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Abstract We survey different notions of bisimulation equivalence that provide flex-
ible and powerful concepts for understanding the expressive power as well as the
model-theoretic and algorithmic properties of modal logics and of more and more
powerful variants of guarded logics.
An appropriate notion of bisimulation for a logic allows us to study the expressive
power of that logic in terms of semantic invariance and logical indistinguishability.
As bisimilar nodes or tuples in two structures cannot be distinguished by formulae
of the logic, bisimulations may be used to control the complexity of the models
under consideration. In this manner, bisimulation-respecting model constructions
and transformations lead to results about model-theoretic properties of modal and
guarded logics, such as the tree model property of modal logics and the fact that
satisfiable guarded formulae have models of bounded tree width.
A highlight of the bisimulation-based analysis are the characterisation theorems: in-
side a classical level of logical expressiveness such as first-order or monadic second-
order definability, these provide a tight match between bisimulation invariance and
logical definability. Typically such characterisation theorems state that a modal or
guarded logic is not only invariant under bisimulation but, conversely, also expres-
sively complete for the class of all bisimulation invariant properties at that level.
Finally, the bisimulation-based analysis of modal and guarded logics also leads to
important insights concerning their algorithmic properties. Since satisfiable formu-
lae always admit simple models, for instance tree-like ones, and since modal and
guarded logics can be embedded or interpreted in monadic second-order logic on
trees, powerful automata theoretic methods become available for checking satisfia-
bility and for evaluating formulae.
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1 Introduction

Bisimulation equivalence is one of the leading themes in modal logic. As the
quintessential back-and-forth notion for two-player combinatorial games it may
not only be regarded as a special case in the model-theoretic tradition of Ehren-
feucht–Fraı̈ssé games but may also be seen as their common backbone. Bisimulation
equivalence (of game graphs or transition systems) grasps the complex equivalence
between dynamic behaviours as a natural structural equivalence. The generalisa-
tion of this graph-based bisimulation concept to higher dimensions in the form of
guarded bisimulation opened up one further branch in the rich world of model-
theoretic games; the study of guarded bisimulation in the wake of the inception of
the guarded fragment of first-order logic in [1] has led to a new conceptual under-
standing of well-behaved logics that are ‘modal’ in a more general sense. Guarded
logics far transcend basic modal logics while retaining some of the key features
of modal model theory precisely through the parallelism between the underlying
notions of bisimulation equivalence. Guarded bisimulation can be seen as derived
from a hypergraph version of ordinary (modal, graph-based) bisimulation. And just
as preservation under ordinary bisimulation accounts for much of the good model-
theoretic behaviour of modal logics, so hypergraph bisimulation and guarded bisim-
ulation are the keys to understanding the model theory of guarded logics. Model
constructions and transformations that are compatible with guarded bisimulation ac-
count for the malleability of models and the tractability of the finite and algorithmic
model theory of various guarded logics. We here survey and summarise a number
of model-theoretic techniques and results, especially in the light of bisimulation re-
specting model constructions, including some more recent developments. Results
to be surveyed include finite and small model properties, decidability results, com-
plexity and expressive completeness issues. Among the more recent developments
are notions of guardedness that focus on the role of negation rather than on just
the quantification pattern. Unary and guarded negation bisimulation and the corre-
sponding unary and guarded negation fragments of first-order logic from [29] and
[3] have contributed yet another aspect to our understanding of the good behaviour
of ‘modal’ logics with a yet wider scope.

2 Bisimulation: Behavioural & Structural Equivalence

2.1 Ehrenfeucht–Fraı̈ssé, back-and-forth, zig-zag, pebble games:
games model-theorists play

Notions like ‘behaviour’ and ‘strategies’ seem to be quintessentially dynamic, while
the analysis of structure and structural comparisons are mostly construed as static
concerns. Yet modal logics, transition systems and game graphs bridge the apparent
gap in a natural manner and typically allow us to understand behavioural compar-
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isons as structural comparisons, and behavioural equivalences as structural equiv-
alences. This is not even really surprising if we remind ourselves how, e.g., game
graphs can be regarded as extensional (and static) descriptions of the possible plays
(hence behaviours) of the game, so that, e.g., the existence of a winning strategy
for one of the players can be determined by structural analysis. The dynamics and
intuitive appeal of games can also be harnessed for the analysis of the semantics and
expressive power of logics: model checking games account for the evaluation of log-
ical formulae over structures, and model comparison games are used to account for
distinctions and degrees of indistinguishability between structures w.r.t. properties
expressible in a given logic. In the classical context of first-order logic the model
comparison games are at the centre of the Ehrenfeucht–Fraı̈ssé technique.

In the world of modal logics, the essential model comparison game is the bisimu-
lation game. It is a typical model-theoretic back&forth game, played by two players
over the two structures at hand (Kripke structures or transition systems). A position
in the game is a pair of (similar) nodes, one from each of the two structures, marked
by pebbles; players take turns to move the pebbles along available transitions in the
respective structure; in each new round the first player is free to choose one of the
structures and one of the available transitions to move the pebble across that transi-
tion, and the second player must respond likewise in the opposite structure. Overall,
the game protocol ensures that the second player has a winning strategy in a position
precisely if – recursively – every transition in the one structure can be matched by a
transition in the opposite structure, ad infinitum. Bisimulation relations and bisimu-
lation equivalence capture this notion of game equivalence by means of back&forth
closure conditions on a (or the maximal) set of pairs that are winning positions for
the second player.

Definition 2.1 For structures A = (A,(RA
i ),(P

A
j )) and B = (B,(RB

i ),(PB
j )) with

binary accessibility relations Ri and unary predicates Pj:
A binary relation Z ⊆ A×B between the nodes of A and nodes of B is a bisimu-

lation relation if for all (a,b) ∈ Z:
(i) (atom eq.): for each Pj, a ∈ PA

j iff b ∈ PB
j ;

(ii) (Ri-back): for every b′ with (b,b′) ∈ RB
i there is some a′ such that (a,a′) ∈ RA

i
and (a′,b′) ∈ Z;

(iii) (Ri-forth): for every a′ with (a,a′) ∈ RA
i there is some b′ such that (b,b′) ∈ RB

i
and (a′,b′) ∈ Z.

As the union of bisimulation relations is again a bisimulation relation, there is a
well-defined ⊆-maximal largest bisimulation between A and B. Pointed structures
A,a and B,b are bisimilar, A,a ∼B,b, if (a,b) is in some (hence in the largest)
bisimulation between A and B.

Clearly ∼ captures a strong form of behavioural equivalence, if we think of ‘be-
haviours’ not just a traces of actions, but rather as the complex interactive and re-
sponsive patterns that can evolve in any step-wise alternating exploration of po-
tential transitions. The conditions (Ri-back) and (Ri-forth) capture the challenge-
response requirements posed for the second player by one additional round. Corre-
spondingly, the largest bisimulation on A×B forms a greatest fixed point w.r.t. the
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refinement operator induced by (atom eq.) and the (Ri-back) and (Ri-forth) condi-
tions:

Z 7−→F (Z),

where F (Z) consist of those pairs (a,b) ∈ Z that satisfy (atom eq.) and the (Ri-
back) and (Ri-forth) conditions w.r.t. Z. Locally, over every pair of structures, the
bisimulation relation ∼ is the greatest fixed point of this operation F (which is
guaranteed to exist since F is monotone w.r.t. ⊆).

This direct – more static – description of the target equivalence as a greatest
fixed point is typical for comparison games of this kind; in the case of bisimulation
equivalence the typical back&forth conditions were introduced in the modal world
under the name of zig-zag conditions by Johan van Benthem. The term bisimula-
tion equivalence, which points to an intuition based on the behaviour of transition
systems, was introduced by Milner and Park.

A more dynamic view is also extracted from the greatest fixed point characteri-
sation, if we look at the refinement process that recursively generates the fixed point
∼ as a limit of relations ∼α :

∼ =
⋂

α ∼α , where

∼0 = atom equivalence,
∼α+1 = F (∼α),

∼λ =
⋂

α<λ ∼α for limit ordinals λ .

Formally, the intersection in the above definition of ∼ is over all ordinal levels
α , but in restriction to any two concrete structures can be bounded by any infinite
ordinal that is of cardinality greater than the structures at hand. Over all finite, and
indeed over finitely branching structures and also over the class of all ω-saturated
or the class of all modally saturated structures, the limit is reached by stage ω , i.e.,
coincides with the limit of the finite approximations ∼` for ` ∈ N,

∼ω =
⋂

`∈ω ∼` .

Over finite A and B of sizes |A| and |B|, the natural game analysis even shows
that full bisimulation is reached no later than by level ∼`, where `= max(|A|, |B|).

