Finite Groupoids, Finite Coverings and Symmetries in Finite Structures

Martin Otto
Department of Mathematics
Technische Universität Darmstadt

October 2015

Abstract

We propose a novel construction of finite hypergraphs and relational structures that is based on reduced products with Cayley graphs of groupoids. To this end we construct groupoids whose Cayley graphs have large girth not just in the usual sense, but with respect to a discounted distance measure that contracts arbitrarily long sequences of edges within the same sub-groupoid (coset) and only counts transitions between cosets. Reduced products with such groupoids are sufficiently generic to be applicable to various constructions that are specified in terms of local gluing operations and require global finite closure. We here examine hypergraph coverings and extension tasks that lift local symmetries to global automorphisms.
Contents

1 Introduction 3

2 Highly acyclic finite groupoids 10
 2.1 I-graphs ... 10
 2.1.1 Operation of the free I-structure 12
 2.1.2 Coherent I-graphs 13
 2.1.3 Completion of I-graphs 13
 2.2 I-groupoids .. 16
 2.3 Amalgamation of I-graphs 20
 2.4 Eliminating short coset cycles 22

3 Reduced products with finite groupoids 24
 3.1 Hypergraphs and hypergraph acyclicity 24
 3.2 Realisations of overlap patterns 25
 3.3 Direct and reduced products with groupoids 27
 3.4 Realisations in reduced products 31
 3.5 Coverings by reduced products 32
 3.6 Acyclicity in coverings by reduced products 34

4 Symmetries in reduced products 36
 4.1 Global symmetries and automorphisms 37
 4.2 Groupoidal symmetries of reduced products 39
 4.3 Lifting structural symmetries to reduced products 39
 4.4 Lifting local to global symmetries 41

Note: This paper extends and supersedes earlier expositions of core results in [14, 15].
1 Introduction

Consider a partial specification of some global structure by descriptions of its local constituents and of the possible links between these, in terms of allowed and required direct overlaps between pairs of local constituents. Such specifications typically have generic, highly regular, free, infinite realisations in the form of tree-like acyclic objects. We here address the issue of finite realisations, which should ideally meet similar combinatorial criteria in terms of genericity and symmetry. Instead of full acyclicity, which is typically unattainable in finite realisations, we look for specified degrees of acyclicity.

Overlaps can be specified by partial bijections between the local constituents. It turns out that the universal algebraic and combinatorial properties of groupoids, which can be abstracted from the composition behaviour of partial bijections, support a very natural approach to the construction of certain highly symmetric finite instances of hypergraphs and relational structures that provide the desired finite realisations.

We use hypergraphs as abstractions for the decomposition of global structures into local constituents. As a collection of subsets of a given structure, the collection of hyperedges specifies the notion of locality: the local view comprises one hyperedge at a time. Depending on context, individual hyperedges may carry additional local structure, e.g., interpretations of relations stemming from an underlying relational structure.

Realisations. For the synthesis task, we may think of descriptions of local structure as given in piece-wise, a priori disjoint patches that are taken to be the templates for the local constituents in the global structure; a global realisation is to be constructed from isomorphic copies of these local pieces. The second ingredient is a specification of the desired overlaps between pairs of such local constituents; it describes their admitted and required intersections. In this general context, we offer a versatile and generic solution to the finite synthesis problem posed by partial specifications of hypergraphs (relational structures with a notion of locality) in terms of hyperedges (isomorphism types of local substructures) and overlaps between these. Depending on the nature of the synthesis task, even the very existence of a finite solution may not be immediate. In other circumstances, if some finite realisation is explicitly given or has been obtained in a first step, we aim to meet additional global criteria in special, qualified finite realisations. The global criteria under consideration are

(i) criteria concerning controlled acyclicity w.r.t. the natural gradation of hypergraph acyclicity or tree decomposability for finite structures;

(ii) criteria of global symmetry in the sense of a rich automorphism group that extends rather than breaks the symmetries of the given specification.

In the most general case, the specification of the overlap pattern to be realised comes as a disjoint family of abstract regions \((V_s)_{s \in S}\) together with a collection of partial bijections \((\rho_e)_{e \in E}\), where each \(e \in E\) has specified source and target sites \(s, s' \in S\) and \(\rho_e\) is a partial bijection between sites \(V_s\) and \(V_{s'}\).
Figure 1: Links between two sites in overlap specification and in the underlying incidence pattern.

We think of the set S as an index set for the different types of local constituents; and of E as an index set for the types of pairwise overlaps. Formally, E will be the set of edges in a multi-graph with vertex set S.

Figure 1 provides an example of a possible overlap specification between two sites V_s and $V_{s'}$ along with two different modes of overlap, e_1 and e_2. Note that minimal requirements w.r.t. an isomorphic (i.e., bijective) embedding of V_s into a desired realisation makes it necessary that, in this example, the e_1-overlap and the e_2-overlap of one and the same copy of V_s need to go to different copies of $V_{s'}$, and similarly every $V_{s'}$-copy will have to overlap with distinct V_s-copies.

Globally, a realisation of an overlap specification consists of partly overlapping components \hat{V}_s that are each isomorphic to one of the local patches V_s via some local projection $\pi_s: V_s \rightarrow \hat{V}_s$, and such that every copy of V_s overlaps with copies of suitable $V_{s'}$ according to the overlap specified in the partial bijections ρ_e for those edges $e \in E$ that link s to some s'. Figure 2 gives a local impression of how a partial bijection ρ_e between sites V_s and $V_{s'}$ of the overlap specification is to be realised as an actual overlap of isomorphic copies of these patches V_s and $V_{s'}$ within a realisation.

As discussed in [11], groupoids and inverse semigroups naturally occur in connection with the description of global structure by means of local coordinates; atlases for manifolds provide a typical example in the continuous world. The systems of partial bijections that represent changes between different local coordinates can be abstracted as either inverse semigroups or as groupoids (ordered groupoids in the terminology of [11]). Our use of groupoids in the construction of realisations may, in these terms, be associated with atlases for a global realisation whose local views and overlaps between local views are specified in the given overlap pattern. The local sites $(V_s)_{s \in S}$ of the specification form the coordinate domains of an atlas for the realisation, in which local patches \hat{V}_s corresponding to V_s are isomorphically related to their template V_s via local
projections π_s; these projections serve as the local coordinatisations.

Coverings. More concrete overlap specifications arise from an actual structure composed of local patches. A non-trivial further realisation task in this context asks for a replication of the given overlap pattern in another finite structure, with extra constraints on the global properties of the new realisation. Intuitively, one can think of a finite process of partial unfolding. Formally, we cast this as a covering problem at the level of hypergraphs. These may be the hypergraphs induced by some notion of locality in other kinds structures; the whole approach thus naturally extends to such settings. A hypergraph covering aims to reproduce the overlap pattern between hyperedges of a given hypergraph in a covering hypergraph while smoothing out the overall behaviour, e.g., by achieving a higher degree of acyclicity. The conceptual connections with topological notions of (branched) coverings [5] are apparent, but we keep in mind that here we insist on finiteness so that full acyclicity as in universal coverings cannot generally be expected.

It may be instructive to compare first the situation for graphs rather than hypergraphs. Here the covering would be required to provide lifts for every edge -- and, by extension, every path -- in the base graph, at every vertex in the covering graph above a given vertex in the base graph. For an unbranched covering, the in- and out-degrees of a covering node would also be required to be the same as for the corresponding vertex in the base graph. And indeed graphs do allow for unbranched, finite coverings in this sense, which achieve any desired finite degree of acyclicity (i.e., can avoid cycles of length up to N for any desired threshold N), as the following result from [12] shows.

Proposition 1.1. Every finite graph admits, for each $N \in \mathbb{N}$, a faithful (i.e., unbranched, degree-preserving) covering by a finite graph of girth greater than N (i.e., without cycles of length up to N).
The situation for hypergraphs is more complicated because the separation between local and global aspects is blurred compared to graphs. This is due to the fact that a succession of transitions from one hyperedge to the next through some partial overlaps typically preserves some vertices while exchanging others; in a graph on the other hand, two successive edge transitions cannot maintain the presence of any vertex. Correspondingly, even the notion of N-acyclicity for hypergraphs is somewhat non-trivial.

Example. Consider a covering task for the simple hypergraph consisting of the facets of the 3-simplex. This hypergraph is associated with the faces of the tetrahedron; or it may be seen as just the complete 3-uniform hypergraph on four vertices. A representation of the overlap specification between the hyperedges (faces) is provided in Figure 3. Possible local views around a single vertex of a finite covering hypergraph are indicated in Figure 4. It is clear that even locally, cycles cannot be avoided (in any trivial sense of avoiding cycles): the cyclic succession of overlapping copies of the hyperedges s_1, s_2 and s_3 around
a single shared vertex will have to close back onto itself in any finite covering. This also means that the incidence degrees of hyperedges of a certain type with vertices cannot be preserved in any non-trivial finite covering, or that branched rather than unbranched coverings will have to be considered.

Proposition 1.1 above shows that neither of these perceived obstacles, viz. the lack of a clear local-vs-global distinction and the necessity to consider branched coverings, arises in the special case of graphs. The uniform and canonical construction of N-acyclic graph coverings according to Proposition 1.1, as given in [12], is based on a natural product between the given graph and Cayley groups of large girth. The latter in turn can be obtained as subgroups of the symmetric groups of the vertex sets of suitably coloured finite acyclic graphs in an elegant combinatorial construction attributed to Biggs [4] in Alon’s survey [1].

Some of these ideas were successfully lifted and applied to the construction of hypergraph coverings in [13]. For the combinatorial groups, the generalisation involved led to a uniform construction of Cayley groups that not only have large girth in the usual sense. Instead, they have large girth even w.r.t. to a reduced distance measure that measures the length of cycles in terms of the number of non-trivial transitions between cosets w.r.t. subgroups generated by different collections of generators. For an intuitive idea how this concern arises we may again look at the above example of the faces of the tetrahedron. There are two distinct sources of avoidable short cycles in its finite branched coverings: (a) ‘local cycles’ around a single pivot vertex, in the 1-neighbourhoods of a single vertex, and of length $3k$ in a locally k-fold unfolding; (b) ‘non-local cycles’ that enter and leave the 1-neighbourhoods of several distinct vertices. To account for the length of a cycle of type (b), the number of individual single-step transitions between faces around one of the visited pivotal vertices is typically irrelevant; what essentially matters is how often we move from one pivot to the next, and this corresponds to a transition between two subgroups (think of a transition between the stabiliser of one pivot and the next).

But nothing as simple as a product between a hypergraph and even one of these ‘highly acyclic’ Cayley graphs will produce a covering by a finite N-acyclic hypergraph (to be defined properly below). The construction presented in [13] uses such Cayley groups only as one ingredient to achieve suitable hypergraph coverings through an intricate local-to-global construction by induction on the maximal size of hyperedges. More importantly, these further steps in the construction from [13] are no longer canonical. In particular, they do not preserve symmetries of the given hypergraph; it also remains unclear which kinds of singularities and branching are unavoidable as opposed to artefacts due to non-canonical choices.

We here expand the amalgamation techniques that were explored for the combinatorial construction of highly acyclic Cayley graphs [13] from groups to groupoids, and obtain ‘Cayley groupoids’ that are highly acyclic in a similar sense. It turns out that groupoids are a much better fit for the task of constructing hypergraph coverings as well as for the construction of finite hypergraphs according to other specifications. The new notion of Cayley groupoids allows
for the construction of finite realisations of overlap specifications by means of natural reduced products with these groupoids. It is more canonical and supports realisations, and in particular also coverings, of far greater genericity and symmetry than previously available. The basic idea of the use of groupoids in reduced products is the following. Think of a groupoid G whose elements are tagged by sort labels $s \in S$, which stand for the different sites V_s in the overlap specification; the groupoid is generated by elements $\langle g_e \rangle$ which link sort s to sort s' if the partial bijection ρ_e of the overlap specification links V_s to $V_{s'}$. Then a realisation of the overlap specification is obtained from a direct product that consists of disjoint copies $V_s \times \{g\}$ of V_s for every groupoid element g of sort s through a natural identification of elements in $V_s \times \{g\}$ and in $V_{s'} \times \{g_g\}$ according to ρ_e, as sketched in Figure 5.

Main Theorem. Every abstract finite specification of an overlap pattern between disjoint sets, by means of partial matchings between them, admits a realisation in a finite hypergraph. Moreover, for any $N \in \mathbb{N}$, this realisation can be chosen to be N-acyclic, i.e., such that every induced sub-hypergraph of up to N vertices is acyclic, and to preserve all symmetries of the given specification.

See Section 3.1, Theorem 3.22 and Corollary 4.10 for the development and details.

We address two main applications of this general construction. The first of these concerns the construction of coverings, as discussed above, as a special case of a realisation task in which the overlap specification is induced by a given hypergraph (or a notion of locality in some decomposition of a given structure). See Section 3.5 for definitions and details, especially Proposition 3.21.

Theorem 1. Every finite hypergraph admits, for every $N \in \mathbb{N}$, a covering by a finite hypergraph that is N-acyclic, i.e., in which every induced sub-hypergraph of up to N vertices is acyclic. In addition, the covering hypergraph can be chosen to preserve all symmetries of the given hypergraph.
The second main application concerns the extension of local symmetries to global symmetries in finite structures. This topic has been explored in model theoretic context in the work of Hrushovski, Herwig and Lascar [10, 6, 8]. In its basic form, due to Hrushovski [10], the statement is for graphs and says that every finite graph admits an extension to another finite graph, in which the given graph sits as an induced subgraph, such that every partial isomorphism within the given graph is induced by an automorphism of the extension. In other words, every local symmetry can be extended to a global symmetry in a suitable extension. Herwig [6] and then Herwig and Lascar [8] extended this fascinating combinatorial result first from graphs to arbitrary relational structures (hypergraphs), then to a conditional statement concerning finite extensions within a class C of relational structures provided there is an infinite extension of the required kind within C. Here the classes C under consideration are defined in terms of forbidden homomorphisms. Herwig and Lascar use the term \textit{extension property for partial automorphisms} (EPPA) for this extension task from local to global symmetries in finite structures. The most general constructions provided in [8] remain rather intricate, while the original construction for graphs from [10] was greatly simplified in a remarkably transparent new argument in [8]. We here now derive the strongest form of the Herwig–Lascar EPPA theorem as a natural application of the main theorem. This application uses its full power w.r.t. its natural compatibility with symmetries (for a rich automorphism group) and control of cycles (to guarantee a consistent embedding of the given structure and the omission of forbidden homomorphisms).

This application also reflects on the role that pseudo-groups, inverse semigroups and groupoids play in the algebraic and combinatorial analysis of local symmetries, cf. [11]. See Section 4.4 for details, especially Corollary 4.18.

\textbf{Theorem 2} (Herwig–Lascar). \textit{Every class C that is defined in terms of finitely many forbidden homomorphisms has the finite model property for the extension of partial isomorphisms to automorphisms (EPPA).}

\textbf{Organisation of the paper.} Section 2 introduces I-graphs and I-groupoids and their Cayley graphs for incidence patterns $I = (S, E)$, which serve as templates for the sites and links in overlap specifications; it proceeds to deal with the construction of finite I-groupoids with strong acyclicity properties, based on amalgamation of I-graphs and the abstraction of groupoid actions from I-graphs. In Section 3 we examine the construction of realisations via reduced products of I-graphs, which serve as specifications of the desired overlap pattern, with I-groupoids, which provide the backbones for suitable finite unfoldings. Both the main theorem on realisations and the main theorem on coverings are proved in that section. Readers interested in coverings, and not in the more general setup used for realisations of abstract overlap specifications, can focus on Sections 3.3, 3.5 and 3.6 without loss of coherence as far as the theme of finite coverings is concerned. Section 4 finally deals with the extension of local to global symmetries and presents the Herwig–Lascar result on extension proper-
ties of partial automorphisms as a natural application of the generic realisations of overlap specifications between copies of the given structure.

2 Highly acyclic finite groupoids

In this section we develop a method to obtain groupoids from operations on coloured graphs. The basic idea is similar to the construction of Cayley groups as subgroups of the symmetric group of the vertex set of a graph. In that construction, a subgroup of the full permutation group on the vertex set is generated by permutations induced by the graph structure, and in particular by the edge colouring of the graphs in question. This method is useful for the construction of Cayley groups and associated homogeneous graphs of large girth [1, 4]. In that case, one considers simple undirected graphs $H = (V, (R_e)_{e \in E})$ with edge colours $e \in E$ such that every vertex is incident with at most one edge of each colour. In other words, the R_e are partial matchings or the graphs of partial bijections within V. Then $e \in E$ induces a permutation g_e of the vertex set V, where g_e swaps the two vertices in every e-coloured edge. The $(g_e)_{e \in E}$ generate a subgroup of the group of all permutations of V. For suitable H, the Cayley graph induced by this group with generators $(g_e)_{e \in E}$ can be shown to have large girth (no short cycles, i.e., no short generator sequences that represent the identity).

We here expand the underlying technique from groups to groupoids and lift it to a higher level of ‘large girth’. The second aspect is similar to the strengthening obtained in [13] for groups. The shift in focus from groups to groupoids is new here. Just as Cayley groups and their Cayley graphs, which are particularly homogeneous edge-coloured graphs, are extracted from group actions on given edge-coloured graphs in [13], we shall here construct groupoids and associated groupoidal Cayley graphs, which are edge- and vertex-colored graphs (I-graphs, in the terminology introduced below), from given I-graphs. The generalisation from Cayley groups to the new Cayley groupoids requires conceptual changes and presents some additional technical challenges, but leads to objects that are better suited to hypergraph constructions than Cayley groups.

2.1 I-graphs

The basic idea for the specification of an overlap pattern was outlined in the introduction. We now formalise the concept with the notion of an I-graph. The underlying structure $I = (S, E)$, on which the notion of an I-graph will depend, is a multi-graph structure whose vertices $s \in S$ label the available sites and whose edges $e \in E$ label overlaps between these sites. This structure I serves as the incidence pattern for the actual overlap specification in I-graphs that instantiate sites and overlaps by concrete sets V_s for $s \in S$ and partial bijections ρ_e for $e \in E$.

Definition 2.1. An incidence pattern is a finite directed multi-graph $I = (S, E)$ with edge set $E = \bigcup_{s, s' \in S} E[s, s']$, where $e \in E[s, s']$ is an edge from s to s' in
Remark 2.2. There is an alternative, multi-sorted view, which may seem more natural from a categorical point of view. According to this view, an incidence pattern would be a structure $I = (S, E, \iota_0, \iota_1, (\cdot)^{-1})$ with two sorts S and E, where $\iota_0, \iota_1 : E \to S$ specify the start- and endpoints of edges $e \in E$, so that $e \in E[\iota_0(e), \iota_1(e)]$. Here edge reversal corresponds to simply swapping ι_0 and ι_1.

