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Abstract

We study first-order logic with two variables FO2 and establish a small sub-
structure property. Similar to the small model property for FO2 we obtain an ex-
ponential size bound on embedded substructures, relative to a fixed surrounding
structure that may be infinite. We apply this technique to analyse the satisfiabil-
ity problem for FO2 under constraints that require several binary relations to be
interpreted as equivalence relations. With a single equivalence relation, FO2 has
the finite model property and is complete for non-deterministic exponential time,
just as for plain FO2. With two equivalence relations, FO2 does not have the finite
model property, but is shown to be decidable via a construction of regular models
that admit finite descriptions even though they may necessarily be infinite. For
three or more equivalence relations, FO2 is undecidable.

0 Introduction
The undecidability of the satisfiability problem for first-order logic has inspired the
classification of various syntactic fragments of first-order logic with a view to delineat-
ing the boundary of decidability as well as to finding useful decidable fragments. The
main programme of this kind, which has led to a complete classification, concerned the
taxonomy of prenex normal form formulae w.r.t. quantifier prefixes [3]. Along an or-
thogonal direction, one may investigate fragments defined not with reference to prenex
normal form, but in terms of other uniform structural constraints on the quantifica-
tion patterns. Modal logics, with their characteristic relativisation of all quantifiers by
binary edge predicates, provide a typical example of a benign fragment of this kind.
A more recent extension led to the guarded fragment [1, 11]. More crudely, a mere
restriction of the number of distinct variable symbols leads to the finite variable frag-
ments FOk of first-order logic. Interestingly, both the modal families of logics and
the finite variable fragments can also be motivated in terms of model theoretic games
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– namely bisimulation games for modal logics, and k-pebble games for FOk. Corre-
spondingly, and unlike prefix classes, these fragments enjoy natural closure properties
which support some characteristic model theory. In particular, the finite variable frag-
ments play a prominent role in finite model theory. In terms of satisfiability, FO2 is
decidable while FO3 is undecidable. FO2 here stands for the fragment of first-order
logic with equality with only two variable symbols x and y, in finite relational vocabu-
laries (without constants or function symbols). Without loss of generality, we also only
consider vocabularies of width 2, without relation symbols of arities greater than 2.

The first decidability proof for FO2 was given by Scott [30], via a reduction to
the so-called Gödel prefix class ∃∗∀∀∃∗, which however is only decidable in the ab-
sence of equality [10]. Full decidability for FO2 with equality is due to Mortimer
[25]. Mortimer shows FO2 has the finite model property, and in fact every satisfiable
FO2 sentence has a model of size at most doubly exponential in the length of the sen-
tence. This bound on the size of small models is improved to single exponential by
Grädel, Kolaitis and Vardi in [12], which leads to their result that FO2 is decidable in
NEXPTIME, and in fact NEXPTIME-complete.

The study of FO2 is also motivated by the fact that it embeds propositional modal
logic K, via the standard translation. Numerous variants and extensions of modal
logic find applications in various areas of computer science, including verification
of software and hardware, distributed systems, knowledge representation and artifi-
cial intelligence. These applications are supported by the very good algorithmic and
model-theoretic behaviour of modal logics, including their remarkably robust decid-
ability which persists under various extensions towards greater expressiveness. Some
of these extensions are equally well motivated in the context of two-variable logic.
Description logics in particular naturally fit into the range between modal and two-
variable logics, see [2] and in particular [6] for their connection with finite variable
fragments. The extension of FO2 by counting quantifiers [17], for instance, is decid-
able by [14, 28] although it does not have the finite model property. In analogy with
graded modalities, it covers certain description logics with number constraints. But
also in systematic terms the question naturally arises, to which extent FO2 shares the
good algorithmic behaviour of modal logics. The picture that emerged in [15] shows
that, with the notable exception of the counting extension, most extensions of FO2 are
undecidable, compare also [13]. This includes e.g. various extensions by mechanisms
for fixed points or transitive closures, in analogy with the modal µ-calculus or computa-
tion tree logics. In many cases, the results of these investigations can be phrased either
for satisfiability of extensions of FO2, or, alternatively, of FO2 itself over restricted
classes of structures. This interplay is fruitfully employed in [15, 26].

In connection with modal logics, or with applications of modal or two-variable
logics in areas like knowledge representation or for description logics, a restriction of
the underlying class of models is often very natural. Modal correspondence theory,
for instance, associates transitivity of accessibility relations with the modal logic K4;
equivalence relations with the modal logic S5. Multi-S5 systems with k equivalence
relations among their accessibility relations can be used to model knowledge systems
for k independent agents; linear orders as accessibility relations play an obvious role for
linear temporal logics, etc. For FO2 over such classes of structures, undecidability is
established under several such constraints in [15, 13] and in particular in the presence
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of four equivalence relations. In the presence of a linear order, on the other hand,
decidability is shown in [26]. Another interesting, related result is obtained in [5]:
decidability is shown there for FO2 with one equivalence relation and one linear order
(accessible by both the order and the successor predicates) over so-called data words,
i.e., words over a unary alphabet in which the linear order corresponds to the natural
order on positions of letters. For some more results related to FO2 over data words see
[24, 29, 7, 27].

In this paper we concentrate on a complete analysis of the important case of models
with several equivalence relations, by clarifying the situation for up to three equiva-
lence relations.

We look at finite relational vocabularies τ = τ0 ∪̇ τeq where τeq consists of a fi-
nite number of distinguished binary relations (typically E or Ei, i = 1, 2, 3). We let
EQ[τ0; τeq] denote the class of all τ0 ∪̇ τeq structures A = (A0, (E

A)E∈τeq) (with at least
two elements) that interpret the relations E ∈ τeq as equivalence relations. We refer to
such structures as equivalence structures.