The game counterpart of∼` for ` ∈N is the `-round bisimulation game, which is
won by the second player if she does not lose during the first ` rounds. Bisimulation
equivalence and its infinite game, and especially its finite approximations ∼` for
` ∈ N in relation to the `-round game, can be viewed as a special adaptation to
the modal scenario of the classical back&forth games in the Ehrenfeucht–Fraı̈ssé
tradition.

We write A,a ≡`
ML B,b for the modal levels of elementary equivalence up to

quantifier rank (modal nesting depth) `: A,a≡`
ML B,b if A,a |= ϕ ⇔ B,b |= ϕ for

all ϕ ∈ML of nesting depth up to `. Similarly, A,a≡ML B,b stands for full modal
equivalence, and A,a≡∞

ML B,b for equivalence w.r.t. the infinitary variant of modal
logic which allows for infinite conjunctions and disjunctions.
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Theorem 2.2 (Ehrenfeucht–Fraı̈ssé and Karp theorems for ML) In restriction to
finite modal vocabularies, and for every ` ∈ N:

A,a∼` B,b if, and only if, A,a≡`
ML B,b.

Consequently, in restriction to finite modal vocabularies A,a ∼ω B,b if, and only
if, A,a≡ML B,b. Without any restriction on the size of the modal vocabulary,

A,a∼B,b if, and only if, A,a≡∞
ML B,b.

Many other logics, and in particular other fragments of first-order logic besides
the modal fragment, can be analysed via specifically associated Ehrenfeucht–Fraı̈ssé
games. The analysis of the guarded fragment GF of first-order logic in the light
of its invariance under guarded bisimulation equivalence is a prime example to
be discussed in Section 3 below. The very proposal of GF in [1] was inspired by
considerations concerning the taming of first-order logic through variations that in-
volve a generalised (or, depending on the point of view: restricted) semantics in
‘general assignment models’ in the sense of [6]. Returning to our opening remarks
about ‘behaviour’ in terms of logic and games, different logics with distinct seman-
tics may be obtained by admitting different observable configurations and different
modes of navigation between these. (For classical modal semantics, think of pos-
sible worlds and accessibility relations.) It is in this view, that games and game
graphs provide yet another link to bisimulation as the quintessential notion of be-
havioural equivalence. Bisimulation as the master game equivalence is adaptable
to different logics if, instead of the usual structures, we look at the game graphs
induced by the semantic games of those other logics. For suitable logics, the associ-
ated game graphs formalise the notion of observable configurations (or admissible
assignments) and transitions between these (quantification patterns). Thus, levels of
bisimulation equivalence between the associated game graphs correspond to levels
of Ehrenfeucht–Fraı̈ssé equivalence between the underlying structures, capturing
the specific restrictions embodied in the semantics of the logic in question. Some
correspondences of this kind are explored at first-order level in [19], and, with much
greater generality in mind, in [6], in the terminology of general assignment models.
In the same vein, suitable abstractions of the associated game graphs (intuitively
akin to filtrations or bisimulation quotients) may serve as concise descriptions of
structures up to equivalence, or as blue-prints for desired models (quasi-models)
towards decidability and complexity arguments.

2.2 Bisimulation in modal model theory

The essential observation for a view of bisimulation equivalences as specialisations
of corresponding classical first-order Ehrenfeucht–Fraı̈ssé equivalences is the man-
ner in which its back&forth conditions precisely reflect the power of modal quan-
tification. The existential diamond modality ♦i, whose semantics in structure A is
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defined in terms of the accessibility relation RA
i , precisely captures the available

moves in the game along Ri-transitions, and the back&forth clauses for Ri reflect
potential distinctions w.r.t. properties of nodes accessible from the current nodes
through Ri-edges in their respective structures.

On the other hand, the bisimulation games can be taken as the quintessential
template for a large class of model-theoretic Ehrenfeucht–Fraı̈ssé style comparison
games: if we correctly abstract from the structures at hand a game graph that models
the relevant configurations and transitions between them, then levels of bisimulation
equivalence correspond to winning strategies for the second player in a game that re-
flects the expressive power and quantification pattern of some other target logic [19].
In some key examples, the relevant configurations correspond to the admissible as-
signments to first-order variables, and the transitions to their relative accessibility
by means of basic quantification steps. In this vein, variations and especially re-
strictions to the admissible assignments in a first-order framework lead to fragments
that can be analysed and understood in terms of bisimulation equivalences between
derived game graphs. Among the most pertinent examples are the k-variable frag-
ments FOk of first-order logic, and the guarded fragment GF of first-order logic.
The finite variable fragments FOk work with a uniform restriction of assignments to
size k. This purely quantitative restriction is contrasted in the seminal paper on the
guarded fragment [1] by Andréka, van Benthem and Németi with a qualitative re-
striction of assignments to clusters that are ‘guarded’ by some relational hyperedge.
The new fragment is proposed with a view to a ‘dynamic’ bounding of the available
assignments – it is ‘dynamic’ in the sense of a position-dependent restriction famil-
iar from modal logics; yet static in the sense of structural analysis. We shall discuss
the guarded fragment and the associated ramification of bisimulation in Section 3
below. Before that, let us summarise some key features and uses of ordinary, modal
bisimulation equivalence, which account for its pivotal role in modal model theory.

The first is a direct corollary of the modal Ehrenfeucht–Fraı̈ssé theorem. If ϕ ∈
ML has modal quantifier depth `, then its semantics is invariant under ∼`.

The essential feature of bisimulation invariance extends to more powerful logics
that share the underlying modal quantification pattern, like the modal µ-calculus.

Corollary 2.3 The semantics of basic modal logic ML is invariant under bisimula-
tion equivalence: for ϕ ∈ML, A,a∼B,b =⇒ A,a |= ϕ ⇔B,b |= ϕ .

Bisimulation invariance is the model-theoretic hallmark of modal logics; in fact
so much so, that modal model theory could be equated with model theory up to
bisimulation equivalence.

2.3 Tree models and robust decidability of modal logics

The familiar process of tree-unfolding takes a pointed structure A,a to a tree struc-
ture A∗a with root a, built on the tree of all Ri-labelled paths from a in A.
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Definition 2.4 Let A = (A,(RA
i ),(P

A
j ),a) be a pointed structure (Kripke struc-

ture or transition system). Its tree unfolding from a is the tree-like structure A∗a =
(A∗a,(R

A∗
i ),(PA∗

j )) with root a, where A∗a is the set of edge-labelled paths of the form
w = (a0, i0,a1, . . . ,a`, i`,a`+1, . . . ,an) where a0 = a, i` such that e` = (a`,a`+1) ∈
RA

i` , with the natural projection

π : A∗a −→ A
(a0, . . . ,an) 7−→ an;

(w,w′) ∈ RA∗
i if w′ is an extension of w by one Ri-edge, w = ŵ(i,a′); and w ∈ PA∗

j

if π(w) ∈ PA
j .

Clearly A∗,a∼ A,a. It follows that any bisimulation invariant logic has the tree
model property. For the finite-depth approximation ∼` of ∼, even the truncation A`

a
to paths of lengths n6 ` from a satisfies A`,a∼` A,a. For finite vocabulary (finitely
many Ri and Pj), the equivalence relation ∼` has finite index. Therefore, A`

a can
be pruned so as to retain at most one sibling of each ∼`-type among the immediate
children of any node, without affecting∼`-types. For basic modal logic, this pruning
yields finite tree models.

Corollary 2.5 Every satisfiable formula ϕ ∈ML (of modal quantifier depth `) has
a finite tree model (of depth `).

These observations are essential for decidability and complexity results for the
satisfiability problem, and for what has been called the robust decidability of modal
logics. Indeed, it is not just the basic propositional modal logic ML that is decid-
able for satisfiability. This property is shared by many extensions of ML to much
stronger and practically more relevant logics, including linear or branching time
temporal logics such as LTL, CTL, CTL∗, dynamic logics of programs such as PDL,
Parikh’s game logic GL and the modal µ-calculus Lµ , the extension of ML by least
and greatest fixed points. While basic modal logic ML can be seen as a fragment
of first-order logic, this is not the case for these stronger logics; all of them can
express properties based on reachability and on other non-local properties that are
not first-order. However, it is easy to see that all these logics can be embedded
into monadic second-order logic MSO. Among the extensions of modal logics, the
modal µ-calculus occupies a special rôle. It encompasses the other mentioned log-
ics (and many more) and it has a clean and interesting model theory. The modal
µ-calculus remains decidable in the presence of backward modalities.