In particular, this view fits better with our intention not to identify e with e^{-1} for loops $e \in E[s, s]$ of I and will be our guide when we shall discuss symmetries of incidence patterns in Section 4.

For notational convenience we stick to the shorthand format $I = (S, E)$ but keep in mind that this notation suppresses the two-sorted picture, the typing of the edges, and the operation of edge reversal.

Definition 2.3. An I-graph is a finite directed edge- and vertex-coloured graph $H = (V, (V_s)_{s \in S}, (R_e)_{e \in E})$, whose vertex set V is partitioned into subsets V_s and in which, for $e \in E[s, s']$, the directed edge relation $R_e \subseteq V_s \times V_{s'}$ induces a partial bijection ρ_e from V_s to $V_{s'}$, and such that the R_e (the ρ_e) are compatible with edge reversal, i.e., $R_{e^{-1}} = (R_e)^{-1}$ (or $\rho_{e^{-1}} = \rho_e^{-1}$).

In the following we use interchangeably the functional terminology of partial bijections ρ_e and the relational terminology of partial matchings R_e: it will be convenient to pass freely between the view of an I-graph H as either a coloured graph or as a family of disjoint sets linked by partial bijections.

Edges in R_e are also referred to as edges of colour e or just as e-edges. We may regard I-graphs as a restricted class of S-partite, E-coloured graphs, where reflexive e-edges (loops) are allowed if e is a loop in I.

\footnote{We do not identify e with e^{-1} even for loops $e \in E[s, s]$ of I.}
2.1.1 Operation of the free I-structure

We discuss the structure of the set of all compositions of the partial bijections ρ_e in an I-graph. These partial bijections form an inverse semigroup [11], but our main emphasis is on other aspects. Firstly, the analysis of the composition structure of the ρ_e underpins the idea of I-graphs as specifications of overlap patterns and thus of our crucial concept of realisations. Secondly, it prepares the ground for the association with groupoids in Section 2.2.

For $I = (S, E)$, we let E^* stand for the set of all labellings of directed paths (walks) in I. A typical element of E^* is of the form $w = e_1 \ldots e_n$ where $n \in \mathbb{N}$ is its length and, for suitable $s_i \in S$, the edges are such that $e_i \in E[s_i, s_{i+1}]$ for $1 \leq i \leq n$. We admit the empty labellings of paths of length 0 at $s \in S$, and distinguish them by their location s as λ_s.

The set E^* is partitioned into subsets $E^*[s, t]$, which, for $s, t \in S$, consist of the labellings of paths from s to t in I, so that in particular $\lambda_s \in E^*[s, s]$. For $w = e_1 \ldots e_n \in E^*[s, t]$, we write $w^{-1} := e_n^{-1} \ldots e_1^{-1}$ for the converse in $E^*[t, s]$, which is obtained by reverse reading w and replacement of each edge label e by its reversal e^{-1}. The set E^* carries a partially defined associative concatenation operation

$$(w, w') \in E^*[s, t] \times E^*[t, u] \quad \mapsto \quad ww' \in E^*[s, u],$$

which has the empty word $\lambda_s \in E^*[s, s]$ as the neutral element of sort s. One may think of this structure as a groupoidal analogue of the familiar word monoids. For further reference, we denote it as the free I-structure

$$\mathcal{J}^* = (E^*, (E^*[s, t])_{s,t \in S}, \ldots, (\lambda_s)_{s \in S}).$$

We note that the converse operation $w \mapsto w^{-1}$ of \mathcal{J}^* does not provide inverses: obviously, $ee^{-1} \neq \lambda_s$ for any $e \in E[s, s']$.

Consider an I-graph $H = (V, (V_\lambda), (R_e))$. The partial bijections ρ_e prescribed by the relations R_e together with their compositions along paths in E^* induce a structure of the same type as \mathcal{J}^*, in fact a natural homomorphic image of \mathcal{J}^* as follows. For $e \in E[s, s']$, let ρ_e be the partial bijection between V_s and $V_{s'}$ induced by $R_e \subseteq V_s \times V_{s'}$. For $w \in E^*[s, t]$, define ρ_w as the partial bijection from V_s to V_t that is the composition of the maps ρ_e, along the path $w = e_1 \ldots e_n$; in relational terminology, the graph of ρ_w is the relational composition of the R_{e_i}. For $w \in E^*[s, t]$,

$$\rho_w : V_s \longrightarrow V_t$$

is a partial bijection, possibly empty. We obtain a homomorphic image of the free I-structure $\mathcal{J}^* = (E^*, (E^*[s, t]), \ldots, (\lambda_s))$ under the map

$$\rho : \mathcal{J}^* \longrightarrow \{ f : f \text{ a partial bijection of } V \}$$

$w = e_1 \ldots e_n \quad \mapsto \quad \rho_w = \prod_{i=1}^n \rho_{e_i}.$

\footnote{For convenience we use the notation E^*, which usually stands for the set of all E-words, with a different meaning: firstly, E^* here only comprises E-words that arise as labellings of directed paths in I; secondly, we distinguish empty words $\lambda_s \in E^*$, one for every $s \in S$.}
Concatenation of paths/words maps to (partial) composition of partial maps:

\[\rho_{ww'} = \rho_{w'} \circ \rho_w \]

wherever defined, i.e., for \(w \in E^*[s,t], w' \in E^*[t,u] \) so that \(ww' \in E^*[s,u] \).

The converse operation \(w \mapsto w^{-1} \) maps to the inversion of partial maps

\[\rho_{w^{-1}} = (\rho_w)^{-1}. \]

Note that the domain of \((\rho_e)^{-1} \circ \rho_e\) is \(\text{dom}(\rho_e)\) and may be a proper subset of \(V_s\). So we still do not have groupoidal inverses – this will be different only when we consider complete \(I\)-graphs (cf. Definition 2.5) in Section 2.2 below.

2.1.2 Coherent \(I\)-graphs

We isolate an important special class of coherent \(I\)-graphs in terms of a particularly simple, viz. ‘untwisted’, composition structure of the \(\rho_e\). This concept involves a notion of global path-independence.

Definition 2.4. An \(I\)-graph \(H = (V, (V_s), (R_e))\) is coherent if every composition \(\rho_w\) for \(w \in E^*[s,s]\) is a restriction of the identity on \(V_s\):

\[\rho_w \subseteq \text{id}_{V_s} \quad \text{for all } s \in S, w \in E^*[s,s]. \]

Note that coherence is a property of path-independence for the tracking of vertices via \(\rho_w\) along paths in \(I\): \(\rho_{w_1}(v) = \rho_{w_2}(v)\) for every pair \(w_1, w_2 \in E^*[s,t]\) and for all \(v \in V_s\) in \(\text{dom}(\rho_{w_1}) \cap \text{dom}(\rho_{w_2})\). To see this, consider the path \(w = w_1^{-1}w_2 \in E^*[t,t]\) and apply the map \(\rho_w\), which is responsible for transport along this loop, to the vertex \(\rho_{w_1}(v)\). Coherence may also be seen as a notion of flatness in the sense that the operation of the free \(I\)-structure does not twist the local patches in a non-trivial manner. The \(I\)-graph representations of hypergraphs to be discussed in Section 3.1 provide natural examples of coherent \(I\)-graphs. Of course \(I\) itself is trivially coherent when considered as an \(I\)-graph.

Coherence of \(H\) implies that overlaps between arbitrary pairs of patches \(V_s\) and \(V_t\), as induced by overlaps along connecting paths in \(I\), are well-defined, independent of the connecting path. We let \(\rho_{st}(V_s) \subseteq V_t\) stand for the subset of \(V_t\) consisting of those \(v \in V_t\) that are in the image of \(\rho_w\) for some \(w \in E^*[s,t]\). Then \(\rho_{st}(V_s) \subseteq V_t\) is bijectively related to \(\rho_{ts}(V_t) \subseteq V_s\) by the partial bijection

\[\rho_{st} := \bigcup \{ \rho_w : w \in E^*[s,t] \}, \]

which is well-defined due to coherence.

2.1.3 Completion of \(I\)-graphs

Complete \(I\)-graphs trivialise those complicating features of the composition structure of the \(\rho_e\) that arise from the partial nature of these bijections.
Figure 7: Coherence of I-graphs.

Definition 2.5. An I-graph H is *complete* if the R_e induce full rather than partial bijections, i.e., if, for all $e \in E[s,s']$, $\text{dom}(\rho_e) = V_s$ and $\text{image}(\rho_e) = V_{s'}$.

Note that I itself may be regarded as a trivially complete I-graph; the Cayley graphs of I-groupoids will be further typical examples of complete I-graphs; see Definition 2.11 below. A process of completion is required to prepare arbitrary given I-graphs for the desired groupoidal operation.

If $H = (V,(V_s),(R_e))$ is an I-graph then the following produces a complete I-graph on the vertex set $V \times S$, with the partition induced by the natural projection:

$$H \times I \ := \ (V \times S, (\tilde{V}_s), (\tilde{R}_e))$$

where, for $s \in S$,

$$\tilde{V}_s \ = \ V \times \{s\}.$$

For $e \in E[s,s']$, $s \neq s'$, the possibly incomplete R_e in H is lifted to $H \times I$ according to

$$\tilde{R}_e \ = \ \{ (v,s),(v',s'): (v,v') \text{ an } e\text{-edge in } H \} \cup$$

$$\{ ((v',s),(v,s')): (v,v') \text{ an } e\text{-edge in } H \} \cup$$

$$\{ ((v,s),(v,s')): v \text{ not incident with an } e\text{-edge in } H \};$$

and, for $e \in E[s,s]$, to

$$\tilde{R}_e \ = \ \{ ((v,s),(v',s)): (v,v') \text{ an } e\text{-edge in } H \} \cup$$

$$\{ ((v',s),(v,s)): v/v' \text{ first/last vertex on a maximal } e\text{-path}3 \text{ in } H \}.$$

We note that this stipulation does indeed produce a complete I-graph: for $e \in E[s,s']$, it is clear from the definition of the \tilde{R}_e that $\tilde{R}_e \subseteq \tilde{V}_s \times \tilde{V}_{s'}$ and that

3An e-path is a directed path in R_e^H.

14
Corollary 2.8. For every completion is compatible with disjoint unions: if H is incident with an e-edge in H, which means that, for a unique $v' \in V$, one of (v, v') or (v', v) is an e-edge in H, and in both cases $((v, s), (v', s'))$ and $((v', s), (v, s'))$ become e-edges in $H \times I$; or v is not incident with an e-edge in H, and $((v, s), (v, s'))$ thus becomes the only outgoing e-edge from (v, s) as well as the only incoming e-edge at (v, s'). Also $\bar{R}_e^{-1} = (\bar{R}_e)^{-1}$ as required.

Observation 2.6. If $H = (V, (V_s), (R_e))$ is a not necessarily complete I-graph, then $H \times I$ is a complete I-graph; the embedding

$$
\sigma: V \longrightarrow V \times S
$$

$$
v \longmapsto (v, s) \text{ for } v \in V_s
$$

embeds H isomorphically as a weak substructure. If I is loop-free, or if H is already complete w.r.t. to all loops $e \in E[s, s']$ of I for all $s \in S$, then H embeds into $H \times I$ as an induced substructure.

Proof. Note that the natural projection onto the first factor provides the inverse to σ on its image. Then $(v, v') \in R_e$ for $e \in E[s, s']$ implies that $v \in V_s$ and $v' \in V_s$ and therefore that $((v, v'), (v, s), (v', s'))$ is an e-edge of $H \times I$. Conversely, let $((v, s), (v', s'))$ be an e-edge of $H \times I$. If $s \neq s'$ then $v \neq v'$ (as the V_s partition V) and (v, v') must be an e-edge of H. If $e \in E[s, s]$ is a loop of I, an e-edge $((v, s), (v', s))$ for $v, v' \in V_s$ may occur in $H \times I$ even though (v, v') is not an e-edge of H, but then v and v' were missing outgoing, respectively incoming, e-edges in H.\qed

In the following we use, as a completion of H, the relevant connected component(s) of $H \times I$; i.e., the components into which H naturally embeds.

Definition 2.7. The completion \bar{H} of a not necessarily complete I-graph $H = (V, (V_s), (R_e))$ is the union of the connected components in $H \times I$ incident with the vertex set $\sigma(V) = \{(v, s): v \in V_s\}$.

Identifying V with $\sigma(V) \subseteq H \times I$, we regard H as a weak subgraph of \bar{H}.

Corollary 2.8. For every I-graph H, the completion \bar{H} is a complete I-graph. Completion is compatible with disjoint unions: if $H = H_1 \cup H_2$ is a disjoint union of I-graphs H_i, then $\bar{H} = \bar{H}_1 \cup \bar{H}_2$. If H itself is complete, then $\bar{H} \cong H$.

Proof. The first claim is obvious: by definition of completeness, any union of connected components of a complete I-graph is itself complete.

For compatibility with disjoint unions observe that the connected component of the σ-image of H_1 in $H \times I$ is contained in the cartesian product of H_1 with S, as edges of $H \times I$ project onto edges of H, or onto loops, or complete cycles in H.

For the last claim observe that, for complete H, the vertex set of the isomorphic embedding $\sigma: H \rightarrow H \times I$ is closed under the edge relations \bar{R}_e of $H \times I$: due to completeness of H, every vertex in $\sigma(V_s)$ is matched to precisely one vertex in $\sigma(V_{s'})$ for every $e \in E[s, s']$; it follows that no vertex in $\sigma(V)$ can have additional edges to nodes outside $\sigma(V)$ in $H \times I$.\qed
If $\alpha = \alpha^{-1} \subseteq E$ we write I_α for the reduct of I to its α-edges. We may regard the α-reducts of I-graphs (literally: their reducts to just those binary relations R_e for $e \in \alpha$) as I_α-graphs as well as I-graphs. Note that every I_α-graph is also an I-graph but, unless $\alpha = E$, cannot be a complete I-graph. The α-reduct of the I-graph H is denoted $H \mid \alpha$. Closures of subsets of I-graphs under α-edges (edges of colours $e \in \alpha$) will arise in some constructions below.

Lemma 2.9. Let $\alpha = \alpha^{-1} \subseteq E$ and consider an I-graph H and its α-reduct $K := H \mid \alpha$ as well as their completions \bar{H} and \bar{K} as I-graphs and their α-reducts $\bar{H} \mid \alpha$ and $\bar{K} \mid \alpha$. Then $\bar{H} \mid \alpha$ is an induced subgraph of $\bar{K} \mid \alpha$,

$$\bar{H} \mid \alpha \subseteq \bar{K} \mid \alpha,$$

and the vertex set of \bar{H} is closed under α-edges within \bar{K}.

Proof. Recall that the completion $\bar{H} \subseteq H \times I$ consists of the connected component of the diagonal embedding $\sigma(V) \subseteq V \times S$ into $H \times I$. This connected component is formed w.r.t. the union of the edge relations $(\bar{R}_e)_{e \in E}$ of $H \times I$. Similarly, the completion of K is formed by $\bar{K} \subseteq K \times I$, where the connected component of $\sigma(V) \subseteq V \times S$ w.r.t. the union of the edge relations $(\bar{R}_e)_{e \in E}$ of $K \times I = (H \mid \alpha) \times I$, for all $e \in E$. Let

$$D := \sigma(V) = \{(v,s) : s \in S, v \in V_\alpha\},$$

which is the same set of seeds for the completions \bar{H} and \bar{K} as closures of D under $(\bar{R}_e)_{e \in E}$ and $(\bar{R}_e')_{e \in E}$, respectively. For $e \in \alpha$, the edge relations \bar{R}_e and \bar{R}_e' of $H \times I$ and of $K \times I$ also coincide.

For $e \in E \setminus \alpha$, however, \bar{R}_e and \bar{R}_e' need not agree. Whenever (v,v') is an e-edge in H, for some $e \in E[s,s'] \setminus \alpha$, then this e-edge is not present in K, whence, for $s \neq s'$,

$$((v,s),(v',s')) \in \bar{R}_e \in H \times I \quad \text{(double arrows in Fig. 8)}$$

$$((v,s),(v,s')) \in \bar{R}_e' \in K \times I \quad \text{(single arrows in Fig. 8)}$$

For $e \in E[s,s] \setminus \alpha$, no relevant discrepancies occur, since additional e-edges for $e \in E[s,s]$ have no effect on connectivity in either $H \times I$ or $K \times I$.

Since the vertices on the diagonal $(v,s),(v',s') \in D = \sigma(V)$ are vertices of both \bar{H} and \bar{K}, the union of connected components that gives rise to \bar{H} is included in the one that gives rise to \bar{K}: all four of the vertices $(v,s), (v',s'), (v,s')$ and (v',s) are present in \bar{K}, while the off-diagonal pair $(v,s'), (v',s)$ may or may not be present in \bar{H}. \hfill \square

2.2 I-groupoids

We now obtain a groupoid operation on every complete I-graph H generated by the local bijections $\rho_e : V_s \to V_{s'}$ for $e \in E[s,s']$ as induced by the R_e. This step supports a groupoidal analogue of the passage from coloured graphs to Cayley groups.
Figure 8: \(e \)-edges in \(H \times I \) (double arrows) and \((H \mid \alpha) \times I \) (single arrows) for \(e \in E[s, s'] \setminus \alpha \), provided that \((v, v')\) is an \(e \)-edge of \(H \).

Figure 9: Local view of an \(I \)-graph \(H \), and of an \(I \)-groupoid \(G \) as a complete \(I \)-graph; while \(\rho_e \) may be partial, \(g_e \) is a full bijection between \(G_{ss} = \bigcup_t G_{ts} \) and \(G_{ss'} = \bigcup_t G_{ts'} \).
Definition 2.10. An S-groupoid is a structure $G = (G, (G_{st})_{s,t \in S}, (1_s)_{s \in S})$ whose domain G is partitioned into the sets G_{st}, with designated $1_s \in G_{st}$ for $s \in S$ and a partial binary operation \cdot on G, which is precisely defined on the union of the sets $G_{st} \times G_{tu}$, where it takes values in G_{st}, such that the following conditions are satisfied:

(i) (associativity) for all $g \in G_{st}, h \in G_{tu}, k \in G_{uv}$: $g \cdot (h \cdot k) = (g \cdot h) \cdot k$.
(ii) (neutral elements) for all $g \in G_{st}$: $g \cdot 1_s = g = 1_s \cdot g$.
(iii) (inverses) for every $g \in G_{st}$ there is some $g^{-1} \in G_{ts}$ such that $g \cdot g^{-1} = 1_s$ and $g^{-1} \cdot g = 1_t$.

We are looking to construct S-groupoids as homomorphic images of the free I-structure \mathcal{I}^* as discussed in Section 2.1.1. For the local view of an I-groupoid compare the right-hand side of Figure 9.