SAT(L, C), the satisfiability problem for L over the class C, is the decision prob-
lem, for sentences ϕ ∈ L, whether ϕ has a model in C. We say that L has the finite
model property (or a small model property) over C, if every sentence ϕ ∈ L that has
a model in C also has a finite (small) model in C. 1 FINSAT(L, C) stands for the
satisfiability problem for L in restriction to finite structures from C, so that the finite
model property for L over C is equivalent to FINSAT(L, C) = SAT(L, C). In these
terms our main results for FO2 over equivalence structures are the following.

Theorem 1 (i) FO2 has an exponential model property over EQ[τ0;E]. Hence
SAT(FO2, EQ[τ0;E]) and FINSAT(FO2, EQ[τ0;E]) are NEXPTIME complete.

(ii) FO2 does not have the finite model property over EQ[τ0;E1, E2]. However,
SAT(FO2, EQ[τ0;E1, E2]) is decidable in 3NEXPTIME.

(iii) SAT(FO2, EQ[τ0;E1, E2, E3]) and FINSAT(FO2, EQ[τ0;E1, E2, E3]) are un-
decidable; in fact FO2 over EQ[τ0;E1, E2, E3] forms a conservative reduction
class.

Our decidability result for two equivalence relations should also be contrasted with
another result by the first author, that FO2 is undecidable in the presence of two
transitive relations [20]. This fact was independently proved in [18]. A further im-
provement was obtained lately in [23] where undecidability of FO2 in the presence
of one equivalence and one transitive relation is shown. In [23] it is also shown that
FINSAT(FO2, EQ[τ0;E1, E2]) is decidable.

En route to the decidability result we establish a small substructure property for
FO2 which does not directly focus on entire models of FO2-sentences but rather on
small substructures that are parts of the actual models. This technique proves to be
applicable in the case of equivalence structures with two equivalence relations, where
the finite model property for FO2 fails. As we shall see, FO2 sentences can force
models in EQ[τ0;E1, E2] to have infinitely many equivalence classes as well as to
have infinite equivalence classes. By our small substructure property the size of the

1With small model property we refer to the existence of some function that provides an upper bound on
the size of small models for any satisfiable formula, in terms of the size of the formula or its vocabulary.
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equivalence classes of the common refinement E = E1 ∩ E2 of E1 and E2 can be
exponentially bounded. This serves as a crucial step towards the construction of regular
infinite models that admit finite descriptions. The following is a truncated version
of our small substructure property, compare Proposition 4 for a full statement. By
A ⇒∀∀ A′ we denote the transfer property that any prenex ∀∀-formula satisfied in A is
also satisfied in A′; similarly for A ⇒∀∃ A′.

Theorem 2 Let A be a τ -structure with universe A = B ∪̇C, B := A�B. Then there
is a τ -structure A′ with universe A′ = B′ ∪̇C, for some set B′ of size exponential in
τ , such that A′�C = A�C, A ⇒∀∀ A′ and A ⇒∀∃ A′.

Small substructure properties of this kind may be interesting in their own right.
In settings where some parts of a larger structure are controlled by specifications in a
logic L in their relationship to that surrounding structure, it may be natural to consider
variations of these parts while the surrounding structure stays unchanged. One may
think of descriptions of distributed systems, in which only some “local” components
are amenable to modifications while the overall or remote environment is regarded as
fixed and not locally controllable. Then the question arises whether the local compo-
nents can be replaced by smaller equivalent components, without violating the global
specification and possibly preserving some logical features of the interface between
the local components and their environment. Our small small substructures property
captures such a setting for FO2 and yields exponential bounds on the size of crucial
components, in a context where a global finite model is not available.

Plan of the paper. The paper is organised as follows. Section 1 introduces basic
terminology and notation, and recall the well-known Scott normal form for FO2; Sec-
tion 2 contains the full statement and the proof of our small substructures property. The
remainder of the paper concerns the satisfiability problem for FO2 over structures with
several equivalence relations.

In Section 3 we formally introduce the notion of equivalence structures and adapt
Scott normal form to our purposes.

Section 4 deals with decidability and the finite model property for FO2 in the pres-
ence of a single equivalence relation. This is achieved in two steps: we first show that
every satisfiable formula has a model whose equivalence classes are exponentially size
bounded; we then show that every formula has a model with exponentially many such
classes.

Section 5 is devoted to FO2 in the presence of two equivalence relations. We ex-
hibit some key examples to illustrate the crucial difference that a second equivalence
relation makes and introduce an auxiliary combinatorial problem to which satisfiability
of FO2 over structures with two equivalence relations can be reduced. We first show
how to solve a simplified variant of this coloured castles problem, which allows us to
concentrate on the main combinatorial issues and to hide some of the more wearisome
detail. This approach is then extended to cover the coloured castles problem in the full
generality required.

Finally, in Section 6, we show undecidability of FO2 in the presence of three equiv-
alence relations.

4



1 Quantifier-free types and Scott normal form
We use the term type to refer to quantifier-free types. Let A be a τ -structure with
universe A. For a ∈ A, the 1-type of a in A is

tpA(a) =
{
ϕ(x) ∈ FO2[τ ] : ϕ quantifier-free ,A |= ϕ[a]

}
.

We let α[A] = {tpA(a) : a ∈ A
}

be the set of all 1-types of A. Quantifier-free
2-types tpA(a1, a2) of non-degenerate pairs, a1 6= a2, are similarly defined. We let
β[A] = {tpA(a1, a2) : a1 6= a2, a1, a2 ∈ A

}
be the set of all 2-types of A.