The tree model property provides powerful tools for proving decidability and
complexity results and for constructing efficient decision procedures. For a quick
proof of decidability one can translate formulae of these logics into monadic second-
order formulae and invoke Rabin’s famous theorem saying that SωS, the monadic
theory of the ω-branching tree, is decidable [26]. However, the complexity of
monadic logics on infinite trees (and words) is non-elementary. But recall that the
proof of Rabin’s Theorem is based on tree automata. A much more practical ap-
proach for constructing decision procedures for modal logics avoids the detour
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through monadic second-order logic and directly applies suitable variants of tree
automata to modal logics. The theory of finite automata on trees is very well devel-
oped, with many different automata models tailored for specific applications, with
efficient algorithms for manipulation automata and for reductions between different
models, a good understanding of the complexity of the common reasoning tasks for
automata (emptiness problems, word problems etc.), and sophisticated optimisation
techniques. The tree model property paves the way to make tree automata applicable
to the world of modal logics.

The typical complexity level of satisfiability problems for modal logics is EXP-
TIME. An exception is the basic modal logic ML for which satisfiability is PSPACE-
complete. But the addition of rather modest features to ML, for instance a global
modality, push up the complexity to EXPTIME; on the other hand, also rather strong
extensions of ML such as the modal µ-calculus and even the modal µ-calculus
with backward modalities remain EXPTIME-complete. Such results rely on effi-
cient translations of formulae into, say, alternating tree automata, and the EXPTIME-
completeness of the emptiness problem for such automata.

2.4 Expressive completeness

As mentioned above, one of the highlights of modal model theory in this sense is
the characterisation of basic modal logic as the bisimulation-invariant fragment of
first-order logic.

Theorem 2.6 (van Benthem) For every first-order formula ϕ(x) in a vocabulary
of binary relations Ri and unary predicates Pj as above, the following are equiva-
lent:
(i) ϕ is bisimulation invariant.

(ii) ϕ is logically equivalent to a formula of basic modal logic ML.

In shorthand notation, FO/∼≡ML, where the left-hand side suggestively stands
for the (syntactically undecidable) collection of bisimulation invariant first-order
formulae.

By no means a direct consequence, not even via the finite model property, but
rather yet another striking feature of bisimulation equivalence and of modal logic,
the same characterisation holds also in the sense of finite model theory:

FO/∼≡ML (FMT).

In its basic form this result is due to Rosen [27]; alternative proofs that yield
strengthenings and lend themselves to further generalisations have been presented
in [18]. We state a few of these generalisations from [17, 10]. Global bisimulation
equivalence, A,a ∼∀ B,b, refers to a bisimulation relation in which every a ∈ A is
matched to some b ∈ B and vice versa; modal logic with a global modality, ML[∀],
is the extension of basic modal logic ML by a global modality, with the full binary
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relation as its accessibility relation. A rooted structure is a structure A,a with a
single binary accessibility relation R such that every node is reachable on a directed
R-path from the root a. Equivalence structures are structures that interpret all the
binary relations Ri as equivalence relations (S5 models).

Theorem 2.7 Bisimulation invariant fragments of first-order logic are captured by
modal logics over some classes of structures, as follows.
(i) FO/∼≡ML over the class of all (finite) structures.

(ii) FO/∼∀ ≡ML[∀] over the class of all (finite) structures.
(iii) FO/∼≡ML over the class of all (finite) equivalence structures.
(iv) FO/∼≡ML[∀] over the class of all finite rooted structures.
(v) FO/∼≡ML over the class of all finite irreflexive transitive trees.

Here (i) is the van Benthem–Rosen characterisation from [5] and [27], respec-
tively; the rest are due to [17, 10].

Several of the finite model theory results above make use of finite unfoldings
of finite structures that produce locally tree-like and fully bisimilar finite models
– which is not achievable by tree unfoldings since any globally acyclic bisimilar
companion of any cyclic structure is necessarily infinite. Simple combinatorial con-
structions of finite locally acyclic bisimilar covers of finite graphs for this purpose
are presented in [17]. They play a crucial role in the analysis of the expressiveness
of first-order formulae that are bisimulation invariant over finite structures. Locally
acyclic behaviour suffices due to Gaifman’s locality theorem: the semantics of any
first-order formula ϕ(x) only depends on certain global multiplicities and the lo-
cal neighbourhood around x; up to bisimulation, global multiplicities (Gaifman’s
basic local sentences) can be adjusted comparatively easily even when working in
special classes of finite models; what remains is the necessity to control the local
neighbourhoods and this is where local tree-likeness is useful.

The van Benthem characterisation of bisimulation invariant first-order logic, as
FO/∼≡ML, also has a an exciting extension to its monadic second-order counter-
part:

Theorem 2.8 (Janin–Walukiewicz) MSO/∼≡Lµ , i.e., for every monadic second-
order formula ϕ(x) in a vocabulary of binary relations Ri and unary predicates Pj,
the following are equivalent:
(i) ϕ is bisimulation invariant.

(ii) ϕ is logically equivalent to a formula of the µ-calculus Lµ .

Whether this characterisation holds in the sense of finite model theory, remains
one of the great challenges in modal model theory.
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3 Guarded Bisimulation: A Systematic Lifting to Higher
Dimension

The ‘dynamic’ behaviour of modal logics w.r.t. locally available transitions between
single-node assignments is vastly generalised in the setting of guarded logics.

The generalisation manifests itself on various levels: as a liberalisation in the
relational type of structures (from graph-like transition systems to relational struc-
tures with relations of any arity); a generalisation w.r.t. the restrictions on admissible
assignments and quantification patterns (from modal � and ♦ to universal and exis-
tential quantification over guarded tuples); a generalisation w.r.t. the relevant notion
of bisimulation (from modal to guarded bisimulation); and, in the wake of these
generalisations, a shift form graph theory to hypergraph theory as the underlying
combinatorial framework.

3.1 Guardedness and the guarded fragment

With a relational structure A = (A,(Ri)i∈I) with relation symbols Ri of arity ri, we
associate a hypergraph of guarded sets, and a notion of guarded tuples as follows.
It will be convenient to use the notation [a] := {a1, . . . ,ak} to denote the set of
components of the tuple a = (a1, . . . ,ak) ∈ Ak.

Definition 3.1 A subset s ⊆ A is guarded in A if s is a singleton set or if there is
some tuple a ∈ RA

i for one of the Ri such that s ⊆ [a]. The hypergraph of guarded
sets of A is the hypergraph H(A) := (A,S[A]) with the set S of all guarded subsets
of A as the set of hyperedges. A tuple a ∈ Ak is a guarded tuple if [a] ∈ S(A).

The guarded fragment of first-order logic essentially restricts the relevant assign-
ments of first-order variables to guarded tuples. The actual definition is in terms of
the restriction of all quantification by means of an explicit relativisation to some
guarded tuples. It thus allows only outermost free variables to be instantiated by
unguarded assignments, but for many purposes this does not matter (since outer
boolean combinations could be treated separately).

Definition 3.2 For arbitrary relational vocabularies, the guarded fragment GF ⊆
FO is the syntactic fragment of FO generated from atomic formulae by the boolean
connectives and quantifications of the form

∀y
(
α(xy)→ ϕ(xy)

)
, and, dually, ∃y

(
α(xy)∧ϕ(xy)

)
,

where ϕ(xy) ∈ GF has free variables among those listed in xy and α(xy) is an
atomic formula in which all the listed variables occur. The formula α is called the
guard of this quantification.1 The semantics of GF is that of FO.

1 If xy consists of a single variable symbol z, α can be the equality z=z.
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The definition generalises the relativised quantification of modal logic, so that it
is clear that, w.r.t. expressiveness, ML⊆GF⊆ FO, and in fact even the extension of
basic modal logic by global and backward modalities is naturally covered by GF.

3.2 Guarded bisimulation and model theory

Just as the model theory of modal logics is governed by (modal) bisimulation equiv-
alence, the nice model-theoretic properties of the guarded fragment are closely re-
lated to its invariance under guarded bisimulation equivalence. Guarded bisimula-
tion equivalence ∼g and its finite approximations ∼`

g exactly cover the same station
for GF as do∼ and∼` for ML – also w.r.t. their nature as the appropriate specialisa-
tions of the first-order framework of back&forth games to the quantification pattern
of GF.

The positions of the guarded bisimulation game on structures A and B are partial
isomorphisms between A and B whose domain and image are guarded sets;2 we
use a tuple-based notation p : a 7→ b to indicate a partial map from A to B with
domain [a] and image [b] where bi = p(ai). One may also think of a placement of
matched pebbles on a and b; the requirements are that a and b are guarded and
that p : A � [a] ' B � [b] is an isomorphism of induced substructures (p a partial
isomorphism, a and b atom equivalent). Then the available moves for the first player,
e.g. on the A-side, are to guarded tuples a′ together with some specified sub-tuple
a0 of both a and a′ that stay put – and the response by the second player needs to
keep the sub-tuple b0 := p(a0) fixed and produce an extension b′ such that the new
p′ : a′ 7→ b′ is again a partial isomorphism between A and B.