Definition 2.11. The S-groupoid G is generated by the family $(g_e)_{e \in E}$ if

(i) for every $e \in E[s, s']$, $g_e \in G_{ss'}$ and $g_{e^{-1}} = (g_e)^{-1}$;
(ii) for every $s, t \in S$, every $g \in G_{st}$ is represented by a product $\prod_{i=1}^n g_{e_i}$, for some path $e_1 \ldots e_n \in E^*[s, t]$.

An S-groupoid G that is generated by some family $(g_e)_{e \in E}$ for $I = (S, E)$ is called an I-groupoid.\(^4\)

In other words, an I-groupoid is a groupoid that is a homomorphic image of the free I-structure \mathcal{I}^*, under the map

$$G : \mathcal{I}^* \quad \longrightarrow \quad G$$

$$w = e_1 \ldots e_n \in E^*[s, t] \quad \mapsto \quad w^G = \prod_{i=1}^n g_{e_i} \in G_{st}.$$

Note that, if I is connected, then an I-groupoid is also connected in the sense that any two groupoid elements are linked by a path of generators. Otherwise, for disconnected I, an I-groupoid breaks up into connected components that form separate groupoids, viz., one I'-groupoid for each connected component I' of I (these are not I-groupoids).

For a subset $\alpha = \alpha^{-1} \subseteq E$ that is closed under edge reversal we denote by G_α the sub-groupoid generated by $(g_e)_{e \in \alpha}$ within G:

$$G_\alpha := G \mid \{ w^G : w \in \bigcup_{s,t} \alpha^*_st \} \text{ with generators } (g_e)_{e \in \alpha}.$$

According to the above, G_α may break up into separate and disjoint I_β-groupoids for the disjoint connected components I_β of I_α.

Recall from Section 2.1.1 how the free I-structure \mathcal{I}^* induces an operation on an I-graph H if we associate the partial bijections ρ_e of H with the generators $e \in E$ of \mathcal{I}^*. The fixpoint-free edge reversal in I induces a converse operation $w \mapsto w^{-1}$ on \mathcal{I}^*, which corresponds to inversion of partial bijections, $\rho_w \mapsto$\(^4\)It will often make sense to identify the generator g_e with e itself, and we shall often also speak of groupoids generated by the family $(e)_{e \in E}$.
\((\rho_w)^{-1} = \rho_{w^{-1}}\). But this converse operation \(\mathfrak{I}^*\) does not induce groupoidal inverses w.r.t. to the neutral elements \(1_s = \text{id}_{V_s}\) for \(e \in E[s,s']\), the domain of \((\rho_e)^{-1} \circ \rho_e\) is \(\text{dom}(\rho_e)\), which may be a proper subset of \(V_s\).

It is the crucial distinguishing feature of complete \(I\)-graphs, cf. Definition 2.5, that we obtain the desired groupoidal inverse. If \(H\) is a complete \(I\)-graph, then \(\rho_{w^{-1}} \circ \rho_w = (\rho_w)^{-1} \circ \rho_w = \text{id}_{V_w}\) for any \(w \in E^*[s,t]\), and the image structure obtained in this manner is an \(S\)-groupoid \(G := \text{cym}(H)\):

\[
\rho: \mathfrak{I}^* \rightarrow \mathbb{G} =: \text{cym}(H),
\]

where

\[
\text{cym}(H) = \mathbb{G} = (G,(G_{st})_{s,t \in S},\cdot,(1_s)_{s \in S}),
\]

\[G_{st} = \{\rho_w: w \in E^*[s,t]\}.\]

The groupoid operation \(\cdot\) is the one imposed by the natural composition of members of corresponding sorts:

\[
\cdot: \bigcup_{s,t,u} G_{st} \times G_{tu} \rightarrow G
\]

\[
(g,g') \in G_{st} \times G_{tu} \mapsto g \cdot g' := \rho_{ww'} \in G_{su}.
\]

For \(s \in S\), the identity \(1_s := \text{id}_{V_s}\) is the neutral element of sort \(G_{ss}\), induced as \(1_s = \rho_{\lambda}\) by the empty word \(\lambda \in E^*[s,s]\).

It is clear from the discussion above that there is a natural groupoidal inverse

\[
\rho^{-1}: G \rightarrow G
\]

\[\rho_w \in G_{st} \mapsto (\rho_w)^{-1} := \rho_{w^{-1}} \in G_{ts}\]

as \(\rho_{w^{-1}}\) is the full inverse \((\rho_w)^{-1}: V_t \rightarrow V_s\) of the full bijection \(\rho_w: V_s \rightarrow V_t\).

Definition 2.12. For a complete \(I\)-graph \(H\) we let \(\text{cym}(H)\) be the groupoid abstracted from \(H\) according to the above stipulations. We consider \(\text{cym}(H)\) as an \(I\)-groupoid generated by \((\rho_e)_{e \in E}\).

It is easy to check that \(\text{cym}(H)\) is an \(I\)-groupoid with generators \((\rho_e)_{e \in E}\) according to Definition 2.11. We turn to the analogue, for \(I\)-groupoids, of the notion of the Cayley graph.

Definition 2.13. Let \(G = (G,(G_{st}),\cdot,(1_s))\) be an \(I\)-groupoid generated by \((g_e)_{e \in E}\). The **Cayley graph** of \(G\) (w.r.t. these generators) is the complete \(I\)-graph \((V,(V_s),(R_e)))\) where \(V = G\),

\[
V_s = G_{ss} := \bigcup_t G_{ts},
\]

and

\[
R_e = \{(g,g \cdot e): g \in V_s\} \text{ for } e \in E[s,s'].
\]

One checks that this stipulation indeed specifies a complete \(I\)-graph, and in particular that really \(R_e \subseteq V_s \times V_{s'}\) for \(e \in E[s,s']\). Compare Figure 9.
Lemma 2.14. The I-groupoid induced by the Cayley graph of G is isomorphic to G.

Proof. Consider a generator ρ_e of the I-groupoid induced by the Cayley graph of G. For $e \in E[s,s']$ this is the bijection

$$\rho_e : V_s = G_{ss} \rightarrow V_{s'} = G_{ss'},$$

so that ρ_e operates as right multiplication by generator g_e (exactly where defined). Since the $(\rho_e)_{e \in E}$ generate the groupoid induced by the Cayley graph of G, it suffices to show that groupoid products of the ρ_e (compositions) and the groupoid products of the g_e in G satisfy the same equations, which is obvious from the correspondence just established. E.g., if $\prod_i g_{e_i} = 1_s$ in G, then, for the corresponding $w = e_1 \ldots e_n$, we have that $\rho_w : V_s \rightarrow V_s$, where $V_s = G_{ss}$, maps g to $g \cdot \prod_i g_{e_i} = g \cdot 1_s = g$ for all $g \in V_s = G_{ss}$, whence $\rho_w = \text{id}_V$ as desired.

If we identify I-groupoids with their Cayley graphs (which are complete I-graphs), we thus find that the generic process of obtaining I-groupoids from complete I-graphs trivially reproduces the given I-groupoid when applied to such. We extend the passage from I-graphs to I-groupoids to the setting of not necessarily complete I-graphs by combining it with the completion \bar{H} of H in $H \times I$. For the following compare Definition 2.7 for the completion \bar{H} of an I-graph H and Definition 2.12 for $\text{cym}(\bar{H})$.

Definition 2.15. For a not necessarily complete I-graph H, let the I-groupoid $\text{cym}(\bar{H})$ be the I-groupoid $\text{cym}(\bar{H})$ induced by the completion \bar{H} of H.

Remark 2.16. The E-graphs of [13] and their role as Cayley graphs of groups are a special case of I-graphs, also in their roles as Cayley graphs of groupoids.

In fact, an E-graph in the sense of [13] is a special I-graph for an incidence pattern of the form $I = (S,E)$ where S is a singleton set and E a collection of loops. An E-graph then is an I-graph in which every R_e is a partial matching. It follows that its completion consists of the symmetrisation of R_e augmented by reflexive edges at every vertex outside the domain and range of these matchings. For the induced I-groupoids abstracted from (complete) I-graphs consisting of matchings, this not only means that they are groups rather than groupoids, but also that they are generated by involutions, as in this case, $g_e = g_{e^{-1}}$.

2.3 Amalgamation of I-graphs

Consider two sub-groupoids G_α and G_β of an I-groupoid G with generators $e \in E$, where $\alpha = \alpha^{-1}, \beta = \beta^{-1} \subseteq E$ are closed under edge reversal. We write $G_{\alpha \beta}$ for $G_{\alpha \cap \beta}$ and note that $\alpha \cap \beta$ is automatically closed under edge reversal.

For $g \in G_{ss}$ (a vertex of colour s in the Cayley graph) we may think of the connected component of g in the reduct of the Cayley graph of G to those R_e
with $c \in \alpha$ as the G_α-coset at g:

$$gG_\alpha = \{ g \cdot w^\circ : w \in \bigcup_t \alpha_s^* \} \subseteq G.$$

If I_α is connected, then gG_α, as a weak subgraph of (the Cayley graph of) G, carries the structure of a complete I_α-graph. If I_α consists of disjoint connected components, then gG_α really produces the coset w.r.t. G_α' where $\alpha' \subseteq \alpha$ is the edge set of the connected component of s in I_α. In any case, this I_α-graph is isomorphic to the connected component of 1_s in the Cayley graph of G_α.

Suppose the I_α-graph H_α and the I_β-graph H_β are isomorphic to the Cayley graphs of sub-groupoids G_α and G_β, respectively. If $v_1 \in H_\alpha$ and $v_2 \in H_\beta$ are vertices of the same colour $s \in S$, then the connected components w.r.t. edge colours in $\alpha \cap \beta$ of v_1 in H_α and of v_2 in H_β are related by a unique isomorphism between the weak subgraphs formed by the $(\alpha \cap \beta)$-components. We define the amalgam of (H_α, v_1) and (H_β, v_2) (with reference vertices v_1 and v_2 of the same colour s) to be the result of identifying the vertices in these two connected components in accordance with this unique isomorphism, and keeping everything else disjoint. It is convenient to speak of (the Cayley graphs of) the sub-groupoids G_α as the constituents of such amalgams, but we keep in mind that we treat them as abstract I-graphs and not as embedded into G. Just locally, in the connected components of g_1 and g_2, i.e. in $g_1G_{\alpha_3} \simeq g_2G_{\alpha_3}$, the structure of the amalgam is that of $gG_{\alpha_3} \subseteq G$ in G for any $g \in V_s = G_s \subseteq G$.

Let, in this sense,

$$(G_{\alpha_1}, g_1) \oplus_s (G_{\alpha_2}, g_2)$$

stand for the result of the amalgamation of the Cayley graphs of the two sub-groupoids G_{α_i} in the vertices $g_i \in V_s \subseteq G_{\alpha_i}$. Note that $(G_{\alpha_1}, g_1) \oplus_s (G_{\alpha_2}, g_2)$ is generally not a complete I-graph (or I_α-graph for either i) but satisfies the completeness requirement for edges $e \in \alpha_1 \cap \alpha_2$.

Let $(G_{\alpha_i}, g_i, h_i, s_i)_{1 \leq i \leq N}$ be a sequence of sub-groupoids with distinguished elements and vertex colours as indicated, and such that for all relevant i

\[
\begin{align*}
 g_i \in (G_{\alpha_i})_{s_i} \subseteq G_{\alpha_i} \\
 h_i \in (G_{\alpha_i})_{s_i, s_i+1} \subseteq G_{\alpha_i} \\
 g_iG_{\alpha_i-1} \cap g_ih_iG_{\alpha_i, \alpha_i+1} = \emptyset \quad \text{as cosets in } G \text{ (within } g_iG_{\alpha_i}).
\end{align*}
\]
For the last condition, compare Figure 10: it stipulates that \(g_i \) cannot be linked to \(g_{i+1} \) by an \(\alpha_i \)-shortcut that merges the neighbouring \(\alpha_{i-1} \) and \(\alpha_{i+1} \)-cosets within the \(\alpha_i \)-coset that links \(g_i \) to \(g_{i+1} \); intuitively, such a shortcut would allow us to eliminate entirely the step involving the \(\alpha_i \)-coset.

If the above conditions are satisfied, then the pairwise amalgams
\[
(G_{\alpha_i}, g_i h_i) \oplus_s (G_{\alpha_{i+1}}, g_{i+1})
\]
are individually well-defined and, due to the last requirement in (†), do not interfere. Together they produce a connected \(I \)-graph
\[
H := \bigoplus_{i=1}^N (G_{\alpha_i}, g_i, h_i, s_i).
\]

We call an amalgam produced in this fashion a chain of sub-groupoids \(G_{\alpha_i} \) of length \(N \).

Condition (†) is important to ensure that the resulting structure is again an \(I \)-graph. Otherwise, an element of the critical intersection \(g_i G_{\alpha_i-1} \cap g_i h_i G_{\alpha_i\alpha_{i+1}} \) could inherit new e-edges from both \(G_{\alpha_i-1} \) and from \(G_{\alpha_{i+1}} \), for \(e \in (\alpha_{i-1} \cap \alpha_{i+1}) \setminus \alpha_i \).

2.4 Eliminating short coset cycles

Definition 2.17. A coset cycle of length \(n \) in an \(I \)-groupoid with generator set \(E \) is a sequence \((g_i)_{i \in \mathbb{Z}_n} \) of groupoid elements \(g_i \) (cyclically indexed) together with a sequence of generator sets (sets of edge colours) \(\alpha_i = \alpha_i^{-1} \subseteq E \) such that
\[
h_i := g_i^{-1} \cdot g_{i+1} \in G_{\alpha_i} \quad \text{and} \quad g_i G_{\alpha_i\alpha_{i-1}} \cap g_{i+1} G_{\alpha_i\alpha_{i+1}} = \emptyset.
\]

Definition 2.18. An \(I \)-groupoid is \(N \)-acyclic if it does not have coset cycles of length up to \(N \).

We now aim for the construction of \(N \)-acyclic \(I \)-groupoids to be achieved in Proposition 2.22. The following definition of compatibility captures the idea that some \(I \)-groupoid \(G \) is at least as discriminating as the \(I \)-groupoid \(\text{cym}(H) \) induced by the \(I \)-graph \(H \).

Definition 2.19. For an \(I \)-groupoid \(G \) and an \(I \)-graph \(H \) we say that \(G \) is compatible with \(H \) if, for every \(s \in S \) and \(w \in E^*[s, s] \),
\[
w^G = 1_s \implies \rho_w = \id_{V_s} = 1_s \text{ in } \text{cym}(H).
\]

The condition of compatibility is such that the natural homomorphisms for the free \(\mathcal{J}^* \) onto \(G \) and onto \(\text{cym}(H) \) induce a homomorphism from \(G \) onto \(\text{cym}(H) \), as in this commuting diagram:

\[
\begin{array}{ccc}
\mathcal{J}^* & \xrightarrow{\rho} & \text{cym}(H) \\
\downarrow^{\rho} & \searrow & \\
G & \xrightarrow{\text{form}} & \text{cym}(H)
\end{array}
\]
Compatibly of G with H also means that $G = \text{cym}(G) = \text{cym}(G \cup H)$ – and in this role, compatibility of sub-groupoids G_α with certain H will serve as a guarantee for the preservation of these (sub-)groupoids in construction steps that render the overall G more discriminating.

Note that, by definition, $\text{cym}(H)$ is compatible with H and \tilde{H} and, by Lemma 2.14, with its own Cayley graph.

Remark 2.20. If K and H are any I-graphs, then $\text{cym}(H \cup K)$ is compatible with K, K and with the Cayley graph of $\text{cym}(K)$.

The following holds the key to avoiding short coset cycles. Note that only generator sets of even sizes are mentioned since we require closure under edge reversal.

Lemma 2.21. Let G be an I-groupoid with generators $e \in E$, let $k, N \in \mathbb{N}$, and assume that, for every $\alpha = \alpha^{-1} \subseteq E$ with $|\alpha| < 2k$, the sub-groupoid G_α is compatible with chains of groupoids $G_{\alpha \beta}$ up to length N, for any choice of subsets $\beta_i = \beta_i^{-1} \subseteq E$. Then there is a finite I-groupoid G^* with the same generators s.t.

(i) for every $\alpha = \alpha^{-1} \subseteq E$ with $|\alpha| < 2k$, $G_\alpha^* \simeq G_\alpha$, and

(ii) for all $\alpha = \alpha^{-1} \subseteq E$ with $|\alpha| < 2k$, the sub-groupoid G_α^* is compatible with chains $G_{\alpha \beta_i}^*$ up to length N.

It will be important later that compatibility of G_α^* with chains as in (ii) makes sure that G_α^* cannot have cycles of cosets generated by sets $\alpha \cap \beta_i$ of length up to N: every such cycle in the Cayley group $G_\alpha^* = \text{cym}(G_\alpha^*)$ would have to be a cycle also in the Cayley group induced by any such chain, including those chains obtained as linear unfoldings of the proposed cycle (cf. Proposition 2.22 below).

Proof of the lemma. We construct G^* as $G^* := \text{cym}(G \cup H)$ for the I-graph $G \cup H$ consisting of the disjoint union of (the Cayley graph of) G and certain chains of sub-groupoids of G.

Specifically, we let H be the disjoint union of all amalgamation chains of length up to N of the form

$$\bigoplus_{i=1}^{m}(G_{\alpha \beta_i}, g_i, h_i, s_i)$$

for $\alpha = \alpha^{-1}, \beta_i = \beta_i^{-1} \subseteq E, 1 \leq i \leq m \leq N$, where $|\alpha| \leq 2k$.

By construction and Remark 2.20, $G^* = \text{cym}(G \cup H)$ is compatible with chains $G_{\alpha \beta}$ of the required format; together with (i) this implies (ii), i.e., that G^* is compatible with corresponding chains of $G_{\alpha \beta}^*$: either the chain in question has only components $G_{\alpha \beta}^*$ with $|\alpha \cap \beta| < 2k$ so that, by (i), $G_{\alpha \beta}^* \simeq G_{\alpha \beta}$; or there is some component $G_{\alpha \beta}^*$ with $|\alpha \cap \beta| = 2k$, which implies that $\alpha = \beta \cap \alpha$, and by (†) (page 21) the merged chain is isomorphic to G_α^*, thus trivialising the compatibility claim.

For (i), it suffices to show that, for $|\alpha'| < 2k$, $G_{\alpha'}$ is compatible with each connected component of H. (That G^* is compatible with $G_{\alpha'}$ is clear since $G_{\alpha'}$
is itself a component of \(H \) and hence of \(G \cup H \); compatibility of \(G^* \) with \(G \) is obvious for the same reason.)