We also write α and β for the sets of all 1-types and 2-types, across all A. We
sometimes identify a type with a corresponding quantifier-free formula that determines
it, which is just a conjunction of atoms or negated atoms. Note that the size of the sets
α and β is bounded by an exponential function in the size of the vocabulary.

We typically write α = α(x) for a 1-type α ∈ α, and β = β(x, y) for a 2-type
β ∈ β. Then α(y) is the result of switching x for y in α. Also β �x is the 1-type
consisting of all the ϕ(x) ∈ β; similarly for β�y. However, we also write β�y = α
instead of the formally correct β�y = α(y)

Natural terminology with regard to types and their realisations applies. For in-
stance, we say that an element b ∈ B realises the type α if tpB(b) = α (or B |= α[b]).
For a type α ∈ α, and a subset S ⊆ A of a structure A we denote as α[S] ⊆ A the set
of all those a ∈ S that have type α. Conversely α[S], for a subset S ⊆ A, denotes the
set of all 1-types realised in S, α[S] =

{
tpA(a) : a ∈ S

}
. Similarly β[S1, S2], for

subsets Si ⊆ A, is the set of all 2-types tpA(a1, a2) with ai ∈ Si; β[a, S] for a subset
S ⊆ A is the set of all 2-types tpA(a, a

′) with a′ ∈ S, etc.
The following normal form is achieved through a natural process of relational

Skolemisation, which essentially introduces for every quantified subformula of a given
FO2 formula in negation normal form a new binary relation symbol. The semantics of
ϕ is then captured by the implicit definition of the new relations, which can naturally
be given in ∀∀ and ∀∃ format. See, for instance, [12, 13] for expositions.

Proposition 3 (Scott normal form) For ϕ ∈ FO2[τ ] one can compute in polynomial
time a Scott normal form formula ϕ̃ ∈ FO2[τ̃ ], whose length is linear in the length of
ϕ, of the form

ϕ̃ = ∀x∀y χ0 ∧
∧m

i=1 ∀x∃y χi

for quantifier-free formulae χi ∈ FO2[τ̃ ], such that ϕ̃ is satisfiability equivalent to ϕ.

For normal form ϕ, whether or not A |= ϕ is determined by the family of sets
β[a,A] = {tpA(a, b) : b ∈ A

}
of types incident with a, for a ∈ A. Whether A satisfies

the ∀∀ part of ϕ is determined by β[A] = β[A,A]; for the ∀∃ parts, A, a |= ∃χi iff
β |= χi for some β ∈ β[a,A].

2 A small substructure property for FO2

Consider a structure A and a fixed subset B ⊆ A with induced substructure B := A�B.
We want to perform some surgery on A which in effect replaces the substructure B by
some ‘equivalent’ B′ of bounded size.

5



Proposition 4 Let A be a τ -structure, B = A�B for some B ⊆ A, C := A \B. Then
there is a τ -structure A′ with universe A′ = B′ ∪̇C for some set B′ of size polynomial
in |β[A]| such that

(i) A′�C = A�C.
(ii) α[B′] = α[B], whence α[A′] = α[A].

(iii) β[B′] = β[B] and β[B′, C] = β[B,C], whence β[A′] = β[A].
(iv) for each b′ ∈ B′ there is some b ∈ B with β[b′, A′] ⊇ β[b, A].
(v) for each a ∈ C: β[a,B′] ⊇ β[a,B].

Note that (iii)–(v) imply that A |= ϕ ⇒ A′ |= ϕ for all normal form ϕ.

We point out that for plain FO2 we reproduce the known small model property
for FO2 from [12]. Putting B := A and observing that β[A] ⊆ β is exponential
in the vocabulary of (the normal form of) ϕ, we obtain an exponential size bound on
A′ |= ϕ. Also the proof of the proposition has crucial similarities with the proof by
Grädel, Kolaitis, and Vardi for the small model property. However, our result is a proper
extension, as will become apparent from its uses in settings where the surrounding
structure cannot be made finite.

Proof Let m := |β[A]| be the number of 2-types realised in A, and enumerate these
as β[A] := {β1, . . . , βm}. Note that m is bounded by |β|, which is exponential in
|τ |. W.l.o.g. assume that B ⊆ α[A] consists of elements of the same 1-type α. The
general case may be reduced to this one, by repeated application to the sets α[B] for
all relevant α. Also assume that B = α[B] contains at least two elements so that
β[B] 6= ∅. Otherwise put B′ := B.

We want to find a suitable set B′ of new realisations of α, and links between B′

and C and within B′ in accordance with (iii)–(v). Technically A′ is specified by a
consistent choice of 2-types for any pair involving at least one new element b′ ∈ B′.

The general idea is to distinguish a small (exponentially bounded) set M ⊆ C,
which, from the point of view of B, serves as a sufficiently rich representation of C,
i.e., the number of realisations of each 1-type from α[C] in M is sufficient to fulfil
all β(b, C) requirements of elements b ∈ B. On the other hand the new set B′ is
large enough to fulfil all β[a,B] requirements of elements a ∈ M . The strategy of
connecting B′ and M without conflict is given in steps (1)-(3) below. The allocation
of 2-types inside B′ (step (5) below) is similar to the construction from [12]: B′ is
divided into three subsets, which we think of as arranged in a directed 3-cycle, such
that the requirements of elements from one part are met by elements in the next part.

Let us give the details of the construction. For α′ ∈ α[A] let

β(α′) :=
{
tpA(b, a) : b ∈ B, a ∈ α′[C]

}
⊆ β[A],

N(α′) := |β(α′)|,

n(α′) := min
(
N(α′), |α′[C]|

)
.