An alternative set-based view has partial isomorphisms between guarded subsets
as the positions; the moves correspond to transitions from one guarded subset to an-
other, with a specified (possible empty) subset of their intersection to be respected
by the second player’s response. This view highlights the hypergraph-theoretic na-
ture, and indeed can be cast as a notion of hypergraph bisimulation that additionally
needs to respect relational content.

Definition 3.3 For structures A = (A,(RA) and B = (B,(RB
i )), a set of partial

maps Z between A and B is a guarded bisimulation if it satisfies the following, for
every p : a 7→ b in Z:
(i) (atom eq.): p : A�a'B�b is a partial isomorphism;

(ii) (back): for every guarded tuple b′ of B and b0 with [b0] ⊆ [b]∩ [b′], there is
some guarded tuple a′ of A and p′ : a′ 7→ b′ in Z such that p′−1(b0) = p−1(b0);

(iii) (forth): for every guarded tuple a′ of A and a0 with [a0] ⊆ [a]∩ [a′], there is
some guarded tuple b′ of B and p′ : a′ 7→ b′ in Z such that p′(a0) = p(a0).

We write A,a∼g B,b if there is a guarded bisimulation Z containing p : a 7→ b.
Finite approximations ∼`

g are introduced in complete analogy with the modal ∼
2 One should except the initial position from the guardedness requirement in order to match the
liberal treatment of (outermost) free variables in GF.
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and ∼`, and similarly correspond to the existence of winning strategies for ` rounds
in the guarded bisimulation game. As in the modal case, we introduce ∼ω

g as the
common refinement of the finite levels ∼`

g.
One obtains the natural variant of the first-order Ehrenfeucht–Fraı̈ssé and Karp

theorems for GF. The equivalence relations ≡`
GF and ≡GF are introduced as levels

of elementary equivalence in GF, where the ` in ≡`
GF refers to the nesting depth of

guarded quantification (which is typically lower than the first-order quantifier rank,
as guarded quantification may quantify over tuples in a single step). The relation
≡∞

GF similarly denotes equivalence w.r.t. the infinitary variant of GF, with infinite
disjunctions and conjunctions.

Theorem 3.4 (Ehrenfeucht–Fraı̈ssé and Karp theorems for GF) In restriction to
finite relational vocabularies, and for every ` ∈ N:

A,a∼`
g B,b if, and only if, A,a≡`

GF B,b.

Consequently, in restriction to finite vocabularies A,a ∼ω
g B,b if, and only if,

A,a≡GF B,b. Without any restriction on the size of the vocabulary,

A,a∼g B,b if, and only if, A,a≡∞
GF B,b.

3.3 Guarded bisimulation invariance

The following is an immediate consequence of the guarded Ehrenfeucht–Fraı̈ssé
theorem.

Corollary 3.5 The semantics of ϕ ∈ GF is invariant under ∼g.

The expressive completeness assertion in the following characterisation theorem
of Andréka–van Benthem–Németi rests on a non-trivial but canonical classical proof
by means of compactness and saturation. It provides a beautiful analogue and gen-
eralisation of van Benthem’s semantic characterisation of ML⊆ FO, Theorem 2.6.

Theorem 3.6 (Andréka–van Benthem–Németi) The guarded fragment is seman-
tically characterised as a fragment of first-order logic by its invariance under
guarded bisimulation equivalence: FO/∼g ≡ GF. In more detail, for every first-
order formula ϕ(x) in a relational vocabulary, the following are equivalent:
(i) ϕ is invariant under guarded bisimulation.

(ii) ϕ is logically equivalent to a formula of GF.

Moreover, a guarded analogue of the Janin–Walukiewicz Theorem (Theorem 2.8
above) can also be obtained via a natural translation between the guarded and modal
worlds. The logics involved are the following: guarded second-order logic GSO,
which here takes the place of MSO, is the natural restriction of second-order logic
that allows to quantify over sets of guarded tuples; guarded fixpoint logic µGF is
the extension of GF by constructors for least and greatest fixed points.
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Theorem 3.7 (Grädel–Hirsch–Otto) GSO/∼g≡ µGF, i.e., For every GSO-formula
ϕ(x), the following are equivalent:
(i) ϕ is invariant under guarded bisimulation equivalence.

(ii) ϕ is logically equivalent to a formula of µGF.

The translations in [13] that directly reduce this assertion to Theorem 2.8 involve
an interesting parallelism between modal and guarded tree unfoldings.

Guarded tree unfoldings of relational structures A=(A,(RA)) can be constructed
from a tree unfolding of the associated transition system I(A) = (S[A]∪ { /0},E)
where S[A] is the set of guarded subsets of A and E = {(s,s′) : s 6= s′,s = /0 or s∩
s′ 6= /0}.3 From a tree unfolding I∗ := I∗/0 of I(A) from the root node /0, with natural
projection π : I∗→ S(A)∪{ /0} we reconstruct a relational structure

Â= (Â,(RÂ))

as follows. The universe Â is the quotient of the disjoint union of copies of sets
π(ŝ)⊆ A, ⋃

ŝ∈I∗
{ŝ}×π(ŝ)

w.r.t. the equivalence relation that identifies a ∈ π(ŝ1) with a ∈ π(ŝ2) if, and only
if, ŝ2 and ŝ1 are connected in I∗/0 by a path whose π-projection involves just edges
e = (s,s′) ∈ E for which a ∈ s∩ s′. We denote the equivalence class of (ŝ,a) for
a ∈ π(ŝ) by [ŝ,a], and the set {[ŝ,a] : a ∈ π(ŝ)} ⊆ Â by [ŝ]. The map that sends
the equivalence class [ŝ,a] of a ∈ ŝ to a ∈ A is the natural projection associated
with the unfolding, for simplicity also denoted π : Â→ A. Locally, in restriction to
every [ŝ]⊆ Â, this projection π is a bijection onto the corresponding guarded subset
s = π(ŝ) of A. Relations R are interpreted in Â such that precisely the sets [ŝ] ⊆ Â
are guarded subsets, and such that π : Â→ A is a global relational homomorphism
and a local isomorphism in restriction to every subset [ŝ].

Definition 3.8 The guarded tree unfolding of a relational structure A= (A,(RA)) is
the structure Â= (Â,(RÂ)) as constructed from a tree unfolding of the intersection
graph I(A) above, together with the natural homomorphic projection π : Â→ A,
which bijectively associates the guarded subsets [ŝ] ∈ S(Â) with their underlying
guarded subsets s = π(ŝ) ∈ S[A].

It is straightforward to check that the restrictions of the projection homomor-
phism π : Â→ A to the guarded subsets of Â form a guarded bisimulation. There-
fore, for any guarded subset [ŝ] of Â above the guarded subset s = π(ŝ) of A,

Â, [ŝ]∼g A,s,

where we allow ourselves to write just the guarded sets [ŝ] and s, instead of π-
compatible listings of their elements as tuples.

3 We attach the empty set as a root to I(A) and join it to every guarded set to obtain a natural tree
unfolding for our purposes, rather than a forest.
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Tree unfoldings as just defined are tree-like also in the sense that their hyper-
graphs of guarded subsets S[Â] are acyclic. There are several equivalent character-
isations of the relevant notion of hypergraph acyclicity (also called α-acyclicity in
the literature, cf. [9, 4]): in terms of tree decompositions that use guarded subsets
(hyperedges) as bags; in terms of reducibility by means of reduction steps that allow
for
(i) removal of a vertex (from the universe and every hyperedge) provided it is con-

tained in at most one hyperedge, and
(ii) retraction of a hyperedge provided it is fully contained in some other hyperedge;
and in terms of the local criteria of conformality and chordality for the hypergraph
and its associated Gaifman graph.

Definition 3.9 For a hypergraph H = (A,S), define the associated Gaifman graph
G(H) to have vertex set A and an edge between distinct a,a′ ∈ A precisely if a and
a′ occur together in some hyperedge s ∈ S.

The hypergraph H = (A,S) is acyclic if it is both
(i) conformal: each clique in G(H) is contained in a single hyperedge, and

(ii) chordal: every cycle in G(H) of length greater than 3 has a chord, i.e., G(H)
has no induced subgraphs isomorphic to the k-cycle for k > 3.

Since every relational structure A is guarded bisimulation equivalent to its
guarded tree unfolding, and as GF is invariant under guarded bisimulation equiv-
alence, we find that every satisfiable formula of GF has an acyclic model. This was
first stated in [11] as the generalised tree model property of GF.

Corollary 3.10 (Grädel) Every logic that is invariant under guarded bisimulation
equivalence has this generalised tree model property: every satisfiable formula has
a model whose hypergraph of guarded subsets is acyclic, i.e., a model that admits a
tree-decomposition with guarded subsets as bags.