Consider then a component of the form \(\bigoplus_{i=1}^{m} (G_{\alpha\beta}, g_i, h_i, s_i) \). The \(\alpha' \)-reducts of \(\alpha' \)-connected components of its completion arise as substructures of the completions of merged chains of components of the form \(G_{\alpha'\beta} \), according to Lemma 2.9. Since \(|\alpha'| < 2k \), the assumptions of the lemma imply compatibility of \(G_{\alpha'} \) with any such component. It follows that \(G^* = \text{cym}(G \cup H) \) is compatible with all \(G_{\alpha'} \) for \(|\alpha'| < 2k \), and thus \(G^*_{\alpha'} \simeq G_{\alpha'} \) for \(|\alpha'| < 2k \). \(\square \)

Proposition 2.22. For every incidence pattern \(I = (S, E) \) and \(N \in \mathbb{N} \) there are finite \(N \)-acyclic \(I \)-groupoids with generators \(e \in E \). Moreover, such an \(I \)-groupoid can be chosen to be compatible with any given \(I \)-graph \(H \).

Proof. Start from an arbitrary finite \(I \)-groupoid \(G_0 \), or with \(G_0 := \text{cym}(H) \) in order to enforce compatibility with a given \(I \)-graph \(H \). Then inductively apply Lemma 2.21 and note that the assumptions of the lemma are trivial for \(k = 1 \), because the trivial sub-groupoid generated by \(\emptyset \), which just consists of the isolated neutral elements \(1_s \), is compatible with any \(I \)-graph. In each step as stated in the lemma, compatibility with corresponding chains implies that \(G^* \) cannot have coset cycles of length up to \(N \) with cosets generated by sets of the form \(\alpha_1 \beta_1 \) were \(|\alpha| \leq 2k \). For \(2k = |E| \), this rules out all coset cycles of length up to \(N \). \(\square \)

Observation 2.23. For any 2-acyclic \(I \)-groupoid \(G \) and any subsets \(\alpha = \alpha^{-1}, \beta = \beta^{-1} \subseteq E \), with associated sub-groupoids \(G_\alpha, G_\beta \) and \(G_{\alpha\beta} \):

\[
G_\alpha \cap G_\beta = G_{\alpha\beta}.
\]

Proof. Just the inclusion \(G_\alpha \cap G_\beta \subseteq G_{\alpha\beta} \) needs attention. Let \(h \in G_\alpha \cap G_\beta \), i.e., \(h = w^{\alpha} = (w')^{\beta} \) for some \(w \in \alpha^*_s \) and \(w' \in \beta^*_s \). Let \(g_0 \in G_{ss} \) and put \(g_1 := g_0 \cdot h \in G_{st} \). Then \(g_0, g_1 \) with \(h_0 = g_0^{-1} \cdot g_1 = h \in G_\alpha \) and \(h_1 = g_1^{-1} \cdot g_0 = h^{-1} \in G_\beta \), form a coset 2-cycle with generator sets \(\alpha_0 := \alpha, \alpha_1 := \beta \), unless the coset condition

\[
g_0 G_{\alpha\beta} \cap g_1 G_{\alpha\beta} = \emptyset
\]

of Definition 2.17 is violated. So there must be some \(k \in g_0 G_{\alpha\beta} \cap g_1 G_{\alpha\beta} \), which shows that \(h = (g_0^{-1} \cdot k) \cdot (g_1^{-1} \cdot k)^{-1} \in G_{\alpha\beta} \) as claimed. \(\square \)

3 Reduced products with finite groupoids

3.1 Hypergraphs and hypergraph acyclicity

A hypergraph is a structure \(\mathbb{A} = (A, S) \) where \(S \subseteq \mathcal{P}(A) \) is called the set of hyperedges of \(\mathbb{A} \), \(A \) the set of vertices of \(\mathbb{A} \).

Definition 3.1. With a hypergraph \(\mathbb{A} = (A, S) \) we associate

(i) its *Gaifman graph* \(G(\mathbb{A}) = (A, G(S)) \) where \(G(S) \) is the simple undirected edge relation that links \(a \neq a' \) in \(A \) if \(a, a' \in s \) for some \(s \in S \).
(ii) its intersection graph $I(\mathfrak{A}) = (S, E)$ where $E = \{(s, s'): s \neq s', s \cap s' \neq \emptyset\}$.

Note that the intersection graph $I(\mathfrak{A})$ captures the overlap pattern of the hyperedges of \mathfrak{A}. If we regard $I(\mathfrak{A})$ as an incidence pattern, as we wish to do, its important special properties compared to general incidence patterns are the following: $I(\mathfrak{A})$ is loop-free and a graph rather than a multi-graph, i.e., each $E[s, s'] = \{(s, s')\} \subseteq E$ is a singleton set.

The hypergraph \mathfrak{A} itself may be regarded as an I-graph $H(\mathfrak{A})$ for $I = I(\mathfrak{A})$. To this end we represent it by the disjoint union of its hyperedges together with the identifications ρ_e induced by the overlaps $s \cap s'$ for $e = (s, s') \in E$. See Section 3.5 for the precise definition of $H(\mathfrak{A})$. The important special properties of the I-graph representation of \mathfrak{A}, in comparison to the general notion of I-graphs, are its coherence and a strong transitivity property: if $e = (s, s') \in E[s, s'], e' = (s', s'') \in E[s', s'']$ are such that $\rho_{e'} \circ \rho_e \neq \emptyset$, then $\rho_{e''} \circ \rho_{e'} = \rho_{e''}$ for $e'' = (s, s'') \in E[s, s'']$. Thus a hypergraph embodies prototypical instances of incidence patterns, of I-graphs as overlap specifications, and of realisations of these overlap specifications (it comes as its own trivial realisation in the sense of Definition 3.3 below).

The following criterion of hypergraph acyclicity is the natural and strongest notion of acyclicity (sometimes called α-acyclicity), cf., e.g., [3, 2]. It is in close correspondence with the algorithmically crucial notion of tree-decomposability (viz., existence of a tree-decomposition with hyperedges as bags, cf. discussion after Proposition 4.14 below) and with natural combinatorial notions of triangulation.

Definition 3.2. A finite hypergraph $\mathfrak{A} = (A, S)$ is **acyclic** if it is conformal and chordal where

(i) conformity requires that every clique in the Gaifman graph $G(\mathfrak{A})$ is contained in some hyperedge $s \in S$;

(ii) chordality requires that every cycle in the Gaifman graph $G(\mathfrak{A})$ of length greater than 3 has a chord.

For $N \geq 3$, $\mathfrak{A} = (A, S)$ is **N-acyclic** if it is N-conformal and N-chordal where

(iii) N-conformality requires that every clique in the Gaifman graph $G(\mathfrak{A})$ of size up to N is contained in some hyperedge $s \in S$;

(iv) N-chordality requires that every cycle in the Gaifman graph $G(\mathfrak{A})$ of length greater than 3 and up to N has a chord.

N-acyclicity is a natural gradation or quantitative restriction of hypergraph acyclicity, in light of the following. Consider the induced sub-hypergraphs $\mathfrak{A} | A_0$ of a hypergraph $\mathfrak{A} = (A, S)$, i.e., the hypergraphs on vertex sets $A_0 \subseteq A$ with hyperedge sets $S | A_0 := \{s \cap A_0: s \in S\}$. Then \mathfrak{A} is N-acyclic if, and only if, every induced sub-hypergraph $\mathfrak{A} | A_0$ for $A_0 \subseteq A$ of size up to N is acyclic.

3.2 Realisations of overlap patterns

The general case of an arbitrary I-graph over an arbitrary incidence pattern I seems to be a vast abstraction from the special case of an overlap pattern induced
by the actual overlaps between hyperedges in an actual hypergraph. The notion of a realisation concerns this gap and formulates the natural conditions for a hypergraph to realise an abstract overlap specification; for the intuitive idea of an overlap specification and its realisation in an I-graph see Section 1 and Figures 1 and 2.

Definition 3.3. Let $I = (S, E)$ be an incidence pattern, $H = (V, (V_s), (R_e))$ an I-graph with induced partial bijections ρ_w between V_s and V_t for $w \in E^*[s, t]$. A hypergraph \(\hat{A} = (\hat{A}, \hat{S}) \) is a realisation of the overlap pattern specified by H if there is a map $\pi: \hat{S} \to S$ and a matching family of bijections $\pi_{\hat{s}}: \hat{S} \to V_s$, for \(\hat{s} \in \hat{S} \) with $\pi(\hat{s}) = s$, such that for all $\hat{s}, \hat{t} \in \hat{S}$ s.t. $\pi(\hat{s}) = s, \pi(\hat{t}) = t$, and for every $e \in E[s, s']$:

1. there is some s' such that $\pi(\hat{s}') = s'$ and $\pi_{\hat{s}} \circ \pi_{\hat{s}}^{-1} = \rho_e$;
2. if $\hat{s} \cap \hat{t} \neq \emptyset$, then $\pi_{\hat{t}} \circ \pi_{\hat{s}}^{-1} = \rho_w$ for some $w \in E^*[s, t]$.

\[\begin{array}{ccc}
\pi_{\hat{s}} & \hat{s} \cap \hat{s}' & \pi_{\hat{s}'} \\
V_s & \hat{s} & \to & V_{s'} \\
\rho_e & \pi_{\hat{s}} & \circ \pi_{\hat{s}'} & \to \rho_e \\
V_s & \hat{S} & \to & V_{s'} \\
\end{array} \]

Some comment on the definition: condition (i) says that all those local overlaps that should be realised according to H are indeed realised at corresponding sites in \(\hat{A} \); condition (ii) says that all overlaps between hyperedges realised in \(\hat{A} \) are induced by overlaps specified in H in a rather strict sense. In Section 3.5 below we shall look at a simpler concept of a covering of a given hypergraph \(\hat{A} \). Realisations of the overlap pattern $H(\hat{A})$ abstracted from the given \(\hat{A} \) will be seen to be special coverings. In this sense the notion of a realisation of an abstract overlap pattern (as specified by an I-graph) extends certain more basic notions of hypergraph coverings, in which the overlap pattern is specified by a concrete realisation.

Realisations and partial unfoldings. Regarding an I-graph H as a specification of an overlap pattern to be realised, it makes sense to modify H in manners that preserve the essence of that overlap specification. A natural idea of this kind would be to pass to a partial unfolding of H, which preserves the local links. We use the notion of a covering at the level of the underlying incidence pattern for this purpose.

Let $\hat{I} = (\hat{S}, \hat{E})$ and $I = (S, E)$ be incidence patterns. A homomorphism from \hat{I} to I is a map $\pi: \hat{I} \to I$ respecting the (two-sorted) multi-graph structure so that, for $\hat{e} \in \hat{E}[\hat{s}, \hat{s}]$,

\[\pi(\hat{e}) \in E[\pi(\hat{s}), \pi(\hat{s}')], \]

as well as the fixpoint-free involutive operations of edge reversal:

\[\pi(\hat{e}^{-1}) = (\pi(\hat{e}))^{-1}. \]
Definition 3.4. A surjective homomorphism $\pi: \hat{I} \to I$ between incidence patterns $I = \langle S, E \rangle$ and $\hat{I} = \langle \hat{S}, \hat{E} \rangle$ is a covering of incidence patterns if it satisfies the following lifting property (known as the back-property in back&forth relationships like bisimulation relations):

\[
\begin{align*}
\text{(back): } & \quad \text{for all } s, e \in E[s, s'] \text{ and } \hat{s} \in \pi^{-1}(s), \\
& \quad \text{there exists } \hat{s}' \text{ and } \hat{e} \in \hat{E}[\hat{s}, \hat{s}'] \text{ s.t. } \pi(\hat{e}) = e.
\end{align*}
\]

In the situation of the definition, an I-graph $H = \langle V, (V_s)_{s \in S}, (R_e)_{e \in E} \rangle$ induces an \hat{I}-graph $\hat{H} = \langle \hat{V}, (\hat{V}_s)_{\hat{s} \in \hat{S}}, (\hat{R}_e)_{\hat{e} \in \hat{E}} \rangle$ on a subset \hat{V} of $V \times \hat{S}$, where

\[
\begin{align*}
V_s := V_{\pi(\hat{s})} \times \{\hat{s}\} & \subseteq \hat{V} := \bigcup_{\hat{s} \in \hat{S}} \hat{V}_\hat{s}, \\
R_e := \{((v, \hat{s}), (v', \hat{s}')): \hat{e} \in \hat{E}[\hat{s}, \hat{s}'], (v, v') \in R_e \text{ for } e = \pi(\hat{e})\}.
\end{align*}
\]

Lemma 3.5. Suppose $\pi_0: \hat{I} \to I$ is a covering of the incidence pattern I, \hat{H} the I-graph induced by the I-graph H. Then every realisation of the overlap pattern specified by \hat{H} induces a realisation of the overlap pattern specified by H.

Proof. Let $\hat{\mathfrak{A}} = (\hat{A}, \hat{S})$ be a realisation of $\hat{H} = \langle \hat{V}, (\hat{V}_\hat{s})_{\hat{s} \in \hat{S}}, (\hat{R}_\hat{e})_{\hat{e} \in \hat{E}} \rangle$ with associated projections $\hat{\pi}: S \to \hat{S}$ and $\hat{\pi}_s: \hat{s} \to V_{\pi(\hat{s})}$. Combining these projections with $\pi_0: \hat{S} \to S$ and the trivial projection π_1 that maps $V_\hat{s} = V_{\pi_0(\hat{s})} \times \{\hat{s}\}$ to $V_{\pi_0(\hat{s})}$, we obtain projections $\pi := \pi_0 \circ \hat{\pi}: \hat{S} \to S$ and $\pi_\hat{s} := \pi_1 \circ \hat{\pi}_s: \hat{s} \to \pi_1(V_{\pi(\hat{s})}) = V_{\pi(\hat{s})}$, which allow us to regard $\hat{\mathfrak{A}}$ as a realisation of H. Towards the defining conditions on realisations, (i) is guaranteed by the back-property for π_0, while (ii) follows from the homomorphism condition for π_0 and the definition of \hat{H}. In particular, $\text{dom}(\rho_\hat{w}) = \text{dom}(\rho_w) \times \{\hat{s}\}$ for any $\hat{w} \in \hat{E}^*[\hat{s}, \hat{t}]$ with projection $w = \pi_0(\hat{w}) \in E^*[s, t]$ where $s = \pi_0(\hat{s})$ and $t = \pi_0(\hat{t})$.

\[
\square
\]

3.3 Direct and reduced products with groupoids

Direct products. We define a natural direct product $H \times G$ of an I-graph $H = \langle V, (V_s)_{s \in S}, (R_e)_{e \in E} \rangle$ with an I-groupoid G. The construction may be viewed as a special case of a more general, natural notion of a direct product between two I-graphs. In geometrical-combinatorial terms we are interested in $H \times G$ because it plays the role of a finite unfolding or covering of H, at least if G satisfies the compatibility condition in the sense of Definition 2.19.

For an I-graph H and I-groupoid G we define the direct product $H \times G$ to be the following I-graph on the disjoint union of the products $V_s \times G_{s}$, cf. Figure 11:

\[
H \times G := \left(\bigcup_{s \in S}(V_s \times G_s), (V_s \times G_s)_{s \in S}, (R_e)_{e \in E} \right)
\]

where $R_e = \{((v, g), (\rho_e(v), g e)) : v \in V_s, g \in G_s\}$ for $e \in E[s, s']$.

Just like H, this direct product admits an operation of the free I-structure in terms of compositions of partial bijections. These are based on the natural
lifting of e to ρ_e (in H) and further to $\rho_e^{H \times G}$ (in $H \times G$) according to

$$\rho_e^{H \times G} : V_s \times G_{ss} \rightarrow V_{s'} \times G_{ss'} \quad (v, g) \mapsto (\rho_e(v), gg_e).$$

This extends to paths $w \in E^*[s, t]$, which are lifted to ρ_w and further to $\rho_w^{H \times G}$, cf. Figure 11.

Observation 3.6. If G is compatible with H, then the liftings along different paths $w_1, w_2 \in E^*[s, t]$ linking the same groupoid elements agree in their common domains in $H \times G$: for every $g \in G_{ss}$ and all $v \in \text{dom}(\rho_{w_1}) \cap \text{dom}(\rho_{w_2}) \subseteq V_s$,

$$w_1^G = w_2^G \Rightarrow \rho_{w_1}(v, g) = \rho_{w_2}(v, g) \text{ in } H \times G.$$

Proof. Wherever the composition $\rho_w^{H \times G}$ is defined, it agrees in the first component with the operation of ρ_w on H and on the completion \hat{H}, which gives rise to $\text{cym}(H)$. Therefore $w_1^G = w_2^G$, or equivalently $(w_1^{-1}w_2)^G = 1_s$, implies by compatibility that $\rho_{w_1^{-1}w_2} = \text{id}_{V_s}$ in $\text{cym}(H)$, whence $\rho_{w_1}(v) = \rho_{w_2}(v)$ for $v \in \text{dom}(\rho_{w_1}) \cap \text{dom}(\rho_{w_2})$. \hfill \square

In other words, compatibility of G with H guarantees that any $w \in E^*[s, s]$ such that $w^G = 1_s$ (i.e., any cycle in G) induces a partial bijection

$$\rho_w : V_s \times G_{ss} \rightarrow V_s \times G_{ss}$$

that is compatible with the identity of $V_s \times G_{ss}$:

$$w^G = 1_s \Rightarrow \rho_w^{H \times G} \subseteq \text{id}_{V_s \times G_{ss}}.$$

The path-independence expressed in the observation is, however, characteristically weaker than coherence of $H \times G$ as an I-graph, because we only compare paths that link the same groupoid elements. But $H \times G$ also carries the structure of an $I(G)$-graph, where $I(G)$ is the natural incidence pattern associated with the Cayley graph of G

$$I(G) = (G, \tilde{E}) \quad \text{where } \tilde{E} = \bigcup_{e \in E}(\{(g, gg_e) : e \in E[s, s'], g \in G_{ss}\}.$$

The relationship between $I(G)$ and I is that of a covering as in Definition 3.4 w.r.t. to the natural projection that maps $G_{ss} \subseteq G$ to $s \in S$. Moreover, $H \times G$ is the $I(G)$-graph induced by H in the sense of Lemma 3.5. That lemma therefore tells us that any realisation of $H \times G$ will provide a realisation of H. This in turn yields an interesting reduction of the general realisation problem to the realisation problem for coherent I-graphs, since the path-independence of Observation 3.6 precisely states that $H \times G$ is coherent as an $I(G)$-graph in the sense of Definition 2.4. This route to realisations is pursued in Proposition 3.12.

Observation 3.7. If G is compatible with H, then the direct product $H \times G$ is coherent when viewed as an $I(G)$-graph, and every realisation of $H \times G$ thus induces a realisation of H. 28
Reduced products. The reduced product $H \otimes G$ between an I-graph and an I-groupoid is simply obtained as the natural quotient of the direct product $H \times G$ w.r.t. the equivalence relation \approx induced by

$$(v, g) \approx (v', g') \quad \text{iff} \quad v' = \rho_w(v) \text{ for some } w \in E^*[s,t] \text{ with } g' = g \cdot w^G.$$

Note that, by transitivity, for arbitrary $(v, g), (v', g') \in H \times G$,

$$(v, g) \approx (v', g') \quad \text{iff} \quad v' = \rho_w(v) \text{ for some } w \in E^*[s,t] \text{ with } g' = g \cdot w^G.$$

We denote equivalence classes w.r.t. \approx by square brackets, as in $[v, g] := \{ (v', g') : (v', g') \approx (v, g) \}$ and extend this notation naturally to sets as in $[V_s, g] := [V_s \times \{g\}] = \{[v, g] : v \in V_s\}$.