Soβ(α′) is the set of 2-types linking elements of B with elements of type α′ outside B.
Note that n(α′) 6 N(α′) 6 m. For each α′ ∈ α[C] choose a subset M(α′) ⊆ α′[C]
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of size n(α′). Let M be the union of the (disjoint) sets M(α′). We replace B by

B′ = {0, 1, 2} × {1, . . . ,m} ×M,

consisting of 3m|M | 6 3m3 elements that realise type α. It remains to allocate 2-types
over B′ × B′ and B′ × C in a consistent fashion and such that requirements (iii)–(v)
are met. This is done in stages.
(1) We allocate 2-types for some pairs (b′, a) ∈ B′ × M to settle (v) for all a ∈ M .
For each a ∈ M(α′) ⊆ M and βk ∈ β(α′), put tp((0, k, a), a) := βk.

Note that for each b′ ∈ B′, tp(b′, a′) has been set for at most one element a′

(necessarily a′ ∈ M ), and that in this case tp(b′, a′) = tpA(b, a) for some (b, a) ∈
B × C.
(2) For each b′ ∈ B′, we allocate 2-types to some further pairs (b′, a) with a ∈ M , in
such a way as to guarantee (iv) at b′. We treat one b′ at a time.
– If no 2-type involving b′ has been determined in stage (1), pick some element b ∈ B
and for each 2-type β ∈ β[b, C] and α′ = β�y, select a fresh element a = a(b′, β) ∈
M(α′) and put tp(b′, a) := β. There are sufficiently many elements in M(α′) by the
definition of n(α′).
– If one 2-type involving b′ (and an element of M ) has been determined in stage (1),
tpA′(b′, a′) = tpA(b, a) for some reference elements b ∈ B and a ∈ C. We realise
further 2-types β ∈ β[b, C] ⊆

⋃
α′ β(α′) at b′ with partner elements a ∈ M(α′) for

the appropriate α′. By the choice of M(α′) there are sufficiently many distinct target
elements available in each M(α′) (just as there were in α′[C] for the reference element
b). This makes sure that β[b′, C] ⊇ β[b, C].
(3) Allocation of all remaining 2-types for pairs (b′, a) ∈ B′ × M . Choose b0 ∈ B.
For each b′ ∈ B′ and a ∈ M , whose 2-type has not been attributed, put tp(b′, a) :=
tpA(b0, a). Since all types added in this step as well as in steps (1) and (2) belong to
β[B,C], we have β[B′, C] = β[B,C].
(4) Allocation of 2-types to pairs (b′, a) ∈ B′ × (C\M). For each a ∈ C\M of type
α′, pick a0 ∈ M(α′) and set tp(b′, a) := tp(b′, a0) for all b′ ∈ B. Together with (1)
this settles (v) for all a ∈ C.
(5) Allocation of 2-types to pairs in B′ × B′. For (i, j, a) ∈ B′ and βk ∈ β[B] put
tp((i, j, a), (i′, k, a)) := βk where i′ = (i + 1)mod 3. For any two distinct elements
of B′ whose type has not been allocated, put arbitrary β ∈ β[B]. This settles (iv) and
ensures β[B′] = β[B], which completes (iii). 2

3 Equivalence structures
We now restrict attention to finite relational vocabularies τ = τ0 ∪̇ τeq where τeq consists
of a finite number of distinguished binary relations to be interpreted as equivalence
relations (we use E or Ei, i = 1, 2, 3 for these).

Definition 5 EQ[τ0; τeq] denotes the class of all equivalence structures in the vocabu-
lary τ = τ0 ∪̇ τeq, i.e., the class of all τ0 ∪̇ τeq structures A = (A0, (E

A)E∈τeq) with at
least two elements that interpret the relations E ∈ τeq as equivalence relations.
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Types and Scott normal form for equivalence structures. When we are interested
in models in EQ[τ0, τeq], we only admit types that are realisable in these. In the pres-
ence of one or more equivalence relations we want to distinguish 2-types according
to equivalences/non-equivalences between x and y. For τeq = {E}, we distinguish
β+ and β− such that β = β+ ∪̇β−, where all β ∈ β+ contain the formula Exy,
while those in β− contain its negation. In the case of τeq = {E1, E2} we correspond-
ingly distinguish four sets: β++

,β+−
,β−+

,β−−, such that for instance β ∈ β−+ iff
(¬E1xy ∧E2xy) ∈ β.

We also use superscripts + and − to indicate for an individual quantifier-free
formula which equivalences/non-equivalences it stipulates. For instance, with τeq =
{E1, E2} and for a quantifier-free formula χ = χ(x, y) ∈ FO2[τ0] we let

χ+−(x, y) := χ(x, y) ∧ (¬x = y → (E1xy ∧ ¬E2xy)).

χ+ and χ− over τeq = {E} are similarly defined. This decomposition of formu-
lae leads to the following variant of the Scott normal form adapted to structures in
EQ[τ0; τeq].

An EQ[τ0, E1, E2] Scott normal form sentence is of the form

∀x∀y χ0 ∧
m∧
i=1

∀x∃y χ
si
i ,

for quantifier-free χ0 ∈ FO[τ0;E1, E2] and χi ∈ FO[τ0] and si ∈ {+,−} × {+,−}.
For τeq = {E}, similarly, EQ[τ0, E] Scott normal form is ∀x∀y χ0 ∧

∧m
i=1 ∀x∃y χ

si
i

for quantifier-free χ ∈ FO[τ0;E] and χi ∈ FO[τ0] and si ∈ {+,−}.