For a relational vocabulary of width w, this further entails that every satisfiable
formula of GF or µGF has a (countable) model of tree width w−1.

3.4 Decidability and complexity for GF and its extensions

As in the case of modal logics, the tree model property for guarded models paves
the way to decidability and automata based decision procedures. These do not only
work for the guarded fragment GF in its basic form, but also for guarded fixed-point
logic µGF and for other variants of guarded logics based on more liberal notions of
guarded sets.

Indeed, structures of bounded tree width can be uniformly represented by stan-
dard trees, in the graph-theoretic sense, with a bounded set of labels. More precisely,
given a tree decomposition of width k−1 of a relational τ-structure D we fix a set
K of 2k constants and assign to every element d ∈ D a constant ad ∈ K such that
distinct elements living at adjacent nodes in the tree decomposition are represented
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by distinct constants. On the tree T underlying the decomposition of D we define
monadic predicates Oa (for a ∈ K) and Ra (for m-ary R ∈ τ and a ∈ Km) where Oa
is true at those nodes of T where an element represented by a occurs, and Ra is the
set of nodes of T where a tuple (d1, . . . ,dm) ∈ R occurs that is represented by a. We
thus obtain a tree structure T (D) which has (beyond the edge relation of the tree)
only monadic predicates and which carries all structural information about D and
its tree decomposition.

On the other hand, a tree T with such monadic relations Oa and Ra is indeed a
tree representation T (D) for some τ-structure D if, and only if, it satisfies certain
consistency axioms that turn out to be first-order definable.

There are several options to exploit this for proving decidability and complexity
results. The simplest way to prove decidability of guarded fixed-point logic µGF is
by an interpretation into SωS, the monadic logic of the countable branching tree.
That is, with every formula ϕ(x1, . . .xm) of µGF and every tuple a ∈ Km one can
associate a monadic second-order formula ψa(z) that describes on the tree structure
T (D) the same properties of guarded tuples that ϕ(x̄) does on D, in the following
sense: if d is a guarded tuple of D living at node v of the tree T , and if a represents
d at v, then

D |= ϕ(d) ⇐⇒ T (D) |= ψa(v).

On the basis of this translation and of the facts that the consistency axioms for
tree representations are first-order, that µGF (and least fixed point logic in general)
has the Löwenheim-Skolem property, and that the monadic theory of countable trees
is decidable, it is then not difficult to prove that the satisfiability problem for µGF
is decidable.

Instead of the reduction to the monadic second-order theory of trees, one can
define a similar reduction to the modal µ-calculus with backward modalities. The
decidability (and EXPTIME-complexity) of this logic has been established by Vardi
[30] by means of two-way alternating automata. To make such a reduction work, one
has to observe that the consistency axioms for tree representations can be formulated
in this logic (in fact, it is sufficient to use basic modal logic with a global modality
and backward modalities) and that least and greatest fixed points in µGF on D can
be encoded by simultaneous modal fixed-point formulae on T (D).

It should be pointed out that the usual modal µ-calculus, without backward
modalities, does not seem to be sufficient for such an approach. Indeed, besides
the tree model property, the modal µ-calculus also has the finite model property,
while one easily obtains formulae that have only infinite models in µGF and in the
µ-calculus with backward modalities.

Finally, the satisfiability problem for guarded fixed-point logic can also be solved
by direct application of suitably tailored automata-theoretic methods. The general
idea is to associate with every sentence ψ ∈ µGF an alternating tree automaton
Aψ that accepts precisely the (tree descriptions of the) like-tree models of ψ . This
reduces the satisfiability problem of ψ to the emptiness problem of the automaton,
a problem that is solvable in exponential time with respect to the number of states
of the automaton. This was the approach taken in [14] where the decidability of
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µGF had first been established. Instead of Vardi’s two-way automata, Grädel and
Walukiewicz use a different variant of alternating automata that work on trees of
arbitrary, finite or infinite, degree and do not make use of the orientation of edges.
The behaviour of such an automaton on a given tree structure is described by a
parity game, and by means of the positional determinacy of these games one can
reduce the input trees to trees of bounded branching (and the automata to those used
by Vardi for the decidability of the µ-calculus with backward modalities). The size
of the automaton Aψ is bounded by |ψ|2k logk where k is the width of ψ . For the
following see [14].

Theorem 3.11 (Grädel–Walukiewicz) The satisfiability problem for µGF is de-
cidable, and complete for 2EXPTIME. For µGF-sentences of bounded width the
satisfiability problem is EXPTIME-complete.

It is worth pointing out that the same complexity bounds also hold for GF, the
guarded fragment without fixed points [11]. The double exponential complexity of
GF and µGF may seem high (and disappointing for practical applications). How-
ever, it is not really surprising, since these logics admit predicates of unbounded
arity (whereas modal logics are evaluated on graph-like structures). Even a single
predicate of arity n on a universe with just two elements admits 22n

types already
at the atomic level, so one cannot really expect lower complexity bounds. In many
practical applications, the underlying vocabulary will be fixed and the arity therefore
bounded. In such cases the satisfiability problems for GF and µGF are in EXPTIME
and thus on the same level as for most modal logics.

Beyond GF and µGF the general approach outlined here also works for other,
more general, notions of guarded logics based on more liberal definitions of guard-
edness. This includes loosely guarded, packed, or clique-guarded logics. While the
classical notion of a guarded set means that the entire set is covered by one atomic
fact, the most liberal notion, of a clique-guarded set, just requires that any two ele-
ments of the set coexist in some atomic fact, which means that the set is a clique in
the Gaifman graph of the structure. Most of the algorithmic results on GF and µGF
can be extended to the clique-guarded extensions CGF and µCGF (with appropriate
modifications, in particular for the notion of bisimulation). For details, see [12].

3.5 Guarded model constructions

Guarded tree unfoldings provide one example of a specific form of model construc-
tion, or in this case: model transformation, that is tailored for the model theoretic
analysis of guarded logics. The requirements of acyclicity and finiteness will in gen-
eral be incompatible; we shall return to the interesting question how much acyclic-
ity can in general be achieved in finite models further below. For a start, however,
we consider the finite model property for the guarded fragment, disregarding the
issue of acyclicity. The following proof idea stems from [11] and uses a nice com-
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binatorial result, about finite extension properties of partial isomorphisms due to
Herwig [15].

Theorem 3.12 (Herwig) Any finite relational structure A admits a finite extension
Ā⊇A (A becomes an induced substructure of Ā) with the property that every partial
isomorphism p : A�dom(p)' A� image(p) extends to (is induced by) an automor-
phism p̄ of Ā.

It is easy to see that any Herwig extension Ā of A can be thinned out so that each
RĀ is generated by the orbit of RA under the automorphism group. Let us call such
a Herwig extension special.

Special Herwig extension of sufficiently rich finite substructures A⊆B are ∼`
g-

equivalent to B itself; this is the core of the finite model property for GF as proved
in [11], see Theorem 3.14 below.

Lemma 3.13 Let B be a relational structure, A=B�A an induced finite substruc-
ture on a subset A⊆ B that is sufficiently rich to contain, for every guarded tuple b
of B, at least one realisation of that∼`

g-type: there is a ∈A such that B,a∼`
g B,b.

Then any special Herwig extension Ā⊇A is∼`
g-equivalent to B in the sense that

(i) Ā∼`
g B;

(ii) for every guarded tuple a ∈ A: Ā,a∼`
g B,a.

Proof. Using the fact that every guarded tuple in Ā is in the orbit of some guarded
tuple a of A under an automorphism of Ā (because Ā is special), and that, up to
∼`

g, every guarded tuple of B is represented in A ⊆ B, claim (i) directly follows
from claim (ii). For claim (ii) it essentially suffices to observe that every back&forth
requirement for a that can be met in B can also be met in Ā, as follows.

Let a ∈ A be guarded, b guarded in B, and c a tuple in the intersection [a]∩ [b].
By the richness assumption on A, there is some a′ ∈A such that B,a′ ∼`

g B,b. This
implies in particular that the tuple c′ in [a′] corresponding to c in [a]∩ [b] is linked to
c by a partial isomorphism p of A. The automorphism p̄ of Ā then shows that p̄(a′)
overlaps with a in the tuple c in Ā (just as b overlaps with a in c in B). By induction
on ` for claim (ii), i.e. assuming claim (ii) at level `−1, we find

Ā, p̄(a′)' Ā,a′ ∼`−1
g B,a′ ∼`

g B,b.

This, for all available b in B, shows that Ā,a∼`
g B,a as required for (ii) at level `.

