
A,B ∈ fin[τ] of the same size n,

C = A ∪̇ . . . ∪̇A︸ ︷︷ ︸
f(n)

∪̇ B ∪̇ . . . ∪̇B︸ ︷︷ ︸
f(n)2

is in Q if and only if A ≃ B. It follows from Remark 4.16 on the other hand
that ICk(C) is a function of ICk(A) and ICk(B), so that A ≃ B is determined
by ICk(A) and ICk(B). This implies claim (i) of the theorem, and equivalence
of (i) and (ii) is obvious. The argument given here is a structural variant of the
so-called padding technique that is often useful in complexity considerations.

⊓⊔

The results of this chapter show that FP+C is the right logic for Ptime
recursion in the world of Cω∞ω. In this respect its relation to Cω∞ω resembles
that of FP to Lω∞ω. It is known from the result of Cai, Fürer and Immerman
that real Ptime is not within Cω∞ω. On the other hand all known separation
results for FP+C from Ptime are separations of Cω∞ω ∩Ptime from Ptime.
The question that arises at this point is the following:

Does FP+C capture Ptime∩Cω∞ω, the class of all those queries that
are both Ptime computable and definable in Cω∞ω?

More suggestively:

Does FP+C capture Ptime in the world of Cω∞ω?

This question is further explored in the last two chapters. Note that the same
question with FP and Lω∞ω in the place of FP+C and Cω∞ω can be answered
negatively unless Ptime = Pspace. Obviously PFP|poly ⊆ Ptime ∩ Lω∞ω,
but PFP|poly ⊆ FP only if Ptime = Pspace by the second theorem of
Abiteboul and Vianu. There is a reasonable variant of the issue that remains
an open problem for FP and Lω∞ω, too. We shall come back to these issues
in Chapter 6. In the last Chapter we find positive solutions to such questions
in the very restricted case of just two variables, i.e. for L2

∞ω and C2
∞ω.

4.4 Other Characterizations of FP+C

It may be a further indication of the naturalness of FP+C as a level of
expressiveness within Ptime that it admits several different equivalent logical

112 4. Fixed-Point Logic with Counting

characterizations and also a natural algorithmic characterization. We here
only indicate some of these briefly. More detailed accounts can be found in
[GO93] and [Ott96a], respectively.

Among the logical variations we mention the following:

(a) FP+C can be obtained as a straightforward extension of Datalog. For
our purposes Datalog is the logic of positive Horn-clause programs with
the least fixed-point semantics. Its counting extension is based on the
two-sorted variants of structures in fin[τ]

∗
and allows the use of counting

terms and cardinality comparisons in the sense of 6 in clauses. It is not
difficult to see that the counting extension leads to closure under negation.
It follows that this extension of Datalog comprises the full power of fixed-
point logic and thus is semantically equivalent with FP+C.

(b) The approach to extend finite structures with standard sorts, like the
arithmetical second sort of the structures in fin[τ]

∗
, has been carried much

further in the framework of meta-finite structures put forward by Grädel
and Gurevich in [GG95]. Here finiteness of the second standardized sorts
is given up in order to obtain a more uniform modelling for issues on finite
structures that essentially involve reference to infinite standard structures
(like the natural or the real numbers). In order to obtain an adequate lim-
itation on the access to the infinite standard domains, recursive processes
like those in fixed-point are restricted to the finite relational domain. The
infinite standard parts are accessed through terms and multiset opera-
tions. The latter can roughly be described as arithmetical operations that
are performed on weight functions from the finite relational domain to
the infinite standard part. It turns out that FP+C can be isolated in this
framework by taking arithmetic on the natural numbers (ω,<,+, ·) for
the infinite standard structure, with exactly the Ptime multiset opera-
tions. It is shown in [GG95] that the expressive power of fixed-point logic
in this meta-finite frame coincides with FP+C.

We mention two more characterizations of different kinds in slightly greater
detail. One is in terms of uniform sequences of formulae, the other by means
of a computational model.

P-uniform sequences of formulae. Logical characterizations in terms of
sequences of formulae are proposed and investigated in the work of Immer-
man, see for instance [Imm82]. Let finn[τ] stand for the restriction of fin[τ]
to structures of size n. The idea is to associate for instance with a boolean
query Q ⊆ fin[τ] a sequence of sentences

(
ϕn
)
n>1

in some logic L[τ] such

that for all sizes n:

Q ∩ finn[τ] =
{
A ∈ finn[τ]

∣∣∣ A |= ϕn

}
.

A priori this is a completely non-uniform notion of logical definability. Re-
strictions on the constituent formulae ϕn in terms of quantifier rank, numbers

4.4 Other Characterizations of FP+C 113

of variables and size (all regarded as functions in n) or constructibility cri-
teria for the mapping n 7→ ϕn serve to employ this approach as a tool in
the logical analysis of complexity. It turns out that FP+C and PFP+C are
isolated by very natural uniformity conditions on sequences. Note that in the
presence of counting quantifiers and for sequences of formulae ϕn ∈ C

k
ωω the

semantics given to the sequence is that of
∨
n>1

(
∃=nxx=x ∧ ϕn

)
∈ Ck∞ω.

Definition 4.24. Call a sequence (ϕn)n>1 of formulae in some Ckωω Ptime-
uniform, respectively Pspace-uniform, if ϕn is constructible in time, respec-
tively space, polynomial in n. Let Ptime–Cω∞ω and Pspace–Cω∞ω stand
for the sublogics of Cω∞ω corresponding to all Ptime-, respectively Pspace-
uniform sequences.

Clearly Ptime–Cω∞ω ⊆ Pspace–Cω∞ω ⊆ Cω∞ω. The following is proved in
[Ott96a].

Proposition 4.25. FP+C ≡ Ptime–Cω∞ω and PFP+C ≡ Pspace–Cω∞ω.

This is quite unlike the situation for FP and PFP themselves: trivial
examples involving pure sets show for instance that FP is properly contained
in the correspondingly defined Ptime–Lω∞ω.

A computational characterization. Finally there is a natural compu-
tational model whose Ptime and Pspace restrictions coincide with FP+C
and PFP+C, respectively. This model is the obvious generalization of the
relational computational model of Abiteboul and Vianu [AV91] that incor-
porates counting operations in a generic manner. Let us call the machines
under consideration relational machines with counting. We give a brief sketch.
A relational machine with counting consists of two components. First there
is a relational store with a fixed number of relational registers of fixed arities.
These can hold sets of tuples from the domain of the input structure. Among
these relational registers there are specified ones that are initialized to rep-
resent the given predicates in the input structure. The others are initially
empty. In any case, at each stage of the computation, the content of a rela-
tional register is a relation over the input domain. The second component of
the machine resembles an ordinary Turing machine with a work tape with a
read–write head, an extra communication tape with a write–only head, and
the usual finite state control. The interaction between the two components is
the following.

• Each transition, as laid down in the transition table of the Turing control,
may depend not only on the current internal state and symbol read on
the work tape but also on the information which of the relational registers
are currently empty. These implicit emptiness queries constitute the only
flow of information from the relational part of the machine to the Turing
component.

• The execution of a transition may involve not only the printing of tape
symbols and movements of the heads but may also include one of several

114 4. Fixed-Point Logic with Counting

update operations on the relational store. The operations available here
are the following:
– copy and move operations between relational registers.
– boolean operations on the current contents of specified relational regis-
ters (e.g. union and complementation).

– operations corresponding to the natural action of the permutation groups
Sr on the contents of r-ary registers.

– counting projections.

Counting projections take as input a numerical parameter ν whose current
value is read from the communication tape. The content of a prescribed
relational register R is then replaced by all those tuples for which there
are at least ν substitutes for the first component that are currently in R:
R′ :=

{
a
∣∣ ∃>νb(a b1 ∈ R)

}
. Only in this operation does the present model

extend the one proposed by Abiteboul and Vianu. Their model only allows
ordinary existential projections which appear here as a special case for ν = 1.

Computations of these machines are formalized in the natural manner.
The result of a computation that is to produce a boolean value can be encoded
in the final state reached by the Turing control. For machines that are to
compute an r-ary query, the output is the content of one specified r-ary
relational register when the machine reaches its halting state.

This model of computation is entirely isomorphism-preserving (‘generic’
is the term usually applied in the literature). Any isomorphism between in-
put structures naturally extends to all stages of the computation, so that the
resulting computations are not only equivalent but really isomorphic them-
selves.

Complexities for this model are defined in terms of the Turing component.
Ptime and Pspace for the relational machines with counting comprise those
queries that are computable by one of these machines within a number of
steps, respectively with the use of a number of tape cells (of the Turing
component) that is polynomially bounded in the size of the input structure.

Theorem 4.26. On finite relational structures, Ptime and Pspace for the
relational machines with counting exactly correspond to FP+C and PFP+C.

In particular FP+C and PFP+C are the polynomial time and space re-
strictions of a generic model of computation — a situation that in a sense
is ruled out by the second theorem of Abiteboul and Vianu, Theorem 3.24
above, for FP and PFP themselves.

Attributions and remarks. FP+C — roughly in our formalization — is
implicit in the work of Immerman, in particular see [Imm87a]. The present
explicit form was first presented in [GO93]. Most of the material treated in
this chapter can also be found in [Ott96a] and [GO93]. The latter source
should be consulted in particular for those characterizations of FP+C that
are only sketched here.

5. Related Lindström Extensions

In this chapter FP+C is shown to be more expressive than the natural ex-
tensions of fixed-point logic by cardinality Lindström quantifiers.

• Section 5.1 introduces a structural padding technique that is suitable for
the proof of this separation result. More generally, this technique serves to
expose weaknesses of quantifier extensions in the case that these quantifiers
do not have the right scaling properties with respect to certain extensions of
structures.

• This technique is applied in Section 5.2 to show that FP(Qcard) cannot
express all FP+C-definable boolean queries. The same applies to FP(Q∼

card)
with quantifiers for all cardinality properties based on the counting of equiv-
alence classes. In fact the separation even establishes that not all of FP∗ can
be captured by these quantifier extensions.

• In Section 5.3 we apply the padding technique to derive corollaries concern-
ing the weakness of two other quantifier classes. The classes of all properties
of rigid structures and that of all properties of sparse structures, respectively,
are shown to fall short of FP∗ and in particular of Ptime.

In the previous chapter FP+C has been characterized as the natural ex-
tension of fixed-point logic that incorporates expressive means for dealing
with cardinalities and corresponding arithmetic. Recall that a main feature
of the formalization was the introduction of a second, arithmetical sort. This
type of a functorial extension — based partly on the manipulation of the
structures under consideration — is intuitively different from the established
formalism for extensions in abstract model theory, namely that of Lindström
extensions or extensions through generalized quantifiers. Can this difference
in appearance be substantiated in more rigorous terms? There is some sense
in which this cannot be achieved: it is a known fact that the Lindström
approach to extensions of logics is sufficiently general to describe any rea-
sonable extension of first-order logic, more precisely any extension with the
appropriate closure properties. No doubt therefore FP+C is equivalent with a
Lindström extension of first-order logic, and also with a Lindström extension
of fixed-point logic. As FP+C is a logic with recursive syntax and semantics
these Lindström extensions can trivially be chosen to use recursive families

116 5. Related Lindström Extensions

of quantifiers. That one is forced to consider extensions by infinite families of
quantifiers follows with an argument of Dawar and Hella [DH94] that applies
to show that FP+C cannot be equivalent with a finite Lindström extension
(see Theorem 5.9 below). The standard modelling of a logic L ⊇ FP with
the right closure properties as a Lindström extension essentially turns each
individual L-definable class into a quantifier. Clearly this is unsatisfactory:
the resulting presentation of FP+C as a Lindström extension of FP is quite
artificial. It is not at all clear, however, which kinds of Lindström extensions
should be considered natural. Two different types of criteria come to mind.

Syntactic criteria. One may consider certain uniform sequences of quan-
tifiers. These are meant to adjoin the same structural property in varying
context. Uniform sequences as considered for instance in [Daw95a] consist of
all powers of a given quantifier and capture one structural property across all
arities, or as applied to interpreted structures in any power. Compare Sec-
tion 1.6.2. The usual way in which the transitive closure operator is adjoined
to first-order logic to get transitive closure logic provides a natural example.
Transitive closures are made definable for binary relations interpreted in any
power of the universe.

While FP+C cannot be a finite extension of FP it is conceivable that it is
obtained as an extension by finitely many uniform sequences of quantifiers.
Indeed, it follows from Dawar’s work that a class or logic, that is recursively
presented (in some sufficiently strong sense; compare remarks in connection
with Definition 1.7) and has natural closure properties, is equivalent with an
extension of FP and even of first-order logic by just a single uniform series
of quantifiers. In the general construction the quantifier giving rise to such a
sequence embodies an enumeration of all queries that are to be captured. In
special cases, as for instance for FP itself one may also abstract such a quan-
tifier from typical and natural problems that are complete under appropriate
logical reductions, cf. [Dah87, Gro95]. Whether such natural problems exist
for FP+C, relative either to FP or to first-order, remains open.

Semantic criteria. One may also impose purely semantic conditions on the
quantifiers adjoined. The investigations of this chapter are of this kind. In
connection with fixed-point with counting there is an obvious issue in this
line:

Can FP+C be obtained as an extension of FP by cardinality Lind-
ström quantifiers, i.e. by quantifiers whose semantics is entirely de-
fined in terms of cardinalities of predicates?

Indeed, FP with the class of all Ptime cardinality Lindström quantifiers
is the natural a priori candidate to capture a counting extension of FP in
the Lindström formalism. Compare Definitions 1.52 and 1.54 for (quotient)
cardinality quantifiers.

The main point of this chapter is that even the extension of FP by all
cardinality Lindström quantifiers does not comprise all of FP+C, in fact not

5.1 A Structural Padding Technique 117

even all of FP∗: FP
(
Qcard

)
6⊇ FP∗. Admitting further all quantifiers that

capture cardinality properties in quotient interpretations — for the count-
ing of equivalence classes rather than tuples — does not help either, even
FP
(
Q∼

card

)
6⊇ FP∗.

Theorem 5.1. FP+C 6⊆ FP
(
Qcard

)
. In particular the extension of FP by all

Ptime cardinality Lindström quantifiers is strictly weaker than FP+C. These
separations also hold for FP

(
Q∼

card

)
, the extension by all quotient cardinality

Lindström quantifiers.

It follows with Lemma 1.55 that the extension FP
(
Qmon

)
of fixed-point

logic by the class of all monadic Lindström quantifiers does not contain
Ptime, and that similarly all quantifiers obtained from monadic ones through
generalized interpretations cannot suffice. The latter extension is in fact
equivalent with FP

(
Q∼

card

)
by Remark 1.56. We mention in this context the

work of Kolaitis and Väänänen [KVä95] on extensions of the Lk∞ω by monadic
quantifiers that bind single formulae (simple monadic quantifiers). Using so-
phisticated combinatorial techniques they obtain interesting separation re-
sults within the realm of monadic quantifiers, for instance that the Härtig
quantifier is not expressible in any extension of Lω∞ω by finitely many simple
monadic quantifiers.

The present results are obtained with a technique that resembles so-called
padding arguments in complexity theory. Intuitively the situation of Theo-
rem 5.1 can be understood through the following. With FP+C the results
of counting operations can be processed recursively, and this FP-recursion
(over the arithmetical sort) is full Ptime recursion in terms of the size of the
universe. The FP-recursion captured by any sentence in an extension of FP
by Cω∞ω-definable quantifiers, on the other hand, is polynomially bounded in

the size of the quotient of the k-th power of the universe with respect to ≡C
k

for some k. The latter is the size of the relational part of ICk . (This situation
is reminiscent of that exhibited by FP; there a gap between the size of A
and of ILk(A) accounts for the complexity behaviour described in the second
theorem of Abiteboul and Vianu.)

In the case of cardinality Lindström quantifiers this gap can be manifested
unconditionally to obtain the desired separation. The structures employed in
these arguments are trivial extensions of ordered structures, with an increase
in the size without any gain in internal relational structure, just as in padding
arguments. FP with cardinality Lindström quantifiers is shown to have not
the right scaling properties with respect to such extension.

5.1 A Structural Padding Technique

We consider functors that scale finite structures in size without otherwise
adding structural complexity. Taking the disjoint sum with a pure set is a

118 5. Related Lindström Extensions

typical example. This operation increases the size but as for definable predi-
cates, nothing is gained. We formalize this as follows. Consider a functor

Γ : fin[τ]× ω −→ fin[τ].

The second argument of Γ will serve as a scaling parameter for the desired
extensions. The main example below is that of Γ (A, n) being a trivial product
of A with the pure set n = {0, . . . , n − 1}. Assume further that for each r
there is an encoding scheme that maps r-ary predicates R over Γ (A, n) that
are closed under automorphisms of Γ (A, n) to tuples of predicates [R] on A.
We want to regard [R] as an encoding or a pull-back for the values of global
relations over the Γ (A, n).

Definition 5.2. A good encoding scheme for Γ is a mapping [] sending
automorphism invariant R on Γ (A, n) to tuples [R] =

(
R1, . . . , Rl

)
on A,

such that (A, [R]) and n determine
(
Γ (A, n), R

)
up to isomorphism, and such

that

(i) [] is monotone: R1 ⊆ R2 implies Ri1 ⊆ R
i
2 for i = 1, . . . l.

(ii) [] is compatible with first-order definability in the following sense: if R
is first-order definable from some global relations R1, . . . , Rk over the
Γ (A, n), then the encoding relations [R] for R are first-order definable
over the A from the encodings [Ri] of the Ri.

More precisely, (ii) means, that for first-order formula ϕ(X1, . . . , Xk, x)
there are first-order formulae ϕi∗ such that for all sufficiently large n and for
all R1, . . . , Rk that are automorphism closed over Γ (A, n):

[
ϕ[Γ (A, n), R1, . . . , Rk]

]
=
(
ϕi∗
[
A, [R1], . . . , [Rk]

])
i=1,...,l

.

Note the uniformity with respect to n that is expressed in this notion.
We shall below need to extend the notion of good encodings to allow for

parameters in the Γ (A, n), see Definition 5.4.
Consider two examples: the disjoint sum and the trivial product with the

pure set n.
(A, n) 7−→ A ∪̇n , and

(A, n) 7−→ A⊗ n .

• A ∪̇n : if A = (A,RA
1 , . . . , R

A
s) then A ∪̇n = (A ∪̇n,RA

1 , . . . , R
A
s) is the

disjoint union with the set n.
• A ⊗ n : the universe of A ⊗ n is the product A × n. Let π1:A × n → A
and π2:A × n → n denote the natural projections to the factors as well as
their extensions to higher powers as for instance in π1: (A× n)

r → Ar. Then
A⊗ n = (A× n,RA

1 ⊗ n, . . . , R
A
s ⊗ n), where R

A
i ⊗ n = π−1

1

(
RA
i

)
.

Good encoding schemes are available for both functors. Consider the triv-
ial product with n. Clearly a tuple b ∈ (A× n)r is described up to automor-
phisms of A⊗ n by the pair

(
π1(b), eq

(
π2(b)

))
consisting of its projection to

5.1 A Structural Padding Technique 119

A and the equality type of its projection to n. Let R be an r-ary predicate
over A⊗n that is closed under automorphisms of A⊗n. Then R is faithfully
encoded by the tuple

[R] = (Re)e∈Eq(r)

where Re =
{
π1(b)

∣∣ b ∈ R, eq
(
π2(b)

)
= e
}
.

Actually R is easily reconstructed from the Re as

R =
{
b
∣∣ π1(b) ∈ Re for e = eq

(
π2(b)

)}
.

Monotonicity and compatibility with first-order transformations can be
checked immediately. For instance, if R = {x | ∃yR1xy}, then R

e is the union
over all sets {x | ∃y(xy ∈ Re

′

1)} where e
′ extends e to r + 1 variables.

For trivial sums with n, a similar decomposition of predicates with respect
to equality types of those parts of tuples that lie outside A would be a natural
encoding. The universe A of A is not definable as a subset of A ∪̇n, however,
so that the decomposition should be applied with respect to the parts lying
outside the field of the RA

i . We leave out the details, since in the explicit
arguments of this chapter we choose to work with trivial products.

Since good encodings uniformly translate first-order manipulations on
global relations to first-order manipulations on their encodings we have the
following pull-back for fixed-point logic.

Lemma 5.3. If there is a good encoding scheme for Γ : fin[τ] × ω → fin[τ],
then FP over the Γ (A, n) is captured by FP over the A themselves. This
means, in the case of boolean queries, that for any sentence ϕ ∈ FP[τ] there
is a sentence ϕ∗ ∈ FP[τ] such that for all sufficiently large n

Γ (A, n) |= ϕ ⇐⇒ A |= ϕ∗.

Proof. Inductively it suffices to show that also FP-applications can be sim-
ulated at the level of the encodings [R]. Consider the formula FPX,xϕ(X,x)
where we assume that x contains all free first-order variables of ϕ (compare
Lemma 1.28). Suppose that ϕ1

∗, . . . , ϕ
l
∗ are such that for all automorphism

invariant P over Γ (A, n) (with sufficiently large n)
[
ϕ[Γ (A, n), P]

]
=
(
ϕ1
∗

[
A, [P]

]
, . . . , ϕl∗

[
A, [P]

])
.

Then the encoding tuple
[
FPX,xϕ(X,x)

]
for FPX,xϕ(X,x) is obtained over

A as the simultaneous fixed point determined by the system ϕ1
∗, . . . , ϕ

l
∗ (when

appropriately initialized to [∅]). Compare Example 1.27 for fixed-point sys-
tems, and the proof of Lemma 2.22 about initialization. ⊓⊔

120 5. Related Lindström Extensions

If Γ scales the size of the Γ (A, n) with n then the lemma implies that the
power of FP does not correctly scale with the size of the Γ (A, n), since FP-
recursion on Γ (A, n) collapses to FP-recursion on A in a manner independent
of n. Our aim is to extend this phenomenon to quantifier extensions of FP.

Consider a Lindström quantifier Q of type σ = {R1, . . . , Rk}. Without
loss of generality we may assume that applications of Q are in the following
normal form:

ψ(z) = Q
(
x(i);ϕi(z, x

(i))
)
i=1,...,k

.

While the ϕi[Γ (A, n)] are invariant under automorphisms and therefore cov-
ered by our encoding scheme, this need not be true of the predicates

ϕi[Γ (A, n), c] =
{
b ∈ Γ (A, n)

∣∣ Γ (A, n) |= ϕi[c, b]
}

for fixed parameters c. But Q is applied to predicates of this type in the
evaluation of ψ over Γ (A, n). Note that the resulting predicate

ψ[Γ (A, n)] =
{
c ∈ Γ (A, n)

∣∣ Γ (A, n) |= ψ[c]
}
,

however, will again be automorphism invariant over Γ (A, n).
In order to deal with the intermediate predicates ϕi[Γ (A, n), c] we consider

an extension of our encoding schemes that covers such fibres of automorphism
closed predicates. For predicates R and parameter tuple c let R|c denote the
fibre of R over c:

R|c =
{
b
∣∣ Rcb

}
.