Definition 3.8. Let $H = (V, (V_s), (E_s))$ be an I-graph, G an I-groupoid. The reduced product $H \otimes G$ is defined to be the hypergraph $\hat{A} = (\hat{A}, \hat{S})$ with vertex set

$$\hat{A} = \{[v, g] : (v, g) \in \bigcup V_s \times G_{ss}\}$$

and set of hyperedges

$$\hat{S} = \{[V_s, g] : s \in S, g \in G_{ss}\},$$

where square brackets denote passage to equivalence classes w.r.t. \approx as indicated above.

Note that the hyperedges $[V_s, g]$ of $H \otimes G$ are induced by the patches V_s of H. As already indicated in Observation 3.6 above, these hyperedges turn out to be bijectively related to those patches in cases of interest. This takes us one step towards a realisation of the overlap pattern specified by H.

Lemma 3.9. If G is compatible with the I-graph $H = (V, (V_s), (E_s))$, then the natural projection

$$\pi_{s,g} : [V_s, g] \longrightarrow V_s$$

is well-defined in restriction to each hyperedge $[V_s, g]$ of $H \otimes G$, and relates each hyperedge $[V_s, g] = \{[v, g] : v \in V_s\}$ for $g \in G_{ss}$ bijectively to V_s.

Proof. It suffices to show that $[v, g] = [v', g]$ implies $v = v'$, which shows that $\pi_{s,g}$ is well-defined. By compatibility of G with H, $w^G = 1$ implies $\rho_w \subseteq \text{id}_{V_s}$, for any $w \in E^*[s,s]$. (For the last step compare Observation 3.6 about path-independence.)

An even higher degree of path-independent transport in $H \times G$ is achieved if H itself is a coherent I-graph in the sense of Definition 2.4 and if G is at least 2-acyclic in the sense of Definition 2.18.
Recall from the discussion after Definition 2.4 that coherence implies the existence of a unique and well-defined partial bijection ρ_{st} between those elements of V_s and V_t that can be linked by any ρ_w for $w \in E^*[s,t]$, viz.,

$$\rho_{st} = \bigcup \{\rho_w : w \in E^*[s,t]\}.$$

Observation 3.10. If H is coherent and \mathbb{G} is compatible with H and 2-acyclic, then there is, for any $g \in G_{ss}$ and $g' \in G_{st}$ a unique maximal subset of V_s among all subsets $\text{dom}(\rho_w) \subseteq V_s$ for those $w \in E^*[s,t]$ with $g' = g \cdot w^\mathbb{G}$.

Hence, in the reduced product $H \otimes \mathbb{G}$, the full intersection between hyperedges $[V_s, g]$ and $[V_t, g']$ is realised by the identification via ρ_w for a single path $w \in E^*[s,t]$ such that $g' = g \cdot w^\mathbb{G}$.

The second formulation is the key to the importance of this observation towards the construction of realisations.

The observation could also be phrased in terms of the direct product as follows. For any fixed site $V_s \times \{g\}$ in $H \times \mathbb{G}$, the maximal overlap of $V_s \times \{g\}$ with any other site $V_t \times \{g'\}$ via some composition of partial bijections $\rho_{e_{H \times \mathbb{G}}}$ is well-defined. In the reduced product $H \otimes \mathbb{G}$, this maximal overlap represents the full intersection between the hyperedges $[V_s, g]$ and $[V_t, g']$.

Proof of the observation. It suffices to show that, if $w_1, w_2 \in E^*[s,t]$ are such that $w_1^\mathbb{G} = w_2^\mathbb{G}$, then $\text{dom}(\rho_{w_1}) \cup \text{dom}(\rho_{w_2}) \subseteq \text{dom}(\rho_w)$ for some suitable choice of $w \in E^*[s,t]$ for which also $w^\mathbb{G} = w_1^\mathbb{G}$.

By coherence of H, the image of any $v \in \text{dom}(\rho_{w_1}) \subseteq V_s$ under any applicable composition of partial bijections ρ_e is globally well-defined, so that the
point-wise image of the sets \(\text{dom}(\rho_{w_i}) \subseteq V_s \) at any \(V_u \) can be addressed as \(\rho_{su}(\text{dom}(\rho_{w_i})) \subseteq V_u \). As \(\rho_{w_i} \) maps every element of \(\text{dom}(\rho_{w_i}) \) along the path \(w_i \), this path can only involve generators from

\[
\alpha_i = \bigcup_{u,u' \in S} \{ e \in E[u,u']: \rho_{su}(\text{dom}(\rho_{w_i})) \subseteq \text{dom}(\rho_e) \},
\]

for \(i = 1, 2 \). So \(w_i^G \in G_{\alpha_i} \). By 2-acyclicity of \(G \), \(g_1 := w_1^G \) and \(g_2 := w_2^G = w_1^G \) does not form a coset cycle w.r.t. the generator sets \(\alpha_i \). As \((g_1)^{-1}g_2 = w_2^G = w_1^G \in G_{\alpha_1} \) and \((g_2)^{-1}g_1 = (w_2^G)^{-1} = G_{\alpha_2} \), it follows that the coset condition must be violated. So there must be some

\[
w \in (\alpha_1 \cap \alpha_2)^* \text{ with } w^G = w_1^G = w_2^G.
\]

But

\[
\alpha_1 \cap \alpha_2 = \bigcup_{u,u' \in S} \{ e \in E[u,u']: \rho_{su}(\text{dom}(\rho_{w_1}) \cup \text{dom}(\rho_{w_2})) \subseteq \text{dom}(\rho_e) \},
\]

so that \(w \in (\alpha_1 \cap \alpha_2)^* \) implies that \(\text{dom}(\rho_{w_i}) \subseteq \text{dom}(\rho_e) \) for \(i = 1, 2 \) as desired. \(\square \)

Corollary 3.11. If \(G \) is compatible with the coherent \(I \)-graph \(H = (V,(V_s),(E_s)) \) and 2-acyclic, then the reduced product \(H \otimes G \) with its natural projections is a realisation of the overlap pattern specified in \(H \).

Proof. Compatibility of \(G \) with \(H \) guarantees that the natural projections

\[
\pi_s: [V_s,g] \rightarrow V_s \\
[v,g] \mapsto v
\]

are well-defined in restriction to each hyperedge \([V_s,g]\) of \(H \otimes G \), and map this hyperedge bijectively onto \(V_s \), by Lemma 3.9. For condition (i) in Definition 3.3, it is clear by construction of \(H \otimes G \) that for \(e \in E'[s,s'] \) and \(g \in G_{ss'}, s' = [V_s,g] \) overlaps with \(s := [V_s,g_{ge}] \) according to \(\rho_e \); this overlap cannot be strictly larger than \(|\rho_e| \), as \(g_{ge} \) is not in the sub-groupoid generated by \(E \setminus \{e,e^{-1}\} \), due to 2-acyclicity of \(G \). Condition (ii) of Definition 3.3 is settled by Observation 3.10. \(\square \)

3.4 Realisations in reduced products

Combining the constructions of direct and reduced products with the existence of suitable groupoids we are ready to prove the first major step towards the main theorem on realisations: the existence of realisations for overlap patterns specified by arbitrary \(I \)-graphs. We shall then see in Section 3.6 below that the degree of acyclicity in realisations can be boosted to any desired level \(N \) through passage to \(N \)-acyclic coverings. That will then take us one step closer, in Theorem 3.22, to the full statement of the main theorem from the introduction. For the full content of the main theorem as stated there, however, compatibility with symmetries will have to wait until Section 4, see Corollary 4.10.
Proposition 3.12. For every incidence pattern I and I-graph H, there is a finite hypergraph $\hat{\mathcal{A}}$ that realises the overlap pattern specified by H.

Proof. From a given I-graph H we first obtain its product $H \times G$ with an I-groupoid G that is compatible with H (see Proposition 2.22 for existence). Regarding $H \times G$ as a coherent \hat{I}-graph for $\hat{I}(G) = I(G)$ (cf. Observation 3.7), we obtain a realisation of that \hat{I}-graph $H \times G$ by a reduced product with a 2-acyclic \hat{I}-groupoid that is compatible with $H \times G$, according to Corollary 3.11. As $\hat{I} = I(G)$ is a covering of I in the sense of Definition 3.4 and $H \times G$ the \hat{I}-graph induced by H, Lemma 3.5 guarantees that the resulting hypergraph is indeed a realisation of H. \qed

We remark that the approach to realisations as presented above is different from the one outlined in [14, 15]. That construction first produces some kind of ‘pre-realisations’ $H \otimes G$, which satisfy condition (i) for realisations but have more identifications than allowed by condition (ii). These pre-realisations can then be modified in a second unfolding step w.r.t. a derived incidence pattern to set condition (ii) right. The present approach seems more natural in that it puts realisations rather than coverings and unfoldings at the centre.

3.5 Coverings by reduced products

A hypergraph homomorphism is a map $h: \hat{\mathcal{A}} \to \mathcal{B}$ between hypergraphs $\hat{\mathcal{A}} = (\hat{A}, \hat{S})$ and $\mathcal{B} = (A, S)$ such that, for every $s \in S$, $h|_s$ is a bijection between the hyperedge s and some hyperedge $h(s)$ of \mathcal{B}.

Definition 3.13. A hypergraph homomorphism $h: \hat{\mathcal{A}} \to \mathcal{A}$ between the hypergraphs $\hat{\mathcal{A}} = (\hat{A}, \hat{S})$ and $\mathcal{A} = (A, S)$ is a hypergraph covering (of \mathcal{A} by $\hat{\mathcal{A}}$) if it satisfies the back-property w.r.t. hyperedges: for every $\hat{s} \in \hat{S}$, $s = h(\hat{s}) \in S$ and $s' \in S$ there is some $\hat{s}' \in \hat{S}$ such that $h(\hat{s}') = s'$ and $h(\hat{s} \cap \hat{s}') = s \cap s'$.

As mentioned above, a hypergraph $\mathcal{A} = (A, S)$ directly translates into an equivalent representation as an I-graph $H(\mathcal{A})$, where the intersection graph $I = I(\mathcal{A})$ plays the role of the incidence pattern I. Explicitly,

$$H(\mathcal{A}) = (V, (V_s)_{s \in S}, (R_e)_{e \in E})$$

where $E = \{(s, s'): s \neq s', s \cap s' \neq \emptyset\}$ is the edge relation of the intersection graph, V is the disjoint union of the hyperedges $s \in S$,

$$V = \bigcup_{s \in S} V_s \quad \text{where } V_s = s \times \{s\},$$

naturally partitioned into the $(V_s)_{s \in S}$, and with the R_e (or ρ_e) that identify overlaps in intersections:

$$R_e = \{((v, s), (v, s')): v \in s \cap s'\} \quad \text{for } e = (s, s') \in E.$$
Any realisation \(\hat{\mathfrak{A}} = (\hat{A}, \hat{S}) \) of \(H(\mathfrak{A}) \) then is a hypergraph covering for \(\mathfrak{A} \), albeit one that avoids certain redundancies w.r.t. intersections. Cf. property (ii) in Definition 3.3 for realisations for the following rendering of this condition for coverings, which we want to call strict coverings.\(^5\)

Definition 3.14. A hypergraph covering \(h: \hat{\mathfrak{A}} \to \mathfrak{A} \) is strict if every intersection \(\hat{s} \cap t \) between hyperedges of \(\hat{\mathfrak{A}} \) is induced by a sequence of intersections in \(\mathfrak{A} \) in the sense that \(h(\hat{s} \cap \hat{t}) \times \{\hat{s}\} = \text{dom}(\rho_w) \) in \(H(\mathfrak{A}) \), for some \(w \in E^*(s, t) \) from \(s = h(\hat{s}) \) to \(t = h(\hat{t}) \) in \(I(\mathfrak{A}) \).\(^6\)

Observation 3.15. Every realisation of \(H(\mathfrak{A}) \) is a (strict) hypergraph covering w.r.t. the natural projection induced by the projections of the realisation.

Proof. Let \(\hat{\mathfrak{A}} = (\hat{A}, \hat{S}) \) with projections \(\pi_0: \hat{S} \to S \) and \(\pi_{\hat{s}}: \hat{s} \to V_{\pi_0(\hat{s})} \) be a realisation of the overlap pattern specified by \(H = H(\mathfrak{A}) \). Writing \(\pi_1 \) for the projection to the first component in \(V = \bigcup_{s \in S}(s \times \{s\}) \), we obtain \(\pi: \hat{\mathfrak{A}} \to \mathfrak{A} \) as the compositions

\[
\pi := \bigcup_{\hat{s}} \pi_1 \circ \pi_{\hat{s}}.
\]

\(\pi \) is well-defined since condition (ii) for realisations makes sure that overlaps in \(\hat{\mathfrak{A}} \) are induced by compositions \(\rho_w \) in \(H \), which, in \(H = H(\mathfrak{A}) \), are trivial in composition with \(\pi_1 \):

\[
\pi_1 \circ \rho_w \subseteq \text{id}_{\hat{A}} \text{ for any } w \in E^*.
\]

It is easy to check that \(\pi: \hat{\mathfrak{A}} \to \mathfrak{A} \) is a hypergraph homomorphism (as \(\pi_{\hat{s}} \) bijectively maps \(\hat{s} \in \hat{S} \) onto \(V_{\pi_0(\hat{s})} = \pi_0(\hat{s}) \times \{\pi_0(\hat{s})\} \)) and satisfies the back-property (by condition (i) on realisations). \(\square \)

As \(H(\mathfrak{A}) \) is coherent, every reduced product \(H(\mathfrak{A}) \otimes G \) of \(H(\mathfrak{A}) \) with a 2-acyclic groupoid \(G \) that is compatible with \(H(\mathfrak{A}) \), according to Corollary 3.11 provides a realisation, and hence a covering. The resulting reduced product can also be cast more directly as a natural reduced product with \(\mathfrak{A} \) itself, which offers a more intuitive view, and puts fewer constraints on \(G \). The following essentially unfolds and combines the definitions of \(H(\mathfrak{A}) \) (cf. discussion below Definition 3.13) and \(H \otimes G \) (cf. Definition 3.8).

Definition 3.16. Let \(\mathfrak{A} = (A, S) \) be a hypergraph, \(G \) an \(I \)-groupoid for \(I = I(\mathfrak{A}) \). The reduced product \(\mathfrak{A} \otimes G \) is the hypergraph \(\mathfrak{A} = (\hat{A}, \hat{S}) \) whose vertex set \(\hat{A} \) is the quotient of the disjoint union of \(G_{n, n} \)-tagged copies of all \(s \in S \),

\[
\hat{A} := \bigcup_{s \in S, g \in G_{n, n}} s \times \{g\} / \approx
\]

w.r.t. the equivalence relation induced by identifications

\[
(a, g) \approx (a, ge) \quad \text{for } e = (s, s') \in E_a := \{(s, s') \in E : a \in s \cap s'\}.
\]

\(^5\)Natural though the general notion of a hypergraph covering may be, it does not rule out, e.g., partial overlaps between different covers \(\hat{s}, \hat{s}' \) of the same \(s \); the example indicated in Figure 4 shows that some such branching behaviour can be unavoidable.

\(^6\)Note that the map \(\rho_w \) in \(H(\mathfrak{A}) \) represents a composition of identities in intersections in terms of \(\mathfrak{A} \) itself.
Denoting the equivalence class of \((a,g)\) as \([a,g]\), and lifting this notation to sets in the usual manner, the set of hyperedges of \(\mathfrak{A} \otimes G\) is

\[
\hat{S} := \{(s,g) : s \in S, g \in G_{ss}\} \quad \text{where} \quad [s,g] := \{[a,g] : a \in s\} \subseteq \hat{A}.
\]

The covering homomorphism \(\pi\) is the natural projection \(\pi : [a,g] \mapsto a\).

We note that \((a,g)\) is identified with \((a,g')\) in this quotient if, and only if, \(g' = g \cdot w^G\) for some path \(w \in E^*[s,t]\) such that \((a,s) \in \text{dom}(\rho_w)\) (and hence \(\rho_w(a,s) = (a,t)\)) in \(H = H(\mathfrak{A})\). We may think of the generators \(e = (s,s') \in E_a\) as preserving the vertex \(a\) in passage from \(a \in s\) to \(a \in s'\), so that the \(g\)-tagged copy of \(s\) and the \(gg'e\)-tagged copy of \(s'\) are glued in their overlap \(s \cap s'\).

It is easy to see directly that \(\pi : \hat{A} \to \mathfrak{A}\) is indeed a hypergraph covering.

Proposition 3.17. For any hypergraph \(\mathfrak{A}\) and \(I\)-groupoid \(G\), where \(I = I(\mathfrak{A})\), the reduced product \(\mathfrak{A} \otimes G\) with the natural projection

\[
\pi : \mathfrak{A} \otimes G \to \mathfrak{A}
\]

\([a,g] \mapsto a
\]

is a hypergraph covering. If \(G\) is 2-acyclic, then this covering is strict.

One also checks that, indeed, \(\mathfrak{A} \otimes G \cong H(\mathfrak{A}) \otimes G\).

Another useful link between realisations and coverings is the following.

Lemma 3.18. If \(\pi : \hat{A}' \to \hat{A}\) is a strict hypergraph covering of a realisation \(\hat{A}\) of the overlap pattern specified by the \(I\)-graph \(H\), then so is \(\hat{A}'\), w.r.t. the projections induced by the natural compositions of those of the realisation \(\hat{A}\) with \(\pi\).

Proof. Let \(I = (S,E), H = (V,(V_s),(R_e)), \hat{A} = (\hat{A},\hat{S})\) covered by \(\hat{A}' = (\hat{A}',\hat{S}')\) through \(\pi\), and let \(\pi_0 : \hat{S} \to S\) and \(\pi_\hat{s} : \hat{s} \to V_{\pi_0}(s)\) be the projections through which \(\hat{A}\) realises \(H\). Then

\[
\pi'_0 := \pi_0 \circ \pi : \hat{S}' \to S \quad \text{together with} \quad \pi'_\hat{s} := \pi_{\pi_0}(s') \circ \pi : \hat{s}' \to V_{\pi_0}(s')
\]

serve as the projections required in the realisation of \(H\) by \(\hat{A}'\).

3.6 Acyclicity in coverings by reduced products

We show that the absence of short coset cycles in \(G\), i.e., \(N\)-acyclicity in the sense of Definition 2.18, implies corresponding degrees of hypergraph acyclicity in the sense of Definition 3.2 in reduced products \(\mathfrak{A} \otimes G\).