Proposition 6 (EQ Scott normal form) For ϕ ∈ FO2[τ0 ∪ τeq] there is a polynomial
time computable EQ[τ ; τeq] Scott normal form sentence ϕ̃ ∈ FO2[τ̃0 ∪ τeq], whose
length is linear in the length of ϕ, such that ϕ and ϕ̃ are satisfiability equivalent over
EQ[τ ; τeq].

In terms of this normal form, ϕ can be thought of as stipulating constraints on
the sets of atomic 1-types and 2-types that may occur (the ∀∀ requirements in χ0) and
requirements for certain witnesses to be provided at every element (the ∀∃ requirements
in the χsi

i for 1 > 1). Among the ∀∃ requirements we distinguish, for instance in
the case of two equivalence relations E1 and E2, by the superscripts si ∈ {+,−}2
requirements that need to be met by witnesses

– within the same intersection of E1- and E2-classes (++),
– within the same E1-class but in a distinct E2-class (+−),
– within the same E2-class but in a distinct E1-class (−+), or
– in a distinct E1-class and in a distinct E2-class (−−).

Correspondingly, such witnesses are linked to the base point by 2-types in β++, β+−,
β−+, or β−−, respectively. For instance, a witness at a ∈ A for an ∀∃ requirement
∀x∃yχ+−

i (x, y) in ϕ is an element a′ such that A |= χ+−
i [a, a′], which means that

tpA(a, a
′) ∈ β+− contains χ+−

i (x, y). If there is such a witness, we also say that that
the requirement is fulfilled at a.
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4 One equivalence relation
We consider models in EQ[τ0;E], with τeq = {E}. Structures in EQ[τ0;E] are of the
form A = (A,EA, . . .), EA an equivalence relation over A. If B ⊆ A is an equivalence
class w.r.t. EA, we refer also to the substructure B = A�B as an equivalence class of
A.

Note that if A |= ϕ, where ϕ is in normal form according to Proposition 3, then
each equivalence class B = A�B is a model of the ∀∀ constituent as well as of all the
∀∃ constituents of type χ+.

4.1 An exponential model property
We shall find small models, whose size is exponential in terms of |τ0| or in the length
of ϕ, in two stages:

small classes: replacing each individual equivalence class A�B in A by a small (ex-
ponential size) structure, while retaining the remainder of A unchanged; for this
we apply the small substructure property, which preserves any normal form ϕ.

few classes: building a new structure from an exponential number of isomorphic copies
of classes from A, such that again any normal form ϕ is preserved.

As there are only exponentially many distinct 1-types, one can afford to realise
exactly the same 1-types in the target structure as in the given model. At the level of
equivalence classes, however, the given model may have doubly exponentially many
types, distinguished by their composition in terms of 1-types. Out of these one needs
to select a set of just exponentially many types to be used in the new small model.

Together these two steps allow us transform any given EQ[τ0;E] structure into
an exponentially size bounded EQ[τ0;E] structure while preserving the truth of all
normal form sentences. We thus get the following. The proof according to the two
steps outlined above is provided in the following sections.

Proposition 7 There is an exponential function f such that any normal form sentence
ϕ ∈ FO2[τ0;E] that is satisfiable in EQ[τ0;E] also has a model in EQ[τ0;E] of size
bounded by f(|τ0|).

It follows that we can check satisfiability by guessing an exponential size model and
verifying ϕ; the resulting complexity matches the known lower bound, which trivially
transfers from FO2 (we may add a dummy equivalence relation to any ϕ ∈ FO2[τ0]
with the clause ∀x∀yExy).

Corollary 8 SAT(FO2, EQ[τ0;E]) is NEXPTIME-complete.

4.1.1 Small classes

Lemma 9 Every normal form ϕ that is satisfiable in an EQ[τ0, E] model, has an
EQ[τ0, E] model with at most countably many equivalence classes each of which is
bounded in size by an exponential function in |τ0|.
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Let A ∈ EQ[τ0;E]. Towards the proof we first show how to replace a single equiv-
alence class B in A by a new substructure B′ that also consists of a single E-class, of
size exponential in |τ0|, and such that any normal form formula satisfied in A is also
satisfied in the resulting structure.

For a fixed class B, apply Proposition 4 to A and B ⊆ A to obtain A′ in which B
has been replaced by an exponential size B′ in such a way that in particular (cf. (iii) in
the proposition)

β[B′] = β[B] and β[B′, A\B′] = β[B,A\B].

β[B′] = β[B] ⊆ β+ and β[B′, A\B′] = β[B,A\B] ⊆ β− imply that B′ ⊆ A′

also forms an equivalence class, and that A′ ∈ EQ[τ0, E].

Let A be a countable EQ[τ0, E]-structure, with infinitely many equivalence classes
enumerated as (Bi)i∈N without repetition. We may apply the above process inductively
to E-classes Bi, one at a time, to obtain a sequence of structures An ∈ EQ[τ0, E],
starting form A0 = A, such that for all n ∈ N:

(i) the universe of An consists of the disjoint union of old and new equivalence
classes of the form

⋃
i<n B

′
i ∪

⋃
i>n Bi, where the new B′

i are exponentially
size bounded in |τ0|;

(ii) An�
⋃

i>n Bi ' A�
⋃

i>n Bi and An�
⋃

i<n B
′
i = An+1�

⋃
i<n B

′
i;

(iii) α[An+1] = α[An] and β[An+1] = β[An];
(iv) for every b′ ∈ B′

n there is some b ∈ Bn such that β[b′,An+1] ⊇ β[b,An];
(v) β[b,B′

n] ⊇ β[b,Bn] for all b ∈
⋃

i<n B
′
i.