Definition 5.4. A good encoding scheme with parameters for Γ extends
a good encoding scheme to a mapping [] that encodes parameter defined
fibres of automorphism invariant R over Γ (A, n) through tuples of predicates
[R]c̄ =

(
R1
c̄ , . . . , R

l
c̄

)
, such that

(i) (A, [R]c̄) and n determine
(
Γ (A, n), R|c, c

)
up to isomorphism.

(ii) the [R]c̄ are uniformly first-order interdefinable with [R] over A: there
is an l-tuple of first-order formulae χ such that
(a)

{
[R]c̄

∣∣ c ∈ Γ (A, n)
}
=
{
χ
[
A, [R], a

] ∣∣ a ∈ A
}
.

(b) for automorphism closed P over Γ (A, n), [P] is first-order definable
from the set of those a for which χ

[
A, [R], a

]
∈
{
[R]c̄

∣∣ c ∈ P
}
.

For Γ (A, n) = A⊗n such an extension of the encoding scheme considered
above is obtained as follows. For R of arity t+r we used [R] = (Re)e∈Eq(t+r).
This extends to cover encodings of R|c with parameter tuples c of arity t, if
we choose for [R]c̄ the tuple of predicates

Rec̄ :=
{
π1(c, b)

∣∣∣ b ∈ R|c, eq
(
π2(c, b)

)
= e
}
,

for e ∈ Eq(t+ r). Rec̄ can be non-empty only for those e that extend eq
(
π2(c)

)

to t + r variables. Note for (ii) above that, for such e, each Rec̄ is first-order

5.1 A Structural Padding Technique 121

interdefinable with π1(c) and the fibre of Re at π1(c). Therefore, [R]c̄ is first-
order definable in terms of [R], π1(c) and eq

(
π2(c)

)
.

For quantifier applications ψ(z) = Q(x(i);ϕi(z, x
(i)))i=1,...,k it remains to

capture the semantics of Q over Γ (A, n) in terms of the encodings of the
fibres ϕi[Γ (A, n), c] = ϕi[Γ (A, n)]|c over the base structure A.

Assume that this is possible. Then one can pass from the encodings of
the ϕi[Γ (A, n)] to the encodings of all ϕi[Γ (A, n), c], through a first-order
variation of the parameters in the χ according to (ii) (a) in Definition 5.4.
If it can be determined in terms of these, whether

(
Γ (A, n), (ϕi[Γ (A, n), c])

)

is in Q, then (ii) (b) serves to obtain the encoding of ψ[Γ (A, n)] from the
collection of those choices of parameters for which this is the case.

Quantifiers, and in particular cardinality quantifiers, cannot be expected
to display an independence of the scaling parameter n as expressed for FP
in Lemma 5.3. But the n-dependence of quantifiers Q can be isolated in a
non-uniform way.

We now fix some Γ and a good encoding scheme R 7→ [R], with parameter
extensions R, c 7→ [R]c̄ for Γ . Let Q be a Lindström quantifier of type σ =
{R1, . . . , Rk}. Introduce a series of quantifiers QΓn where

QΓn =
{(
A, [R′

1]c̄, . . . , [R
′
k]c̄
) ∣∣∣ (Γ (A, n), R′

1|c, . . . , R
′
k|c)↾σ ∈ Q,

the R′
i ≃-closed on Γ (A, n)

}
.

Here the R′
i are of arity t + ri if the arity of Ri is ri and if parameter

tuples of arity t are considered. The type of the QΓn is that obtained from
the encoding scheme R, c 7→ [R]c̄ applied to the R′

i. This type accordingly
depends on the arity of parameter tuples c that are admitted; we suppress
this dependence in our notation.

Let Q∗ stand for a quantifier symbol of appropriate type, i.e. a syntactic
object that behaves just like one of the QΓn . With the arguments from above,
the following extension of Lemma 5.3 is obtained:

Lemma 5.5. For any sentence ϕ ∈ FP(Q)[τ] there is a sentence ϕ∗(Q∗) ∈
FP(Q∗)[τ] such that for all sufficiently large n

Γ (A, n) |= ϕ ⇐⇒ A |= ϕ∗(Q
Γ
n),

where ϕ∗(Q
Γ
n) is the sentence ϕ∗(Q∗) with the semantics of QΓn for the dummy

quantifier Q∗.

The claim applies similarly to families Q of quantifiers. A separation of
FP(Q) from a logic L can be achieved if it can be shown that the complexity
of the quantifiers QΓn falls short of the complexity attainable in L on the
Γ (A, n) for large n. Since we pass from formulae ϕ ∈ FP(Q) to a family of
formulae ϕ∗(Q

Γ
n) with an a priori non-uniform dependence of the semantics

of the QΓn on n, these arguments are adapted to non-uniform complexity
considerations.

122 5. Related Lindström Extensions

We apply this strategy to L = FP∗ in a context in which FP∗ over the
Γ (A, n) captures full Ptime. We shall also use that |Γ (A, n)| > n and that A
itself and n (as a number in the second sort) are uniformly FP∗-interpretable
over Γ (A, n)∗.

We show that this is the case for trivial products Γ : (A, n) 7→ A⊗n, if A
is linearly ordered. Let < be the symbol for the linear ordering on A ∈ ord[τ].
Denote by 6A the corresponding ordering in the sense of 6 on A. Then 6A⊗n
is a pre-ordering on A× n whose equivalence relation is =A⊗n, the quotient
interpretation of equality on A over the product A×n. Note that =A⊗n and
6A⊗n are definable on A⊗n from the given <A⊗n according to (a, a′) ∈ 6A

⊗n ⇔ A⊗ n |= ¬a′<a and (a, a′) ∈ =A⊗n ⇔ A⊗ n |= ¬a′<a ∧ ¬a<a′. It
follows that A ∈ ord[τ] is interpreted over A ⊗ n as a quotient with respect
to =A⊗n — even in a first-order definable manner.

It follows further that A and n and an ordered version of A⊗ n are FP∗-
interpretable over the second sort of (A⊗ n)∗, whence FP∗ captures Ptime
over the A⊗ n for A ∈ ord[τ].

To make a comparison between the complexity of queries over the Γ (A, n)
and that of their non-uniform description over the A precise, we introduce
the notion of a pull-back with respect to a function γ. This function γ serves
to couple the scaling parameter n of Γ to the size of A.

Definition 5.6. Let Γ : fin[τ] × ω → fin[τ] and γ:ω → ω. If K is a boolean
query on fin[τ] then the following class is the pull-back of K under Γ and γ:

KΓ,γ :=
{
A ∈ fin[τ]

∣∣∣ Γ
(
A, γ(|A|)

)
∈ K

}
.

A pull-back of a quantifier Q of type σ = {R1, . . . , Rk} with respect to Γ and
γ (and associated encoding scheme) is a quantifier

QΓγ =

{(
A, [R′

1]c̄, . . . , [R
′
k]c̄
) ∣∣∣∣
(
Γ (A, γ(|A|)), R′

1|c, . . . , R
′
k|c
)
↾σ ∈ Q,

the R′
i ≃-closed on Γ (A, γ(|A|))

}
.

Lemma 5.7. Assume that Γ is such that |Γ (A, n)| > n and that A and n
are uniformly FP∗-interpretable over Γ (A, n)∗ for A ∈ ord[τ]. Then there is
for every recursive query K0 on ord[τ] a class K which is FP∗-definable over{
Γ (A, n)

∣∣ A ∈ ord[τ]
}
, such that K0 is the pull-back of K under Γ and γ,

for all sufficiently fast growing γ.

Sketch of Proof. Let K0 ⊆ ord[τ] be recursive. It follows that there is a func-
tion γ whose graph is in Ptime and such that membership of A in K0 is
decidable in time γ(|A|). For instance γ(m) could be the step counter for the
consecutive simulation of some algorithm for K0 on all A over universe m.
Put

K :=
{
Γ (A, n)

∣∣ A ∈ K0, n > γ(|A|)
}
.

5.1 A Structural Padding Technique 123

We observe first that the class
{
Γ (A, n)

∣∣ A ∈ ord[τ], n > γ(|A|)
}
is FP∗-

definable over
{
Γ (A, n)

∣∣ A ∈ ord[τ]
}
: n and |A| are available over the second

sort by the assumptions on Γ , and the graph of γ is in Ptime.
A is FP∗-interpreted over Γ (A, n)∗ by assumption on Γ , and A ∈ K0 is

decidable in time γ(|A|) by the choice of γ. It follows that K is FP∗-definable
over

{
Γ (A, n)

∣∣ A ∈ ord[τ]
}
.

But K0 = KΓ,γ by construction. Observe that γ may be replaced with
any other function γ′ that grows at least as fast as γ: K0 = KΓ,γ′ for any γ′

such that γ′(m) > γ(m) for all m. ⊓⊔

So the pull-backs of FP∗-definable queries are of arbitrarily high com-
plexity. In the next section we shall see that in contrast the pull-backs with
respect to Γ (A, n) = A⊗ n of FP(Qcard)-definable queries are in Ptime/poly

— polynomial time with non-uniform polynomial advice.
Recall the definition of Ptime/poly from complexity theory. A class K of

ordered τ -structures is in Ptime/poly if there is an advice function T defined
on ω with values that are polynomially bounded in size and such that mem-
bership of A in K can be decided in polynomial time upon input

(
A, T (|A|)

)
.

Ptime/poly may equivalently be characterized by computability in polyno-
mial size families of boolean circuits. In any case, standard diagonalization
techniques based on counting arguments show that Ptime/poly is strictly
contained in the class of all recursive sets. See for instance [Weg87].

A Lindström quantifier is in Ptime/poly if there is a polynomially size
bounded advice function T such that the class of pairs

{
(A;T (|A|))

∣∣ A ∈ Q
}

is in Ptime. Think of T (n) as a polynomial size table encoding the seman-
tics of Q over size n structures. FP(Q)-definable queries can obviously be
evaluated in Ptime/poly if Q is in Ptime/poly.

Putting the results of the above considerations together we obtain the fol-
lowing general statement. It will be applied below to the functor Γ : (A, n) 7→
A⊗ n.

Proposition 5.8. Let Γ : fin[τ]× ω → fin[τ] be a functor that admits a good
encoding scheme with parameters. Assume that Γ is such that |Γ (A, n)| > n
and that A and n are uniformly FP∗-interpreted over Γ (A, n)∗ for A ∈ ord[τ].
Suppose further that for all quantifiers Q ∈ Q and for sufficiently fast growing
γ:ω → ω the pull-backs QΓγ are in Ptime/poly. Then FP∗ 6⊆ FP(Q).

Proof. Under the assumptions on Γ we may apply Lemma 5.7 to find that any
recursive query on ord[τ] is the pull-back of some query that is FP∗-definable
over

{
Γ (A, n)

∣∣ A ∈ ord[τ]
}
. The complexity of pull-backs of FP(Q)-definable

queries is at most Ptime/poly by Lemma 5.5 and the assumptions on Q. ⊓⊔

124 5. Related Lindström Extensions

5.2 Cardinality Lindström Quantifiers

Before applying the techniques prepared in the previous section to the proof
of Theorem 5.1, we show in an aside that no finite collection of generalized
quantifiers can capture FP+C. The argument is an adaptation of the proof
by Dawar and Hella [DH94] that no finite extension of FP captures Ptime.

Theorem 5.9 (Dawar, Hella). For any finite set Q of Ptime Lindström
quantifiers: FP+C 6⊆ FP(Q).

Proof. We consider FP+C and FP(Q) over pure sets (τ = ∅) and show that
over these FP+C 6⊆ FP(Q). Because over pure sets FP+C ≡ FP∗ we even
show that FP∗ 6⊆ FP(Q). Obviously FP∗ captures Ptime over pure sets.

Consider now definability in FP(Q) for finite Q over pure sets. By in-
variance under automorphisms, any predicate definable over pure sets has
to be quantifier free equality definable, or a union of equality types. In each
bounded arity k there are only finitely many equality types, so that it follows
(with an argument strictly analogous to that in Corollary 1.32) that over the
empty vocabulary FP(Q) ≡ Lωω(Q).

Consider a single quantifier Q ∈ Q and without loss of generality assume
that its type consists of a single relation R of arity r (tuples of predicates
can be encoded into single predicates by first-order means, and corresponding
transformations of Q do not affect polynomiality).

Let Lkωω(Q) be that syntactic fragment of Lωω(Q) which uses only first-
order variables x1, . . . , xk. In L

k
ωω(Q) over pure sets, Q can only be applied

to r-ary predicates that are quantifier free equality definable (with parame-
ters) in at most k variables. Up to logical equivalence there is a finite list of
quantifier free equality formulae χj(x, x

′) in variables x1, . . . , xk that provide
such definitions. Let the χj be of the form

χj(x, x
′) = θj(x) ∧ ηj(x, x

′),

with x and x′ disjoint, x′ of arity r, and with θj specifying a complete equality
type in the parameters x. Then the semantics of Q in Lkωω(Q) is exhaustively
described over each individual set n by a finite table T (n) that encodes the
behaviour of Q on the χj [n]. Let T (n) be the finite list of indices j for which

(
n,
{
m′
∣∣ n |= χj [m,m

′]
})
∈ Q for eq

(
m
)
= θj .

There are only finitely many possibilities T1, . . . , Tl for this entire table.
For any fixed value Ti the quantifier Q in Lkωω(Q) becomes uniformly first-
order definable over all n with T (n) = Ti. A formula ξ(x) = Q

(
x′;ϕ(x, x′)

)

is equivalent over all n with T (n) = Ti with the disjunction

ξi(x) :=
∨

j∈Ti

(
θj(x) ∧ ∀x

′(ϕ↔ χj)
)
.

5.2 Cardinality Lindström Quantifiers 125

It follows that Q can be eliminated (in Lkωω(Q) over pure sets) at the cost
of introducing cardinality quantifiers Qi of type ∅ according to

Qi :=
{
A
∣∣ T (|A|) = Ti

}
.

For then, ξ(x) as above becomes equivalent with
∨
i

(
Qi ∧ ξi(x)

)
. This carries

through inductively to eliminate all occurrences of Q.
If the complexity of the original Q is in Ptime of degree d, and if d > r,

then the tables T (n) can be computed in Ptime of degree d, too. This is
because a standard representation of each (n, {m′ |n |= χj [m,m

′]}) may be
constructed in time O(nr). Therefore, also the Qi are in Ptime of degree d.

Thus, for any finite set Q of Ptime quantifiers there is some d, such
that over the empty vocabulary Lkωω(Q) ≡ L

k
ωω(Q

′) for some finite set Q′ of
quantifiers of type ∅ whose complexity is in Ptime of degree bounded by d.
For d we may take the maximal degree in a set of polynomials that bound
the complexities of the Q ∈ Q. Note that Q′ depends on k, but the bound d
does not.

That the quantifiers in Q′ are of type ∅ means that their semantics only
depends on the size of the universe. Let ϕ ∈ Lkωω(Q

′) be a sentence. Then
there is some m such that n |= ϕ ⇔ n′ |= ϕ for all n, n′ > m which satisfy
the same Q ∈ Q′. Asymptotically therefore, and over the empty vocabulary,
any boolean query in Lkωω(Q

′) is equivalent with a boolean combination of
quantifiers Q ∈ Q′, and therefore its complexity is of degree bounded by d.
Now, since over pure sets

FP(Q) ≡ Lωω(Q) ≡
⋃

k

Lkωω(Q),

FP(Q) can only define boolean queries whose complexity is of a constantly
bounded degree. It is obvious on the other hand that no such restriction
applies to FP∗ over pure sets, because there are numerical properties of ar-
bitrarily high polynomial degree in Ptime. ⊓⊔

5.2.1 Proof of Theorem 5.1

Plain cardinality Lindström quantifiers. Consider first the case of
FP
(
Qcard

)
. Γ : (A, n) 7→ A ⊗ n is now fixed. We want to show the following

for all γ:ω → ω.

(∗)
For any Q ∈ Qcard, the quantifiers QΓγ — the pull-backs of Q from
A⊗γ(|A|) to A— can be encoded in polynomially size bounded tables
T (|A|). In other words: each QΓγ is in Ptime/poly.

Recall Definition 5.6 for the QΓγ . By Proposition 5.8, (∗) suffices to prove
that part of Theorem 5.1 that deals with ordinary cardinality Lindström
quantifiers.

126 5. Related Lindström Extensions

For the proof of (∗) first observe that the QΓγ for Q ∈ Qcard are themselves
inQcard. Recall that we write πi for the projections to the factors in A⊗n. The
extended encoding scheme R, c 7→ [R]c̄ for the fibres of t+r-ary automorphism
closed predicates R with parameter tuples c of arity t, takes for [R]c̄ the tuple
of predicates

Rec̄ =
{
π1(c, b)

∣∣ b ∈ R|c, eq
(
π2(c, b)

)
= e
}
, e ∈ Eq(t+ r).

If R|c is non-empty, then the Rec̄ determine π1(c) and eq
(
π2(c)

)
. c itself is

then determined up to an arbitrary choice of π2(c) that realizes eq
(
π2(c)

)
.

Up to this choice, the fibre R|c can be recovered from the encoding as

R|c =
⋃̇

e

{
b ∈ (A× n)r

∣∣∣ π1(c, b) ∈ Rec̄, eq
(
π2(c, b)

)
= e
}
.

Therefore ∣∣R|c
∣∣ =

∑

e

∣∣Rec̄
∣∣ νe(n),

where νe is the counting function whose value on n is the number of realiza-
tions of e over n that extend any fixed realization of eq

(
π2(c)

)
.

Suppose for instance Q is of type {R1}, R1 of arity r, and based on
the numerical relation S ⊆ ω2. Then, for automorphism invariant R and
parameters c,

(
A× n,R|c

)
∈ Q if

(
|A|n,

∣∣R|c
∣∣) ∈ S

and (
A, [R]c̄

)
∈ QΓγ if

(
|A| γ

(
|A|
)
,
∑
e

∣∣Rec̄
∣∣ νe
(
γ(|A|)

))
∈ S.

This latter condition constitutes a cardinality quantifier Q̂ of the type of
the encoding [R]c̄ over the base structures A. The same applies without any
changes to cardinality quantifiers Q of more complex types.

It is obvious, finally, that the semantics of cardinality quantifiers can be
fully encoded in polynomial size tables. Let the arities in Q̂ be bounded by r̂
and let Ŝ be the numerical relation for Q̂. To evaluate Q̂ over a structure of
size m, one need only know Ŝ ↾ {0, . . . ,mr̂}. This restriction of Ŝ is naturally
encoded in a polynomial size table. This finishes the proof of Theorem 5.1 as
far as FP

(
Qcard

)
is concerned.

The following discussion shows how to extend the argument to FP
(
Q∼

card

)

where counting of equivalence classes is involved. This is based on a slightly
more technical analysis of the encodings.

5.2 Cardinality Lindström Quantifiers 127

Quotient cardinality quantifiers. We claim that also for a quotient car-
dinality quantifier Q ∈ Q∼

card the pull-backs QΓγ of Q from A ⊗ γ(|A|) to A

are in Ptime/poly, or encodable in polynomially size bounded tables T (|A|).
In order not to get overburdened by technical details, let us consider

the special case of a parameter free pull-back. This is the case of a pull-back
quantifierQΓγ that captures the counting of equivalence classes over A⊗n with
respect to an equivalence relation R that is interpreted without parameters.
The technical lemma on equality defined equivalence relations, that governs
this case, may be extended to the general case with parameters in order to
prove the full claim.

In the parameter free case we deal as above with the encoding scheme
that is based on the mapping

Π: (A× n)r −→ Ar × Eq(r)

b 7−→
(
π1(b), eq

(
π2(b)

))
.

Lemma 5.10. Let R ⊆ (A × n)2r be closed under automorphisms of A ⊗ n
and assume that R interprets an equivalence relation on the r-th power of
A× n. Let a0 ∈ A

r, e0 ∈ Eq(r). Then the following are satisfied:

(i) the index of the restriction of R to Π−1(a0, e0) is of the form p(n)/r!
where p is a polynomial of degree at most r and with coefficients in
{0, . . . , (r!)2}. These coefficients can be determined from the encoding
[R] = (Re)e∈Eq(2r) on A in Ptime.

(ii) if P ⊆ (A×n)r is an automorphism closed predicate on A⊗n, then the
index of the restriction of R to P is of the form q(n)/r! for a polynomial
q of degree at most r with coefficients in {0, . . . , (r!)3|A|r}. Again the
coefficients are Ptime computable from the encodings [R] and [P] on A.

Proof. Assume n is much greater than r.
(i) For the first claim consider any quantifier free equality defined equivalence
relation ∼ on the set e0[n] :=

{
m ∈ nr

∣∣ eq
(
m
)
= e0

}
. Without loss of

generality assume that e0 is the equality type that forces all r components
of the m to be distinct. Otherwise the claim is reduced to smaller r. Let
i ∈ {1, . . . , r} be called free under ∼ if there are m,m′ ∈ e0[n] with m′

i 6∈
{m1, . . . ,mr} and m ∼ m′. An easy automorphism argument that exploits
transitivity and symmetry of ∼ shows that, if i is free in ∼, then m ∼ mm

ı
for

all m ∈ e0[n] and all m 6∈ {m1, . . . ,mr}. In this case therefore, ∼ is reducible
to an equivalence relation ∼′ on the remaining components that has the same
index as ∼: if for instance r is free, let e′0 be the restriction of e0 to the first
r − 1 variables, and put for m,m′ ∈ e′0[n]

m ∼′ m′ if mm ∼ m′m′ for all m 6∈ m and m′ 6∈ m′.

We may therefore assume without loss of generality that no i is free in ∼.
This implies thatm ∼ m′ only ifm′ = ρ(m) for some permutation ρ ∈ Sr. Let

128 5. Related Lindström Extensions

G be the normal subgroup (!) of Sr consisting of those ρ for which m ∼ ρ(m).
The index of ∼ on e0[n] is the product of the number

(
n
r

)
of different r-element

subsets of n with the index of G in Sr.
The claim about the form of the index as a polynomial in n follows. A

representation of this polynomial by its coefficients is Ptime computable over
the encodings in A because the above sequence of reductions is governed by
even first-order definable properties of the given equivalence relation R.
(ii) For a preliminary observation let M ⊆ Ar × Eq(r), (a, e) 6∈ M . Then
exactly one of the following holds:

(a) any b ∈ Π−1(a, e) is R-equivalent with some b1 ∈ Π
−1(M).

(b) no b ∈ Π−1(a, e) is R-equivalent with any b1 ∈ Π
−1(M).