Remark: The analysis of cycles and cliques in the following two sections could be carried out in the slightly more general setting of realisations of coherent \(I\)-graphs in reduced products, rather than the setting of coverings by reduced products. We choose the latter for the sake of greater transparency. The difference is just that one would have to work with coherent translations of overlap.
regions $\rho_s(V_s) \subseteq V_s$ in $H \otimes G$ instead of the much more intuitive use of lifted pre-images of the actual intersections between hyperedges in \mathfrak{A} – this precisely is the advantage of having one realisation of $H(\mathfrak{A})$ already, albeit the trivial one by \mathfrak{A} itself.

Chordality in coverings by reduced products

Lemma 3.19. Let $\mathfrak{A} = (A, S)$ be a hypergraph, \mathcal{G} an N-acyclic I-groupoid for $I := I(\mathfrak{A})$, the intersection graph of \mathfrak{A}. Then $\mathfrak{A} \otimes \mathcal{G}$ is N-chordal.

Proof. Suppose that $([a_i, g_i])_{i \in \mathbb{Z}_n}$ is a chordless cycle in the Gaifman graph of $\mathfrak{A} \otimes \mathcal{G}$. W.l.o.g. the representatives (a_i, g_i) are chosen such that, for suitable $s_i \in S$, $[s_i, g_i] \otimes [s_i, 1]$ is a hyperedge linking $[a_i, g_i]$ and $[a_i+1, g_i] \otimes [a_i, g_i]$ in $\mathfrak{A} \otimes \mathcal{G}$. I.e., there is a path ω from s_i to s_i+1 in I consisting of edges from $\alpha := E_{a_i} = \{(s, s') \in E : a_i \in s \cap s'\}$ such that $g_i+1 = g_i \cdot w^G_i$. In particular, $g_i^{-1} g_i+1 \in G_{\alpha}$. We claim that $(g_i)_{i \in \mathbb{Z}_n}$ is a coset cycle w.r.t. the generator sets $(\alpha_i)_{i \in \mathbb{Z}_n}$, in the sense of Definition 2.17. If so, $n > N$ follows, since \mathcal{G} is N-acyclic.

In connection with $(g_i)_{i \in \mathbb{Z}_n}$ and $(\alpha_i)_{i \in \mathbb{Z}_n}$ it essentially just remains to check the coset condition

$g_i \mathcal{G}_{\alpha_i \cap \alpha_i+1} = \emptyset$.

Suppose, for contradiction, that there is some $k \in g_i \mathcal{G}_{\alpha_i \cap \alpha_i+1} \cap g_{i+1} \mathcal{G}_{\alpha_i \cap \alpha_i+1}$, and let $t \in S$ be such that $k \in G_{st}$. We show that this situation implies that $[a_i-1, g_i-1]$ and $[a_i+1, g_i+1]$ are linked by a chord induced by the hyperedge $[k]$, i.e.:

(a) Since $k \in g_i \mathcal{G}_{\alpha_i \cap \alpha_i-1}$, there is some path w_1 from s_i to t consisting of edges in $\alpha_i \cap \alpha_i-1$ such that $k = g_i \cdot w_1^G$; as there also is a path ω from s_i-1 to s_i in I consisting of edges from α_{i-1} such that $g_i = g_{i-1} \cdot w_i^G$, it follows that there is a path w_2 from s_i-1 to t consisting of edges in α_{i-1} such that $k = g_{i-1} \cdot w_2^G$. So $[a_{i-1}, g_{i-1}] \in [t, k]$.

(b) Since $k \in g_{i+1} \mathcal{G}_{\alpha_i \cap \alpha_i+1}$, there is some path w_3 from s_i+1 to t consisting of edges in $\alpha_i \cap \alpha_i+1 \subseteq \alpha_i+1$ such that $k = g_i+1 \cdot w_3^G$; so $[a_{i+1}, g_i+1] \in [t, k]$.

(a) and (b) together imply that the given cycle was not chordless after all. \(\square\)

Conformality in coverings by reduced products

Lemma 3.20. Let $\mathfrak{A} = (A, S)$ be a hypergraph, \mathcal{G} an N-acyclic I-groupoid for $I := I(\mathfrak{A})$, the intersection graph of \mathfrak{A}. Then $\mathfrak{A} \otimes \mathcal{G}$ is N-conformal.

Proof. Suppose that $X := \{[a_i, g_i] : i \in n\}$ is a clique of the Gaifman graph of $\mathfrak{A} \otimes \mathcal{G}$ that is not contained in a hyperedge of $\mathfrak{A} \otimes \mathcal{G}$, but such that every subset of $n-1$ vertices is contained in a hyperedge of $\mathfrak{A} \otimes \mathcal{G}$. For $i \in n$, choose a hyperedge $[t_i, k_i]$ such that $X_i := \{[a_j, g_j] : j \neq i\} \subseteq [t_i, k_i]$. Let $h_i := k_i^{-1} k_{i+1}$ and $\alpha_i := \bigcap_{j
eq i} E_{a_j}$. Note that $k_i^{-1} k_{i+1} \in \mathcal{G}_{\alpha_i}$. We claim that $(k_i)_{i \in \mathbb{Z}_n}$ with generator sets $(\alpha_i)_{i \in \mathbb{Z}_n}$ forms a coset cycle in \mathcal{G} in the sense of Definition 2.17. It follows that $n > N$, as desired.
Suppose, for contradiction, that \(k \in k_t G_{\alpha_i, \alpha_i-1} \cap k_{i+1} G_{\alpha_i, \alpha_i+1} \) for some \(i \). Let \(t \in S \) be such that \(k \in G_{s,t} \). We show that \(X \subseteq [t,k] \) would follow.

Since \(k \in k_t G_{\alpha_i, \alpha_i-1} \) and \([a_j, g_j] \in [t_i, k_i] \), i.e., \([a_j, g_j] = [a_j, k_i] \), for all \(j \neq i \), clearly \([a_j, g_j] \in [t,k] \) for \(j \neq i \) (note that \(\alpha_i \cap \alpha_{i-1} = \bigcap_{j \neq i} E_{a_j} \)).

It therefore remains to argue that also \([a_i, g_i] \in [t,k] \). Note that \(k \in k_{i+1} G_{\alpha_i, \alpha_i+1} \) and that \(\alpha_i \cap \alpha_{i+1} = \bigcap_{j \neq i+1} E_{a_j} \). In particular, generators in \(\alpha_i \cap \alpha_{i+1} \) preserve \(a_i \). Since \([a_i, g_i] \in [t_{i+1}, k_{i+1}] \), we have that \([a_i, g_i] = [a_i, k_{i+1}] \), and thus \([a_i, g_i] \in [t,k] \) follows from the fact that \(k_{i+1} \cdot k \in G_{\alpha_i, \alpha_{i+1}} \).

Combining the above, we obtain the following by application of the reduced product construction \(\mathfrak{A} \otimes \mathfrak{G} \) for suitably acyclic groupoids \(\mathfrak{G} \), which are available according to Proposition 2.22.

Proposition 3.21. For every \(N \in \mathbb{N} \), every finite hypergraph admits a strict covering by a finite hypergraph of the form \(\mathfrak{A} \otimes \mathfrak{G} \) that is \(N \)-acyclic.

As any strict hypergraph covering of any given realisation of an \(I \)-graph \(H \) induces another realisation of \(H \) by Lemma 3.18, realisations can be boosted to any desired degree of acyclicity. We have thus proved the main theorem almost as stated in the introduction, viz., up to the analysis of the global symmetry behaviour to which the next section will be devoted.

Theorem 3.22. Every abstract finite specification of an overlap pattern, by an \(I \)-graph w.r.t. to some incidence pattern \(I \), admits, for every \(N \in \mathbb{N} \), finite realisation by \(N \)-acyclic finite hypergraphs.

4 Symmetries in reduced products

We discuss global symmetries, and especially the behaviour of our constructions under automorphisms of the input data. Section 4.1 provides the basic definitions and indicates that the matter is not entirely trivial, for two reasons.

Firstly, the straightforward, essentially relational representation of given structures or input data that we chose does not necessarily represent the relevant symmetries as automorphisms, because the representations themselves break symmetries. The most apparent example lies at the very root of our formalisations: incidence patterns \(I \) and \(I \)-graphs. If we choose a relational representation of \(I = (S, E) \) as a trivial special \(I \)-graph, with singleton relations \(R_e = \{(s, s')\} \) for every \(e \in E[s, s'] \), then the resulting structure is rigid, simply because we have individually labelled the edges by their names. Rather than this format, we need to consider \(I \) as a two-sorted structure of the form \(I = (S, E, t_0/1, (\)^{-1}) \) discussed in Remark 2.2, which leaves room for non-trivial automorphisms that capture all the intended ‘symmetries’.

Secondly, constructions could, in principle involve choices that break symmetries of the input data or given structures. In essence, this section largely is to show that the constructions presented so far are all sufficiently natural and generic in relation to the input data, so that such choices do not occur (or at least do not have to occur). This is not trivial in all instances. In Section 4.2 we
first look at those symmetries in direct and reduced products that stem from the homogeneity of the Cayley graphs of the groupoid factor in those products; Section 4.3 concerns compatibility of these constructions with symmetries that are present in the input structures. In the end we shall know that all our constructions – of realisations and coverings based on reduced products with groupoids – are indeed symmetry preserving and in themselves highly symmetric, provided the groupoids are, and that our construction of groupoids is compatible with this requirement.

In Section 4.4, we use these features of our constructions to provide a new proof of extension properties for partial automorphisms in the style of Hrushovski, Herwig and Lascar [10, 6, 8], and thus show how our generic recipe for the realisation of overlap patterns can be used to lift local symmetries, as manifested in overlaps between local substructures or local isomorphisms, to global symmetries that manifest themselves as automorphisms.

4.1 Global symmetries and automorphisms

Definition 4.1. A symmetry of an incidence pattern \(I = (S, E) \) is an automorphism of the associated two-sorted structure, i.e., a pair \(\eta^I = (\eta^S, \eta^E) \) of bijections \(\eta^S : S \to S \) and \(\eta^E : E \to E \), such that \(\eta^E(e) \in E[\eta^S(s), \eta^S(s')] \) iff \(e \in E[s, s'] \), and such that \(\eta^E(e^{-1}) = (\eta^E(e))^{-1} \).

Definition 4.2. A symmetry of an I-graph \(H = (V, (V_e), (R_e)) \) based on an incidence pattern \(I = (S, E) \) consists of a symmetry \(\eta^I = (\eta^S, \eta^E) \) of \(I \) together with a permutation \(\eta^V \) of \(V \) such that \(\eta^V(V_s) = V_{\eta^S(s)} \) and \(\eta^V(R_e) := \{(\eta^V(v), \eta^V(w')): (v, w') \in R_e\} \sim R_{\eta^S(e)} \).

In this scenario, we think of the symmetry \(\eta^H \) of the I-graph \(H \) as the triple \(\eta^H = (\eta^V, \eta^S, \eta^E) \).

Definition 4.3. A symmetry of an I-groupoid \(G \) based on an incidence pattern \(I = (S, E) \) consists of a symmetry \(\eta^I \) of \(I \) together with a permutation \(\eta^G \) of \(G \) such that for all \(e \in E[s, s'] \), \(\eta^G \) maps the generator \(g_e \) of \(G \) to the generator \(\eta^G(g_e) = g_{\eta^E(e)} \), and is compatible with the groupoid structure in the sense that, for all \(s \in S \) and \(g_1, g_2 \in G_{tu} \):

(i) \(\eta^G(1_s) = 1_{\eta^S(s)} \);

(ii) \(\eta^G(g_1 \cdot g_2) = \eta^G(g_1) \cdot \eta^G(g_2) \).

In this scenario we think of the symmetry \(\eta^G \) of the I-groupoid \(G \) as the triple \(\eta^G = (\eta^G, \eta^S, \eta^E) \). It follows from the definition that, dropping superscripts for notational ease, \(\eta(g) \in G_{\eta(s)\eta(t)} \) for all \(g \in G_{st} \) and that, for \(w = e_1 \ldots e_n \in E^*[s, t] \), \(\eta(w^G) = (\eta(w))^G \) where \(\eta(w) = \eta(e_1) \ldots \eta(e_n) \in E^*[\eta(s), \eta(t)] \).

It is obvious that the last two definitions are compatible with the passage between I-groupoids and their Cayley graphs (cf. especially Definitions 2.13, 2.7 and 2.12).

\[\text{We often write just } \eta \text{ to denote the different incarnations of } \eta, \text{ and use superscripts only to highlight different domains where necessary.}\]
Observation 4.4. If \(\eta^G = (\eta^G, \eta^S, \eta^E) \) is a symmetry of the I-groupoid \(\mathbb{G} \), and \(H = (G, \ldots) \) is its Cayley graph, then \(\eta^H := (\eta^V, \eta^S, \eta^E) \) for \(\eta^V = \eta^G \) is also a symmetry of \(H \). Conversely, any symmetry of an I-graph \(H \) naturally lifts to a symmetry of its completion \(\overline{H} \) and of the I-groupoid \(\mathbb{G} = \text{cym}(H) \).

Note that the groupoid structure, i.e., the partial operation on \(G \) is fully determined by the Cayley graph structure (viewed as an I-graph, with \(E \)-labelled edges) together with the identification of the elements \(1_s \in G_{ss} \) for \(s \in S \). But, due to its homogeneity, the Cayley graph structure does not even distinguish \(G_{ss} \) within \(G_s \): it is clear that the automorphism group of the Cayley graph (even as a relational structure with \(E \)-labelled edges) acts transitively on each set \(G_{ss} \).

Most importantly, the groupoid constructions from Section 2 are fully compatible with symmetries. In particular, passage from \(H \) to \(\text{cym}(H) \) and the amalgamation constructions that lead to \(N \)-acyclic groupoids, Proposition 2.22, are such that every symmetry of \(I \) (or of the given I-graph \(H \)) lift and extend to symmetries of the resulting I-groupoid \(\mathbb{G} \). The induction underlying Proposition 2.22 is based on the number of generators in the sub-groupoids, with an individual induction step according to Lemma 2.21 on the amalgamation of chains of sub-groupoids. All these notions are entirely symmetric w.r.t. any symmetries of \(I \). We can therefore strengthen the claim of Proposition 2.22 as follows.

Corollary 4.5. For every incidence pattern \(I = (S, E) \), I-graph \(H \) and \(N \in \mathbb{N} \), there are finite \(N \)-acyclic I-groupoids \(\mathbb{G} \) that extend every symmetry of \(I \) and \(H \) to a symmetry of \(\mathbb{G} \).

The following notion of hypergraph automorphisms is the obvious one.

Definition 4.6. An automorphism of a hypergraph \(\mathfrak{A} = (A, S) \) is a bijection \(\eta: A \to A \) such that for every \(s \subseteq A \): \(\eta(s) := \{\eta(a): a \in s\} \in S \) if, and only if, \(s \in S \).

We also denote the induced bijection on \(S \) by \(\eta \) and may also think of an automorphism of the hypergraph \(\mathfrak{A} = (A, S) \) as a pair \(\eta^{\mathfrak{A}} = (\eta^A, \eta^S) \), which then automatically induces a symmetry \(\eta' = (\eta^S, \eta^E) \) of the associated intersection graph \(I := I(\mathfrak{A}) \) (regarded as an incidence pattern) as well as a symmetry \(\eta^H = (\eta^V, \eta^S, \eta^E) \) of the I-graph representation \(H(\mathfrak{A}) \) of \(\mathfrak{A} \). The operation of \(\eta: A \to A \) naturally induces all the derived operations occurring in these; e.g., on the vertex set \(V = \bigcup_{s \in S} (s \times \{s\}) \) of \(H(\mathfrak{A}) \), \(\eta^V(s \times \{s\}) = (\eta^S(s) \times \{\eta^S(s)\}) \) where \(\eta^S(s) = \{\eta(a): a \in s\} \).

In fact, the Cayley graph of \(\mathbb{G} \) consists of a disjoint union of isomorphic complete I-graphs induced on the subsets \(G_{ss} = \bigcup_{t \in S} G_{ts} \) for \(t \in S \) (if \(I \) is connected, then these are also the connected components); the groupoid structure of \(\mathbb{G} \) can be retrieved from each one of these, via \(\text{cym} \).

38
4.2 Groupoidal symmetries of reduced products

Consider a hypergraph $H \otimes G$ or $\mathfrak{A} \otimes G$ obtained as a reduced product of either an I-graph or a hypergraph with an I-groupoid (for $I = I(\mathfrak{A})$ in the hypergraph case). Any such reduced product has characteristic symmetries within its vertical fibres induced by groupoidal or Cayley symmetries of G. In particular, these symmetries are compatible with the natural projections onto to first factor and trivial w.r.t. I.

Lemma 4.7. The automorphism group of the reduced product $H \otimes G$ between an I-graph H and an I-groupoid G acts transitively on the set of hyperedges $\{[Vs,g]: g \in G_{ss}\}$ for every $s \in S$, with trivial operation on the Vs-component. Similarly, in the direct product $H \times G$, any two patches $Vs \times \{g\}$ for $g \in G_{ss}$ are bijectively related by some symmetry of $H \times G$ that is trivial on the first component and on I. In the natural covering of a hypergraph $\mathfrak{A} = (A,S)$ by its reduced product $\pi: \mathfrak{A} \otimes G \rightarrow \mathfrak{A}$ with an I-groupoid G, where $I = I(\mathfrak{A})$, any two pre-images of the same hyperedge $s \in S$ are related by an automorphism of $\hat{\mathfrak{A}} = \mathfrak{A} \otimes G$ that commutes with π.

Proof. All claims are an immediate consequence of the homogeneity properties of the Cayley graphs of groupoids and the fact that the definitions of the direct and reduced products in question do not refer to the groupoid structure of G (with distinguished elements 1_s), other than via the structure of its Cayley graph. □

4.3 Lifting structural symmetries to reduced products

Besides the vertical symmetries within fibres of coverings or realisations there is an obvious concern relating to the compatibility of reduced products with automorphisms of the input data. For these considerations, symmetries that involve non-trivial symmetries of the underlying incidence pattern I are of the essence.

The aim is to show that all our constructions of realisations and coverings are sufficiently natural or canonical to allow us to lift symmetries of a hypergraph \mathfrak{A} to its coverings by $\mathfrak{A} \otimes G$, and of an I-graph H to its realisations obtained in direct and reduced product constructions. This requires the use of groupoids G that are themselves fully symmetric w.r.t. those symmetries of I that are induced by the structural symmetries of the given \mathfrak{A} or H.