2

Let A′ be the natural limit structure induced by this sequence on A′ :=
⋃

n∈N B′
i.

It is easy to see that A′ is an EQ[τ0, E]-structure with equivalence classes B′
i, which

are exponentially size bounded in |τ0|. Moreover, due to construction,

A |= ϕ =⇒ An |= ϕ for all n ∈ N =⇒ A′ |= ϕ

for all normal form ϕ.
The first implication follows inductively, essentially from (iii), (iv) and (v), with the

same argument as before. For the second implication, concerning the limit, note that
α[A′] = α[A] and β[A′] = β[A] directly follow from the corresponding equalities
at all intermediate An, because all 1- and 2-types are eventually static by (ii). For ∀∃
requirements in normal form ϕ, (v) guarantees that witnesses for such requirements
provided for some b ∈ Bi in Bj for some j > i will be reproduced in B′

j and then
persist in the limit by (ii).

We have thus proved Lemma 9 in the more interesting case in which we start with a
model that has infinitely many equivalence classes; the argument for the case of finitely
many equivalence classes is analogous but simpler as we do not need to go to a limit.

2Note that the first set of 2-types may (by (ii)) be evaluated in any Am for m > n while the second is
evaluated in An.
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4.1.2 Few classes

This section completes the proof of the exponential model property of Proposition 7.
In view of Lemma 9 it remains to bound the number of equivalence classes in models
with small equivalence classes. Fix a model A ∈ EQ[τ0;E], whose equivalence classes
are of exponential size in |τ0|. There may still be doubly exponentially many non-
isomorphic classes (distinguished even by their composition in terms of 1-typesα[B]).

A special role is played by those classes which contain all realizations of some 1-
type (a simple ∀∀-sentence can force all realisations of 1-type α(x) to be connected by
E).

Definition 10 An equivalence class B in A is called singular if it contains all realisa-
tions of some 1-type α ∈ α[A]. A 1-type α ∈ α[A] singular if it is realised in only
singular classes.

Note that realisations of a singular type α(x) may appear in more than one singular
class. The following Lemma is immediate.

Lemma 11 For every non-singular α ∈ α[A]:
(i) there exists at least one non-singular class B containing a realisation of α.

(ii) for every α′ ∈ α[A] (singular or non-singular) there exists β ∈ β−
[A] with

β�x = α and β�y = α′.

As there is an obvious injection from the set of all singular classes of A into α[A],
we have the following bound.

Lemma 12 The number of singular classes in any given A ∈ EQ[τ0;E] is bounded by
|α[A]| 6 |α|, exponential in the size of the vocabulary.

Towards Proposition 7 we still need to bound also the number of non-singular
equivalence classes.

Lemma 13 For any A ∈ EQ[τ0;E] there is some A′ ∈ EQ[τ0;E] satisfying exactly
the same normal form sentences and consisting of isomorphic copies of equivalence
classes of A, such that A′ has the same singular classes as A and an exponentially
bounded number of non-singular classes. Overall therefore, the number of classes in
A′ is exponentially bounded in the size of the vocabulary.

Proof Let As ⊆ A be the substructure formed by the union of the singular classes.
Note that As is exponentially bounded. Let C be a union of equivalence classes of
A such that As ⊆ C and for all a ∈ As and β ∈ β−

[a,A] we have β ∈ β−
[a,C].

As As and β−
[A] as well as all classes of A are exponential, C can be chosen of

exponential size. Let C ⊆ A be the corresponding substructure of A, a union of classes
and containing in particular all singular classes.

Let B ⊆ A be a union of non-singular equivalence classes such that every non-
singular α is realised by some bα in B. Again B can be chosen of exponential size.
We fix such B together with some choice of such bα ∈ B for all non-singular α.

11



Observe that α[A] = α[C] ∪α[B].
We construct A′ from the disjoint union of C and an exponential number of isomor-

phic copies of B in such a way that
(i) β[A′] ⊆ β[A].

(ii) for each c ∈ C ⊆ A′, β[c,A′] ⊇ β[c,A].
(iii) for each isomorphic copy B′ ⊆ A′ of B, and for each b ∈ B, if b′ ∈ B′ is the

isomorphic image of b, then β[b′,A′] ⊇ β[b,A].

It follows that A′ satisfies any normal form sentence satisfied in A.
Let β−

[A] = {β1, . . . , βm}. We build A′ from

C ∪ {0, 1, 2} × {1, . . . ,m} ×B

by allocating 2-types β ∈ β−
[A] between any two elements from different parts. Again

we proceed in several stages.
(1) For b ∈ B and β ∈ β−

[b, A] such that α′ = β�y is singular, put tpA′((i, k, b), c) :=
β for all c ∈ As with tpA(b, c) = β (there are such, as α′ is only realised in As in A).
(2) For c ∈ C \ As and βk ∈ β−

[c, A], if βk 6∈ β−
[c, C] then α = βk �y must be

non-singular. Put tpA′(c, (0, k, bα)) := βk. This settles (ii).
(3) For b ∈ B and βk ∈ β−

[b, A], if βk 6∈ β−
[b, As] then α = β �y must be non-

singular. Put tpA′((i, j, b), (i′, k, bα)) := βk for i′ = (i+ 1)mod 3. This settles (iii).
(4) For all remaining pairs of undeclared 2-type find β ∈ β[A] compatible with the
given 1-types. This is possible by part (ii) of Lemma 11, since all such pairs involve at
least one non-singular 1-type. 2

Lemmas 9 and 13 together imply the exponential model property of Proposition 7.