Again, a simple automorphism argument proves this claim: for b, b′ ∈
Π−1(a, e) there is an automorphism of A⊗ n which maps b to b′ while leav-
ing Π−1(M) invariant as a set. The distinction between cases (a) and (b) is
first-order in terms of R, Π−1(M) and Π−1(a, e). It is therefore first-order
and in Ptime also in terms of [R], M , a and e over A.

Let R and P be as required in the lemma. The index
∣∣PA⊗n/RA⊗n

∣∣
can be determined by going through all (a, e) ∈ Ar × Eq(r) in some arbi-
trarily fixed enumeration as (a, e)i = (ai, ei), and summing over the indices∣∣Π−1(ai, ei)/R

∣∣ whenever ai ∈ P ei and case (b) above applies to (ai, ei) with

respect to M =
{
(a, e)i′

∣∣ i′ < i
}
. This proves claim (ii) of the lemma, since∣∣Ar × Eq(r)

∣∣ 6 r!|A|r. ⊓⊔

With this lemma the quantifier free pull-back of a quotient cardinality
quantifier is seen to be in Ptime/poly as follows. The lemma shows that the
indices over A⊗n of ≃-closed interpreted predicates with respect to ≃-closed
interpreted equivalences can be represented as polynomials in n, of constantly
bounded degree and with a range for the coefficients that is polynomially
bounded in |A| ((ii) of the lemma). All these indices are therefore uniquely
encodable as numbers to base n, of bounded length and with entries corre-
sponding to the above ranges for the coefficients. The numerical predicate S
of Q can therefore — to the extent that matters over structures A⊗ n with
|A| = m — be encoded in tables of size polynomial in m, with entries to be
understood as (tuples of) numbers expressed to base n.

5.3 Aside on Further Applications

Though not directly related to issues of fixed-point with counting, we present
two other simple applications of the technique developed in this chapter.
Namely we can prove that sparse and rigid quantifiers do not suffice to capture
Ptime.

A Lindström quantifier Q is called rigid if all structures in its defining
class are rigid, i.e. possess no non-trivial automorphisms.

5.3 Aside on Further Applications 129

A relational structure B is called f -sparse if the number of elements of
B that occur in any of the predicates in B is at most f(|B|). We call f sub-
linear if f(cn)/n→ 0 for n→∞ for all c. Q is sparse if there is a sub-linear
function f such that all structures in Q are f -sparse

Let Qsparse and Qrigid be the classes of all sparse or rigid Lindström quan-
tifiers, respectively.

Theorem 5.11. Neither FP
(
Qsparse

)
nor FP

(
Qrigid

)
comprise all FP∗, in

particular Ptime 6⊆ FP
(
Qsparse

)
,FP

(
Qrigid

)
.

Sketch of Proof. The proof is straightforward if we consider once more the
functor Γ : (A, n) 7→ A⊗ n and the associated pull-backs.

Consider rigid quantifiers first. Let (A⊗ n, c) be such that n exceeds the
arity of c. Then (A⊗n, c) has non-trivial automorphisms and no structure that
is interpreted with parameters c over A⊗ n can be rigid. In other words, the
pull-back of any rigid quantifier corresponds to the trivially false quantifier
QΓn = ∅ for all sufficiently large n.

Consider now a sparse quantifier and its pull-backs involving parameter
tuples c of arity t. For sufficiently large n, any relation that is interpreted
over (A ⊗ n, c) either only contains subtuples of c, or it contains a non-
trivial orbit under the automorphism group of (A ⊗ n, c), which grows at
least linearly with n. But for sub-linear f the bound f(|A|n) grows slower
than n, so that for sufficiently large n, Q can evaluate to true at most on
those trivial structures whose relations consist of subtuples of c. These are
finitely bounded in the size of their relations and in number. In restriction to
their fields, these relations can thus be distinguished up to isomorphism even
in first-order. For sufficiently large n the entire information in the QΓn thus
is, which of these trivial structures are in Q, when embedded in the universe
of size |A|n. Therefore the QΓn reduce to cardinality quantifiers of type ∅.

We thus find that the pull-backs of FP
(
Qrigid

)
-definable classes are FP-

definable. The pull-backs of FP
(
Qsparse

)
-definable classes are definable in

the extension of FP with cardinality quantifiers of type ∅ if only the pull-
back function γ is sufficiently fast growing. In particular the latter are in
Ptime/poly once more. This proves the desired separations. ⊓⊔

130 5. Related Lindström Extensions

Remarks. In a paper [Ott94] on simple Lindström extensions the above re-
sults (with the exception of the case of sparse quantifiers) have been presented
under a slightly different angle. The emphasis there is on quantifiers that
express simple properties in the sense that these properties themselves are
robust with respect to certain trivial extensions and can be decided in terms
of invariants of sub-exponential range. In the case of counting quantifiers such
invariants consist of numerical functions that count tuples in predicates; their
range is clearly polynomial. I have here chosen to stress the technical basis
of the separation proofs rather than a notion of simplicity. This basis is the
same really for the applications here and in [Ott94], apart from the small
difference that here we work with trivial products rather than with trivial
sums. This variation is motivated by the formally smoother encoding schemes
available over trivial products. The new application to sparse quantifiers is
also due to this change. It relies on the property of trivial products that the
pull-backs of sparse relations are sparse themselves. This is not true for trivial
sums. Conceivably the general technique applies to other natural classes of
quantifiers that might require yet other scaling functors Γ .

6. Canonization Problems

This is the first of two chapters dealing with canonization. In this chapter
we consider canonization up to logical equivalences ≡L, in particular for
the logics L = Lk∞ω and Ck∞ω. We investigate the relation between Ptime

canonization, Ptime inversion of the invariants, and the existence of recursive
presentations and normal forms for related fragments of Ptime. It is shown
for instance that Ptime invertibility for the ICk for all k would imply that
FP+C captures exactly all queries that are Ptime computable and Cω∞ω-
definable. This and similar implications are of a hypothetical status, however:
the problem of Ptime invertibility — and of Ptime canonization for Ck and
Lk — remains open for arbitrary k. We show in this chapter that the general
case essentially reduces to that for the three variable fragments. An explicit
solution to the problem for the two variable fragments will be presented in
the next chapter.

• Section 6.1 reviews the general notion of canonization and discusses canon-
ization with respect to isomorphism in connection with algorithms on struc-
tures.

• In Section 6.2 Ptime canonization for ≡L is related to recursive presenta-
tions of fragments of Ptime.

• Section 6.3 discusses Ptime inversion of the ICk and ILk in relation to can-
onization and normal forms for the related fragments of Ptime. In particular
we present theorems on the impact of Ptime invertibility of all ICk , respec-
tively all ILk (in the sense of Definition 6.9), on the classes Ptime ∩ Cω∞ω

and Ptime ∩ Lω∞ω.

• The reduction of these results to the three variable fragments is presented
in Section 6.4.

6.1 Canonization

For the general notion of canonization compare Definition 1.57 and related
remarks in Section 1.7.1. Formally a function H provides canonization for
∼ if it satisfies two conditions. For all x we want H(x) ∼ x and whenever

132 6. Canonization Problems

x ∼ x′ then H(x) = H(x′). Dealing with finite structures as basic objects and
considering computable canonization with respect to an equivalence relation
on some fin[τ], we require H(A) to be a structure with standard domain,
H(A) ∈ stan[τ]. Compare in particular Definition 1.61.

An important case is the canonization problem of combinatorial graph
theory, namely the problem of canonization of finite graphs up to isomor-
phism. This is often also termed graph normalization. The same problem ap-
plies to any other class of finite structures, in particular to the entire classes
fin[τ] for arbitrary finite relational vocabularies τ . Normalization for any
fin[τ], however, reduces to graph normalization for most purposes. This is
because there are natural encoding schemes mapping relational structures of
an arbitrary fixed vocabulary to graphs in a way that would be compatible
with normalization. With encodings by means of relativized interpretations
of τ -structures in graphs, standardization of the parent structure (the graph)
immediately induces a corresponding standardization of the interpreted τ -
structure.

The problem of finding a standard representative up to isomorphism for
relational structures is closely related with the analysis of algorithms over
structures as discussed in the introduction (compare also Section 1.2). Stan-
dard models of computation require the input structure to be represented as
a string over some alphabet. This is possible in a canonical way for ordered
structures since these admit a trivial low complexity normalization procedure.
Let <∈ τ and recall that ord[τ] stands for the class of finite τ -structures that
are linearly ordered by <. The natural canonization then is

H: ord[τ] −→ stan[τ]

A = (A,<A, . . .) 7−→ (|A|, <|A|, . . .),

where (|A|, <|A|, . . .) is the unique structure in stan[τ] with the natural or-
dering, that is isomorphic with (A,<A, . . .). If a priori we admit an arbitrary
representation also for A ∈ ord[τ] through an arbitrary isomorphic represen-
tative in stan[τ] we find that this functor H is computable in Logspace.

It is difficult to imagine any feasible representation of the isomorphism
type of finite structures for standard computational models and in particular
the Turing model, that does not implicitly introduce a linear order on the
domain of the given structure. In general one therefore has to admit repre-
sentations of the abstract structure A ∈ fin[τ] through arbitrary isomorphic
representative in stan[τ] — or, equivalently, through the introduction of an
arbitrary ordering for representational purposes. Uniqueness of the represen-
tative is given up and the notorious invariance problems have to be dealt
with. Algorithms for structures have to satisfy a semantic invariance condi-
tion, since the outcome of the computation must be independent of the input
representation.

This problem can be side-stepped, however, if there should be a feasi-
ble construction of unique representatives after all. In the general case this

6.1 Canonization 133

requires a feasibly computable functor

H: fin[τ] −→ stan[τ]
A 7−→ H(A),

satisfying ∀A H(A) ≃ A,
∀A∀A′ A ≃ A′ → H(A) = H(A′).

It is here irrelevant whether we regard fin[τ] or stan[τ] as the domain of
this functor. A functor H with these properties is a computable canonization
functor with respect to isomorphism on fin[τ] in the sense of Definition 1.61.
In the context of logics for fragments of Ptime “feasible” here means “Ptime
computable”. It is not known whether there is a Ptime normalization pro-
cedure for all finite relational structures, or equivalently for the class of all
finite graphs. It is clear that Ptime graph normalization would immediately
yield a Ptime algorithm for the graph isomorphism problem. The status with
respect to complexity of the graph isomorphism problem, however, is a no-
torious open problem.

For an upper bound on the complexity of graph normalization one can at
least show that it is contained in ∆pol

2 at the second level of the polynomial
hierarchy. ∆pol

2 is the class of those problems that admit a Ptime solution
relative to an oracle in NPtime (and NPtime = Σpol

1).

Example 6.1. There is a graph normalization functor H in ∆pol

2 .
For the oracle we choose the weak subgraph isomorphism problem. The

weak subgraph relation G1 ⊆w G2 holds if the universe of G1 is a subset
of the universe of G2 and if all edges of G1 are also edges of G2. Let O be
the set of all standard encodings of pairs of graphs (G1,G2) where G1 is
isomorphic with some G′

1 ⊆w G2. Obviously O is in NPtime, in fact it is
NPtime-complete.

Relative to the oracle O we get the following Ptime algorithm A for graph
normalization.

On input (n,E), a graph on standard domain n, A successively computes
edge relations Em ⊆ m×m for m = 1, . . . , n, where E1 = ∅ and , for m > 1,
Em is the lexicographically maximal element of the set

Sm =
{
R ⊆ m×m

∣∣ Em−1 ⊆ R and
(
(m,R), (n,E)

)
∈ O

}
.

The lexicographic ordering on the R ⊆ m×m is the usual one if R is identified
with the sequence of values of its characteristic function χR(0, 0), χR(0, 1),
. . . , χR(m − 1,m − 1). It is easily shown inductively that the Sm are non-
empty. All the (m,Em) will actually be isomorphic with subgraphs of (n,E),
as any addition of more edges to some R is an upward move in the lexico-
graphic ordering. In fact (m,E) automatically is the lexicographically maxi-
mal graph of size m that is isomorphic with a subgraph of (n,E).

Therefore H(n,E) := (n,En) is as desired. It remains to argue that the
Em can be determined in Ptime relative to O, which is not quite obvious at
first as in general Sm is of exponential size in m.

134 6. Canonization Problems

But to compute Em from Em−1 it suffices to settle the values of χ = χEm

at (0,m− 1), . . . , (m− 2,m− 1). All other entries are in fact determined:

(i) χ(m− 1,m− 1) = 0, by irreflexivity of Em.
(ii) χ(m− 1, j) = χ(j,m− 1) for j < m− 1, by symmetry of Em.
(iii) χ ↾ (m− 1)× (m− 1) = χEm−1

,
because Em ⊇ Em−1 and Em ↾ (m− 1)× (m− 1) 6lex Em−1.

That sequence χ(0,m − 1), . . . , χ(m − 2,m − 1) that leads to the lexico-
graphically maximal Em can be constructed as follows.

Put χ0(0,m − 1) = . . . = χ0(m − 2,m − 1) = 0; the resulting E0
m equals

Em−1 and thus is in Sm. Proceeding inductively, let χj+1 be χj with the
value at (j,m− 1) changed to 1 if the Ej+1

m that is so obtained is in Sm, and
χj+1 = χj otherwise. Then χ := χm−1 is as desired.

If Ptime canonization up to isomorphism is unlikely to be attained, it is
sensible to consider canonization with respect to rougher, and in particular
logical notions of equivalence instead of isomorphism.

6.2 Ptime Canonization and Fragments of Ptime

Definition 6.2. Let L be a logic, ≡L the induced notion of equivalence on
fin[τ] and on fin[τ ; r]. A Ptime computable functor H: fin[τ] → stan[τ] pro-
vides Ptime canonization up to ≡L on fin[τ] or canonization for L on fin[τ]
if the following are satisfied:

∀A H(A) ≡L A,
∀A∀A′ A ≡L A′ → H(A) = H(A′).

The analogous requirements are imposed on a functor H: fin[τ ; r]→ stan[τ ; r]
for Ptime canonization on fin[τ ; r].

Canonization up to ≡L determines a unique standard representative
within each class of L-equivalent finite structures, respectively of finite struc-
tures with parameters. The difference between canonization for plain struc-
tures and structures with parameters is inessential for the logics under con-

sideration, because ≡C
k

and ≡L
k

satisfy the requirements of the following

lemma. Recall that ≡C
k

and ≡L
k

are in Ptime as relations on fin[τ ; r] for
all r 6 k, because the invariants for Lk and Ck on the fin[τ ; r] are Ptime

computable. Compare Corollaries 3.9 and 3.14.

Lemma 6.3. Let L be such that ≡L is in Ptime as a relation on fin[τ ; r]
and such that A ≡L A′ implies that A and A′ realize the same L-types of
r-tuples: A ≡L A′ ⇒ TpL(A; r) = TpL(A′; r).

Then any Ptime canonization functor H: fin[τ] → stan[τ] extends natu-
rally to a Ptime canonization H: fin[τ ; r]→ stan[τ ; r] on fin[τ ; r].

6.2 Ptime Canonization and Fragments of Ptime 135

Sketch of Proof. The following extension of H satisfies the requirements —
we denote it H as well. Let H(A, a) :=

(
H(A), b

)
where b is the lexi-

cographically least r-tuple over the standard domain of H(A) for which(
H(A), b

)
≡L (A, a). ⊓⊔

Ptime canonization bears the following simple yet fundamental relation-
ship with recursive presentations of fragments of Ptime.

Lemma 6.4. Let H provide Ptime canonization up to ≡L on fin[τ] and on
the fin[τ ; r]. Then the class of all those queries over fin[τ] that are Ptime

computable in the usual sense and closed with respect to ≡L, is recursively
enumerable. In fact the following are equivalent for any boolean query Q ⊆
fin[τ]:

(i) Q is closed with respect to ≡L and Q is in Ptime.
(ii) Q =

{
A
∣∣ H(A) ∈ Q

}
and there is a Ptime algorithm that recognizes

Q ∩ stan[τ].

For an r-ary global relation R on fin[τ] the following are equivalent:

(i) R is closed with respect to ≡L and Ptime-computable.
(ii) RA =

{
a ∈ A

∣∣ b ∈ RB where (B, b) = H(A, a)
}
and there is a Ptime

algorithm that, applied to H(A, a) = (B, b), decides whether b ∈ RB.

Note that the algorithms in (ii) are not subject to any semantic con-
straints, since these algorithms need merely realize boolean functions on
stan[τ] or stan[τ ; r], respectively. A natural recursive set of representatives
consists of all algorithms that first check the input size, then initialize some
counter to a fixed polynomial in this size and terminate their computation
after this pre-set number of steps (polynomially clocked algorithms).

Sketch of Proof. We indicate the proof for boolean queries. Observe that ≡L–
closure is equivalent with Q =

{
A
∣∣ H(A) ∈ Q

}
. Therefore, any Ptime

algorithm A that recognizes an ≡L–closed class Q is semantically equivalent
with A◦H. For (i)⇒ (ii) use A in restriction to stan[τ]. For the converse use
A as given in (ii) and compose it with H to get the Ptime algorithm A ◦H
which computes the boolean query Q over fin[τ]. ⊓⊔

Definition 6.5. Let Ptime∩L stand for the class of all those global relations
that are both in Ptime and L-definable.

Recall from Lemma 1.33 that for logics L that are closed under countable
disjunctions and conjunctions and under negation, L-definability coincides
with closure under ≡L. Lemma 6.4 therefore yields a connection between
Ptime canonization for L and a recursive presentation for Ptime∩L. Assume
for the following definition that H: fin[τ]→ stan[τ] provides canonization on
fin[τ] and extends to functors H: fin[τ ; r] → stan[τ ; r] on the fin[τ ; r] in the
sense of Lemma 6.3 above.

136 6. Canonization Problems

Definition 6.6. Let Ptime
(
H
)
stand for the class of all queries that are

Ptime computable in terms of the images under H. More precisely,

(i) a boolean query Q on fin[τ] is in Ptime
(
H
)
if membership of A in Q is

a Ptime property of H(A).
(ii) an r-ary query R on fin[τ] is in Ptime

(
H
)
if membership of a in RA

is a Ptime property of H(A, a).

Again, as the Ptime algorithms mentioned in the definition are not sub-
ject to additional semantic constraints, Ptime

(
H
)
is recursively presented

through all compositions of polynomially clocked algorithms with some fixed
algorithm for H.

Lemma 6.4 can be rephrased with this notion of Ptime(H) as follows. We
state it for L = Ck∞ω or Lk∞ω. Note that for these any Ptime canonization
on fin[τ] extends to all fin[τ ; r] with r 6 k by Lemma 6.3. This is sufficient
for the statement below since there are no Lk∞ω- or C

k
∞ω-definable queries in

arities greater than k.

Corollary 6.7. Let L = Ck∞ω or Lk∞ω and let H provide Ptime canonization
for L on fin[τ]. Then H extends to the fin[τ ; r] for r 6 k and

Ptime ∩ L ≡ Ptime
(
H
)
.

In particular Ptime ∩ L is recursively enumerable (i.e. admits a recursive
presentation).

6.3 Canonization and Inversion of the Invariants

As sketched in the abstract setting in Lemma 1.60, canonization problems
are generally related with inversion problems for complete invariants. While a
canonization H must assign representatives, complete invariants may assign
any kind of values that are characteristic of classes. Canonization may be
obtained from an invariant if it is possible to reconstruct a typical member of
each class on the basis of the value of that class under the invariant. The mere
existence of such an inverse is obvious from the definitions. Its complexity,
however, is critical. Different complete invariants for the same equivalence
relation might lead to entirely different inversion problems in particular with
respect to complexity.

We return to the canonization problem for the Ck∞ω and Lk∞ω. The func-
tors ICk and ILk provide complete invariants. Recall that we write ICk and
ILk for the complete invariants on fin[τ] as well as for their natural extensions
to the fin[τ ; r] for r 6 k. We shall see below that also with respect to the
corresponding inversion problems a solution for ILk or ICk on fin[τ] naturally
extends to a solution over the fin[τ ; r]. We restate for convenience the defi-
nition of an inverse to a complete invariant, Definition 1.59, in the present
context.

6.3 Canonization and Inversion of the Invariants 137

Definition 6.8. Let L = Ck∞ω or Lk∞ω, IL the corresponding invariant. A
function

F :
{
IL(A)

∣∣ A ∈ fin[τ]
}
−→ stan[τ]

is an inverse for IL on fin[τ] if it satisfies: ∀A F
(
IL(A)

)
≡L A. The anal-

ogous condition applies for inverses of IL on fin[τ ; r] for r 6 k. Equivalently
these conditions can be put as IL ◦ F = id on image(IL).

Generally an inversion of a complete invariant yields a canonization sim-
ply through composition of the inverse with the invariant itself (Lemma 1.60).
Also a Ptime computable inversion F here yields Ptime canonization, since
the IL themselves are Ptime computable. Note however that the converse
need not a priori be true. It is conceivable that H provides Ptime canon-
ization while the associated F defined by the requirement that H = F ◦ IL
might not be in Ptime. In fact, for the Lk∞ω with k > 3 we already know
that inversion of ILk cannot be in Ptime in the usual sense, simply because
the image under F might necessarily be of a size that is exponential in the
size of the argument. See Example 3.23. The following definition takes care of
this obvious obstacle and defines Ptime inversion for the ILk as an inversion
that is polynomial time computable in terms of the size of the desired image.

Definition 6.9. We say that ICk admits Ptime inversion if there is an in-
verse F for ICk that is Ptime computable in the usual sense.

ILk admits Ptime inversion if there is an inverse F for ILk , such that for

all A, F is computable on ILk(A) in time polynomial in min
{
|B|

∣∣ B ≡Lk

A
}
.

To mark the difference in the complexity requirement let us say that such F
is computable in Ptime

∗.
In either case we shall speak, however, of F as a Ptime inverse of the

invariant.

Ptime canonization and Ptime inversion for the Lk are discussed in
Dawar’s dissertation [Daw93] and in [DLW95]. The appropriate notion of
Ptime inversion of ILk is put forward there and the question whether ILk

admits Ptime inversion in this sense is formulated as an open problem.
A natural and intuitively stronger definition of Ptime inversion for ILk

would be to require an algorithm that takes as its input pairs (ILk(A), n) and
produces in time polynomial in max{|ILk(A)|, n} a structure B ∈ stan[τ]

of size n with B ≡L
k

A if such exists. From such an algorithm a Ptime

inverse in the sense of the preceding definition is obtained through application
to (ILk(A), n) for growing n until a successful output is constructed. This
exhaustive search for a standardized pre-image under ILk (of minimal size
even) is still polynomial in the size of a minimal solution.

We come to the extension of inverses to the ILk and ICk on fin[τ] to
inverses of the extended invariants on fin[τ ; r], r 6 k.