Recall from the discussion of Definition 4.6 that an automorphism of a hypergraph $\mathfrak{A} = (A,S)$ takes the form $\eta^\mathfrak{A} = (\eta^A, \eta^S)$ and canonically induces symmetries $\eta^I = (\eta^S, \eta^E)$ of $I = I(\mathfrak{A})$ and $\eta^{H(\mathfrak{A})} = (\eta^V, \eta^S, \eta^E)$ of the I-graph representation $H(\mathfrak{A})$ of \mathfrak{A}. If, in addition, the I-groupoid G admits a matching symmetry $\eta^G = (\eta^G, \eta^I) = (\eta^G, \eta^S, \eta^E)$, based on the same $\eta^I = (\eta^S, \eta^E)$, then the covering $\pi: \mathfrak{A} \otimes G \rightarrow \mathfrak{A}$ carries a corresponding symmetry that is both an automorphism of the covering hypergraph $\hat{\mathfrak{A}} = \mathfrak{A} \otimes G$ and compatible with the given automorphism of \mathfrak{A} via π, in the sense that the following diagram
commutes:

\[
\begin{array}{c}
\mathfrak{A} \otimes G \xrightarrow{\eta} \mathfrak{A} \otimes G \\
\pi \downarrow \quad \downarrow \pi \\
\mathfrak{A} \xrightarrow{\eta} \mathfrak{A}
\end{array}
\]

At the level of \(\mathfrak{A} \otimes G\), the automorphism \(\eta\) operates according to

\[
\eta^{\mathfrak{A} \otimes G} : [a, g] \mapsto [\eta^A(a), \eta^G(g)],
\]

for \(g \in G_{ss}\) and \(a \in s\).

From Corollary 4.5 and Proposition 3.21 we thus further obtain the following.

Corollary 4.8. Any finite hypergraph \(\mathfrak{A}\) admits, for \(N \in \mathbb{N}\), finite strict \(N\)-acyclic coverings \(\pi: \mathfrak{A} = \mathfrak{A} \otimes G \to \mathfrak{A}\) by reduced products with finite \(N\)-acyclic \(I\)-groupoids \(G\), for \(I = I(\mathfrak{A})\), such that these coverings are compatible with the automorphism group of \(\mathfrak{A}\) in the sense that every automorphism \(\eta^\mathfrak{A}\) of \(\mathfrak{A}\) lifts to an automorphism \(\eta^{\mathfrak{A} \otimes G}\) of \(\mathfrak{A}\) such that \(\pi \circ \eta^{\mathfrak{A} \otimes G} = \eta^\mathfrak{A} \circ \pi\).

Turning to realisations of overlap patterns and their symmetries, it is equally clear that direct and reduced products \(H \times G\) and \(H \otimes G\) extend every symmetry \(\eta^H = (\eta^V, \eta^S, \eta^E)\) of the \(I\)-graph \(H = (V, (V_s), (R_e))\) provided the \(I\)-groupoid \(G\) admits a matching symmetry \(\eta^G = (\eta^G, \eta^S, \eta^E)\) with the same underlying symmetry \(\eta^I = (\eta^S, \eta^E)\).

Corollary 4.9. Every simultaneous symmetry of the \(I\)-graph \(H\) and the \(I\)-groupoid \(G\) gives rise to a symmetry of the direct product \(H \times G\) and to an automorphism of the reduced product hypergraph \(H \otimes G\).

We may now combine these observations with those from Section 4.2 to obtain realisations that respect all symmetries of the overlap specification. Recall from Sections 3.2–3.4 that realisations, in the general case, were obtained in a two-stage process.

\[
H \rightarrow H \times G \rightarrow (H \times G) \otimes \check{G} = \check{\mathfrak{A}} \quad (*)
\]

The first stage takes us from the \(I\)-graph \(H\) to a direct product \(I\)-graph \(H \times G\) with a compatible \(I\)-groupoid \(G\); The second stage uses this direct product as a coherent \(I\)-graph for \(\check{I} = I(G)\) (Observation 3.6), to form a reduced product with a suitable \(I\)-groupoid \(\check{G}\), which realises the overlap pattern specified in \(H\) (Corollary 3.11). The analysis of the relevant symmetries, therefore, involves structural symmetries of the input structure \(H \times G\) in the second stage, which also stem from groupoidal symmetries of \(G\).

Corollary 4.10. For any incidence pattern \(I = (S, E)\) and \(I\)-graph \(H = (V, (V_s), (R_e))\), realisations \(\check{\mathfrak{A}}\) as obtained in Theorem 3.22 can be chosen so that all symmetries of \(H\) lift to automorphisms of \(\check{\mathfrak{A}}\). Moreover, for any two hyperedges \(\check{s}_1\) and \(\check{s}_2\) of \(\check{\mathfrak{A}}\) that bijectively project to the same \(V_s\) for \(s = \pi(\check{s}_1) = \pi(\check{s}_2)\)
via \(\pi_{s_1} : \dot{s}_1 \rightarrow V_s \), there is a ‘vertical’ automorphism \(\eta = \eta^S_0 \) of \(\hat{\mathcal{A}} \) that is compatible with these projections in the sense that \(\pi_{s_1} = \pi_{s_2} \circ \eta \).

\[
\begin{array}{c}
\dot{s}_1 \xrightarrow{\eta} \dot{s}_2 \\
\pi_{s_1} \downarrow \hspace{1cm} \pi_{s_2} \\
V_s \xrightarrow{id_{V_s}} V_s
\end{array}
\]

Proof. Consider the two-level construction indicated in (\ast) above. It suffices to choose the two groupoids in the construction of the realisation sufficiently symmetric. For the first stage, the \(I \)-groupoid \(G \) can be chosen to be compatible with \(H \) and to have symmetries \(\eta^G = (\eta^S, \eta^E) \) based on the same \(\eta^I = (\eta^S, \eta^E) \) for all symmetries \(\eta^H = (\eta^V, \eta^S, \eta^E) \) of the \(I \)-graph \(H \). Then the \(I \)-graph \(H \times G \) has a symmetry \(\eta^{H \times G} \) that simultaneously extends \(\eta^H \) and \(\eta^G \), for every symmetry \(\eta^H \) of \(H \). In addition, \(H \times G \) has all the groupoidal symmetries of the Cayley graph of \(G \) according to Lemma 4.7.

For the second stage of the construction, \(H \times G \) is regarded as an \(\tilde{I} \)-graph

\[
\tilde{I} = I(G) = (G, \tilde{E}) \quad \text{where} \quad \tilde{E} = \bigcup_{e \in \tilde{E}} \{(g, gg_e) : e \in E[s, s'], g \in G_{ss}\}.
\]

This \(\tilde{I} \)-graph also has the natural extension of every symmetry \(\eta^H \) of \(H \) as a symmetry: clearly, every symmetry of the Cayley graph of \(G \) that is induced by a symmetry of \(H \) extends to a symmetry of \(H \times G \) as an \(\tilde{I} \)-graph. The \(\tilde{I} \)-groupoid \(\tilde{G} \) can now be chosen compatible with \(H \times G \), \(N \)-acyclic for any desired level \(N \), and such that it extends every simultaneous symmetry of \(\tilde{I} \) and \(H \times G \). It then follows that the realisation \(\hat{A} = (H \times G) \otimes \hat{G} \) is compatible with every symmetry of \(H \).

For the additional claim about ‘vertical’ symmetries consider two hyperedges \(\dot{s}_1 = [V_s \times \{g_1\}, \hat{g}_1] \) and \(\dot{s}_2 = [V_s \times \{g_2\}, \hat{g}_2] \) that project to the same \(V_s \); here \(g_i \in G_{ss} \) and \(\hat{g}_i \in G_{ss} \). (note that \(\dot{S} = G \) in \(\tilde{I} = (\tilde{S}, \tilde{E}) = (G, E) \)).

The Cayley graph of \(G \) has a symmetry \(\eta_0 \) that takes \(g_1 \) to \(g_2 \) and whose underlying symmetry of \(I \) is trivial so that it fixes \(s \). The corresponding simultaneous symmetry of \(H \) and the Cayley graph of \(G \) lifts to \(H \times G \) and induces matching symmetries of \(\tilde{I} \) and \(\tilde{G} \). (This symmetry \(\eta^G_0 \) of \(\tilde{G} \) will typically not be trivial with respect to \(\tilde{I} \) as it links \(\eta^G_0(g_1) = g_2 \) in their roles as elements of \(\tilde{S} \).) A purely groupoidal symmetry \(\eta_1 \) of \(G \), which is trivial w.r.t. \(I \) and \(H \times G \) again, will finally suffice to align \(\eta^G_0(\hat{g}_1) \) with \(\hat{g}_2 \), so that the composition of \(\eta_0 \) and \(\eta_1 \) maps \(\dot{s}_1 = [V_s \times \{g_1\}, \hat{g}_1] \) to \(\dot{s}_2 = [V_s \times \{g_2\}, \hat{g}_2] \) as required. \(\square \)

4.4 Lifting local to global symmetries

In its basic form, Herwig’s theorem [6, 8, 7] provides, for some given partial isomorphism \(p \) of a given finite relational structure \(\mathcal{A} \), an extension \(\mathcal{B} \supseteq \mathcal{A} \) of \(\mathcal{A} \) such that the given partial isomorphism \(p \) of \(\mathcal{A} \) extends to a full automorphism of
\(\mathcal{B}\). It generalises a corresponding theorem by Hrushovski [10], which makes the same assertion about graphs. Elegant combinatorial proofs of both theorems can be found in the paper by Herwig and Lascar [8], which also generalises them further to classes of structures that avoid certain weak substructures (cf. Corollary 4.18 below). The variant in which every partial isomorphism of the original finite structure extends to an automorphism of the extension is more useful for some purposes. Only provided that the construction of \(\mathcal{B} \supseteq \mathcal{A}\) is compatible with (full) automorphisms of \(\mathcal{A}\), however, can the general form be obtained directly for the basic form via straightforward iteration.

W.l.o.g. we restrict attention to relational structures with a single relation \(R\) of some fixed arity \(r\).

Theorem 4.11 (Herwig’s Theorem). For every finite relational structure \(\mathcal{A} = (A, R^A)\) there is a finite extension \(\mathcal{B} = (B, R^B) \supseteq \mathcal{A}\) such that every partial isomorphism of \(\mathcal{A}\) is the restriction of some automorphism of \(\mathcal{B}\).

Note that the term ‘extension’ as applied here means that \(\mathcal{A}\) is an induced substructure of \(\mathcal{B}\), denoted \(\mathcal{A} \subseteq \mathcal{B}\), which means that \(A \subseteq B\) and \(R^A = R^B \cap A^r\).

A partial isomorphism of \(\mathcal{A}\) is a partial map on \(A\), \(p\): \(\text{dom}(p) \rightarrow \text{image}(p)\) that is an isomorphism between \(\mathcal{A} \upharpoonright \text{dom}(p)\) and \(\mathcal{A} \upharpoonright \text{image}(p)\) (induced substructures). In the context of the above theorem, it is also customary to refer to the ‘local symmetries’, which are to be extended to global symmetries (automorphisms), as ‘partial automorphisms’.

We here reproduce Herwig’s theorem in an argument based on our groupoidal constructions, which may also offer a starting point for further generalisations. Before that, we prove from scratch the basic version of Herwig’s theorem for a single partial isomorphism \(p\) using an idea that is going to motivate our new approach to the full version below.

Excursion: the basic extension task. Let \(\mathcal{A} = (A, R^A)\) be a finite \(R\)-structure, \(p\) a partial isomorphism of \(\mathcal{A}\). We first provide a canonical infinite solution to the extension task for \(p\) and \(\mathcal{A}\). Let \(\mathcal{A} \times \mathbb{Z} = (A \times \mathbb{Z}, R^{A \times \mathbb{Z}})\) be the structure obtained as the disjoint union of isomorphic copies of \(\mathcal{A}\), indexed by \(\mathbb{Z}\). Let \(\approx\) be the equivalence relation over \(A \times \mathbb{Z}\) that identifies \((a, n)\) with \((p(a), n + 1)\) for \(a \in \text{dom}(p)\); we think of \(\approx\) as induced by partial matchings or local bijections

\[
\rho_{p,n}: \text{dom}(p) \times \{n\} \longrightarrow \text{image}(p) \times \{n + 1\} \\
(a, n) \longmapsto (p(a), n + 1).
\]

Then, for \(m \leq n\),

\[(a_1, m) \approx (a_2, n) \text{ iff } a_2 = p^{n-m}(a_1).\]

The interpretation of \(R\) in \(\mathcal{A}_\infty := (\mathcal{A} \times \mathbb{Z})/\approx\) is

\[R_{\approx} := \{[\tilde{a}, m]: \tilde{a} \in R^A, m \in \mathbb{Z}\},\]
where \([a, n]\) is shorthand for the tuple of the equivalence classes of the components \((a_i, m)\) w.r.t. \(\approx\). By construction, \(\mathfrak{A}\) is isomorphic to the induced substructure represented by the slice \(\mathfrak{A} \times \{0\} \subseteq \mathfrak{A} \times \mathbb{Z}\), on which \(\approx\) is trivial: \((a, 0) \approx (a', 0) \iff a = a'\). Since \(p\) and the \(\rho_{p, n}\) are partial isomorphisms, the quotient w.r.t. \(\approx\) does not induce new tuples in the interpretation of \(R\) that are represented in the slice \(\mathfrak{A} \times \{0\}\).

The shift \(n \mapsto n - 1\) in the second component induces automorphisms \(\eta: (a, n) \mapsto (a, n - 1)\) and \(\eta: [a, n] \mapsto [a, n - 1]\) of \(\mathfrak{A} \times \mathbb{Z}\) and of \((\mathfrak{A} \times \mathbb{Z})/\approx\). The automorphism \(\eta\) of \((\mathfrak{A} \times \mathbb{Z})/\approx\) extends the realisation of \(p\) in \(\mathfrak{A} \times \{0\}\), since for \(a \in \text{dom}(p) \subseteq A\):

\[
\eta([a, 0]) = [a, -1] = [p(a), 0].
\]

So \(\mathfrak{B}_\infty := (\mathfrak{A} \times \mathbb{Z})/\approx\) is an infinite solution to the extension task.

It is clear that the domain \(\text{dom}(p^k)\) of the \(k\)-fold composition of the partial map \(p\) is eventually stable, and, for suitable choice of \(k\), also induces the identity on \(\text{dom}(p^k)\). Fixing such \(k\), we look at the correspondingly defined quotient

\[
\mathfrak{B} := (\mathfrak{A} \times \mathbb{Z}_{2k})/\approx,
\]

which embeds \(\mathfrak{A}\) isomorphically in the induced substructure represented by the slice \(\mathfrak{A} \times \{0\}\).\(^9\) Moreover, \(\mathfrak{B}\) has the automorphism \(\eta: [a, n] \mapsto [a, n - 1]\) (now modulo \(2k\) in the second component), which extends \(p\), and thus is a finite solution to the extension task. As \(\mathfrak{B}\) is not in general compatible with (full) automorphisms of \(\mathfrak{A}\), the passage from \(\mathfrak{A}\) to \(\mathfrak{B} \supseteq \mathfrak{A}\) that solves the extension task for one partial isomorphisms \(p\) of \(\mathfrak{A}\) cannot just be iterated to further solve the extension task for another partial isomorphism \(p'\) without potentially compromising the solution for \(p\). It turns out that suitably adapted groupoids, instead of a naive use of cyclic groups, implicitly take care of the interaction between simultaneous extension requirements.

Let us summarise this argument in light of the approach we want take below, i.e., in terms of realisations of \(I\)-graphs that specify a desired overlap pattern. For this let \(I := (\{0\}, \{e_p, e_p^{-1}\})\) be the singleton incidence pattern with the two orientations of a loop for \(p\). The overlap pattern to be realised is specified in the \(I\)-graph \(H = (A, A, (p, p^{-1}))\) where \(A\) is the universe and only partition set, and \(p\) and \(p^{-1}\) stand for the partial bijections associated with the edges \(e_p\) and \(e_p^{-1}\). For \(k \in \mathbb{N}\), let

\[
H \times \mathbb{Z}_k := (A \times \mathbb{Z}_k, (A \times \{n\})_{n \in \mathbb{Z}_k}, (\rho_{p, n}, \rho_{p, n}^{-1})_{n \in \mathbb{Z}_k})
\]

with partial bijections \(\rho_{p, n}: (a, n) \mapsto (p(a), n + 1)\) for \(a \in\) dom\((p)\). We may think of \(\mathbb{Z}_k\) as a covering \(\tilde{I}\) of \(I\) in the sense of our discussion in Section 3.2; then \(H \times \mathbb{Z}_k\) is the \(\tilde{I}\)-graph associated with the \(I\)-graph \(H\). According to Lemma 3.5, every realisation of \(H \times \mathbb{Z}_k\) induces a realisation of \(H\). Above, we chose \(k = 2k\) (rather than \(k\)) supports the essential condition that the domains of the partial bijections \(p^n\) and of \((p^{-1})^{k-n}\), which relate the same slices albeit along opposite directions in the cycle \(\mathbb{Z}_k\), cannot be incomparable; cf. Observation 3.10 and discussion below.

\(^9\)The period \(\ell = 2k\) (rather than \(k\)) supports the essential condition that the domains of the partial bijections \(p^n\) and of \((p^{-1})^{k-n}\), which relate the same slices albeit along opposite directions in the cycle \(\mathbb{Z}_k\), cannot be incomparable; cf. Observation 3.10 and discussion below.
such that $H \times \mathbb{Z}_k$ is coherent in the sense of Definition 2.4. Coherence of $H \times \mathbb{Z}_k$ further implies that any \mathbb{Z}_mk for $m \geq 1$, viewed as an I-groupoid in the obvious manner, is compatible with $H \times \mathbb{Z}_k$. For $m \geq 2$, moreover, \mathbb{Z}_mk is an m-acyclic I-groupoid. Therefore, by Observation 3.10, the reduced product $H \otimes \mathbb{Z}_2k$ is a realisation of $H \times \mathbb{Z}_k$, and hence also of H. Coherence, and in particular the 2-acyclicity of \mathbb{Z}_2k, implies that any relation R^A on A for which p is a partial isomorphism lifts consistently to $H \otimes \mathbb{Z}_2k$, and that in this manner every slice represented by some $A \times \{n\}$ for $n \in \mathbb{Z}_2k$ is isomorphic to (A,R^A).

The symmetry of the realisation under cyclic shifts in \mathbb{Z}_2k, finally, shows that this structure extends the partial isomorphism p of any individual slice to an automorphism. In the following we expand on this perspective.

A generic construction. We turn to the extension task for a specified collection P of partial isomorphisms of $\mathfrak{A} = (A,R^A)$. By a (finite) solution to this extension task we mean any (finite) extension $B \supseteq A$ which lifts every partial isomorphism $p \in P$ to an automorphism of B. With this situation we associate a natural incidence pattern I and I-graph specification of an overlap pattern, whose symmetric realisations will solve the extension task.