5 Two equivalence relations
In this section we consider models in EQ[τ0;E1, E2], with τeq = {E1, E2}. Structures
in EQ[τ0;E1, E2] are of the form A = (A,EA

1 , E
A
2 , . . .), where EA

1 , E
A
2 are equiva-

lence relations over A. If B is an equivalence class with respect to EA
1 or EA

2 , we also
refer to the substructure B = A�B as an equivalence E1-class (E2-class) of A; we call
equivalence classes of EA

1 ∩ EA
2 as well as their induced substructures intersections.

We say that intersections J, J ′ are in a free position if they are not connected by E1 or
E2.

We will mostly work on the level of intersections, rather than individual elements.
Correspondingly, we define notions of types of intersections and types of ordered pairs
of intersections; they will play similar roles to 1-types and 2-types of individual ele-
ments.

The type of an intersection consists of the specification of the isomorphism type of
the substructure induced by this intersection.

The type of a pair of intersections (J1, J2) consists of the full specification of the
isomorphism type of the substructure induced by the union J1 ∪ J2 of these two inter-
sections and the identification of the parts, J1 and J2. In other words, the type of the
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(ordered) pair (J1, J2) adds to the information about the types of the two individual
intersections the information about the 2-types of all pairs (a1, a2) for ai ∈ Ji.

Note that the entire structure is fully specified through a listing of its intersections
and the specification of the types of all pairs of these.

We start this section with a few examples showing how to enforce some interesting
properties of models. In particular, we construct formulae satisfiable only in infinite
models, and enforcing even infinite equivalence classes. Then we argue that, in con-
trast, infinite or even large intersections cannot be enforced: every satisfiable formula
has a model with small (i.e., exponentially bounded) intersections.

Our decidability proof for the case of two equivalence relations is fairly involved.
We therefore find it convenient to introduce an auxiliary combinatorial problem, which
we call the coloured castles problem. We reduce satisfiability of FO2 over EQ[τ0;E1, E2]
to the new problem and show this new combinatorial problem to be decidable. This
strategy should help to isolate the combinatorial core of the satisfiability issue more
clearly.

To make the presentation even more readable we introduce two versions of the
coloured castles problem: simplified and regular. To the simplified version we may
reduce satisfiability of those normal form formulas which require no free witnesses.
This simpler version allows the main ideas of the whole construction to be presented
in a more conspicuous manner.

5.1 Examples
5.1.1 Failure of the finite model property

We show that even over EQ[τ0;E1, E2] for τ0 = {P,Q, S} with unary P,Q, S, FO2

does not have the finite model property. We exhibit an infinity axiom that enforces an
infinite number of E1-classes and of E2-classes. Let λ ∈ FO2[τ0;E1, E2] say that

(1) P and Q are disjoint and each E2-class contains at most one element from P
and one from Q; analogously for E1-classes. The E2-class of any element of S
is trivial (a singleton).

(2) every element of P is E1-equivalent to one in Q; every element of Q is E2-
equivalent to one in P .

(3) S ∩ P 6= ∅.
It is easy to formalise these in FO2 over EQ[P,Q, S;E1, E2], and in fact even in

the guarded fragment3 with two variables. Fig. 1 (a) shows a model of this sentence λ.

Conversely, any model of λ embeds such an infinite chain. Starting from an element
of S ∩ P , one finds new elements in Q and P along E1- and E2-links in an alternating
fashion by appeal to condition (2); these indeed always have to be new elements, i.e.,
distinct from previous elements in the chain because of (1).

The straightforward formalisation of (1) requires equality. Use of equality, how-
ever, is not necessary to obtain an infinity axiom. Let us construct λ′ by modifying (1)

3In the guarded fragment all quantifiers are relativised by atoms, as in ∀x(Rx =⇒ . . .) and ∃x(Rx ∧
. . .).
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(a)

(b)

Figure 1: (a) A model of λ and λ’. (b) A model of λ”. Solid segments represent
E1-connections, broken segments represent E2-connections.

to
(1’) P and Q are disjoint and S and Q are disjoint and not related by E2-links;

and adding
(4) every pair of elements both of which belong to P or to Q is either connected by

both, E1 and E2, or by neither.
Of course, the structure from Fig. 1 (a) is also a model of λ′. And again, every

model has to embed this infinite chain. An attempt to reuse an earlier element leads
(by an inductive argument) to an E2-link between an element from S and an element
from Q.

A simple modification λ′′ of λ or λ′ even enforces the existence of an infinite E1-
class. For a new unary predicate R, we can say that

(5) each E2-class of an element from Q contains an element from R and all of R is
contained in a single E1-class.

One checks that this, together with λ or λ′, forces the chain to have links to an
infinite set of distinct elements in R, all contained in an infinite E1-class as depicted in
Fig. 1 (b).

5.1.2 Large finite classes

The tree-like structure in Fig. 2 contains an E2-class with exactly 2k−1 elements satis-
fying S along its leaves. L and S are unary predicates of τ0. The predicates Pi serve
to number consecutive levels of the tree-like structure; they will be definable in terms
of other basic predicates such that the number of levels k can exceed the size of |τ0|.

In the first instance, we describe how to axiomatise the given structure for k = 2n

by a formula κ whose length is linear in n. For this we code the values i for the levels
Pi in binary by means of n extra unary predicates Q0, . . . , Qn−1. Let κ say that
(1) there is exactly one element in P0.

14



Figure 2: A large finite class. Solid segments represent E1-connections, broken seg-
ments represent E2-connections.