138 6. Canonization Problems

Lemma 6.10. Let L = Ck∞ω or Lk∞ω and IL = ICk or ILk , respectively.
Ptime inversion of IL on fin[τ] extends naturally to Ptime inversion of IL
on fin[τ ; r] for r 6 k.

Sketch of Proof. Assume F :
{
IL(A)

∣∣ A ∈ fin[τ]
}
→ stan[τ] is an inverse to

IL on fin[τ]. Recall that the extension of IL to fin[τ ; r] maps (A, a) to the ex-
pansion of IL(A) in which the L-type of a is marked: IL(A, a) =

(
IL(A), [a]

)
.

Extend F to fin[τ ; r] by putting F
(
IL(A, a)

)
:=
(
F (IL(A)), b

)
for the lexi-

cographically least tuple b in the standard domain of F (IL(A)) which sat-
isfies IL

(
F (IL(A)), b

)
= IL(A, a). The search for this tuple is polynomi-

ally bounded in the size of F (IL(A)). Therefore if F is Ptime, respectively
Ptime

∗ in the sense of the preceding definition, on fin[τ], then so is its ex-
tension to fin[τ ; r]. ⊓⊔

Theorem 6.11. Let L = Ck∞ω or Lk∞ω, and correspondingly IL = ICk or
ILk . If F is a Ptime inverse for IL, then H := F ◦ IL provides Ptime can-
onization for L. Moreover this composition is compatible with the respective
natural extensions of the IL, H and F to the fin[τ ; r] for r 6 k.

Sketch of Proof. We check the requirements in the case of ILk . H maps A ∈
fin[τ] to a standard structure equivalent with A, since ILk ◦ F ◦ ILk = ILk

by the definition of inverses. As a composition with ILk , H certainly maps
Lk-equivalent structures to the same image. It remains to check that H is in
Ptime, even if F is computable only in Ptime

∗ in the sense of Definition 6.9.

Since min
{
|B|

∣∣ B ≡Lk

A
}
6 |A|, the computation of F on ILk(A) is still

polynomial in terms of |A|.
Compatibility with the extensions to cover fin[τ ; r] instead of fin[τ] follows

directly from the definition of these extensions. See in particular the above
lemma and compare with Lemma 6.3. ⊓⊔

Combining Corollary 6.7 with Theorem 6.11 we get the following connec-
tion between Ptime inversion of the ICk and the capturing of Ptime∩Ck∞ω.
Recall Definition 4.17 for the classes Ptime

(
ICk

)
. The global relations in

Ptime
(
ICk

)
are those that are Ptime computable over the invariants ICk .

Logically the same class is representable by the logics FP
(
ICk

)
also discussed

in connection with Definition 4.17 and Theorem 4.18.

Theorem 6.12. If ICk admits Ptime inversion, then

Ptime ∩ Ck∞ω ≡ Ptime
(
ICk

)
≡ FP

(
ICk

)
.

Proof. Let F be a Ptime inverse for ICk . The non-trivial inclusion Ptime∩
Ck∞ω ⊆ Ptime

(
ICk

)
follows from Corollary 6.7 if we observe that F ◦ ICk

provides Ptime canonization for Ck∞ω: Ptime ∩ C
k
∞ω ⊆ Ptime

(
F ◦ ICk

)
⊆

Ptime
(
ICk

)
, as F is in Ptime. ⊓⊔

Putting Theorem 4.18 — FP+C ≡
⋃
k FP(ICk) — and the last theorem

together, we obtain the following hypothetical theorem.

6.4 A Reduction to Three Variables 139

Corollary 6.13. If the ICk admit Ptime inversion for all k, then

Ptime ∩ Cω∞ω ≡ FP+C.

For the Lk∞ω the situation is somewhat less smooth because of the possible
collapse in size that can occur in the passage from A to ILk(A). Note that,
because of this potential collapse, it is not true that — as in the proof of
Theorem 6.12 — Ptime

(
F ◦ ILk

)
⊆ Ptime

(
ILk

)
for a Ptime inverse F of

ILk (which need actually only be computable in Ptime
∗).

Theorem 6.14. Assume ILk admits Ptime inversion through F . Then
Ptime∩Lk∞ω is recursively enumerable. A boolean query is in Ptime∩Lk∞ω

if it is computable on the basis of the ILk(A) in time polynomial in the size of
F
(
ILk(A)

)
. Similarly for the computation of an r-ary global relation in terms

of the ILk(A, a).

Let us say that ILk is bounded on a class K ⊆ fin[τ] if there is a polynomial
p such that |A| 6 p(|ILk(A)|) for all A ∈ K. Obviously, if ILk is bounded
on K, then so is ILk′ for all k′ > k. Suppose that ILk is bounded on K
and that ILk admits Ptime inversion through F . Then F must in fact be
computable in Ptime rather than in Ptime

∗: F
(
ILk(A)

)
must be polynomial

time computable in terms of |A| by definition, and |A| is polynomial in the size
of ILk(A) for bounded ILk . The following is then proved in precise analogy
with Corollary 6.13 above.

Corollary 6.15. If the ILk admit Ptime inversion for all k, then

Ptime ∩ Lω∞ω ≡ FP on K

for all classes K on which ILk is bounded for some k.

6.4 A Reduction to Three Variables

We exhibit a reduction technique that shows that Ptime canonization and
Ptime inversion for the Lk∞ω and Ck∞ω with arbitrary k essentially reduce
to the three variable cases. ‘Essentially’ because the proposed reduction does
not work in a k-by-k fashion but rather introduces a shift in the number
of variables of the following kind. Assuming for instance Ptime invertibility
of IC3 we get a Ptime construction that, given ICm(A) for certain m > k,
yields a standard structure that is Ck-equivalent with A. The effect of this
mismatch is smoothed out, however, if we consider the effect with respect to
the unions across all levels k. For instance, from Ptime invertibility of IC3

we shall still get FP+C ≡ Ptime ∩ Cω∞ω.
Here are the precise statements concerning the reduction, first in terms of

canonization, then in terms of inversion of the invariants. Note that a priori
these statements might be of independent interest, since the existence of a
Ptime canonization procedure does not, as far as we can see, imply Ptime

invertibility of the particular invariants considered here.

140 6. Canonization Problems

Theorem 6.16. Suppose C3
∞ω admits Ptime canonization. Then there is

for each τ and each k a Ptime functor K3k,k: fin[τ] −→ stan[τ] such that

∀A K3k,k(A) ≡C
k

A,

∀A∀A′ A ≡C
3k

A′ → K3k,k(A) = K3k,k(A′).

The same statement holds of the Lk∞ω and under the assumption that L3
∞ω

admits Ptime canonization.

Note the difference betweenK3k,k and a canonization functor with respect
to Ck∞ω. While K3k,k also produces Ck-equivalent standard structures, these
representatives may depend not only on the Ck-theory of the given struc-
ture but on its C3k-theory. The analogous reduction result for the inversion
problem is the following.

Theorem 6.17. Suppose IC3 admits Ptime inversion. Then there is for
each τ and each k a Ptime functor G3k,k: image(IC3k) −→ stan[τ] such that

∀A G3k,k
(
IC3k(A)

)
≡C

k

A,

or equivalently, IC3 ◦G3k,k = Π3k,k where Π3k,k is the obvious projection that
sends IC3k(A) to ICk(A). Again, the same holds (for Ptime

∗ computability)
with respect to the Lk∞ω and ILk and under the assumption that IL3 admits
Ptime inversion.

The appropriate notion of Ptime∗ computability forG3k,k: image(IL3k)→
stan[τ] is the following: G3k,k

(
IL3k(A)

)
has to be computable in time poly-

nomial in the size of a minimal B that is L3k-equivalent with A.
For our present purposes we thus have the following corollaries. The first

is in terms of Ptime canonization for the three variable case, the second in
terms of Ptime inversion for the three variable invariants. In both settings
we find that the general statements of Corollaries 6.7, and Corollaries 6.13
and 6.15 respectively, reduce to the three variable cases if we consider the
overall effect on the unions across all k, Ptime ∩ Cω∞ω and Ptime ∩ Lω∞ω.

Corollary 6.18. Let L = Cω∞ω or Lω∞ω, respectively. Assume that C3
∞ω,

respectively L3
∞ω, admits Ptime canonization. Then Ptime∩L is recursively

enumerable; in fact

Ptime ∩ L ≡
⋃

k

Ptime
(
K3k,k

)
,

where Ptime
(
K3k,k

)
is formally defined in analogy with Definition 6.6 for

the functors K3k,k as characterized in Theorem 6.16 (and their natural ex-
tensions to the fin[τ ; r] where r-ary queries rather than just boolean ones are
concerned).

6.4 A Reduction to Three Variables 141

Sketch of Proof. Consider L = Cω∞ω. Both inclusions are in fact obvious.
Any query in some Ptime

(
K3k,k

)
is in Ptime, and also in C3k

∞ω since the
image under K3k,k only depends on the C3k

∞ω-theory of structures. For the
converse inclusion note that any query in Ptime∩Ck∞ω can without affecting
its semantics be evaluated after application of K3k,k because K3k,k preserves
Ck-equivalence. ⊓⊔

Corollary 6.19. (i) Assuming that IC3 admits Ptime inversion we get:
Ptime ∩ Cω∞ω ≡ FP+C.

(ii) If IL3 admits Ptime inversion, then Ptime ∩Lω∞ω ≡ FP on all classes
on which ILk is bounded for some k.

Sketch of Proof. We indicate how the claim for boolean queries in Ptime ∩
Cω∞ω follows from Theorem 6.17. Suppose that Q ⊆ fin[τ] is in Ptime∩Ck∞ω.
Let A be a Ptime algorithm that recognizes Q. Then A ∈ Q if and only
if G3k,k

(
IC3k(A)

)
∈ Q if and only A ◦ G3k,k ◦ IC3k accepts A. The latter

composition is in FP+C because IC3k is FP+C-interpretable over the A∗

and A ◦ G3k,k is FP-interpretable as a Ptime functor on the ordered IC3k .
Closure of FP+C under interpretations (Proposition 4.8) yields Q ∈ FP+C.
The converse inclusion FP+C ⊆ Ptime ∩ Cω∞ω is obvious anyway (compare
Corollary 4.20).

For the case of Ptime ∩ Lω∞ω compare the appropriate modifications in
Corollary 6.15 to adapt the argument to obtain (ii). ⊓⊔

Whether or not the three variable cases are solvable, remains open. The
reduction achieved here therefore remains hypothetical. The two variable case
is settled positively in the next chapter. In view of the above statements, a
positive solution in the three variable case would be a major break-through
in the understanding of the bounded-variable fragments of Ptime. The re-
duction argument itself is of interest because it also applies to other model
theoretic questions about the Lk∞ω and Ck∞ω, in particular we think of ques-
tions related to spectrum properties for these fragments, cf. [Ott96b]. For the
present investigation it also illustrates where the essential power of three, as
compared to two variables lies. At a more technical level it may also indicate
potential obstacles for three variable canonization.

It might be worth pointing out that 3 is just the minimal number of
variables for which we can show the reduction to go through. The reduction
argument applies, essentially unchanged, to any other number of variables
above 3. (And indeed, it is not clear why for instance k-variable canonization
for some k > 3 should directly yield 3-variable canonization.)

None of the material in the rest of this chapter will be used in the last
chapter on two-variable canonization.

6.4.1 The Proof of Theorems 6.16 and 6.17

The following definition of the k-th power of a relational structure resembles
the definition of the game k-graphs, Definition 2.26. Here we include more

142 6. Canonization Problems

complete information about the equality types of pairs of k-tuples for reasons
that will become apparent below.

For finite relational τ let τ [k] consist of unary predicates Pθ for θ ∈

Atp(τ ; k) and binary predicates
i,j

= for 1 6 i, j 6 k. The intended inter-

pretation for the latter — over some Ak — is that (a, a′)∈
i,j

= if ai=a
′
j . We

shall write a
i,j

= a′ instead of (a, a′) ∈
i,j

=.

Definition 6.20. For A ∈ fin[τ] let the k-th power of A be the following
structure A[k] in vocabulary τ [k]:

A[k] =
(
Ak, (

i,j

=), (Pθ)
)
,

with the natural interpretations for the Pθ and the
i,j

=. Denote by Γk the
functor that takes A to its k-th power A[k]. Let Γk

(
fin[τ]

)
⊆ fin[τ [k]] denote the

closure under isomorphisms of the class of all k-th powers A[k] for A ∈ fin[τ].

Just as the game k-graphs A(k), the A[k] are quantifier free interpretable
in the k-th power over the given structures A.1 Moreover, the game k-graphs
A(k) are quantifier free (and directly) interpretable over the A[k]: the edge

relation Ej of the game k-graphs is the intersection of the
i,i

= for all i 6= j.

Note, however, that conversely the
i,j

= are not quantifier free definable from
the Ej .

The crucial fact for the desired reduction is that the Ck-theory (respec-
tively Lk-theory) of A is fully captured by the C2-theory (respectively L2-
theory) of the k-th power A[k] of A. This follows directly from Proposition 3.25
where it was shown that even the C2-theory of the game k-graph A(k) de-
termines the Ck-theory of A. Clearly, the C2-theory of A[k] determines that
of A(k) owing to quantifier free interpretability of A(k) in A[k]. In fact Propo-
sition 3.25 says that the k-variable invariants ICk(A) or ILk(A) are Ptime

computable (FP-interpretable) in the 2-variable invariants of the game k-
graphs, IC2

(
A(k)

)
or IL2

(
A(k)

)
. This carries over to the A[k] as well as for

instance IC2

(
A(k)

)
is Ptime computable (FP-interpretable) in IC2

(
A[k]
)
. We

thus have the following, as a corollary to Proposition 3.25.

Proposition 6.21. The two-variable theories of the k-th powers fully deter-
mine the k-variable theories of the base structures:

A[k] ≡L
2

A′[k] ⇒ A ≡L
k

A′ , and A[k] ≡C
2

A′[k] ⇒ A ≡C
k

A′.

Moreover, ICk(A) and ILk(A) are Ptime computable from IC2

(
A[k]
)
and

IL2

(
A[k]
)
, respectively.

1 There is no conflict with the notion of interpretability in the k-th power : this
notion may be identified with (direct) interpretability over the (interpreted) A[k].

6.4 A Reduction to Three Variables 143

Canonization or inversion of the invariants in the three variable case will
prove to be sufficient for Theorems 6.16 and 6.17 because being a k-th power
is definable in three variables, in fact even in L3

ωω.

Lemma 6.22. Let the arities in τ be at most k.

(i) There is a sentence ϕ in L3
ωω[τ

[k]] such that fmod(ϕ) = Γk
(
fin[τ]

)
.

(ii) A is Ptime computable from A[k].

More precisely, (ii) is to say that there is a Ptime algorithm that maps
C ∈ stan[τ [k]] ∩ Γk

(
fin[τ]

)
to a structure B ∈ stan[τ] such that B[k] ≃ C.

The proof of the lemma is postponed — we first show how it applies
to prove Theorems 6.16 and 6.17. For this we need one more simple lemma
about an interpretability relation between certain invariants.

Lemma 6.23. Let m > 2. Then the m-variable theories of of the k-th powers
are fully determined by the mk-variable theories of the base structures:

A ≡L
mk

A′ ⇒ A[k] ≡L
m

A′[k] , and A ≡C
mk

A′ ⇒ A[k] ≡C
m

A′[k].

Moreover, ICm

(
A[k]
)
and ILm

(
A[k]
)
are Ptime computable from ICmk

(
A
)
and

ILmk

(
A
)
, respectively.

Proof. The proof is similar to that of Proposition 3.25: it suffices to check
that the entire inductive generation of the pre-ordering underlying the m-
variable invariant of A[k] can be simulated over the mk-variable invariant of
A. Let ≈i and 4i be the stages in the generation of ≡C

m

and 4 over A[k] as
required for ICm

(
A[k]
)
.

Writing a =
(
a(1), . . . , a(m)

)
formk-tuples over A we indicate their identi-

fication withm-tuples over Ak. A ≈i-class α can be represented over ICmk

(
A
)

as
α =

{
tpC

mk

A

(
a
) ∣∣ (a(1), . . . , a(m)

)
∈ α

}
.

At the atomic level, i = 0, this representation is sound because the atomic
τ [k]-type of

(
a(1), . . . , a(m)

)
is directly determined by the atomic τ -type of a.

It remains to consider the refinement step — soundness of the representation
and Ptime computability in terms of ICmk

(
A
)
. Let α be a ≈i-class, α its

representation. The refinement step is governed by the counting functions

ναj (a) =
∣∣∣
{
b(j)

∣∣ (a(1), . . . , a(m)) b
(j)

∈ α

}∣∣∣

=
∣∣∣
{
b(j)

∣∣ tpCmk

A

(
(a(1), . . . , a(m)) b

(j)

)
∈ α

}∣∣∣.

These values clearly only depend on the Cmk-type of a, and they are Ptime

computable from
(
ICmk

(
A
)
, α
)
. In fact ναj (a) is the cardinality of a definable

k-ary predicate, definable in terms of a union of Cmk-equivalence classes that
is represented over ICmk

(
A
)
through α. ⊓⊔

144 6. Canonization Problems

Proof of Theorem 6.16. Let H3 be a Ptime canonization functor for C3

on fin[τ [k]]. By definition H3 satisfies for all A[k]: H3
(
A[k]
)
≡C

3

A[k]. With

Lemma 6.22 we conclude that H3
(
A[k]
)
∈ Γk

(
fin[τ]

)
, since A[k] ∈ Γk

(
fin[τ]

)

and Γk
(
fin[τ]

)
is closed under C3-equivalence. Therefore H3

(
A[k]
)
≃ B[k] for

some B ∈ stan[τ] that is Ptime computable from H3
(
A[k]
)
by Lemma 6.22.

We infer from Proposition 6.21 that B ≡C
k

A. By Lemma 6.23, H3
(
A[k]
)
and

therefore the resulting B are fully determined by the C3k-theory of A. The
composite mapping Γ−1

k ◦H
3 ◦Γk is thus seen to satisfy the requirements on

K3k,3 in the theorem. The statement concerning the Lk rather than the Ck

is obtained in exactly the same manner. ⊓⊔

In complete analogy we also prove Theorem 6.17.

Proof of Theorem 6.17. Consider first the case with counting quantifiers.
Assume that F 3 is a Ptime inverse for IC3 . For all B: F 3

(
IC3(B)

)
≡C

3

B.

Since membership in Γk
(
fin[τ]

)
is a C3-property by Lemma 6.22, F 3 restricts

to
{
IC3(B)

∣∣ B ∈ Γk
(
fin[τ]

)}
such that

F 3 :
{
IC3(B)

∣∣ B ∈ Γk
(
fin[τ]

)}
−→ stan[τ [k]] ∩ Γk

(
fin[τ]

)
.

Let I be the mapping I: IC3k(A) 7→ IC3

(
A[k]
)
, which is in Ptime accord-

ing to Lemma 6.23. The composite mapping G3k,k = Γ−1
k ◦ F 3 ◦ I satisfies

the requirement of Theorem 6.17:

∀A G3k,k
(
IC3k(A)

)
≡C

k

A.

This is because

F 3 ◦ I
(
IC3k(A)

)
= F 3

(
IC3(A[k])

)
≡C

3

A[k] = Γk(A).

Γ−1
k ◦ F 3 ◦ I

(
IC3k(A)

)
≡C

k

A now follows with Proposition 6.21.
For the case of Lk one merely checks in addition that the modified notion

of Ptime inversion adapted to the ILk carries over from the corresponding
given F 3 to the composite mapping G3k,k. Note that the minimal size of
structures B that are L3-equivalent with A[k] is bounded from above by the
k-th power of the size of any structure B′ that is L3k-equivalent with A. ⊓⊔

Proof of Lemma 6.22. Obviously any A[k] satisfies the following axioms
that are all in L3

ωω.

(1)
∧

i,j

∀x∀y
(
x

i,j

= y ←→ y
j,i

= x
)
.

(2) ∀x∀y
(∧

i

x
i,i

= y ←→ x = y
)
.

(3)
∧

i,j,l

∀x∀y∀z
(
x

i,j

= y ∧ y
j,l

= z −→ x
i,l

= z
)
.

6.4 A Reduction to Three Variables 145

(4)
∧

s⊆{1,...,k}

∀x∀y∃z
(∧

i∈s

z
i,i

= x ∧
∧

i6∈s

z
i,i

= y
)
.

Axioms (1) – (4) exclusively concern the equality structure. We add a finite
schema of axioms that formalize compatibility conditions between the atomic

types as encoded in the Pθ and the equality structure described by the
i,j

=. Let
Ψ be the set of all quantifier free τ [k]-formulae in two variables x and y that
are valid in Γk

(
fin[τ]

)
; we can restrict these to some syntactic normal form

to keep the set finite without changing its semantics. In fact, the quantifier
free kernels of (1) and (2) above are also represented in Ψ . Thus (1) and (2)
become redundant when we now further put

(5) ∀x∀y
∧

ψ∈Ψ

ψ.

We first show that

(A)
any

(
i,j

=
)
-structure satisfying (1) – (4) is isomorphic with a structure(

{0, . . . , n− 1}k, (
i,j

=)
)
with the natural interpretation for the

i,j

=.

The isomorphism is unique up to a permutation of n = {0, . . . , n− 1}.

To prove (A) let B =
(
B, (

i,j

= B)
)
be a model of (1) – (4). Observe that

(1) – (3) imply that the
i,i

= are equivalence relations on B whose common
refinement is equality. Denote by [b]i the equivalence class of b with respect

to
i,i

=. It follows from (2) that

π:B −→
∏
iB/

i,i

=

b 7−→
(
[b]1, . . . , [b]k

)

is an injection. We show that (4) implies π is surjective. Assume to the
contrary that some

(
[b1]1, . . . , [bk]k

)
is not in the image of π. Then at least

one of (
[b1]1, . . . , [bk−2]k−2, [bk−1]k−1, [bk−1]k

)

or
(
[b1]1, . . . , [bk−2]k−2, [bk]k−1, [bk]k

)

is not in the image of π. Otherwise, choosing pre-images under π of these
for x and y and applying (4) with s = {1, . . . , k − 1}, one would get a pre-
image of

(
[b1]1, . . . , [bk]k

)
. Proceeding inductively we obtain that for some b,(

[b]1, . . . , [b]k
)
is not in the image of π, which is clearly absurd. Therefore π

is a bijection. By definition it maps
i,i

= to equality in the i-th component.

Finally, the
i,j

= B induce bijections between the different factors B/
i,i

=.