For $I = (S,E)$ we use a 1-element set $S = \{0\}$ and endow it with one forward and one backward loop for each $p \in P$:

$$E = \{e_p: p \in P\} \cup \{e_p^{-1}: p \in P\},$$

where the e_p are pairwise distinct edge colours. For H we choose the I-graph

$$H(\mathfrak{A},P) = (A,(Re)_{e \in E})$$

where

$$R_e = \begin{cases} \{(a,p(a)): a \in \text{dom}(p)\} & \text{for } e = e_p \\ \{(p(a),a): a \in \text{dom}(p)\} & \text{for } e = e_p^{-1} \end{cases}$$

is the graph of p or p^{-1}, according to the orientation of e.

The idea is that the desired automorphisms will be directly induced by ‘vertical shifts’ in the sense of the last claim of Corollary 4.10 that link suitable pre-images of V_s in realisations of $H(\mathfrak{A},P)$. Before we state the first version of a Herwig–Lascar theorem as Theorem 4.13 below, we introduce some terminology for useful homogeneity properties of hypergraphs.

Definition 4.12. We call a hypergraph (B,\hat{S}) homogeneous if its automorphism group acts transitively on its set of hyperedges: for $\hat{s}, \hat{s}' \in \hat{S}$ there is an automorphism η of (B,\hat{S}) such that $\eta(\hat{s}) = \hat{s}'$. For a subgroup Aut$_0$ of the full automorphism group of (B,\hat{S}), we say that (B,\hat{S}) is Aut$_0$-homogeneous if any two hyperedges in \hat{S} are related by an automorphism from that subgroup.

Homogeneity of (B,\hat{S}) in particular implies that (B,\hat{S}) is uniform in the sense that all its hyperedges have the same cardinality; a hypergraph is called k-uniform if all its hyperedges have size k.

The following variant of Herwig’s theorem can also be obtained as a corollary of Herwig’s theorem as stated in Theorem 4.11 above. Its new proof, however, allows for further variations w.r.t. the nature of the hypergraph (B,\hat{S}), which
may for instance be required to be \(N \)-acyclic. Among other potential generalisations this reproduces the extension of Herwig’s theorem to the class of conformal structures and, e.g., of \(k \)-clique free graphs, obtained in [9] on the basis of Herwig’s theorem together with a hypergraph covering result.

Theorem 4.13. For every finite \(\mathfrak{A} = (A, R^A) \) and every set \(P \) of partial isomorphism of \(\mathfrak{A} \) there is a finite relational structure \(\mathfrak{B} = (B, R^B) \) and an \(\text{Aut}(\mathfrak{B}) \)-homogeneous \(|A| \)-uniform hypergraph \((B, \hat{S}) \) such that

(i) every automorphism of \(\mathfrak{B} \) is an automorphism of \((B, \hat{S}) \);

(ii) \(\mathfrak{B} | \hat{s} \simeq \mathfrak{A} \) for all \(\hat{s} \in \hat{S} \);

(iii) \(\mathfrak{B} \supseteq \mathfrak{B} | \hat{s} \simeq \mathfrak{A} \) solves the extension task for \(\mathfrak{A} \) and \(P \).

In particular, if \(P \) is the set of all partial isomorphisms of \(\mathfrak{A} \), then every partial isomorphism of \(\mathfrak{B} \) whose domain and image sets are each contained in hyperedges of \((B, \hat{S}) \) is induced by an automorphism of \(\mathfrak{B} \).

Proof. Let \(\hat{\mathfrak{A}} = (\hat{A}, \hat{\hat{S}}) \) be a fully symmetric realisation of the overlap pattern specified in \(H(\mathfrak{A}, P) \) in the sense of Corollary 4.10, with projections \(\pi_{\hat{s}}: \hat{s} \rightarrow A \). We expand the universe \(\hat{\mathfrak{A}} \) to produce an \(R \)-structure by pulling the interpretation \(R^A \) to \(\hat{\mathfrak{A}} \):\[
\mathfrak{B} := (\hat{A}, R^B) \quad \text{where} \quad R^B = \bigcup_{\hat{s} \in \hat{S}} \pi_{\hat{s}}^{-1}(R^A).
\]

One checks that this interpretation entails that \(\pi_{\hat{s}}: \mathfrak{B} | \hat{s} \simeq \mathfrak{A} \) for every \(\hat{s} \in \hat{S} \). This interpretation of \(R \) in \(\mathfrak{B} \) also turns every \(\pi \)-compatible automorphism of the hypergraph \(\hat{\mathfrak{A}} \) into an automorphism of the \(R \)-structure \(\mathfrak{B} \). We want to show that it solves the extension task for all \(p \in P \), for every embedding of \(\mathfrak{A} \) into \(\mathfrak{B} \) via any one of the maps \(\pi_{\hat{s}} \).

By Corollary 4.10, the automorphism group of the hypergraph \(\hat{\mathfrak{A}} \) acts transitively on \(\hat{S} \) in a manner that is compatible with the \(\pi_{\hat{s}} \). In particular, \(\mathfrak{A} \) is homogeneous w.r.t. the subgroup of those hypergraph automorphisms that are compatible with the projections and therefore w.r.t. the automorphism group of the relational structure \(\mathfrak{B} \). For \(p \in P \), consider any hyperedge \(\hat{s} \) of \(\hat{\mathfrak{A}} \) and a hyperedge \(\hat{s}' \) that, corresponding to condition (i) for realisations, overlaps with \(\hat{s} \) as prescribed by \(\rho_e = p \) (on the left-hand side of the diagram):\[
\hat{s} \xrightarrow{\pi_{\hat{s}}} \hat{s}' \quad \quad \hat{s}' \xrightarrow{\pi_{\hat{s}'}} \hat{s}
\]

Consider the automorphism \(\eta \) of \(\hat{\mathfrak{A}} \) that maps \(\hat{s}' \) onto \(\hat{s} \) and is compatible with \(\pi_{\hat{s}'} \) and \(\pi_{\hat{s}} \) (on the right-hand side of the diagram). The combination of the two diagrams shows that this automorphism \(\eta \) maps

\[
\pi_{\hat{s}}^{-1}(\text{dom}(p)) = \pi_{\hat{s}'}^{-1}(\text{image}(p)) = \hat{s} \cap \hat{s}' \subseteq \hat{s}
\]
onto $\pi_\mathcal{S}^{-1}(\text{image}(p)) \subseteq \mathcal{S}$, and extends the partial map

$$p_\mathcal{S} := \pi_\mathcal{S}^{-1} \circ p \circ \pi_\mathcal{S},$$

which represents p in the embedded copy $\pi_\mathcal{S}^{-1}(\mathfrak{A}) = \mathfrak{B} \upharpoonright \mathcal{S}$ of \mathfrak{A}.

The formally stronger homogeneity assertion about the solution \mathfrak{B} for the extension task for \mathfrak{A} and the set of all its partial isomorphisms follows from (i)–(iii) by homogeneity of (B, \mathcal{S}) w.r.t. the automorphism group of \mathfrak{B}. \square

The homogeneity properties of the solutions to the extension task obtained in our construction have further interesting consequences. In essence, we shall see that sufficiently acyclic realisations of $H(\mathfrak{A}, P)$ at least on a local scale behave like ‘free’ solutions. This is an interesting phenomenon, because really free solutions will in general be necessarily infinite. Moreover, this feature of our solutions offers a new and transparent route to the much stronger extension property of Herwig and Lascar [8] in Corollary 4.18 below.

Proposition 4.14. For any finite R-structure \mathfrak{A}, any collection P of partial isomorphisms of \mathfrak{A} and for any $N \in \mathbb{N}$, there is a finite extension $\mathfrak{B} \supseteq \mathfrak{A}$ that satisfies the extension task for \mathfrak{A} and P and has the additional property that any substructure $\mathfrak{B}_0 \subseteq \mathfrak{B}$ of size up to N can be homomorphically mapped into any other (finite or infinite) solution \mathfrak{C} to the extension task for \mathfrak{A} and P.

The proof is essentially based on the analysis of our solutions to the extension task in the case that we use an N-acyclic realisation (B, \mathcal{S}) of the overlap specification in $H(\mathfrak{A}, P)$. To prepare for this, we draw on the alternative characterisation of hypergraph acyclicity in terms of the existence of tree decompositions. We then prove two further claims concerning \mathfrak{B} in relation to (B, \mathcal{S}) for N-acyclic (B, \mathcal{S}).

For our purposes, a tree decomposition of a finite hypergraph (A, S) can be represented by an enumeration of the set S of hyperedges as $S = \{s_0, \ldots, s_m\}$ such that for every $1 \leq \ell \leq m$ there is some $n(\ell) < \ell$ for which

$$s_\ell \cap \bigcup_{n < \ell} s_n \subseteq s_{n(\ell)}.$$

The important feature here is that $\bigcup S$ can be built up in a step-wise (and tree-like) fashion, starting from the root patch s_0 by adding one member s_ℓ at a time in such a manner that the overlap of the new addition s_ℓ with the existing part is fully controlled in the overlap with a single patch $n(\ell)$ in the existing part.\[10]

It is well known that hypergraph acyclicity as defined in terms of chordality and conformality in Definition 3.2 is equivalent to the existence of a tree decomposition [2]. Correspondingly, the hypergraph (B, \mathcal{S}) is N-acyclic if, and only if, every induced sub-hypergraph of size up to N admits a tree decomposition.\[10]

\[10\]Re-thinking the whole process in reverse, we can see this as a decomposition process that reduces (A, S) to the empty hypergraph by simple retraction steps.
Using an \(N \)-acyclic realisation of \(H(\mathcal{A}, P) \) in our construction above, of a solution to the extension task for \(\mathcal{A} \), we therefore obtain the following additional properties of the hypergraph \((B, \hat{S}) \) and the induced relational structure \(\mathfrak{B} = (B, R^\mathfrak{B}) \).

Claim 4.15. In the terminology of the proof of Theorem 4.13, and for an \(N \)-acyclic realisation \((B, \hat{S}) \) of \(H(\mathcal{A}, P) \): for every substructure \(\mathfrak{B}_0 \subseteq \mathfrak{B} \) of size up to \(N \) there are hyperedges \(\{\hat{s}_0, \ldots, \hat{s}_m\} \subseteq \hat{S} \) such that

(i) \((\hat{B}_0, \{\hat{s}_0 \cap \hat{B}_0, \ldots, \hat{s}_m \cap \hat{B}_0\}) \) admits a tree decomposition;

(ii) \(R^\mathfrak{B} \upharpoonright \hat{B}_0 \subseteq \bigcup_{n \leq m} R^\mathfrak{B} \upharpoonright \hat{s}_n \).

Proof of the claim. Let \(\mathfrak{B}_0 = \mathfrak{B} \upharpoonright \hat{B}_0, |B_0| \leq N \). Due to \(N \)-acyclicity of \((B, \hat{S}) \), the induced sub-hypergraph \((\hat{B}_0, \{\hat{s} \cap \hat{B}_0 : \hat{s} \in \hat{S}\}) \) admits a tree decomposition represented by some enumeration of these induced hyperedges as \((\hat{s}_\ell \cap \hat{B}_0)_{\ell \leq m} \).

Due to the nature of \(R^\mathfrak{B} \) as the union of the relations \(\pi^{-1}(R^\mathfrak{A}) \) for \(\hat{s} \in \hat{S} \), which agree in their overlaps, it is clear that condition (ii) is satisfied.

Claim 4.16. Let \(\mathfrak{B} = (B, R^\mathfrak{B}) \) be a homogeneous solution to the extension task for \(\mathcal{A} \) and \(P \), based on the hypergraph \((B, \hat{S}) \) which is obtained as a realisation of the overlap pattern \(H(\mathcal{A}, P) \) as in the proof of Theorem 4.13.

Let \(\mathfrak{C} \supseteq \mathfrak{A} \) be any other (finite or infinite) solution to the extension task for \(\mathcal{A} \) and \(P \) such that every \(p \in P \) extends to an automorphism \(f_p \in \text{Aut}(\mathfrak{C}) \).

Let \(\hat{s}, \hat{s}' \in \hat{S} \) and consider any isomorphic embedding of \(\mathfrak{B} \upharpoonright \hat{s} \simeq \mathfrak{A} \) onto an automorphic image of \(\mathfrak{A} \) within \(\mathfrak{C} \) of the form

\[
\pi := f \circ \pi_\hat{s} : \mathfrak{B} \upharpoonright \hat{s} \simeq f(\mathfrak{A}) \subseteq \mathfrak{C}
\]

for some \(f \in \text{Aut}(\mathfrak{C}) \). Then there is an isomorphic embedding of \(\mathfrak{B} \upharpoonright \hat{s}' \simeq \mathfrak{A} \) onto another automorphic image of \(\mathfrak{A} \) within \(\mathfrak{C} \) of the form:

\[
\pi' := f' \circ \pi_{\hat{s}'} : \mathfrak{B} \upharpoonright \hat{s}' \simeq f'(\mathfrak{A}) \subseteq \mathfrak{C}
\]

for some \(f' \in \text{Aut}(\mathfrak{C}) \) such that \(\pi \cup \pi' : \mathfrak{B} \upharpoonright \hat{s} \cup \mathfrak{B} \upharpoonright \hat{s}' \to \mathfrak{C} \) is a homomorphism from the union of these two induced substructures into \(\mathfrak{C} \).

Proof. We observe that, according to the properties of a realisation, the overlap \(\hat{s} \cap \hat{s}' \) in \((B, \hat{S}) \) is induced by a path \(w \) of partial bijections \(p \) and \(p^{-1} \) for \(p \in P \) in \(H \). The corresponding composition of partial isomorphisms of \(\mathfrak{A} \) gives rise to a composition of automorphisms \(f_w \in \text{Aut}(\mathfrak{C}) \). So there is an automorphism \(f' = f_w \circ f \in \text{Aut}(\mathfrak{C}) \) such that \(f'(\mathfrak{A}) \cap f(\mathfrak{A}) \) contains \(\pi(\mathfrak{B} \upharpoonright (\hat{s} \cap \hat{s}')) \). It follows that \(\pi' := f' \circ \pi_{\hat{s}'} \) agrees with \(\pi \) on \(\hat{s} \cap \hat{s}' \), whence \(\pi \cup \pi' \) is well-defined on \(\mathfrak{B} \upharpoonright \hat{s} \cup \mathfrak{B} \upharpoonright \hat{s}' \) and a homomorphism.

\(^{11}\) \(\mathfrak{B} \upharpoonright \hat{s} \cup \mathfrak{B} \upharpoonright \hat{s}' \) stands for the union of these two induced substructures, which overlap in the common substructure \(\mathfrak{B} \upharpoonright (\hat{s} \cap \hat{s}') \); in universal algebraic terms, \(\mathfrak{B} \upharpoonright \hat{s} \cup \mathfrak{B} \upharpoonright \hat{s}' \) is the free amalgam over \(\mathfrak{B} \upharpoonright (\hat{s} \cap \hat{s}') \).
Proof of the proposition. Let \(\mathcal{B} = (B, R^\mathcal{B}) \) be a homogeneous solution to the extension task for \(\mathcal{A} \) and \(P \), based on the hypergraph \((B, \hat{S})\) which is obtained as an \(N \)-acyclic realisation of the overlap pattern \(H(\mathcal{A}, P) \) as in the proof of Theorem 4.13. Then any \(\mathcal{B}_0 \subseteq \mathcal{B} \) of size up to \(N \) admits a tree decomposition by \((\hat{s}_0 \cap B_0)_{\ell \leq m}\) in the sense of Claim 4.15. By Claim 4.16, \(\mathcal{C} \) contains automorphic images \((f_{\ell}(\mathcal{A}))_{\ell \leq m}\) of \(\mathcal{A} \) that are related to \(\mathcal{B} | \hat{s}_\ell \) by individual isomorphisms of the form \(\pi_{\ell} = f_{\ell} \circ \pi_{\hat{s}_\ell} \) and such that \(\pi_{\ell} \) and \(\pi_{n(\ell)} \) agree on the overlap in \(\mathcal{B} \), so that

\[
\bigcup_{\ell \leq m} \pi_{\ell}(\mathcal{B}_0 | \hat{s}_\ell)
\]

is a homomorphic image of \(\mathcal{B}_0 \) under \(\bigcup_{\ell} \pi_{\ell} \).

From this we also obtain a major strengthening of Theorem 4.11 due to [8], which can be phrased as a finite-model property for the extension task.

Definition 4.17. Let \(\mathcal{C} \) be a class of \(R \)-structures.

(a) \(\mathcal{C} \) has the *finite model property* for the extension of partial isomorphisms to automorphisms (EPPA) if, for every finite \(\mathcal{A} \in \mathcal{C} \) and collection \(P \) of partial isomorphisms of \(\mathcal{A} \) such that \(\mathcal{A} \) has some (possibly infinite) solution to the extension task for \(\mathcal{A} \) and \(P \) in \(\mathcal{C} \), there is a finite solution in \(\mathcal{C} \) to this extension task.

(b) \(\mathcal{C} \) is defined in terms of *finitely many forbidden homomorphisms* if, for some finite list of finite \(R \)-structures \(\mathcal{C}_i \), it consists of all \(R \)-structures \(\mathcal{A} \) that admit no homomorphisms of the form \(h: \mathcal{C}_i \xrightarrow{\text{hom}} \mathcal{A} \).

The following is now immediate from Proposition 4.14.

Corollary 4.18 (Herwig–Lascar Theorem). *Every class \(\mathcal{C} \) that is defined in terms of finitely many forbidden homomorphisms has the finite model property for the extension of partial isomorphisms to automorphisms (EPPA).*

Concluding remarks. The strength of the proposed generic approach to the realisation of overlap patterns of finite coverings has here been exemplified by the conceptually rather simple proof and analysis of the Herwig–Lascar theorem. The use of reduced producs with (the Cayley graphs of) finite groupoids that satisfy strong finitary acyclicity properties has been shown to be a natural tool to obtain suitable realisations and to lend itself also directly to the construction of finite coverings of controlled acyclicity for hypergraphs. The exploration of the relationship of this treatment of finite coverings, which yields canonical coverings of interest in the discrete world of finite hypergraphs, with classical constructions of branched coverings in the continuous setting remains a goal for further investigation. Both, the qualitative aspect of finiteness of coverings (in the sense of having finite fibres) and the quantitative aspect of \(N \)-acyclicity (as a natural finitary approximation to full acyclicity), may point to further correspondences that are being explored further in ongoing research. At the more technical level, current investigations also aim for an assessment of the branching behaviour of the finite coverings that are obtained by these combinatorial
methods; another issue being investigated concerns meaningful size bounds for variant constructions that do not necessarily invoke the full genericity of the construction of N-acyclic groupoids as provided in Section 2.

Acknowledgement I am grateful to Achim Blumensath and Julian Bitterlich for insightful comments and remarks on earlier versions of this technical report. Thanks to Dugald McPherson for pointing out an earlier, erroneous claim concerning the simple solution to the basic extension task in the excursion in Section 4.4, and to his student Daoud Siniora for several text corrections. Research on this topic continues to be partially supported by a grant from Deutsche Forschungsgemeinschaft on the topic of hypergraphs of controlled acyclicity (DFG grant OT 147/6-1).

References