Claim (i) of the lemma directly yields the finite model property for GF, since any
ϕ ∈ GF of nesting depth ` is preserved under ∼`

g, and since every B,b |= ϕ has a
finite substructure A ⊆B that contains at least one realisation of each one of the
finitely many ∼`

g-types realised by guarded tuples of B.

Theorem 3.14 (Grädel) GF has the finite model property: every satisfiable ϕ ∈GF
has a finite model.



18 Erich Grädel and Martin Otto

Better bounds on the size of small models for a given satisfiable ϕ ∈ GF are
obtained by a more recent construction in [2], which builds a small model not di-
rectly from a given (infinite) model, but from a complete abstract description of the
required ∼`

g-type to be realised.

Proposition 3.15 (Bárány–Gottlob–Otto) Every satisfiable ϕ ∈ GF(σ), where σ

is any relational vocabulary of width w, has a small finite model whose size can be
bounded exponentially in the length of ϕ , for fixed w; the dependence on w, on the
other hand, is doubly exponential.

The core construction of [2], of which the above really is a technical corollary,
yields finite guarded bisimilar covers that are weakly N-acyclic in the sense of the
following definitions.

Definition 3.16 A guarded bisimilar covering of a relational structure A is a homo-
morphism π : Â→A from some relational structure Â (the cover) onto A, such that
the restrictions of π to guarded subsets of Â induce a guarded bisimulation.

Guarded tree unfoldings are natural examples in point; however, we are here
mostly be interested in coverings of finite A by finite covers Â. The restrictions of
the cover homomorphism π to guarded subsets must in particular be partial iso-
morphisms. The forth-property is thus subsumed in the requirement that π is a ho-
momorphism. The back-property corresponds to a lifting property familiar from
topological or geometric notions of coverings.4

Guarded tree unfoldings provide fully acyclic coverings, albeit infinite ones. One
useful approximation to acyclicity in finite covers is the following from [2].

Definition 3.17 A covering π : Â→ A is weakly N-acyclic if every induced sub-
structure of Â of size up to N is tree-decomposable with bags that project onto
guarded subsets of A under π .

Proposition 3.18 (Bárány–Gottlob–Otto) For every N ∈ N, each finite relational
A admits weakly N-acyclic coverings by finite structures.

An analysis of homomorphisms h : C→ Â, from structures C of size up to N
into a weakly acyclic cover π : Â→ A, shows that A must satisfy one of a finite
list of potential GF-descriptions of all possible acyclic homomorphic images of
C.5 If A does not satisfy this GF-expressible finite ‘disjunction of acyclic conjunc-
tive queries’, then Â cannot even admit cyclic homomorphic images of C. Together
with existence of finite, weakly N-acyclic covers, this argument from [2] yields a
considerable strengthening of the finite model property for GF, as well as natural
applications to database issues regarding conjunctive queries under GF-definable
constraints.

4 It may be worth to point out that, unlike the finite bisimilar coverings obtained for graph-like
structures in [17], the bisimilar coverings of relational structures or of hypergraphs will necessarily
be branched coverings, and do not provide unique liftings.
5 Caveat: π(h(C))⊆ A need not itself be acyclic.
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For the following, a class C of σ -structures is said to be defined in terms of
finitely many forbidden homomorphisms if, for some finite list of finite σ -structures
C1, . . . ,Cm, the class C consists of precisely those σ -structures C that admit no ho-
momorphisms h : Ci→ C for 16 i6 m.

Corollary 3.19 (Bárány–Gottlob–Otto) GF has the finite model property in re-
striction to any class C of relational structures that is defined in terms of finitely
many forbidden homomorphisms: for any such class C , ϕ has a model in C if, and
only if, it has a finite model in C .

Interestingly, this strengthening of the finite model property for GF can also
be obtained from a corresponding strengthening of Herwig’s theorem. We briefly
present this new alternative proof from [23], which may be of independent sys-
tematic interest.6 The Herwig–Lascar theorem [16] asserts a finite model property
for the extension task for partial isomorphisms over classes with finitely many for-
bidden homomorphisms. An alternative proof of the Herwig–Lascar theorem itself,
which is inspired by hypergraph constructions related to the exploration of the finite
model theory of GF, see Section 3.6 below, can be found in [21, 23, 24].

Theorem 3.20 (Herwig–Lascar) Let the class of relational structures C be defined
in terms of finitely many forbidden homomorphisms. Suppose that a finite structure
A ∈ C has a possibly infinite extension B ⊇ A in C that extends every partial
isomorphism of A to an automorphism of B. Then A also possesses a finite extension
with this property in C .

Just as Lemma 3.13 links Herwig’s theorem to the basic finite model property
for GF, the following links the Herwig–Lascar theorem to the stronger finite model
property for GF expressed in Corollary 3.19.

A structure B is ∼`
g-homogeneous if any guarded tuples b,b′ in B such that

B,b∼`
g B,b′ are related by an automorphism of B.

Lemma 3.21 Let C be a class of relational structures defined in terms of finitely
many forbidden homomorphisms. Let B ∈ C be ∼`

g-homogeneous. Let B′ be the
expansion of B by a new relation for each one of the finitely many∼`

g-types realised
in B. Let A′ =B′ �A be large enough to contain, for every guarded tuple b of B, at
least one realisation of that ∼`

g-type.
Then A′ has a special Herwig extension Ā′ ⊇A′ in C that is∼g-equivalent to B′ in
the sense that Ā′ ∼g B

′ and Ā′,a∼g B
′,a for every guarded tuple a ∈ A.

Proof. In view of Lemma 3.13 and Theorem 3.20 it suffices to show that the exten-
sion task for A′ has some, possibly infinite, solution in C . But B′, being homoge-
neous, is such an infinite solution.

Proof (of Corollary 3.19). Let C be defined by the condition that there are no homo-
morphic images of the finite structures C1, . . . ,Cm. The class C0 ⊇ C of structures

6 It should be noted that this stand-alone argument does not support the complexity bounds that
flow from the more constructive proof of Corollary 3.19 in [2].
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that admit no acyclically embedded homomorphic images of the Ci is definable in
GF by some γ ∈GF of guarded nesting depth `, for some `. To find finite models of
ϕ ∈ GF in C , we moreover choose ` greater or equal to the nesting depth of ϕ . If
ϕ has an infinite model in C , then a ∼`

g-homogeneous infinite model B of ϕ in C
can be obtained as a suitable regular tree-like model of ϕ ∧ γ (which in turn could
be obtained from an arbitrary finite model of ϕ ∧ γ). An application of the lemma
then yields a finite model in C .

Beside the notion of weakly N-acyclic coverings from [2], there is the stronger
notion of N-acyclic coverings from [20], which rules out any small cyclic substruc-
tures in the cover. This yields an even stronger finite model property for GF and
is essential for an expressive completeness proof for GF in finite model theory, as
sketched in the next section. More canonical constructions of N-acyclic coverings
and related hypergraph constructions have recently been explored in [21, 24]. But
unlike the case of weakly N-acyclic covers, the known constructions of fully N-
acyclic finite covers do not provide feasible size bounds.

Definition 3.22 A guarded bisimilar covering π : Â→ A is N-acyclic if every in-
duced substructure of size up to N of the cover Â is acyclic.

Proposition 3.23 (Otto) For every N ∈N, each finite relational A admits N-acyclic
coverings by finite structures.

Corollary 3.24 (Otto) GF has the finite model property in restriction to any class
C of relational structures that is defined in terms of finitely many forbidden cyclic
substructures.

3.6 Expressive completeness

The N-acyclic finite guarded bisimilar covers of Proposition 3.23 are also essen-
tial for the proof of the finite model theory version of Theorem 3.6. The issue at
stake is the expressive completeness assertion, that a first-order definable property
of guarded tuples in (finite) relational structures is expressible in GF (over all fi-
nite structures) if it is closed under guarded bisimulation equivalence (among fi-
nite structures). For both, the classical and the finite model theory reading, the
Ehrenfeucht–Fraı̈ssé theorem for GF shows that it suffices to prove the follow-
ing, which may be read as a compactness property for (∼`

g)`∈N versus ∼g: for any
ϕ(x) ∈ FO (in an explicitly guarded tuple x of free variables),

(∗)

{
ϕ(x) invariant under ∼g ⇒

ϕ(x) invariant under ∼`
g for some ` ∈ N.

The classical proof typically achieves this through
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(i) a compactness argument that reduces (∗) to: invariance under ∼g implies in-
variance under ∼ω

g (i.e., ≡GF); and
(ii) a proof of claim (i) through an upgrading argument involving saturated models:

for A ≡GF B there are A∗ ≡FO A and B∗ ≡FO B for which (by saturation)
A∗ ≡GF B∗ implies A∗ ∼g B

∗; the claim is then apparent from this diagram:

A

≡FO

≡GF B

≡FO

A∗ ∼g B∗

For the finite model theory version, a passage through the necessarily infinite
companion structures, which are involved in both parts of this classical argument, is
not supported by the assumptions.