This follows from (3): (3) implies that
i,j

= is closed under
i,i

= on the left and

under
j,j

= on the right, so that it factorizes to yield a binary relation between

B/
i,i

= and B/
j,j

=. We claim that in this sense it becomes the graph of a
bijection. For reasons of symmetry (1) it suffices to show injectivity, or that

146 6. Canonization Problems

b1
i,j

= b ∧ b2
i,j

= b′ ∧ b
j,j

= b′ =⇒ b1
i,i

= b2,

which is immediate from (3) and (1). Let ρij :B/
i,i

=−→ B/
j,j

= be this bijec-
tion. Then

π̂:B −→ (B/
1,1
=)× · · · × (B/

1,1
=)︸ ︷︷ ︸

k

b 7−→
(
ρi1([b]i)

)
i=1,...,k

is an isomorphism between B and (B/
1,1
=)k with the standard interpretation

for the
i,j

=. We have shown that (A) holds. The proof also shows that the

desired isomorphism with some
(
{0, . . . , n − 1}k, (

i,j

=)
)
is unique up to the

choice of an identification of B/
1,1
= with the appropriate set n. If B is itself

presented as a standard structure over some {0, . . . , nk−1}, then the natural

order on B induces an ordering of B/
1,1
= which can be used to determine a

unique isomorphism of B with
(
{0, . . . , n − 1}k, (

i,j

=)
)
. This isomorphism is

constructible in Ptime.
Assume now that B carries interpretations for the Pθ and is a model also

of (5). For the full claim of the lemma it remains to translate the information
in the Pθ to a τ -interpretation over n.

Let now π:
(
B ↾ (

i,j

=)
)
7−→

(
{0, . . . , n − 1}k, (

i,j

=)
)
be an isomorphism with

the standard model of the equality part. (5) implies in particular that

(a) the PB
θ form a partition of B. Introduce the mapping Θ:B →Atp(τ ; k)

which sends b to that θ with b ∈ PB
θ .

(b) π(b) = (m1, . . . ,mk) implies that the equality type of (m1, . . . ,mk) is as
prescribed in Θ(b).

(c) if π(b) = (m1, . . . ,mk) and π(b
′) = (m′

1, . . . ,m
′
k), then the instantiations(

Θ(b)
)
[m1, . . . ,mk] and

(
Θ(b′)

)
[m′

1, . . . ,m
′
k] are consistent, i.e. respect

the equality type of the tuple (m1, . . . ,mk,m
′
1, . . . ,m

′
k).

It follows that {0, . . . , n − 1} can be expanded to a τ -structure A in a
unique and consistent way by the stipulation that atpA

(
π(b)

)
= Θ(b). Thus

π becomes an isomorphism between B and A[k]. A can obviously be computed
from π and B in polynomial time, so that the second claim of Lemma 6.22
also follows. ⊓⊔

It is interesting to note that in the above L3
ωω-axiomatization three vari-

ables are necessary for the transitivity conditions (3) and the sentence (4),
which ensures surjectivity of π. A condition to the effect of (4) can actually
also be formalized in C2

∞ω. Let χn be the sentence

∃=mxx=x ∧
∧

i

∀x ∃=sy x
i,i

= y

with m = nk, s = nk−1. Then (4) above can be replaced by
∨
n χn. One

obtains an axiomatization of Γk
(
fin[τ]

)
in C3

∞ω that uses three variables only

in the transitivity conditions for the
i,j

= in (3).

6.4 A Reduction to Three Variables 147

6.4.2 Remarks on Further Reduction

This aside is of a more technical nature. The proofs of Theorems 6.16 and 6.17
given in Section 6.4.1 need seemingly weaker assumptions than full Ptime
canonization (or inversion of the invariants) in the three variable cases. We
strengthen the formulation accordingly in this section. As all these consider-
ations remain hypothetical — we have no well founded conjecture whether
Ptime ∩ Cω∞ω or Ptime ∩ Lω∞ω can indeed be captured — the interest in
these ramifications mainly is a technical one. We explicitly address the Ck

in this aside, but once more everything translates to the Lk. Consider the
situation with respect to canonization. The proof of Theorem 6.16 rests on
the existence of Ptime computable functors

H0: fin[τ
[k]] −→ stan[τ [k]] ∩ Γk

(
fin[τ]

)
(6.1)

such that for all C and C′ in the domain of H0:

H0

(
C
)
≡C

2

C

C ≡C
m

C′ → H0

(
C
)
= H0

(
C′
) (6.2)

for some m. From these we obtain ‘weak canonization functors’ Kmk,k from
fin[τ] to stan[τ] that satisfy

∀A Kmk,k(A) ≡C
k

A,

∀A∀A′ A ≡C
mk

A′ → Kmk,k(A) = Kmk,k(A′).

In the proof of Theorem 6.16 we have explicitly used this construction for
a proper canonization functor H for C3

∞ω in place of H0 and with m = 3.

Note that in this special case both H
(
A[k]
)
∈ Γk

(
fin[τ]

)
and H

(
A[k]
)
≡C

2

A[k]

are consequences of the stronger requirement that

H
(
A[k]
)
≡C

3

A[k].

Surprisingly, a twofold application of the reduction schema leads to a
further reduction in the assumptions expressed in equations 6.1 and 6.2.
One need only assume the existence of such H0 for k = 3. In particular this
amounts to a reduction to vocabularies τ [3] with a fixed set of binary relations

(
i,j

=)16i,j63 and only unary predicates besides.

Proposition 6.24. Assume that for each τ there is a Ptime functor

H: fin
[(
τ [k]
)
[3]
]
−→ stan

[(
τ [k]
)
[3]
]
∩ Γ3

(
fin
[
τ [k]
])

such that for all C,C′ ∈ fin[
(
τ [k]
)
[3]] and some fixed m:

H
(
C
)
≡C

2

C

C ≡C
m

C′ → H
(
C
)
= H

(
C′
)
.

148 6. Canonization Problems

Then H0 := Γ−1
3 ◦ H ◦ Γ3 satisfies the conditions in equations 6.1 and 6.2,

with 3m in place of m and consequently K3mk,k := Γ−1
k ◦ Γ−1

3 ◦H ◦ Γ3 ◦ Γk
provides ‘weak canonization’ for Ck∞ω in the sense of Theorem 6.16 on fin[τ]:

∀A K3mk,k(A) ≡C
k

A,

∀A∀A′ A ≡C
3mk

A′ → K3mk,k(A) = K3mk,k(A′).

Sketch of Proof. The crucial observation is that H0 := Γ−1
3 ◦H ◦ Γ3 is well

defined, has image in Γk
(
fin[τ]

)
and satisfies for all A ∈ fin[τ]: H0

(
A[k]
)
≡C

2

A[k].
Let A ∈ fin[τ], A[k] its k-th power. Let H

((
A[k]
)
[3]
)
≃ B[3]. By Propo-

sition 6.21 we know that
(
A[k]
)
[3] ≡C

2

B[3] implies that A[k] ≡C
3

B. By
Lemma 6.22, B therefore is itself a k-th power. A further application of

Proposition 6.21 yields Γ−1
k (B) ≡C

k

A. As H(C) only depends on the Cm-
theory of C by assumption, it follows that

[
H ◦ Γ3

]
(A) is determined by the

C3m-theory of A and finally that
[
H ◦Γ3 ◦Γk

]
(A) is fully determined by the

C3mk-theory of A (compare Lemma 6.23). ⊓⊔

7. Canonization for Two Variables

In this chapter we prove that both L2
∞ω and C2

∞ω admit Ptime canonization.
We do so by exhibiting Ptime inverses for IL2 and IC2 . The inversion for IL2

is even Ptime in terms of the size of the IL2 , a phenomenon that we know
to be peculiar to the two variable case. These are the main theorems:

Theorem 7.1. IL2 admits Ptime inversion in the strong sense that for each
finite relational τ there is a Ptime functor F :

{
IL2(A)

∣∣ A ∈ fin[τ]
}
→

stan[τ], which is an inverse for IL2 :

∀A F
(
IL2A

)
≡L

2

A.

It follows that

(i) the range of IL2 can be recognized in Ptime.
(ii) L2

∞ω admits Ptime canonization.
(iii) Ptime ∩ L2

∞ω is recursively enumerable (has a recursive presentation).
(iv) Ptime ∩ L2

∞ω ≡ FP
(
IL2

)
≡ Ptime

(
IL2

)
.

Compare the general Theorems 6.11 and 6.14 for (ii) and (iii). (i) is ob-
vious: for I of the format of an L2-invariant, I ∈

{
IL2(A)

∣∣ A ∈ fin[τ]
}

if and only if F (I) ∈ fin[τ] and IL2

(
F (I)

)
= I. (i) and the strong form

of (iv) (if compared to the statement of Theorem 6.14) are consequences of
polynomiality of F in the usual sense.

Theorem 7.2. IC2 admits Ptime inversion. For each finite relational τ
there is a Ptime functor F :

{
IC2(A)

∣∣ A ∈ fin[τ]
}
→ stan[τ], which is an

inverse for IC2 :

∀A F
(
IC2A

)
≡C

2

A.

It follows that

(i) the range of IC2 can be recognized in Ptime.
(ii) C2

∞ω admits Ptime canonization.
(iii) Ptime ∩ C2

∞ω is recursively enumerable (has a recursive presentation).
(iv) Ptime ∩ C2

∞ω ≡ FP
(
IC2

)
≡ Ptime

(
IC2

)
.

150 7. Canonization for Two Variables

The construction of the inverses is reduced to a combinatorial problem
that only deals with the abstract information about the corresponding two-
pebble games as represented in the invariants. The relational information
encoded in the invariants through the identification of atomic types is at first
suppressed for this purpose. The reduced invariants, stripped of the relational
particulars, are what we shall call game tableaux.

• These game tableaux are introduced in Section 7.1. The inversion problems
for IL2 and IC2 are reduced to the problem of constructing realizations for
tableaux.

• In Section 7.2 such realizations are constructed in the case of C2.

• Section 7.3 deals with the corresponding constructions in the case of L2.

7.1 Game Tableaux and the Inversion Problem

For the start L2
∞ω and C2

∞ω can be treated in parallel. Recall from Defi-
nitions 3.3 and 3.11 the format of the invariants IC2 and IL2 . The special
situation in dimension two allows for certain simplifications in their presen-
tation. Consider IC2 first. In the original format:

IC2(A) =
(
A2
/
≡C

2

,6,
(
Pθ
)
θ∈Atp(τ ;2)

,
(
Ej
)
j=1,2

,
(
Sρ
)
ρ∈S2

;
(
νj
)
j=1,2

)
.

As pointed out in the general case, it suffices to retain one of the Ej
and νj each, since the other one remains definable with the help of S(1,2),
the encoding of the permutation that exchanges first and second component.
This permutation is the only member of S2 apart from the identity. In the
following we denote by T (for transposition) both this exchange of first and
second component as a member of S2 and its operation on the elements of
IC2 . The graph of this operation, S(1,2), is also denoted T . This is not likely
to cause any confusion, since the transition between these representations is
trivial. Retaining E := E2 and ν := ν2, we get:

E1 = ET :=
{
(α, α′)

∣∣ (Tα, Tα′) ∈ E
}
,

ν1 = νT := ν ◦ T.

We separate the equality type information from the remaining relational
atomic information in the Pθ by putting

∆ :=
{
α
∣∣ (a1, a2) ∈ α⇒ a1=a2

}
.

For notational convenience finally, the partition of the universe into the
Pθ is replaced by a function Θ:A2/ ≡C

2

→ Atp(τ ; 2). We thus obtain the
following format for the IC2 , which is obviously interdefinable at first-order
level with the former one:

7.1 Game Tableaux and the Inversion Problem 151

IC2(A) =
(
A2/ ≡C

2

,6, E, T,∆;Θ, ν
)
. (7.1)

The same modifications apply to IL2 :

IL2(A) =
(
A2/ ≡L

2

,6, E, T,∆;Θ
)
. (7.2)

Proviso. For the purposes of this chapter we fix the special format for the
two-variable invariants according to equations 7.1 and 7.2 above. We re-
gard both IC2 and IL2 as (standard representations of) ordered weighted
κ-structures, where κ :=

{
6, E, T,∆

}
.

We collect a few obvious facts about the κ-reducts of two-variable invari-
ants, no matter whether IC2 or IL2 , in the following lemma.

Lemma 7.3. Let Q =
(
Q,6, E, T,∆

)
be the κ-reduct of some IC2(A) or

IL2(A). Then Q satisfies the following:

(i) E is an equivalence relation on Q.
(ii) T is (the graph of) an involutive function from Q to Q: T ◦ T = idQ.
(iii) ∆ consists of points fixed under T : T ↾ ∆ = id∆.
(iv) each E-class contains exactly one element from ∆.

Proof. (i) – (iii) are obvious on the basis of the definitions. Note in connection
with (i) that for the underlying invariant IC2(A) or IL2(A) an E-class exactly
corresponds to the type of a single element of A. This may be seen as follows.
Let L = C2

∞ω or L2
∞ω, IL the corresponding invariant,Q = IL(A)↾κ. Let q be

the E-class of an element α ∈ Q. Fix some (a1, a2) such that α = tpLA
(
a1, a2

)
.

Then by definition q consists of exactly those α′ with α′ = tpLA
(
a1, a

′
2

)
for

some a′2 ∈ A. Let β = tpLA
(
a1
)
. β is fully determined by q since it exactly

consists of all those formulae ϕ(x1) ∈ L[τ] that are members of all α′ ∈ q.
Conversely, q itself is completely determined by β, since α′ ∈ Q if and only
if ∃x2ϕα′(x1, x2) ∈ β, for some formula ϕα′(x1, x2) that isolates α

′.
For (iv) first observe that there must be an element from∆ in each E-class

of a real invariant. If α = tpLA
(
a1, a2

)
, then tpLA

(
a1, a1

)
is in ∆ and E-related

with α. For uniqueness as claimed in (iv) consider δ1, δ2 ∈ ∆ and assume that
δ1 and δ2 are E-related. δ1 = tpLA

(
a1, a1

)
for some a1, and by E-relatedness

there must be some a2 such that δ2 = tpLA
(
a1, a2

)
. Since δ2 ∈ ∆, a1 = a2 and

therefore δ1 = δ2. ⊓⊔

The following definition introduces the term game tableaux for those κ-
structures that are candidates for the relational parts of two-variable invari-
ants according to the last lemma. Note that Θ, the assignment of relational
atomic types, is not made part of the game tableaux.

Definition 7.4. A finite κ-structure Q =
(
Q,6, E, T,∆

)
is called a game

tableau if and only if 6 is a linear ordering on Q and Q satisfies conditions
(i) – (iv) of Lemma 7.3. A weighted game tableau is a game tableau Q

together with a weight function ν:Q→ ω \ {0}.

152 7. Canonization for Two Variables

The size of a game tableau Q is its size as a relational structure, i.e. the
size of its universeQ. The size of a weighted game tableau (Q; ν) is taken to be∑
α∈Q ν(α). These conventions ensure that the size of the original invariant

is polynomially related to the size of the abstracted tableau.
As the Q and (Q; ν) are linearly ordered, we may think of them as stan-

dard objects. The standardization is then implicitly assumed to be the same
as for the IL2 and IC2 in their new format.

Note that the class of game tableaux is first-order definable. Game
tableaux and weighted game tableaux are recognizable in Logspace. The
following lemma isolates some obvious conditions on the function Θ that in
real invariants associates relational types with the elements of the invariant.
The proof is immediate and similar to that of Lemma 7.3 above.

Lemma 7.5. Let Q be the κ-reduct of IC2(A) or IL2(A) for some A, Θ:Q→
Atp(τ ; 2) the mapping that associates the relational atomic types with the
elements of the invariant. Then Θ satisfies the following conditions:

(i) if α ∈ ∆ then Θ(α) is the type of an identity pair: x1=x2 ∈ Θ(α).
(ii) for all α ∈ Q, Θ

(
T (α)

)
is the atomic type obtained from Θ

(
α
)
by ex-

changing x1 and x2 in all formulae.
(iii) if δ is the unique element of ∆ that is in the E-class of α, then Θ(δ)

contains all formulae ϕ(x1) from Θ(α).

Note that the syntactic conditions in (i), (ii) and (iii) completely deter-
mine Θ

(
T (α)

)
in terms of Θ(α) in (ii) and Θ(δ) in terms of Θ(α) in (iii).

Definition 7.6. Let Q be a game tableau, Θ a function from its domain to
Atp(τ ; 2) for some τ . Θ is a good extension of Q if conditions (i) – (iii) of
Lemma 7.5 are satisfied.

It can be checked in Logspace whether Θ is a good extension of Q.

The inversion of an invariant asks for the construction of a relational
structure over some n such that the types of pairs in this structure fit the
specifications laid down in the given invariant. We first approach this prob-
lem at the level of the underlying game tableaux or weighted game tableaux
— the relational atomic types, as encoded in the Θ, are disregarded at first.
Correspondingly, the result of this approach is somewhat less than a rela-
tional structure. We shall call it a realization of the given game tableau. It
turns out that these realizations govern the combinatorial pattern of rela-
tional structures to such an extent that the plain relational information in
Θ need only be added in later. Formally we describe the desired realizations
as mappings that associate pairs over some standard domain with elements
of the game tableau. The intention is that — once we also plug in relational
information — this mapping will actually be the projection sending pairs to
their types.

7.1 Game Tableaux and the Inversion Problem 153

Definition 7.7. Let Q be a game tableau. A surjective mapping π:n×n→ Q
is called a realization of Q over the standard domain n, if the following
conditions are satisfied, where m1,m2 range over the elements of n:

(i) π respects the diagonal: π(m1,m2) ∈ ∆ if and only if m1 = m2.
(ii) π respects T : π(m1,m2) = T

(
π(m2,m1)

)
, i.e. π commutes with T .

(iii) π respects E: The E-class of π(m1,m2) is the set of all π(m1,m
′
2) for

m′
2 ∈ n.

If ν:Q → ω \ {0} is a weight function on Q, then we further say that π
realizes the weighted tableau (Q; ν) if also

(iv) π is compatible with ν:
ν
(
π(m1,m2)

)
=
∣∣{m′

2 ∈ n
∣∣ π(m1,m

′
2) = π(m1,m2)

}∣∣.

Obviously the definition states a number of conditions that are always
satisfied in case that Q (and ν) are derived from a real invariant of a structure
over n and if π is the natural projection sending pairs of elements to their
types. We state this fact as a lemma; the proof is trivial.

Lemma 7.8. Let A ∈ stan[τ] be a τ -structure over universe n. Let L =
C2

∞ω or L2
∞ω, IL(A) the corresponding invariant. Let Q be the induced game

tableau, so that Q = TpL(A; 2). Put

π: n× n −→ Q
(m1,m2) 7−→ tpLA

(
m1,m2

)
.

Then π is a realization of the tableau Q. In case L = C2
∞ω and if ν is the

weight function of IC2(A), π is a realization of the weighted tableau (Q; ν).

A realization of a game tableau over n, together with attributions of
atomic τ -types (in the form a some good extension) uniquely determines
a τ -structure with domain n. Let Q be realized by π:n × n → Q and let
Θ:Q→ Atp(τ ; 2) be good in the sense of Definition 7.6. Assume first that τ
contains no relation symbols of arity greater than 2. Then there is a unique
structure A

(
π,Θ

)
∈ stan[τ] over n for which

∀m1∀m2 atpA
(
m1,m2

)
= Θ

(
π(m1,m2)

)
.

Uniqueness is obvious. For the existence claim one has to check that the con-
ditions expressed in the above equations are compatible. The requirements
for realizations and for good Θ are designed just to guarantee this compat-
ibility. For instance if m1 = m2, we have, by a corresponding condition on
realizations, that π(m1,m1) ∈ ∆, whence it follows that Θ

(
π(m1,m1)

)
is

an atomic type of an identity pair. For any m1,m2 ∈ n, compatibility of
Θ
(
π(m1,m2)

)
with Θ

(
π(m1,m1)

)
follows from the fact that π(m1,m1) must

be the unique element of ∆ in the E-class of π(m1,m2), since π respects E.
But then Θ

(
π(m1,m1)

)
corresponds to the restriction of Θ

(
π(m1,m2)

)
to

the first component as Θ is good.

154 7. Canonization for Two Variables

In order to extend the definition of A
(
π,Θ

)
in a well-defined way to the

general case in which relation symbols of arity greater than 2 are admitted
in τ , we stipulate that no tuple involving more than two distinct components
is put into the interpretation of such relations.

Definition 7.9. For a realization π:n × n → Q of a game tableau Q and
good Θ:Q → Atp(τ ; 2) let A

(
π,Θ

)
be the unique τ -structure over standard

universe n induced by π and Θ as described above.

Note that A
(
π,Θ

)
is constructible from π and Θ in Ptime.

The following is an obvious statement to the effect that in the intended
case — the case that all the data are obtained from a real structure over some
standard universe — A

(
π,Θ

)
essentially reproduces that original structure.

Lemma 7.10. Let A ∈ stan[τ], L = C2
∞ω or L2

∞ω, Q the game tableau
induced by IC2(A) or IL2(A), respectively. Let Θ:Q → Atp(τ ; 2) be the good
extension induced by the invariant itself. Let π:n×n −→ Q be the realization
that is the natural projection π:A2 → A2/ ≡L. If τ contains no relation
symbols of arity greater than 2 then A

(
π,Θ

)
= A. Otherwise A and A

(
π,Θ

)

agree on all atoms involving at most two elements, so that at least A ≡L

A
(
π,Θ

)
.

The following proposition is crucial for showing that inversion for the IC2

and IL2 reduces to the construction of realizations for (weighted) tableaux.

Proposition 7.11. Let Q be a game tableau, Θ:Q → Atp(τ ; 2) a good ex-
tension of Q.

(i) If π and π′ are any two realizations of Q then A
(
π,Θ

)
≡L

2

A
(
π′, Θ

)
.

(ii) If ν:Q → ω \ {0} is a weight function on Q and π and π′ are any two

realizations of the weighted tableau (Q; ν) then A
(
π,Θ

)
≡C

2

A
(
π′, Θ

)
.

Proof. Consider (ii), the case of C2. It has to be shown that A := A
(
π,Θ

)

and A′ := A
(
π′, Θ

)
satisfy exactly the same C2-types. Using the game char-

acterization for C2-equivalence, Theorem 2.2, we show that player II has a
strategy to maintain the condition that π(a1, a2) = π′(a′1, a

′
2) throughout all

stages
(
A, (a1, a2);A

′, (a′1, a
′
2)
)
in the infinite Ck-game. This is the natural

condition since realizations are modelled to describe the projections to the
C2-types. This condition is also sufficient for a strategy in the game since
the atomic types of pairs over A and A′ are determined by Θ ◦ π and Θ ◦ π′

respectively.
Assume that π(a1, a2) = π′(a′1, a

′
2) = α0 in the current position. Every-

thing is explicitly symmetric with respect to A and A′ and implicitly also with
respect to first or second component, since realizations and good extensions
respect T . Let therefore without loss of generality player I choose pebble 2
and put forward the challenge B ⊆ A. Let q ⊆ Q be the E-class of α0. For
each α ∈ q, let Bα :=

{
b ∈ B

∣∣ π(a1, b) = α
}
. It follows that B is the disjoint

7.1 Game Tableaux and the Inversion Problem 155

union of the Bα — only α ∈ q need be considered since π respects E. Since π is
also compatible with ν,

∣∣Bα
∣∣ 6 ν(α). π′ respects E and ν as well so that in A′

there are disjoint subsets B′
α ⊆

{
b′ ∈ A′

∣∣ π′(a′1, b
′) = α

}
with

∣∣Bα
∣∣ =

∣∣B′
α

∣∣.
In fact, for each α ∈ q we have that the size of

{
b′ ∈ A′

∣∣ π′(a′1, b
′) = α

}
must

be ν(α). Let II respond with B′ :=
⋃
α∈q B

′
α. In the second exchange of this

round I now chooses b′ ∈ B′
α for some α ∈ q, so that II can answer with any

b ∈ Bα and the desired equality π(a1, b) = π′(a′1, b
′) = α is maintained. ⊓⊔

Together with Lemma 7.10 this proposition yields the main preparatory
result for the construction of inverses: full reduction of the inversion problem
to that of finding realizations. We give separate statements for L2

∞ω and C2
∞ω.

Theorem 7.12. Let Q be a game tableau, Θ:Q→ Atp(τ ; 2) a function. The
following are equivalent:

(i)
(
Q;Θ

)
= IL2(A) for some A ∈ fin[τ].

(ii) Θ is a good extension of Q and there is a realization π of Q
such that IL2

(
A
(
π,Θ

))
=
(
Q;Θ

)
.

(iii) Θ is a good extension of Q, there is a realization of Q, and for all
realizations π of Q: IL2

(
A
(
π,Θ

))
=
(
Q;Θ

)
.

Theorem 7.13. For a weighted game tableau (Q; ν) and a function Θ:Q→
Atp(τ ; 2) the following are equivalent:

(i)
(
Q;Θ, ν

)
= IC2(A) for some A ∈ fin[τ].

(ii) Θ is a good extension of Q and there is a realization π of (Q; ν)
such that IC2

(
A
(
π,Θ

))
=
(
Q;Θ, ν

)
.

(iii) Θ is a good extension of Q, there is a realization of (Q; ν), and for all
realizations π of (Q; ν): IC2

(
A
(
π,Θ

))
=
(
Q;Θ, ν

)
.

Proof. The proof is indicated for the case of C2: (iii) ⇒ (ii) ⇒ (i) is obvi-
ous. Assume (i). Without loss of generality A ∈ stan[τ]. Then the natural

projection π:A2 → A2
/
≡C

2

yields a realization, see Lemma 7.8. Any two

realizations of (Q; ν) lead to C2-equivalent structures A
(
π,Θ

)
by Proposi-

tion 7.11; we therefore get (iii). ⊓⊔

These theorems reduce the proof of the main theorems on Ptime inversion
for IL2 and IC2 to the following claims. Recall for complexity considerations
that the size of a tableau Q is the size of its universe Q as usual, while the
size of a weighted tableau (Q; ν) is

∑
α∈Q ν(α).

Theorem 7.14. There are Ptime algorithms A and A∗ defined on all κ-
structures Q, respectively on all κ-structures with positive weights (Q; ν),
such that

(a) if Q is a game tableau that admits any realization then A applied to Q

yields a realization of Q.
(b) if (Q; ν) is a weighted game tableau that admits any realization then A∗

applied to (Q; ν) yields a realization of (Q; ν).

156 7. Canonization for Two Variables

Such algorithms provide the basis for Theorems 7.1 and 7.2. We sketch
an algorithm F as required in Theorem 7.1 with respect to L2

∞ω. The case of
C2

∞ω is entirely analogous. The input is a structure I =
(
Q;Θ

)
of the format

of an IL2(A). The following diagram describes the desired algorithm:

• I =
(
Q;Θ

)
; check whether Q is a game tableau and

whether Θ is a good extension of Q

if Q is not a game tableau, or if Θ is not a
good extension of Q, then I 6∈ range

(
IL2

)

• In the positive case apply A to Q and check whether
the output A(Q) is a realization of Q

if the output is not a realization of Q, then
I 6∈ range

(
IL2

)

• Let in the positive case π = A
(
Q
)
be that realization

• Construct A
(
π,Θ

)
∈ stan[τ]

• Compute IL2

(
A
(
π,Θ

))
and compare with I

if IL2

(
A
(
π,Θ

))
6= I, then I 6∈ range

(
IL2

)

• In the positive case output F
(
I
)
:= A

(
π,Θ

)
.

Correctness essentially depends on Theorem 7.12, which says that any
realization of the game tableau leads to a successful construction of an inverse
to the invariant if there is any! The rest of this chapter is devoted to the proof
of Theorem 7.14.

7.1.1 Modularity of Realizations

This section exhibits an important modularity property of the game tableaux
that facilitates the construction of realizations. The overall problem can be
decomposed into simpler subproblems, whose solutions form the building
blocks for the desired realization.

Definition 7.15. Let Q be a game tableau. We enumerate the E-classes as
q1, . . . , ql. Here l =

∣∣Q/E
∣∣ and the ordering is that induced by 6Q in terms

of 6-least elements of the classes.

(i) We denote by δi the unique element of qi ∩∆.
(ii) Let qTi :=

{
Tα

∣∣ α ∈ qi
}
.

(iii) Let qij := qi ∩ q
T
j .

7.1 Game Tableaux and the Inversion Problem 157

Note that the qTi are the equivalence classes with respect to ET , defined by
ET =

{
(α, α′)

∣∣ (Tα, Tα′) ∈ E
}
. For real invariants ET = E1 is accessibility

via a move in the first component. Note also that T (qij) = qji and that
therefore qij ∩ qji = ∅ unless i = j; in this case, δi ∈ qii 6= ∅. Simple examples
show, however, that by no means need qii = {δi}. Consider a directed cycle
of length 4 as a graph. For the associated C2-invariant there is only one type
in ∆, E and ET are both trivial, but there are 4 different C2-types.

Fig. 7.1

q21

q12

q13 q23

q31

q32

··
δ1
··

··
·
δ2
··
·

··
··
··
·
δ3
··
··
··
·

qT1

{

qT2

qT3

︸ ︷︷ ︸
q1

︸ ︷︷ ︸
q2

︸ ︷︷ ︸
q3

ET� -

E

6

?

The following characterization of the qij is technically very useful, for a
pictorial presentation see Figure 7.1. In Figure 7.1 the fine structure of Q is
depicted as projected onto some n× n square that would be a realization.

Lemma 7.16. Let Q be a game tableau, π be a realization of Q. Then

π(m1,m2) ∈ qij if and only if π(m1,m1) = δi ∧ π(m2,m2) = δj .

Proof. Observe that π(m1,m2) ∈ qij implies that π(m1,m2) and δi are E-
related. Therefore there must be some m′

2 such that π(m1,m
′
2) = δi. As π

respects ∆, m′
2 = m1, so that π(m1,m1) = δi. Applying the same argument

to ET we get π(m2,m2) = δj .
Conversely, π(m1,m1) = δi ∈ qi implies π(m1,m2) ∈ qi for all m2. Re-

peating the same argument we get that π(m2,m2) = δj implies π(m2,m1) ∈
qj so that π(m1,m2) ∈ qTj . Putting these together, π(m1,m1) = δi and
π(m2,m2) = δj imply π(m1,m2) ∈ qij . ⊓⊔

We define the restrictions of a game tableau Q to its subdomains qij . Note
that in restriction to each qij the equivalence relations E and ET become

158 7. Canonization for Two Variables

trivial since the qij are the classes of the common refinement of the two. As
for ∆ it is obvious that ∆ ∩ qij = ∅ if i 6= j, and ∆ ∩ qii = {δi}. T is an
involutive mapping from qii to itself, and turns into a bijection between qij
and qji for i 6= j. If we also consider weighted tableaux, it makes sense to
retain both weight functions, ν and νT over each qij with i 6= j since T is no
longer internal to qij .

Definition 7.17. Let Q be a game tableau, the qij as defined in Defini-
tion 7.15. The restriction of Q to qij is defined to be

Qij :=

{ (
qii,6↾ qii, T ↾ qii, {δi}

)
for the diagonal case j = i

(
qij ,6↾ qii

)
for the off-diagonal case i 6= j.

For the restrictions of a weighted tableau (Q; ν), put

(Q; ν)ij :=

{ (
Qii; ν ↾ qii

)
for j = i

(
Qij ; ν ↾ qij , ν

T ↾ qij
)

for i 6= j.

This decomposition calls for an adapted notion of realizations. The modi-
fications and simplifications required with respect to Definition 7.7 are canon-
ical. The diagonal restrictions to the qii can in fact be regarded as special
cases of game tableaux, with trivial E. It is only for the off-diagonal boxes
that formal modifications are required.

Definition 7.18. Let Q be a game tableau, Qij its restriction to a subdomain
qij. Assume first i 6= j. A surjective mapping π: s × t → qij is a realization
of Qij, if for all m1 ∈ s and all m2 ∈ t:

{
π(m1,m

′
2)
∣∣ m′

2 ∈ t
}
=
{
π(m′

1,m2)
∣∣ m′

1 ∈ s
}
= qij .

π realizes the weighted restriction (Q; ν)ij = (Qij ; ν ↾ qij , ν
T ↾ qij) if for all

α ∈ qij, m1 ∈ s and all m2 ∈ t:
∣∣{m′

2 ∈ t
∣∣ π(m1,m

′
2) = α

}∣∣ = ν(α),
∣∣{m′

1 ∈ s
∣∣ π(m′

1,m2) = α
}∣∣ = νT (α).

For i = j the conditions that a surjective mapping π: s× s→ qii realizes Qii

or (Q, ν)ii are those of Definition 7.7 applied to the game tableau
(
qii,6↾

qii, qii × qii, T ↾ qii, {δi}
)
and to the weighted game tableau

(
qii,6↾ qii, qii ×

qii, T ↾ qii, {δi}; ν ↾ qii
)
.

Suppose π:n × n → Q is a realization of Q or (Q, ν) over n. Let n be
decomposed into the subsets

{
m ∈ n

∣∣ π(m,m) = δi
}
. Obviously, n is the

disjoint union of these. Without loss of generality we may assume that n
is the disjoint ordered sum n =

∑
i ni, ni =

{
m ∈ n

∣∣ π(m,m) = δi
}
.

Formally this means that n1 is identified with an initial subset of n, n2
consists of a consecutive interval following that initial segment and so on. In

7.1 Game Tableaux and the Inversion Problem 159

particular identifying n with the disjoint ordered sum of the ni implies that
the subsets ni are embedded in a well-defined way into n such that n is the
disjoint union of the embedded ni. In the present case this situation may
be assumed without loss of generality because a realization over n can be
composed with any permutation of n in the obvious manner to yield a new
realization, equivalent with the former one for our purposes.

With such a presentation of n =
∑
i ni, ni =

{
m ∈ n

∣∣ π(m,m) = δi
}
, we

immediately have that the restrictions of π to the subsets ni × nj ⊆ n × n
provide realizations for the restrictions Qij and (Q; ν)ij . It is straightfor-
ward to check the conditions mentioned in the last definition. Let us supply
the argument for surjectivity of πij := π ↾ ni × nj → qij : by Lemma 7.16,
π(m1,m2) ∈ qij if and only if π(m1,m1) = δi and π(m2,m2) = δj , i.e. if and
only ifm1 ∈ ni andm2 ∈ nj . Thus surjectivity of πij follows from surjectivity
of π itself.

The interesting fact is that, conversely, realizations of the individual re-
strictions can be fit together to form a realization of the whole (weighted)
tableau if they satisfy just the most obvious compatibility conditions relating
the sizes of the subdomains.

Lemma 7.19. Let Q be a game tableau, Qij, 1 6 i, j 6 l, its restrictions
to the qij defined as above. Assume that for some tuple (ni)16i6l of positive
numbers there are surjective mappings πij :ni × nj → qij for each 1 6 i 6
j 6 l, such that πij is a realization of Qij. Then the following is a realization
of Q on the disjoint ordered sum n :=

∑
i ni:

π(m1,m2) :=

{
πij(m1,m2) if m1 ∈ ni, m2 ∈ nj, i 6 j,

Tπji(m2,m1) if m1 ∈ ni, m2 ∈ nj, j < i.

The same holds for realizations of a weighted tableau (Q; ν).

Before giving a proof, let us note that together with the preceding consid-
erations we have thus found that a (weighted) game tableau is realizable if
and only if its restrictions are realizable over subdomains of matching sizes.
In terms of at first arbitrary domains for the realization of the restrictions,
πij :n

ij
1 × nij2 → qij the conditions for matching size are that the nij1 are

independent of j, and that the nij2 are independent of i.

Proposition 7.20. A game tableau Q has a realization over n if and only if
n =

∑
i ni for ni > 0 such that each of its restrictions Qij admits a realization

over ni × nj.
Similarly, a weighted game tableau (Q; ν) has a realization over n if and

only if n =
∑
i ni such that its restrictions (Q; ν)ij admit realizations over

ni × nj, for all i, j.

Proof (of Lemma 7.19). Recall from Definition 7.7 the conditions on a real-
ization π ofQ. It is clear that π as defined above is surjective, since the πij are

160 7. Canonization for Two Variables

surjective mappings to the qij and since Q =
⋃
qij =

⋃
i6j qij ∪

⋃
j<i Tqji as

qij = Tqji. π respects the diagonal, because the πii do. π commutes with T ,
because the πii do and because the appropriate transformation under T is ex-
plicitly built into π on the off-diagonal boxes. We check that π is correct with
respect to E. By construction, π(m1,m2) ∈ qij if and and only if m1 ∈ ni
and m2 ∈ nj . Varying m′

2 ∈ nj′ we get
{
π(m1,m

′
2)
∣∣ m′

2 ∈ nj′
}

= qij′ ,
since the corresponding behaviour is required of the πij′ or πj′i. Therefore{
π(m1,m

′
2)
∣∣ m′

2 ∈ n
}
= qi as required.

The proof for a weighted tableau is similar. The multiplicity requirements
for the realizations πij of the restrictions immediately imply that also the
composition π realizes the multiplicities prescribed by the overall weight func-
tion. ⊓⊔

We now pursue the actual constructions of realizations in separate presen-
tations for L2

∞ω and C2
∞ω. There are more constraints in the case of C2

∞ω, so
that the constructions are more difficult. On the other hand these construc-
tions appear more straightforward because there are more data available and
correspondingly fewer arbitrary choices to be made. We treat C2

∞ω or the re-
alization of weighted tableaux first and specialize and modify this treatment
in Section 7.3 to obtain the results for L2

∞ω.

7.2 Realizations for IC2

7.2.1 Necessary Conditions

The numerical information contained in the IC2 , and in the weighted game
tableaux that derive from these, fixes the size of a possible realization and
the ni as in the compatibility conditions in Proposition 7.20. Fix a weighted
game tableau (Q; ν), with qi, qij , δi for 1 6 i, j 6 l defined according to
Definition 7.15. Further define the numbers

nj :=
∑

α∈qij

ν(α) and n :=
∑

i

ni.

An equivalent definition of ni in terms of (Q; ν)ij is ni =
∑
α∈qij

νT (α).
Equivalence with the above is a consequence of the fact that T is an involutive
bijection between qij and qji and that, by definition, νT = ν ◦ T .

Lemma 7.21. Let the ni and n be as just defined. If (Q; ν) has any real-
ization, then it must be over n. The induced realizations of the restrictions
(Q; ν)ij must be over domains ni × nj.

Proof. Let π be a realization of (Q; ν) over s. By Lemma 7.16, π(m1,m2) ∈
qij if and only if π(m1,m1) = δi and π(m2,m2) = δj . Choose m1 ∈ s such
that π(m1,m1) = δi. Then

7.2 Realizations for IC2 161

∣∣{m2 ∈ s
∣∣ π(m1,m2) ∈ qij

}∣∣ =
∑
α∈qij

ν(α) = nj .

It further follows that also nj =
∣∣{m2 ∈ s

∣∣ π(m2,m2) = δj
}∣∣.

Note in particular, that these numbers depend on j and not on i. This
is just the compatibility condition of Proposition 7.20. Applying the same
argument to variations in the first component, and with fixed m2 for which
π(m2,m2) = δj , we obtain

∣∣{m1 ∈ s
∣∣ π(m1,m2) ∈ qij

}∣∣ =
∑
α∈qij

νT (α)

=
∑
α∈qji

ν(α) = ni.

This shows that the induced realization of (Q; ν)ij must be over ni × nj .
The first claim of the lemma, s =

∑
i ni, follows directly from Proposi-

tion 7.20. ⊓⊔

The following lemma states some necessary conditions for the realizability
of (Q; ν) in terms of the restrictions (Q; ν)ij . Sufficiency of these conditions
will be shown in the sequel.

Lemma 7.22. Any realization of (Q; ν)ij is over ni × nj. Recall that the
numbers ni and nj are defined in terms of (Q; ν)ij as

ni =
∑

α∈qij

νT (α) and nj =
∑

α∈qij

ν(α).

If (Q; ν)ij has a realization then for all α ∈ qij:

(∗)
ν(α)

νT (α)
=
nj
ni
.

For realizability of a diagonal restriction (Q; ν)ii it is necessary that in addi-
tion ν(δi) = 1, and that if ni is odd, then for all α ∈ qii \ {δi}:

(∗∗) Tα = α =⇒ ν(α) is even.

Proof. Suppose that π: s× t→ qij realizes (Q; ν)ij (cf. Definition 7.18). That
s × t = ni × nj is shown by an argument similar that in Lemma 7.21, but
in restriction to the individual qij . We show that t = nj . For all m1 ∈ s and
all α ∈ qij ,

∣∣{m2 ∈ t
∣∣ π(m1,m2) = α

}∣∣ = ν(α). Therefore t =
∣∣{m2 ∈ t

∣∣
π(m1,m2) ∈ qij

}∣∣ =
∑
α∈qij

ν(α) = nj .

For the quotient conditions (∗) it suffices to count the number of pairs
that are mapped to α, first in column-wise fashion, then row-wise and equate
the two:∣∣{(m1,m2)

∣∣ π(m1,m2) = α
} ∣∣ =

∑
m1∈s

∣∣{m2

∣∣ π(m1,m2) = α
} ∣∣

=
∑
m1∈s

ν(α) = s ν(α),

∣∣{(m1,m2)
∣∣ π(m1,m2) = α

} ∣∣ =
∑
m2∈t

∣∣{m1

∣∣ π(m1,m2) = α
} ∣∣

=
∑
m2∈t

νT (α) = t νT (α).

162 7. Canonization for Two Variables

Consider now the additional constraints expressed for the diagonal case.
Necessity of ν(δi) = 1 is obvious, since π must respect ∆ ↾ qii = {δi}. For (∗∗)
assume s = t = ni is odd and that α 6= δi is a fixed point under T . π−1

(
α
)

must be disjoint from the diagonal {(m,m)|m ∈ s}, because π(m,m) = δi.
This implies that T operates as a fixed-point free involutive bijection on
π−1

(
α
)
. Therefore

∣∣π−1
(
α
)∣∣ must be even. The above counting equations

imply that this number equals
∣∣{(m1,m2)

∣∣ π(m1,m2) = α
} ∣∣= s ν(α). If s

is odd, therefore, ν(α) must be even. ⊓⊔

7.2.2 Realizations of the Off-Diagonal Boxes

We turn to the proof of sufficiency of the conditions expressed in the last
lemma. The realization of off-diagonal restrictions turns out to be quite
straightforward.

Lemma 7.23. Let (Q; ν)ij , i 6= j satisfy condition (∗) of Lemma 7.22: for
all α ν(α)/νT (α) = nj/ni. Then there is a realization π:ni × nj → qij of
(Q; ν)ij . Such realizations are constructible in time polynomial in ninj.

Proof. Let t/s be the reduced presentation of nj/ni. Let α1, . . . , αr be an
enumeration of qij as ordered by 6. By assumption there exist numbers dk,
for 1 6 k 6 r, such that ν(αk) = dkt and ν

T (αk) = dks. Putting d =
∑
dk

we have ds = ni and dt = nj by definition of ni and nj . For the following
compare Figure 7.2.

Fig. 7.2

t

nj=dt

s︸ ︷︷ ︸
ni=ds

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

d

︸ ︷︷ ︸

d

HHHHj

-

(u−v)mod d

Identify d with the ordered disjoint sum of the dk and let g: d→ {1, . . . , r} be
the function that characterizes the embedded dk: g(u) is that k with u ∈ dk.
Also identify ni with the product d×s, and similarly nj with d× t. Note that
the sum and product identifications can be uniquely defined with the help of
the natural orderings (we have done this explicitly for the sum above). Define
a surjective function

7.2 Realizations for IC2 163

f : (d× s)× (d× t) −→ m(
(u, x), (v, y)

)
7−→ (u− v)mod d .

Figure 7.2 sketches the situation in an example with d = 4. The passage from
the left to the right indicates the effect of the projections ni = d× s→ d and
nj = d × t → d involved in the definition of f . On the right-hand side the
distribution of values for the function (u− v)mod d is indicated.

A realization π can now be defined on ni × nj = (d× s)× (d× t) by

π(m1,m2) := αg(f(m1,m2)).

π factorizes with respect to f and maps all those blocks, whose values
under f fall into dk ⊆ d, to αk. Let us check that π realizes the multiplicities
for columns as specified by ν ↾ qij . Consider m1 = (u, x) ∈ d× s:

{
m2 ∈ d× t

∣∣ π(m1,m2) = αk
}
=
{
m2 ∈ d× t

∣∣ f(m1,m2) ∈ dk
}
.

f(m1, (v, y)) = (u − v)mod d so that there are exactly dkt = ν(αk) many
m2 = (v, y) such that f(m1,m2) ∈ dk. The multiplicity conditions on rows
are checked to be in accordance with νT ↾ qij in exactly the same way.

Note that the proposed construction of a realization is quite definite:
we have sketched how to construct a particular solution to the realization
problem for an off-diagonal restriction. This construction is clearly in Ptime

with respect to the product ninj . ⊓⊔

7.2.3 Magic Squares

Sufficiency of the conditions of Lemma 7.22 and the construction of real-
izations is combinatorially more demanding for diagonal restrictions (Q; ν)ii
because of the symmetries imposed by T . We first present a preparatory
lemma on certain colourings of squares.

The most complicated case in the construction of realizations for diagonal
restrictions (Q; ν)ii — the case of even ni with fixed points α 6= δi under
T , as we shall see — reduces to the construction of such colourings. The
colourings described in the following lemma in fact present the worst case
for the construction of a realization. The symmetry requirements for these
colourings are reminiscent of magic squares and related number puzzles (and
call for a try with paper and pencil).