Instead, the upgrading needs to be based on a more constructive approach to
model transformations, and focuses on a concrete level ` in (∗) that is determined
by the width of the vocabulary and the quantifier rank q of the given ϕ . It follows
this pattern:

A

∼g

≡`
GF B

∼g

Â ≡q
FO B̂

Here Â and B̂ are obtained as (finite) guarded bisimilar covers of A and B,
respectively, that need to be sufficiently acyclic and finitely saturated w.r.t. multi-
plicities: a certain level of N-acyclicity is necessary because Â and B̂ may neces-
sarily have cycles, and differences w.r.t. short cycles would be FO-expressible at
low quantifier rank; similarly for differences w.r.t. small branching degrees between
relational hyperedges, which can also not be controlled in GF.

Technically rather intricate arguments in [20] use Proposition 3.23 as a starting
point to provide companions Â and B̂ that support this proof idea.

Theorem 3.25 (Otto) FO/∼g ≡ GF, also in the sense of finite model theory: For
every first-order formula ϕ(x) in a relational vocabulary, the follwong are equiva-
lent:
(i) ϕ is invariant under guarded bisimulation among finite structures.

(ii) ϕ is logically equivalent over all finite structures to a formula of GF.

4 Guarded Negation Bisimulation

One natural decidable fragment of first-order logic that stands out because of its con-
siderable algorithmic importance, is the positive existential fragment: ∃posFO⊆ FO
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is generated from atomic formulae by conjunction, disjunction and existential quan-
tification. It is semantically characterised, as a fragment of FO, by preservation
under homomorphisms. This characterisation is known as the Lyndon–Tarski the-
orem in classical model theory; for finite model theory, it was proved by Ross-
man in [28], with characteristically different techniques that also shed new light
on the classical version. Any ∃posFO-formula can be equivalently re-written as a
disjunction over existentially quantified conjunctions of atoms – so that it corre-
sponds, in database terminology, to a union of conjunctive queries. And a conjunc-
tive query asserts the existence of a homomorphism: consider a conjunctive query
ϕ = ϕ(x) = ∃y

∧
i αi(zi) with relational atoms αi(zi) for tuples of variables zi from

[xy]. With the template
∧

i αi(zi) associate a relational structure Cϕ whose universe
is the set of variables [xy], and whose relations are interpreted by putting zi into the
relation involved in the atom αi. Then A,a |= ϕ if, and only if, there is a homomor-
phism h : Cϕ → A that maps x to a. Interestingly, ϕ can equivalently be expressed
in GF (i.e., is invariant under guarded bisimulation equivalence) if, and only if, Cϕ

is acyclic.
∃posFO ⊆ FO or the formalism of (unions of) conjunctive queries are closed

under nesting, but closure under (unconstrained) negation generates all of relational
FO and becomes undecidable for satisfiability. The guarded fragment GF⊆ FO, on
the other hand, is closed under negation, but not under (unconstrained) nesting.

The introduction of the guarded negation fragment GN⊆ FO in [3] combines the
innocuous ingredients in GF and ∃posFO with the natural constraints to produce a
common extension of GF and ∃posFO that retains many of the good features, most
notably decidability.

We follow the pattern of the treatment so far and put the appropriate notions
of back&forth equivalence centre-stage. The characteristic feature is the interleav-
ing of (local, and possibly size-bounded) homomorphisms with modal or guarded
bisimulation.

4.1 Homomorphisms and bisimulation

We start with a back&forth equivalence that interleaves homomorphisms with modal
bisimulation; this will provide the Ehrenfeucht–Fraı̈ssé notion and semantic charac-
terisation of the unary negation fragment UN ⊆ FO of [29], a modal precursor to
the guarded negation fragment GN⊆ FO of [3].

A unary negation bisimulation relation between relational structures A and B is
a set Z ⊆ A×B of positions, which are just pairs of related vertices in A and B as
in modal bisimulation, subject to atom equivalence and more complex back&forth
conditions involving homomorphisms. For all (a,b) ∈ Z:
(i) (atom eq.): A�{a} 'B�{b};

(ii) (hom-back): for every B0 ⊆ B there is a homomorphism h : B �B0 → A such
that (h(b),b) ∈ Z for all b ∈ B0, and h(b) = a if b ∈ B0;
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(iii) (hom-forth): for every A0 ⊆ A there is a homomorphism h : A �A0 →B such
that (a,h(a)) ∈ Z for all a ∈ A0, and h(a) = b if a ∈ A0.

We write A,a∼hom B,b if (a,b) ∈ Z for some unary negation bisimulation rela-
tion Z between A and B; A,a∼`

hom B,b for the finite approximation corresponding
to a strategy for the second player for ` rounds in the natural bisimulation game
associated with this back&forth scenario.

A generalisation of this idea leads from an equivalence between individual el-
ements (as in modal bisimulation) to an equivalence based on guarded tuples (as
in guarded bisimulation), similarly interleaving bisimulation with with local ho-
momorphisms: this is the notion of guarded negation bisimulation equivalence
from [3].

A guarded negation bisimulation relation between relational structures A and B
is a set Z of partial isomorphisms ρ : a 7→ b between guarded tuples or subsets, such
that, for all ρ : a 7→ b in Z:
(i) (atom eq.): ρ : A�a'B�b (isomorphism of guarded substructures);

(ii) (hom-back): for all B0 ⊆ B there is a homomorphism h : B �B0 → A that is
compatible with the restriction of ρ−1 to B0, and such that ρ ′ : h(b′) 7→ b′ is in
Z for all guarded tuples b′ from B0;

(iii) (hom-forth): for all A0 ⊆ A there is a homomorphism h : A �A0 → B that is
compatible with the restriction of ρ to A0, and such that ρ ′ : a′ 7→ h(a′) is in Z
for all guarded tuples a′ from A0.

We write A,a ∼ghom B,b and A,a ∼`
ghom B,b to denote guarded bisimulation

equivalence and its finite approximations.

Simple size-bounded versions of ∼hom and ∼ghom and their finite approxima-
tions are technically useful: we restrict conditions (hom-back) and (hom-forth) to
subsets B0 ⊆ B and A0 ⊆ A of size up to k, for some fixed k ∈ N. We write e.g.
A,a∼ghom;k B,b and A,a∼`

ghom;k B,b in connection with this restricted notion of
k-bounded guarded negation bisimulation, and similarly, e.g., A,a ∼hom;k B,b for
a corresponding notion of k-bounded unary negation bisimulation.

We discuss briefly the extensions of modal logic and the guarded fragment that
are obtained by closure of the existential positive fragment of FO under negation in
suitably restricted settings:

• negation of ‘unary’ formulae in a single free variable for the unary negation frag-
ment [29];

• negation of ‘guarded’ formulae in an explicitly guarded tuple of free variables
for the guarded negation fragment [3].

Definition 4.1 The formulae of the unary negation fragment UN ⊆ FO are gener-
ated from the atomic formulae by positive boolean connectives, existential quantifi-
cation, and negation on formulae in at most one free variable.

It is obvious that, for suitable modal vocabularies, ML ⊆ UN and that generally
∃posFO ⊆ UN; both inclusions are easily seen to be strict (for non-trivial vocab-
ularies). It turns out that formulae of UN (in at most a single free variable) are



24 Erich Grädel and Martin Otto

preserved under unary negation bisimulation, and in fact this property characterises
the unary negation fragment as a fragment of FO, classically. See [29] for this and
many related model-theoretic results, also regarding the fixpoint extension of UN
and including decidability for satisfiability and finite satisfiability.

Definition 4.2 The formulae of the guarded negation fragment GN ⊆ FO are gen-
erated from the atomic formulae by positive boolean connectives, existential quan-
tification, and negation on formulae in an explicitly guarded tuple of free variable.

It is not hard to see that UN ⊆ GN and GF ⊆ GN, and that these inclusions are
strict in general. Formulae of GN (in an explicitly guarded tuple of free variables)
are preserved under guarded negation bisimulation equivalence; this preservation
property also characterises GN as a fragment of FO, in the sense of classical model
theory, as shown in [3].

For useful Ehrenfeucht–Fraı̈ssé correspondences, which rely on the natural no-
tion of nesting depth in GN and UN and induce equivalence relations of finite index,
we need to bound the size of the existential quantifications (conjunctive queries) by
some width parameter. For the games and bisimulation notions this restriction leads
to the size bounded equivalences like∼`

ghom;k. For the logics, we correspondingly let
GN[k] ⊆ GN stand for those formulae that can be generated with existential quan-
tifications over up to k variables at a time. To avoid pathologies, we shall always
assume that k is no less than the width of the vocabulary.