Lemma 7.24. Let n be even. Then there is a colouring c:n×n −→ n of the
n-square n× n with n colours 0, . . . , n− 1 with the following properties:

(i) the main diagonal, i.e. all identity pairs, are coloured 0.
(ii) each colour occurs exactly once in each row and in each column.
(iii) the entire colouring is mirror symmetric with respect to the main diag-

onal. In other words the colouring is invariant under T .

A colouring of this kind can be constructed in time polynomial in n.

164 7. Canonization for Two Variables

Observe that the same puzzle cannot be solved for odd n: each colour
apart from 0 has to occur an even number of times because T operates as a
fixed-point free involutive mapping on the points of this colour.

An example of a colouring of the 6×6 square according to the requirements
of the lemma is given in Figure 7.5 (a) below.

Proof. We give an inductive existence proof that can immediately be turned
into a Ptime construction. The claim is obvious for n = 2 and we now show
how to construct good colourings of the 2n-square and the (2n − 2)-square
from a given good colouring of the n-square. This yields a valid inductive
proof, because for even m > 2 at least one of m/2 and (m+2)/2 is even and
smaller than m. Let c:n× n→ n be a good colouring.

Fig. 7.3

A

A

︸ ︷︷ ︸
n︸ ︷︷ ︸

2n

B

B
T

A good colouring C: (2n)× (2n)→ 2n is easily obtained by gluing four copies
of trivially modified c-coloured squares together. The pattern is indicated in
Figure 7.3. The box A represents an n-square coloured according to c, B an
n-square coloured by c′:n×n→ {n, . . . , 2n−1}, c′(m1,m2) = c(m1,m2)+n.
BT finally is coloured c′ ◦ T .

Fig. 7.4

A
′

A
′′

@
@
@
@

@
@
@
@@

6
6
6
6

-
-

-
-

A

︸ ︷︷ ︸

n︸ ︷︷ ︸
2n−2

B

B
T

Consider now the (2n − 2)-square. Assume without loss of generality that
the c-coloured n-square A has top row (from left to right) coloured n − 1,
n− 2, . . . , 0. By symmetry of c this implies that the rightmost column of A

7.2 Realizations for IC2 165

is coloured 0, 1, . . . , n−1 (from top to bottom). Let A′ be the (n−1)-square
coloured by c′ = c ↾ (n−1)×(n−1), or A with top row and rightmost column
removed. Let A′′ be the mirror image of A′ across the second diagonal. As a
second building block we use an (n − 1)-square B coloured as follows. The
second diagonal of B is coloured 1, . . . , n− 1 from top left to bottom right.
The remaining places are coloured with colours n, . . . , 2n−3 such that each of
these colours occurs exactly once in each row and in each column. This can be
done with a cyclic permutation of colours following the second diagonal. BT

finally is the mirror image of B across the main diagonal. A good colouring
of the (2n− 2)-square is obtained by gluing the four (n− 1)-squares squares
A′, A′′, B and BT as indicated in Figure 7.4. Note that the second diagonals
in B and BT exactly supply those colours from n in each row and in each
column, that are missing in A′ and A′′. The arrows in the figure indicate how
these second diagonals in B and BT replace the rows and columns cut away
from A. ⊓⊔

Lemma 7.25. Let D ⊆ n× n be a subset of the n-square that is symmetric
with respect to the main diagonal (invariant under T), disjoint from the main
diagonal, and contains exactly two elements of each row and of each column.
Then there is a colouring of this subset with two colours c:D → {0, 1} such
that each colour occurs exactly once in each row and in each column and such
that c is antisymmetric with respect to the main diagonal: T ◦ c = 1− c. Such
c is Ptime computable from D.

In Figure 7.5 (b) the set D consisting of those points that are coloured 2
or 5 in (a) is split according to these requirements.

Proof. Consider the relation S of belonging to the same row or to the same
column of n×n in restriction to D. Since each row and each column contains
exactly 2 elements of D, D must be the disjoint union of even-length S-cycles.
Since S and D are T -invariant, it follows that for each such cycle C either
T (C) ∩ C = ∅ or T (C) = C. Two different cycles cannot contain points of
the same row or of the same column, since for instance there are only two
points of D in any row and these necessarily belong to the same cycle. It
follows that the requirements on c can be satisfied if for each cycle C there is
a colouring c′:C ∪T (C)→ {0, 1}, which is antisymmetric for T and contains
at most one point coloured 0, respectively 1, in each row and each column. To
obtain c take the union of these c′. Consider first a single cycle C. C can be
coloured alternately with colours 0 and 1, starting with colour 0 say from the
lexicographically least member in C and proceeding in the direction of the
horizontal S-neighbour of this point. If T (C) 6= C, then c′ on C ∪ T (C) can
be taken as the union of this colouring of C with the antisymmetric image
under T on T (C). In case T (C) = C we have to check that the colouring we
have obtained is antisymmetric itself. Let C be enumerated in the order used
in the colouring procedure as c0, c1, . . . , c2n = c0, so that c0 and c1 are in
the same row, c1 and c2 in the same column, etc. Assume for contradiction

166 7. Canonization for Two Variables

that for example Tc2i = c2j (c2i and c2j are both coloured 0), where i < j.
Then c2i+1, the element of D in the same row as c2i, must be T -related with
c2j−1, which is the element of D that is in the same column with c2j . This
is because D is symmetric with respect to T . Proceeding in this manner we
would find Tck = ck for k = i + j, which is impossible since D is disjoint
from the diagonal. ⊓⊔

Fig. 7.5 (a)

0

1

2

5

4

3

1

0

3

4

2

5

2

3

0

1

5

4

5

4

1

0

3

2

4

2

5

3

0

1

3

5

4

2

1

0 (b)

•

◦

◦

•

◦

•

•

◦

•

◦

◦

•

7.2.4 Realizations of the Diagonal Boxes

With the help of these lemmas about colourings we finally construct realiza-
tions for diagonal restrictions (Q; ν)ii that satisfy the conditions derived in
Lemma 7.22.

Lemma 7.26. Let (Q; ν)ii satisfy the following conditions:

(i) ν(δi) = 1.
(ii) for all α ∈ qii: ν(α) = νT (α).
(iii) if ni =

∑
α∈qii

ν(α) is odd, then ν(α) is even for all α 6= δi with Tα = α.

Then there is a realization π:ni×ni → qii of (Q; ν)ii over ni =
∑
α∈qii

ν(α).
Moreover, such a realization can be constructed in time polynomial in ni.

Proof. Recall from Definitions 7.18 and 7.7 that a realization π of (Q; ν)ii
has to satisfy the following:

(a) π(m1,m2) = δi exactly for m1 = m2.
(b) T ◦ π = π ◦ T .
(c) For all m1:

∣∣{m2

∣∣ π(m1,m2) = α
}∣∣ = ν(α).

(c) is a combination of (iii) and (iv) in Definition 7.7 applied to the present
case with trivial E. Note that (c) together with (b) also implies that for all
m2:

∣∣{m1

∣∣ π(m1,m2) = α
}∣∣ =

∣∣{m1

∣∣ π(m2,m1) = Tα
}∣∣ = ν(Tα), which

by assumption (ii) of the lemma is the same as ν(α).
The construction of π depends on whether ni is even or odd. The odd

case is the easier one.

7.2 Realizations for IC2 167

Case A: ni odd. Let qii \ {δi} = q0 ∪̇ q1 where q0 consists of those points
that are fixed under T . Since T is a fixed-point free involutive permutation
on q1, q1 = q ∪̇Tq for some q ⊆ q1. For a definite construction it is impor-
tant that q can be specified in a unique way, with the help of the ordering
6 on qii. For instance we may take q as the lexicographically least subset
q ⊆ q1 for which q1 = q ∪̇Tq. This q can be determined in Ptime. Let now
q0 be enumerated as α1, . . . , αs, and q as β1, . . . , βt, both in 6-order. So
δi, α1, . . . , αs, β1, . . . , βt, Tβ1, . . . , Tβt is an enumeration of qii without rep-
etitions. By the assumptions of the lemma, ν(αj) = 2kj for suitable kj ,
ν(βj) = ν(Tβj) =: lj . Let d1 :=

∑
kj , d2 :=

∑
lj , d := d1 + d2, where

we take these as identifications with the disjoint ordered sums. Note that
ni = 1 + 2d. Put D0 :=

{
(u, v) ∈ ni × ni

∣∣ (u − v)modni ∈ {1, . . . , d}
}
.

It follows that ni × ni =
{
(u, u)

∣∣ u ∈ ni
}
∪̇D0 ∪̇T (D0). See the sketch in

Figure 7.6 with d = 3, ni = 7, where the values (u − v)modni in {1, . . . , d}
are indicated. The desired realization π can be defined as follows:

π(u, v) :=

δi for u = v
αj if (u, v) ∈ D0 and (u− v)modni ∈ kj
βj if (u, v) ∈ D0 and (u− v)modni ∈ lj
T (π(v, u)) if (u, v) ∈ T (D0) .

Conditions (a) and (b) are obviously satisfied.
To check the multiplicity requirements (c), note that for each u ∈ ni and

s ∈ {1, . . . , d},
∣∣{v|(u−v)modni = s}

∣∣ =
∣∣{v|(u−v)modni = −s}

∣∣ and that
the operation of T on (u, v) translates into (u−v)modni 7→ −(u−v)modni.
It follows that for all u ∈ ni indeed

∣∣{v|π(u, v) = αj}
∣∣ = 2kj = ν(αj) and∣∣{v|π(u, v) = βj}

∣∣ = lj = ν(βj) as required.

Fig. 7.6

3

2

1

1

3

2

2

1

3

3

2

1

3

2

1

3

2

1

3

2

1

Case B: ni even. Enumerate qii as δi, α1, . . . , αs, β1, . . . , βt, Tβ1, . . . , Tβt as
above. In particular Tαj = αj . Let ν(αj) = kj , ν(βj) = ν(Tβj) = lj . Thus
ni = 1 + d1 + 2d2, where d1 =

∑
kj , d2 =

∑
lj . We identify ni with the

disjoint ordered sum 1 +
∑
kj + 2d2.

Let c:ni×ni → ni be a colouring function as constructed in Lemma 7.24.
The crucial properties are symmetry, c ◦ T = c, exactly one occurrence of

168 7. Canonization for Two Variables

every colour in each row and in each column, and c(u, u) = 0 on the diagonal.
With the above identification we consider c as a function to the disjoint sum
1 +

∑
kj + 2d2. Thus c can directly be used to define π partially as

π(u, v) :=

{
δi for u = v
αj if c(u, v) ∈ kj .

Symmetry and multiplicities for the αj are as required. It remains to define
π ↾

{
(u, v)

∣∣ c(u, v) ∈ 2d2
}
with values in

{
β1, . . . , βt, Tβ1, . . . , Tβt

}
. Note

that this remaining subdomain is disjoint from the diagonal. We now further
identify 2d2 with the product {0, 1} ×

∑
lj (in some canonical and definite

way), so that on the remaining domain c takes values (0, d) and (1, d) for

d ∈
⋃̇
lj . Put Dd :=

{
(u, v)

∣∣ c(u, v)=(0, d)∨ c(u, v)=(1, d)
}
for d ∈

⋃̇
lj . Dd

is T -symmetric, disjoint from the diagonal and contains exactly two elements
of each row and each column. By Lemma 7.25 each Dd can be coloured by
some cd:Dd → {0, 1} in such a way that each column and each row contains
colour 0 and 1 exactly once, and such that T ◦ cd = 1− cd corresponds to an
inversion of the colouring. To complete the definition of π put

π(u, v) :=

{
βj if (u, v) ∈ Dd, d ∈ lj and cd(u, v) = 0
Tβj if (u, v) ∈ Dd, d ∈ lj and cd(u, v) = 1 .

Compatibility with T follows, since T preserves Dd and inverts cd. The mul-
tiplicities for the βj are realized correctly because each row and each column
contains exactly one element (u, v) ∈ Dd such that cd(u, v) = 0 (respectively
1) for each d. Therefore

∣∣{v|π(u, v) = βj}
∣∣ =

∣∣{v|π(u, v) = Tβj}
∣∣ = lj as

required. ⊓⊔

Putting those results of the preceding sections, that relate to the case of
C2

∞ω, together we have the following.

Proposition 7.27. Let (Q; ν) be a weighted game tableau. Let the E-classes
of Q be q1, . . . , ql, let qij := qi ∩ T (qj) and put ni :=

∑
α∈qii

ν(α). (Q; ν)
admits a realization if and only if the following conditions are satisfied:

(i)
∑
α∈qij

ν(α) = nj independent of i.

(ii) ν(δ) = 1 for all δ ∈ ∆.
(iii) ν(α)

/
νT (α) = nj

/
ni for all α ∈ qij.

(iv) For all odd ni, and all α ∈ qii \∆, if Tα = α, then ν(α) is even.

In this case a realization on n =
∑
ni can be constructed in time polynomial

in n, thus proving the C2
∞ω-related part of Theorem 7.14.

We review the arguments that lead to this statement: (i) is the compat-
ibility condition for fitting together realizations of the restrictions (Q; ν)ij ;
necessity follows from Proposition 7.20 together with Lemma 7.22. (ii) is
obviously necessary. (iii) is necessary for realizability of each (Q; ν)ij , (iv)

7.3 Realizations for IL2 169

is necessary for (Q; ν)ii to admit a realization, both by Lemma 7.22. Suffi-
ciency follows from realizability of the (Q; ν)ij : (iii) suffices for (Q; ν)ij , i 6= j,
see Lemma 7.23; (ii) – (iv) suffice for (Q; ν)ii according to Lemma 7.26; (i)
suffices to compose these individual realizations.

7.3 Realizations for IL2

7.3.1 Necessary and Sufficient Conditions

We prove the following analogue of Proposition 7.27 in the case of game
tableaux without weights.

Proposition 7.28. Let Q be a game tableau. Let the E-classes of Q be
q1, . . . , ql. Put qij := qi ∩ T (qj). Then Q admits a realization if and only
if the following conditions are satisfied:

(i) all qij are nonempty.
(ii) if |qii| = 1 then |qij | = 1 for all j.

In this case a realization — one of minimal size even — can be constructed
in time polynomial in |Q|. This proves that part of Theorem 7.14 that relates
to L2

∞ω.

Proof (of necessity of (i) and (ii)). (i) is trivial: ifQij is to have a realization,
then qij must not be empty. For (ii) assume that |qii| = 1, i.e. that qii = {δi}.
It follows that Qii can only admit the trivial realization π: 1 × 1 → {δi} on
the one-element square, since no off-diagonal pair may be mapped to δi by
any realization. In the terminology of Proposition 7.20 it follows that ni = 1
and that all Qij must have realizations on domains 1×nj . It follows directly
from Definition 7.18 that any realization π: s× t→ qij satisfies s, t > |qij |, so
that s = 1 implies |qij | = 1. ⊓⊔

The rest of this section is devoted to the proof of the sufficiency claim of
Proposition 7.28. Again Proposition 7.20 is invoked to reduce the construction
of a realization for Q to the realization of the restrictions Qij . In fact we
shall see that (ii) in the proposition reflects what remains of the numerical
compatibility conditions in Proposition 7.20 in the case of L2

∞ω: L
2
∞ω can

only count “0, 1,many”. For the restrictions, we first treat the off-diagonal
ones, then the diagonal ones. Fix a game tableau Q.

The off-diagonal restrictions.

Lemma 7.29. For i 6= j. If qij 6= ∅ then there are realizations π: s× t→ qij
of Qij exactly for all s, t > |qij |.

170 7. Canonization for Two Variables

Sketch of Proof. The condition s, t > |qij | is necessary since π has to attain
each α ∈ qij at least once in every row and in every column.

Let s0 = |qij | and first construct a realization on s0 × s0. Let qij be
enumerated as α0, . . . αs0−1 in increasing order with respect to 6. Put

π0(u, v) := αk for k = (u+ v)mod s0.

Obviously each αj occurs once in each row and in each column as required.
To obtain realizations for s× t, s, t > s0 put

π(u, v) :=

π0(u, v) for u, v < s0
αk for k = vmod s0, u > s0, v 6 s0
αk for k = umod s0, v > s0, u 6 s0
α0 for v, u > s0 .

π extends π0 through repetition of (extensions of) the first row and first
column. ⊓⊔

The diagonal restrictions. For the diagonal restrictions Qii the size of
a minimal realization may depend on the existence of fixed points under T
other than δi. We show that the minimal size is equal to |qii| if there are no
such fixed points, and equal to the least even number greater than or equal
to |qii| otherwise. Put

di :=

{
|qii| if Tα 6= α for all α ∈ qii \ {δi}

2⌈ 12 |qii|⌉ otherwise.

Lemma 7.30. If qii 6= {δi}, then there are realizations π: s× s→ qii of Qii

exactly for all s > di.

Proof. First we argue that s > di is necessary. Trivially s > |qii| is necessary,
since each α ∈ qii has to occur at least once in every row and column. di > |qii|
if and only if |qii| is odd and there is some α 6= δi such that Tα = α. In this
case di = |qii|+1. But then this α has to occur an even number of times under
π, whence either s has to be even (and therefore s > |qii| + 1 = di in this
case), or, if s is odd, α occurs at least twice in at least one row. This row still
has to realize all other elements of qii, and it follows that s > |qii| + 1 = di
in that case as well.

Now for the existence of realizations as claimed. First consider realizations
over di × di.

If |qii| is even or if Tα 6= α for all α ∈ qii \ {δi}, consider (Qii; ν),
with ν identically put to 1, as a weighted game tableau. (Qii; ν) satisfies the
requirements of Lemma 7.26 so that we obtain a realization on di × di since
di = |qii| =

∑
α∈qii

ν(α).
Otherwise |qii| is odd, there is some α 6= δi with Tα = α, and di = |qii|+1.

Let α0 be the least α ∈ qii\{δi} that is fixed by T . Put ν(α0) = 2 and ν(α) = 1

7.3 Realizations for IL2 171

for all α 6= α0. Again,
∑
α∈qii

ν(α) = di is even and Lemma 7.26 applies to
give a realization on di × di.

From these minimal realizations on di × di one may again obtain realiza-
tions over s > di simply by extensions that essentially repeat one row and
one column. Let π0: di × di → qii be the minimal realization, let α0 be the
minimal element of qii \ {δi}. Then the following is a realization over s > di:

π(u, v) :=

π0(u, v) for u, v < di
π0(di − 1, v) for u > di, v < di − 1
π0(u, di − 1) for v > di, u < di − 1
δi for u = v > di
α0 for u > v > di − 1
Tα0 for v > u > di − 1 .

Figure 7.7 illustrates this extension of the domain by one row and one column
to s = di + 1. ⊓⊔

Fig. 7.7

α β γ · · ·

Tα

Tβ

Tγ

·
·
·

δi

α β γ · · ·

Tα

Tβ

Tγ

·
·
·

δiα0

Tα0

It remains to determine the size of a minimal realization for the entire
game tableau Q. Put

nij :=

|qij | for i 6= j
|qii| if i = j and Tα 6= α for all α ∈ qii \ {δi}
2⌈ 12 |qii|⌉ if i = j and Tα = α for some α ∈ qii \ {δi}

(7.3)

so that according to the last lemmas nij is the minimal number such that Qij

admits a realization over nij×nij . Note that for any game tableaux nij = nji
because T acts as a fixed-point free bijection between qij and qji. Assume
that the qij are all non-empty. Then

– each Qij for i 6= j admits a realization over s× t for all s, t > nij ,
– each non-trivial Qii admits a realization on s× s for all s > nii, and

172 7. Canonization for Two Variables

– each trivial Qii, |qii| = {δi}, admits only the trivial singleton realization.

Optimal values for realizations that fit together in the sense of the condition
in Proposition 7.20 are therefore given by:

ni := max
{
nij

∣∣ 1 6 j 6 l
}

n :=
∑
i ni .

(7.4)

Notice that (ii) of Proposition 7.28 implies that ni = 1 whenever |qii| = 1.
If Q therefore satisfies all conditions of Proposition 7.28 we do get a realiza-
tion of size n.

Proposition 7.31. Let Q be a game tableau that satisfies the conditions of
Proposition 7.28. Then either |qii| = 1 for all i and the only realization of Q
is over n =

∑
ni = |∆|; or there is at least one qii 6= {δi} and in this case Q

has realizations exactly over all s > n. (The ni and n are as determined by
equations 7.3 and 7.4.)

The explicit constructions of realizations for the individual Qij presented
above and the general procedure for the composition of these according to
Proposition 7.20 yield a Ptime algorithm as required for Proposition 7.28.
This finishes the proof of Theorem 7.14.

It might be interesting to find a simple bound on the size n of a minimal
realization of Q also in terms of |Q| =

∑
16i,j6l |qij |. Recall that |Q| is the

size of the L2-invariant of the desired structure, or — in more model theoretic
terms — the number of distinct L2-types of pairs that the desired structure
has to realize. We claim that actually |Q|+ 1 is such a bound. In particular
this is a linear bound, whereas for k > 3 we know that there cannot even be
a sub-exponential bound on the size of minimal realizations of Lk-invariants
by Example 3.23.

The following proposition gives a somewhat tighter bound in terms of both
the number of 2-types and the number of 1-types that are to be realized.

Proposition 7.32. For all A ∈ fin[τ] there is some B ∈ fin[τ] such that

B ≡L
2

A and |B| 6 |TpL
2

(A; 2)|+ 1−
(
|TpL

2

(A; 1)| − 1
)2
.

In particular |B| 6 |TpL
2

(A; 2)|+ 1 = |IL2(A)|+ 1.

Proof. Let Q =
(
Q,6, E, T,∆

)
be the game tableau associated with IL2(A).

The desired B is obtained from a realization of Q of minimal size. Let
q1, . . . , ql, the qij , nij , ni and n be as described in Proposition 7.28 and
equations 7.3 and 7.4.

As |Q| = |TpL
2

(A; 2)| and |TpL
2

(A; 1)| = |Q/E| = l it suffices to show

n 6 |Q|+ 1− (l − 1)2,

7.3 Realizations for IL2 173

since n is the minimal size of a realization of Q as determined above. We first
observe that ni = max{nij |1 6 j 6 l} 6

∑
16j6l nij − (l− 1) because all nij

are positive. Recall that nij 6 |qij | + 1 and nij = |qij | at least for all i 6= j.
Therefore

n =
∑
i ni 6

∑
i,j nij − l(l − 1)

6
∑
i6=j |qij |+

∑
i

(
|qii|+ 1

)
− l(l − 1)

6
∑
i,j |qij |+ l − l(l − 1) = |Q|+ 1− (l − 1)2,

as desired. ⊓⊔

The given bound is essentially optimal among bounds that are indepen-
dent of the vocabulary. This is demonstrated in the following example.

Example 7.33. Let k > 2 and let τk consist of k binary relation symbols R0,
. . . , Rk−1. Let Ak consist of 2k−2 points arranged in a cycle and with Ri in-
terpreted by the set of pairs at distance i. The following sentence axiomatizes
the complete L2-theory of Ak.

ϕk = ∀x∀y
(∨

i

Rixy ∧
∧

i6=j

¬(Rixy ∧Rjxy)
)

∧ ∀x∀y
(
R0xy ↔ x=y ∧

∧

i

(Rixy ↔ Riyx)
)

∧ ∀x
∧

i

∃yRixy .

Models of ϕk exactly correspond to realizations of the game tableau(
Qk,6, E, T,∆

)
where Qk = k, E = k × k, T = idk, ∆ = {0}. In fact,

if B is a τk-structure over universe n, then B |= ϕk if and only if

π:n× n −→ Qk
(b, b′) 7−→ i if (b, b′) ∈ RB

i

is a realization of Qk. By Lemma 7.30 ϕk has models exactly in sizes greater

than or equal to n = 2⌈ 12k⌉. Clearly |Tp
L2

(Ak; 2)| = k and |TpL
2

(Ak; 1)| =
l = 1, so that |Q|+ 1− (l − 1)2 = k + 1 = n for all odd k.

For situations with l > 1 one obtains similar examples by considering
structures

A =
(
Ak1 ∪̇ . . . ∪̇Akl , P1, . . . , Pl

)

with extra unary Pi to encode the partition into the Aki . Here |Tp
L2

(A; 2)| =∑
ki + l(l − 1), |TpL

2

(A; 1)| = l so that |Q| + 1 − (l − 1)2 =
∑
ki + l. This

bound is shown to be exact as above if all ki are odd.

Another, more simple corollary to our findings about realizations concerns
the spectrum of complete L2

∞ω-theories.

174 7. Canonization for Two Variables

Corollary 7.34. Any complete L2
∞ω-theory (in a finite relational vocabu-

lary) that has any finite models, either has exactly one finite model up to
isomorphism, or has models exactly in all cardinalities above some finite
threshold value n.

Sketch of Proof. Completeness of the theory together with existence of at
least one finite model implies that all models (in fact finite and infinite ones)
have the same value for their L2-invariant. We know from Theorem 7.12 that
each finite model of the theory is obtained from a realization of the underlying
game tableau and vice versa. For realizations the corresponding spectrum
property is expressed in Proposition 7.31 above. In the case of at least one
non-trivial qii the above constructions for the extensions of realizations can
easily be extended to yield models in arbitrary infinite cardinalities as well.

⊓⊔

7.3.2 On the Special Nature of Two Variables

Combinatorially, and with respect to the solution of the inversion problem
presented here, the two-variable invariants and their induced tableaux are
special. The trivialization of the accessibility relations E1 and E2 and mod-
ularity of the solutions as discussed in Section 7.1.1 are peculiar to the two-
dimensional case in this sharp form. Basically the easy decomposition can
be attributed to the fact that the two-variable type of a pair is fully de-
termined by the individual two-variable types of its components together
with the atomic type of the pair — a property that technically is reflected in
Lemma 7.16. Combinatorially more sophisticated techniques may be required
to approach the three-variable case. We have no well-founded conjecture at
this stage whether indeed the k-variable case can be settled positively for any
k > 3. In view of the general theorems above these canonization and inversion
problems with and without counting remain challenging open problems.

The most important aspect with respect to classical logical concerns, in
which two variables are very special, is decidability.

Theorem 7.35 (Mortimer). L2
ωω has the finite model property, i.e. any

satisfiable sentence of L2
ωω in a relational vocabulary has a finite model. Con-

sequently, the satisfiability problem for L2
ωω is decidable.

Decidability of the satisfiability problem for L2
ωω was earlier announced

by Scott [Sco62], but the argument Scott gave was based on the erroneous as-
sumption that the Gödel case with equality is decidable. So [Sco62] proves the
claim only for L2

ωω without equality. A version of Mortimer’s proof [Mor75]
can be found in [EF95]. There is also a new proof (with better complexity
bounds) by Grädel, Kolaitis and Vardi [GKV96, BGG96].

Let us consider in a brief sketch what Mortimer’s result implies about the
inversion problem for IL2 . To this end one may transform the information in
a given candidate L2-invariant

7.3 Realizations for IL2 175

I =
(
Q,6, E, T ;Θ

)

into an L2
ωω-sentence as follows (compare also Example 7.33). Introduce new

predicates Rα for α ∈ Q. Then the following sentence represents the full
information in I. It may in fact be considered as an axiomatization of those
realizations of the underlying game tableau that also respect atomic types as
prescribed by Θ, whence it exactly axiomatizes the canonical Rα-expansions
of all τ -structures A with IL2(A) = I.

∀x∀y
∨

α

Rαxy ∧ ∀x∀y
∧

α6=α′

¬
(
Rαxy ∧Rα′xy

)

∧
∧

α

∀x∀y
(
Rαxy ↔ RTαyx

)
∧

∧

α∈∆,(α,α′)∈E

∀x(Rαxx↔ ∃yRα′xy)

∧
∧

α

∀x∀y
(
Rαxy → Θ

(
α
)
(x, y)

)
.

This sentence may be regarded as a variant of a Scott sentence, with the
crucial difference that it is over an extended vocabulary but requires only
quantifier rank 2 and is of quadratic length in the size of the given invariant.

From the proof in [Mor75] one can infer that owing to the special format of
this L2

ωω-sentence the size of its minimal models is bounded by a polynomial
in the size of the given invariant.

The inversion problem thus reduces to the satisfiability problem for these
associated compressed Scott sentences. This reduction induces an exponential
time decision procedure for image

(
IL2

)
and a corresponding solution through

exhaustive search to the inversion problem in exponential time.

Quite recently it has been shown in [GOR96b] that also the satisfiability
problem for C2

ωω is decidable (although C2
ωω does not have the finite model

property, compare Example 1.19).

Theorem 7.36 (Grädel, Otto, Rosen).The satisfiability problem for C2
ωω

is decidable.

It is remarkable on the other hand that even decidability of image
(
ILk

)

for k > 2 is an open problem. The corresponding problem for the ICk is
trivial, since the size of candidate structures is easily determined from the
proposed invariant. It should be stressed that also for the ILk there is no
obvious connection between the decidability of the set of all invariants of
actual structures and Ptime invertibility of ILk in the sense of Definition 6.9.
In fact the size of prospective realizations may always in this context be
thought of as a given parameter, in which case decidability becomes trivial
through exhaustive search (compare the remarks following Definition 6.9).

176 7. Canonization for Two Variables

Bibliography

[AV89] S. Abiteboul and V. Vianu. Fixpoint extensions of first-order logic and
Datalog-like languages. In Proc. 4th IEEE Symp. on Logic in Computer
Science, pages 71–79, 1989.

[AV91] S. Abiteboul and V. Vianu. Generic computation and its complexity. In
Proc. 23rd ACM Symp. on Theory of Computing, pages 209–219, 1991.

[BES80] L. Babai, P. Erdös, and M. Selkow. Random graph isomorphism. SIAM
Journal of Computing, 9:628–635, 1980.

[BK80] L. Babai and L. Kučera. Canonical labellings of graphs in linear average
time. In Proc. 21st IEEE Symp. on Foundations of Computer Science,
pages 39–46, 1980.

[Bar77] J. Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic,
42:292–296, 1977.

[BG84] A. Blass and Y. Gurevich. Equivalence relations, invariants, and nor-
mal forms, II. In E. Börger, G. Hasenjäger and D. Rödding, editors,
Logic and Machines: Decision Problems and Complexity, Lecture Notes
in Computer Science 171, pages 24–42. Springer-Verlag, 1984.

[BGG96] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem,
Perspectives in Mathematical Logic, Springer-Verlag, 1996.

[Büc60] J. R. Büchi. Weak second-order arithmetic and finite automata. Z.
Math. Logik Grundlagen Math., 6:66–92, 1960.

[CFI89] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the
number of variables for graph identification. In Proc. 30th IEEE Symp.
on Foundations of Computer Science, pages 612–617, 1989.

[CFI92] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the
number of variables for graph identification. Combinatorica, 12:389–410,
1992.

[CH80] A. Chandra and D. Harel. Computable queries for relational databases.
Journal of Computer and System Sciences, 21:156–178, 1980.

[CH82] A. Chandra and D. Harel. Structure and complexity of relational queries.
Journal of Computer and System Sciences, 25:99–128, 1982.

[Dah87] E. Dahlhaus. Skolem normal forms concerning the least fixpoint. In
E. Börger, editor, Computation Theory and Logic, Lecture Notes in
Computer Science 270, pages 101–106. Springer-Verlag, 1987.

[Daw93] A. Dawar. Feasible computation through model theory. PhD thesis,
University of Pennsylvania, 1993.

[Daw95a] A. Dawar. Generalized quantifiers and logical reducibilities. Journal of
Logic and Computation, 5:213–226, 1995.

[Daw95b] A. Dawar. A restricted second-order logic for finite structures. In
D. Leivant, editor, Logic and Computational Complexity, pages 393–413.
Springer-Verlag, 1995.

178 Bibliography

[DH94] A. Dawar and L. Hella. The expressive power of finitely many gen-
eralized quantifiers. In Proc. 9th IEEE Symp. on Logic in Computer
Science, pages 20–29, 1994.

[DLW95] A. Dawar, S. Lindell, and S. Weinstein. Infinitary logic and induc-
tive definability over finite structures. Information and Computation,
119:160–175, 1995.

[Ebb85] H.-D. Ebbinghaus. Extended logics: the general framework. In J. Bar-
wise and S. Feferman, editors, Model–Theoretic Logics, pages 25–76.
Springer-Verlag, 1985.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in
Mathematical Logic, Springer-Verlag, 1995.

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Springer-Verlag, 2nd edition, 1994.

[Elg61] C. Elgot. Decision problems of finite-automata design and related arith-
metics. Trans. Amer. Math. Soc., 98:21–51, 1961.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recogniz-
able sets. In R. M. Karp, editor, Complexity of Computation, SIAM-
AMS Proceedings, Vol. 7, pages 43–73, 1974.

[Fag90] R. Fagin. Finite-model theory — a personal perspective. In S. Abite-
boul and P. Kanellakis, editors, Proc. 1990 International Conference on
Database Theory, Lecture Notes in Computer Science 470, pages 3–24.
Springer-Verlag, 1990. Also in Theoretical Computer Science, 116:3–31,
1993.

[GG95] E. Grädel and Y. Gurevich. Tailoring recursion for complexity. Journal
of Symbolic Logic, 60:952–969, 1995.

[GG95] E. Grädel and Y. Gurevich. Metafinite model theory. In D. Leivant,
editor, Logic and Computational Complexity, pages 313–366. Springer-
Verlag, 1995.

[GKV96] E. Grädel, Ph. G. Kolaitis, and M. Y. Vardi. On the decison problem
for two-variable first-order logic. Submitted, 1996.

[GO93] E. Grädel and M. Otto. Inductive definability with counting on finite
structures. In E. Börger et al., editors, Computer Science Logic, CSL
‘92, Selected Papers, Lecture Notes in Computer Science 702, pages 231–
247. Springer-Verlag, 1993.

[GOR96a] E. Grädel, M. Otto, and E. Rosen. Undecidability results on two-variable
logics. Preprint, 1996.

[GOR96b] E. Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is
decidable. Preprint, 1996.

[Gro95] M. Grohe. Complete problems for fixed-point logics. Journal of Symbolic
Logic, 60:517–527, 1995.

[Gur84] Y. Gurevich. Toward logic tailored for computational complexity. In
M. M. Richter et al., editors, Computation and Proof Theory, Lecture
Notes in Mathematics 1104, pages 175–216. Springer-Verlag, 1984.

[Gur88] Y. Gurevich. Logic and the challenge of computer science. In E. Börger,
editor, Current Trends in Theoretical Computer Science, pages 1–57.
Computer Science Press, 1988.

[GS86] Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic.
Annals of Pure and Applied Logic, 32:265–280, 1986.

[GS96] Y. Gurevich and S. Shelah. On finite rigid structures. Journal of Sym-
bolic Logic, 61:549–562, 1996.

[Här65] H. Härtig. Über einen Quantifikator mit zwei Wirkungsbereichen. In
L. Kalmar, editor, Colloque sur les Fondements des Mathematiques, les
Machines Mathematiques, et leur Applications, pages 31–36, 1965.

Bibliography 179

[Imm81] N. Immerman. Number of quantifiers is better than number of tape
cells. Journal of Computer and System Sciences, 22:384–406, 1981.

[Imm82] N. Immerman. Upper and lower bounds for first-order expressibility.
Journal of Computer and System Sciences, 25:76–98, 1982.

[Imm86] N. Immerman. Relational queries computable in polynomial time. In-
formation and Control, 68:86–104, 1986.

[Imm87a] N. Immerman. Expressibility as a complexity measure: results and direc-
tions. In Proc. 2nd Structure in Complexity Conference, pages 194–202,
1987.

[Imm87b] N. Immerman. Languages that capture complexity classes. SIAM Jour-
nal of Computing, 16:760–778, 1987.

[Imm89] N. Immerman. Descriptive and computational complexity. In J. Hart-
manis, editor, Computational Complexity Theory, Proc. Symp. Applied
Math., Vol. 38, pages 75–91. American Mathematical Society, 1989.

[IL90] N. Immerman and E. S. Lander. Describing graphs: a first-order ap-
proach to graph canonization. In A. Selman, editor, Complexity Theory
Retrospective, pages 59–81. Springer-Verlag, 1990.

[KVä95] Ph. G. Kolaitis and J. Väänänen. Generalized quantifiers and pebble
games on finite structures. Annals of Pure and Applied Logic, 74:23–75,
1995.

[KVa92a] Ph. G. Kolaitis and M. Y. Vardi. Infinitary logics and 0–1 laws. Infor-
mation and Computation, 98:258–294, 1992.

[KVa92b] Ph. G. Kolaitis and M. Y. Vardi. Fixpoint logic vs. infinitary logic in
finite-model theory. In Proc. 7th IEEE Symp. on Logic and Computer
Science, pages 46–57, 1992.

[Lei90] D. Leivant. Inductive definitions over finite structures. Information and
Computation, 89:95–108, 1990.

[Mor75] M. Mortimer. On languages with two variables. In Z. Math. Logik und
Grundlagen Math., 21:135–140, 1975.

[Ott94] M. Otto. Generalized quantifiers for simple properties. In Proc. 9th
IEEE Symp. on Logic and Computer Science, pages 30–39, 1994.

[Ott95a] M. Otto. Ptime canonization for two variables with counting. In Proc.
10th IEEE Symp. on Logic and Computer Science, pages 342–352, 1995.

[Ott95b] M. Otto. Canonization for two variables and puzzles on the square. To
appear in Annals of Pure and Applied Logic.

[Ott96a] M. Otto. The expressive power of fixed-point logic with counting. Jour-
nal of Symbolic Logic, 61:147–176, 1996.

[Ott96b] M. Otto. Bounded-variable logics: two, three, and more. Preprint, 1996.
[Pap94] C. H. Papadimitiou. Computational Complexity. Addison-Wesley Pub-

lishing Company, 1995.
[Poi82] B. Poizat. Deux ou trois choses que je sais de Ln. Journal of Symbolic

Logic, 47:641–658, 1982.
[Res62] N. Rescher. Plurality quantification. Journal of Symbolic Logic, 27:373–

374, 1962.
[Sco62] D. Scott. A decision method for validity of sentences in two variables.

Journal of Symbolic Logic, 27:377, 1962.
[Tra61] B. Trakhtenbrot. Finite automata and the logic of monadic predicates.

(in Russian) Dokl. Akad. Nauk SSSR, 140:326–329, 1961.
[Var82] M. Y. Vardi. The complexity of relational query languages. In Proc.

14th ACM Symp. on Theory of Computing, pages 137–146, 1982.
[Weg87] I. Wegener. The Complexity of Boolean Functions. John Wiley and

Teubner, 1987.

180 Bibliography

Index

A |= ϕ[a],ϕ[A], 18
α |= ϕ, 20

∃>m,∃=m,∃>m,∃6m,∃<m, 29
A[k],τ [k], 142
A∗, 99
A ⊗ n, 118
A(π,Θ), 154
A(k),τ (k), 74
(A, Γ), 19
fin[τ], 15
fin[τ ; r], 16
fin[τ]∗, 99
fmod(ϕ), 18
ord[τ], 16
stan[τ], 17
L∞ω, 25
Lk

∞ω, 25
Lω

∞ω, 25
Lω ∗

∞ω, 99
Lωω, 24
Lωω(Q), 43
Lk

ωω, 25
L∗

ωω, 99
Ck

∞ω, 29
Cω

∞ω, 29
Ck

ωω, 29
L;m, 36
FP, 31
FP(ICk), 108
FP(ILk), 90
FP(Qcard), 117
FP(Q∼

card), 117
FP(QH), 85
FP(QH)

∗, 102
FP(QR), 70, 75
FP(Q), 43
FP+C, 102
FP∗, 99
PFP, 31
PFP(ICk), 108

PFP(ILk), 90
PFP(QH)

∗, 102
PFP(Q), 43
PFP+C, 102
PFP+C|poly, 109
PFP∗, 99
PFP|poly, 92
Pspace–Cω

∞ω, 113
Ptime–Cω

∞ω, 113
Ptime ∩ L, 135
atpA

(
a
)
,Atp(τ ; k), 20

eq
(
a
)
,Eq(k), 20

tpL

A

(
a
)
, 19

TpL(τ ; k), 19
TpL(A; k), 19

tpCk

A

(
a
)
,TpCk

(a;A), 54

tpLk

A

(
a
)
,TpLk

(a;A), 54
L1 ≡ L2, 19
C ≡ M, 23
C ≡ L, 23
≡L, 20

≡Ck

, 54

≡Lk

, 54
Ck-EQ, 85
Lk-EQ, 86
(A, a) ≈i (A

′, a′), 63, 66
(A, a) ≈ (A′, a′), 64, 66
Ptime/poly, 123
Pspace(ICk), 107
Pspace(ILk), 90
Ptime(ICk), 107
Ptime(ILk), 90
Ptime ∩ L, 135
Ptime(H), 136
Ptime

∗, 137
Γ (A, n), 118
Γk(A), 142

Γk

(
fin[τ]

)
, 142

181

182 Index

ICk , 81
ILk , 86
I ∗

Ck(A), 107
i = (ϕ0;ϕ;ψ), 40
i(R), 42
i(A), 40
QH, 44
QR, 44
Qcard, 44, 117
Q∼

card, 44, 117
Qmon, 46, 117

Abiteboul-Vianu
– first theorem, 91
– second theorem, 92
Abiteboul-Vianu colouring, 73
admissible, Lk-admissible, 87
algorithm on structures, 21
– computing a functor, 22
– computing a query, 22
arithmetical sort, 98

bounded ILk , 139

Cai-Fürer-Immerman construction, 56
canonization, 11, 47, 134
– computable, 48
– up to ≡L, in Ptime, 134
capturing complexity classes, 23
cardinality quantifiers, 43, 117, 124
class of structures, 16
closure properties, 35
closure under interpretations, 42, 103
colour refinement, 67
complete invariant, 47
– computable, 48
complexity class of queries, 23
congruence, 39
counting quantifiers, 28
counting terms, 101

Datalog with counting, 112
descriptive complexity, 2
domain
– ordered vs. standard, 17

Ehrenfeucht-Fräıssé, 51
L-equivalence, 20
expressive power, 19
extension, functorial vs. Lindström, 115

finite model property, 29, 174
first-order logic, 24
fixed point

– inductive or inflationary, 30
– partial, 30
fixed-point logic, 30, 31
fixed-point logic with counting, 8, 97,

102
fixed-point systems, 33
formula, 18
free variables, 18
functor, 18

game
– Ck-game, 52
– Lk-game, 52
– k-pebble, 51
– position, 52
– stage, 51
game tableau, 151
game-k-graph, 74
global relation, 17
good encoding scheme, 118, 120
good extension of tableau, 152
graph
– k-graph, 68
– game k-graph, 74
– pre-ordered k-graph, 74
graph algorithm, 4
graph isomorphism problem, 133
graph-Ptime, 4

Härtig quantifier, 44

Immerman-Vardi theorem, 32
infinitary logic, 9, 25
input size, 22
interpretability
– between functors, uniform, 41
interpretation, 38
– direct, 38
– generalized, 39
– in powers, 39
– in quotients, 39
– of functors, 41
– relativized, 38
invariance
– under isomorphisms, 17
invariance condition on algorithms, 21
invariant, 9, 47
– Ck-invariant, 81
– Ck-invariant on fin[τ ; k], 84
– C2-invariant, special format, 151
– Lk-invariant, 86
– Lk-invariant on fin[τ ; k], 86
– L2-invariant, special format, 151
– complete structural, 79

Index 183

inverse
– of invariant, 47
– of L-invariant, 137
inversion
– Ptime-inversion of ICk , ILk , 137

lexicographic ordering, 49
Lindström extensions, 7, 43
Lindström quantifiers, 43
logic capturing C, logic for C, 23

meta-finite structures, 112
monadic quantifiers, 46, 117
Mortimer’s theorem, 174

normalization, 11, 132
– graph normalization in ∆pol

2 , 133
numerical sort, 98

ordering w.r.t. types, 51, 73–75, 77

P-uniform sequences, 112
partial fixed-point logic, 31
pebble games, 51
polynomially clocked machines, 5
position of game, 52
k-th power of structure, 142
pre-ordering, 49
– w.r.t. Ck-types, 74
– w.r.t. Lk-types, 77
presentation
– recursive, 5, 23
– semantic, 5
– syntactic, 5
Ptime as a class of queries, 23
Ptime-inversion of ICk , ILk , 137
pull-back, 118, 122, 123

quantifier free reducibility, 45
quantifier rank, 36
query, 17
quotient cardinality quantifiers, 44, 117

realization
– of restricted tableau, 158
– of tableau, 153
relational machines, 113
Rescher quantifier, 44
rigid quantifiers, 128

satisfiability problem, 174
scaling property, 117
semantic completeness, 3
semantic invariance condition, 4

sentence, 18
size of ICk , 82, 91
sparse quantifiers, 128
stable colouring, 67
– of k-graph, 69
stage of game, 51
standard domain, 17, 21
standard objects, 21
standard part of semantics, 100
structural padding, 111, 117
structure
– encoding of, 21
– ordered, 16
– two-sorted, 16
– weighted, with weights, 16
– with parameters, 16
subgraph isomorphism problem, 133
systems of fixed points, 33

trees, 27
– full, binary, 28
trivial product, 118
type
– L-type, 19
– Ck-type, 54
– Lk-type, 54
– atomic, quantifier free, 20
– equality, 20

uniform interpretability, 41

weighted game tableau, 151
well-foundedness, 26
winning strategy, 52