It is then not hard to see that equivalence w.r.t. GN[k] up to nesting depth ` and
∼`

ghom;k are related in an Ehrenfeucht–Fraı̈ssé correspondence. The theorem gives
an indicative example; its variants for UN and also for infinitary versions of UN and
GN in the style of Karp theorems are straightforward.

Theorem 4.3 (Ehrenfeucht–Fraı̈ssé for GN[k]) In restriction to finite relational
vocabularies, fixed k ∈ N, and for every ` ∈ N:

A,a∼`
ghom;k B,b if, and only if, A,a≡`

GN[k] B,b.

4.2 Towards a (finite) model theory of guarded negation

We summarise some key techniques and a few further results for the model theory
of GN and GN[k], especially pertaining to the finite model property and to the ex-
pressive completeness concern in finite model theory. We concentrate on guarded
negation rather than unary negation, since this is the richer of the two settings; tech-
nically it is, moreover, more directly related to one of our main themes, viz., to the
interesting passage from graph-like structures to general relational structures with
an emphasis on the hypergraph of guarded subsets.

Theorem 4.4 (Bárány–ten Cate–Segoufin) GN has the finite model property.
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The argument from [3] is based on a reduction from GN-satisfiability to satis-
fiability of GF under constraints imposed by forbidden homomorphisms, and thus,
essentially, a reduction to Corollary 3.19.

The semantics of a formula ϕ(x) ∈ GN (in explicitly guarded free variables x)
can be translated into a collection of auxiliary specifications that subject certain
guarded tuples a in a prospective model A to positive or negative requirements w.r.t.
homomorphisms:
— (pos. hom.) requiring the existence of a homomorphism h : C,c→A,a, for cer-

tain finite templates C,c;
— (neg. hom.) ruling out the existence of any homomorphism h : C,c→ A,a, for

certain finite templates C,c.
In both cases, the templates C,c are abstracted from the underlying conjunctive

queries or positive existential parts (in a suitable normal form). A standard process
of relational Skolemisation thus translates ϕ(x) into a positive boolean combination
of requirements of the form (pos. hom.) and (neg. hom.) for all tuples in certain
(auxiliary) relations. A further crude Skolemisation step serves to provide realisa-
tions of positive requirements in image substructures that are guarded as a whole by
new auxiliary relations; this puts all (pos. hom.) requirements into GF, and leaves
just the negative requirements of the form (neg. hom.) to cope with. But this is pre-
cisely the situation in which Corollary 3.19 yields finite models whenever there are
any models.

The requirements for an expressive completeness proof for GN[k] in relation to
all ∼ghom;k-invariant FO-definable properties (of guarded tuples), which is meant
to work in finite model theory, are considerable higher. The basic idea again is to
use an upgrading through ∼ghom;k-compatible model transformations that work in
finite structures. I.e., we want to follow this pattern, presented without the guarded
parameter tuples:

A

∼ghom;k

∼`
ghom;k B

∼ghom;k

Â ≡q
FO B̂

More precisely, given some first-order ϕ of quantifier rank q that is invariant
under ∼ghom;k, and finite structures A and B that are ∼`

ghom;k-equivalent for suffi-
ciently high level `, we need to provide finite ∼ghom;k-equivalent companion struc-
tures Â and B̂ for which ∼`

ghom;k-equivalence implies ≡q
FO-equivalence, so that

Â |= ϕ iff B̂ |= ϕ.

If this can generally be achieved, for a uniform level ` that only depends on ϕ ,
then the diagram shows that ϕ is preserved under ∼`

ghom;k, and by the Ehrenfeucht–
Fraı̈ssé theorem for GN[k], Theorem 4.3, is equivalently expressible in GN[k].
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The crucial features with respect to which Â and B̂ need to agree, even though
these features are not GN-definable are
— presence of small cyclic configurations other than those explicitly ruled out by

(neg. hom.) assertions;
— multiplicities (up to a threshold) and isomorphism types of realisations of

(pos. hom.) assertions.
That A and B agree w.r.t. the relevant (pos. hom.) and (neg. hom.) assertions fol-

lows from their ∼`
ghom;k-equivalence. Then agreement w.r.t. to the above features is

relatively easy to achieve in infinite tree unfoldings of A and B that are simultane-
ously saturated w.r.t. all admissible isomorphism types of the relevant (pos. hom.)
assertions. Relational Skolemisation and an application of the finite model prop-
erty for GN, Theorem 4.4, yield finite companions Â′0 and B̂′0. These further admit
finite coverings by suitable Â′ and B̂′ whose degree of acyclicity and saturation
w.r.t. small multiplicities show them to be equivalent in the sense of ≡q

FO (this last
part of the argument is as for Theorem 3.25 above). This yields the following result
from [22].

Theorem 4.5 (Otto) FO/∼ghom;k ≡ GN[k], classically and in the sense of finite
model theory.

5 Summary

We have seen that bisimulation equivalence is a very flexible and powerful concept
for the analysis of many logics. In its classical form it is one of the crucial tools
in the study of modal logics, and its generalisations to various forms of guarded
bisimulation provide indispensable methods for understanding the expressive power
as well as the model-theoretic and algorithmic properties of more and more powerful
variants of guarded logics.

First of all, an appropriate notion of bisimulation for a logic L characterises se-
mantic invariance and logical indistinguishability: bisimilar nodes or tuples in two
structures cannot be distinguished by formulae of L. In this sense, bisimulation is
closely related to the characterisation of elementary equivalence via Ehrenfeucht-
Fraı̈ssé games, and bisimulation games can indeed be viewed as special cases of
these. The specific form of a bisimulation depends mostly on the nature of the quan-
tification patterns that the associated logic provides. In game theoretic terms, the
restrictions on the permitted forms of quantification are reflected by the rules in the
associated bisimulation game. In modal and guarded bisimulation games the con-
figurations at any position in a play are restricted in the sense that they may only
contain elements that are, in a sense, ‘close together’. As a consequence, bisim-
ulation permits us to control the complexity of model constructions and leads to
results about model-theoretic properties of modal and guarded logics such as the
tree model property of modal logics and the fact that satisfiable guarded formulae
have models of bounded tree width. While such results are usually not too difficult to
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establish for infinite models, corresponding constructions for finite models may be
quite challenging and require intricate combinatorial arguments and sophisticated
mathematical techniques.

A further highlight of the bisimulation-based analysis of logics are the charac-
terisation theorems that provide, inside a classical level of logical expressiveness
such as first-order or monadic second-order definability, a sort of converse of bisim-
ulation invariance. Typically such characterisation theorems state that a modal or
guarded logic is not only invariant under bisimulation, but is in fact (up to logical
equivalence) precisely the bisimulation invariant part of that level. Again such theo-
rems are, by means of compactness and model-theoretic notions such as saturation
or by automata-theoretic methods, better understood and easier to prove for arbi-
trary (i.e. finite or infinite) models, and much more challenging, and in some cases
open, on finite structures.

A related issue that we have not treated here concerns Lindström characterisa-
tions of modal and guarded logics. It is shown in [7, 8] that no logic that is bisim-
ulation invariant, compact, and closed under relativisation can properly extend the
basic modal logic ML. In this proof, a crucial role is played by a locality criterion
(which is implied by compactness and relativisation for any bisimulation closed
logic) saying that the truth of a formula at a given node only depends on a neigh-
bourhood of points reachable in a bounded number of steps. For guarded logics, and
even for modal logics with a global modality no such locality criterion is available.
To obtain Lindström characterisations for GF and ML[∀], Otto and Piro [25] use
instead the Tarski Union Property saying that the union of any elementary chain is
itself an elementary extension of each structure in the chain. They show that ML[∀]
and GF are the maximal compact logics that satisfy the Tarski Union Property and
the corresponding bisimulation invariance. It is open whether there are Lindström
characterisations of these logics that are not based on the Tarski Union Property but,
say, on compactness and relativisation.

Finally the bisimulation-based analysis of modal and guarded logics also leads
to important insights concerning their algorithmic properties. Since satisfiable for-
mulae always admit simple models, for instance tree-like ones, and since modal
and guarded logics, including the fixed-point variants such as the model µ-calculus
and the guarded fixed-point logic µGF can be embedded or interpreted in monadic
second-order logic on trees, powerful automata theoretic methods become available
for checking satisfiability and for evaluating formulae. It still remains to determine
where the limits are for fragments of first-order logic (and fixed-point logic or even
second-order logic) that are invariant under a suitable notion of (guarded) bisimula-
tion that is sufficient to ensure similar model-theoretic and algorithmic properties as
those that have been established for modal and guarded logic. In particular, can we
find in this way stronger decidable fragments of first-order logic, fixed-point logic
and second-order logic than those known so far?
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