(2) (top-down requirements) every a ∈ P2i, 2i < k − 1, has E1-links to at least two
elements of P2i+1, one in L and one not in L; similarly for a ∈ P2i+1 and E2-links to
two successors in P2i+2.
(3) distinct elements in P2i are not E1-connected; distinct elements in P2i+1 may be
E2-connected only if 2i+ 1 = k − 1; this ensures that elements fulfilling the require-
ments from (2) are not reused.
(4) (bottom-up requirements) dually to (2), every a ∈ Pi+1 is appropriately linked to
some element on level Pi.
(5) distinct elements from every P2i may be E2-connected only if exactly one of them
is in L; similarly, distinct elements from every P2i+1 may be E1-connected only if
exactly one of them is in L.
(6) an element satisfies S iff it is in Pk−1; all of S is contained in a single E2-class.

The construction may be extended to cover k = 22
n

. For this consider the black
bullets from Fig. 2 as intersections, each intersection consisting of 2n elements num-
bered by means of another set of unary predicates U1, . . . , Un−1. The number encoded
by these predicates in an element is called U -value. Values of Pi are encoded (in
binary) by another unary predicate V (we call them V -values). An element whose U -
value is ` is put into V if, and only if, the `-th bit of i is 1. It is then possible to express,
in a linear size FO2 formula, the condition that a pair of intersections within the same
Ei-class encodes a pair of consecutive values in {0, . . . , 22n − 1}.

We give some details. We say that an intersection is even (odd) if its V -value is even
(odd). Note that to check if an intersection is even it is enough to see if the element
whose U -value is 2n − 1 satisfies ¬V . We say that an intersection is maximal if its
V -value is 22

n − 1. Testing if an intersection is maximal can be done by checking if
all its elements satisfy V . Now, we are ready to describe the formula:
(1) each intersection has exactly 2n elements, whose U -values are 0, 1, . . . , 2n − 1;
(2) all elements of an intersection agree on the predicate L;
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(3) there exists exactly one intersection with the V -value 0 (all elements of the inter-
section satisfy ¬V );
(4) (top-down requirements) every element belonging to an even intersection is E1-
connected and not E2-connected to at least two elements in some odd intersections,
one in L, the other not in L; every element belonging to a non-maximal odd inter-
section is E2-connected and not E1-connected to at least two elements in some even
intersections, one in L, the other not in L;
(5) if an even (odd) intersection J1 is E1-linked (E2-linked) to an odd (even) intersec-
tion J2, then the V -value encoded in J2 is 1 plus that encoded in J1;4

(6) distinct elements in P2i of U -value 0 are not E1-connected; distinct elements in
P2i+1 of U -value 0 may be E2-connected only if 2i+ 1 = 22

n − 1;
(7) (bottom-up requirements) dually to (4), every element from Pi, i > 0 is appropri-
ately linked to an element in Pi−1;
(8) distinct elements from P2i of U -value 0 may be E2-connected only if exactly one
of them is in L; similarly, distinct elements from P2i+1 of U -value 0 may be E1-
connected only if exactly one of them is in L (this ensures that intersections can have
at most two successors);
(9) an element satisfies S iff its U -value is 0 and it is in P22n−1; all of S is contained
in a single E2-class.

It is worth mentioning that a similar construction may be used to encode compu-
tations of an exponential space alternating Turing machine. This yields a 2EXPTIME-
lower bound for the satisfiability problem for FO2 (and in fact even for the two-variable
guarded fragment without equality) over EQ[τ0;E1, E2]. This result is presented in
[20].

5.1.3 Exactly two realisations of 1-types

In plain FO2 we are able to enforce that some 1-type has to be realised exactly once in
a structure (following [12] realisations of such types are called kings). In the previous
example we enforced exactly 2k realisations of some 1-type in a model, for some k.
However, a king played a very important role in this construction, viz., the root element
in P0. In contrast, we now exhibit a simple satisfiable formula, whose models do not
have kings but exactly two realisations of every 1-type. In fact, the following formula
defines the structure depicted in Fig. 3 up to isomorphism. It says that

(1) P and Q form a partition of the universe and P ×Q ⊆ E1 ∪ E2,
(2) there are at least two E1-classes,
(3) P and Q each intersect every E1-class and every E2-class in precisely one point.

4This formula requires a high reuse of variables, but is rather standard: it says that the least significant
(with respect to U -values) position at which J1 encodes 0 (by the predicate V ), is the least significant
position at which J2 encodes 1, and that both encodings agree on more significant positions.
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Figure 3: Two realisations of a type.

5.2 Small intersections
Let A ∈ EQ[τ0;E1, E2] be an equivalence structure. From the previous sections we
know that, in contrast to the case of EQ[τ0;E], if we want to preserve (normal form)
FO2 sentences it is not always possible to replace A by a structure with finite classes.
However, we can transform A into a structure with small intersections.

Lemma 14 Every normal form ϕ that is satisfiable in an EQ[τ0, E1, E2] model has
an EQ[τ0, E1, E2] model with at most countably many intersections each of which is
bounded in size by an exponential function in |τ0|.

Proof We first show how to replace a single intersection J in A by a new substructure
J′ of size exponential in |τ0|. This is done in such a way that the Ei-links to the full
Ei-classes of J are reproduced by J′, which will then again be the intersection of these
classes. We preserve any normal form formula in this modification.

Extend τ0 by new unary symbols U1, U2 for the E1- and E2-classes of J, and
expand A accordingly. In other words put UA

i := Bi where Bi is the Ei-class of J
in A. We now apply Proposition 4 to this expansion Â = (A, UA

1 , UA
2 ) and to the

induced substructure Ĵ = Â �J , which is the trivial expansion of J with UJ
i = J .

By Proposition 4 we obtain a new structure Â′ = (A′, UA′

1 , UA′

2 ) by replacing Ĵ in Â

by an exponential size Ĵ′ in such a way that in particular (cf. (iii) in the proposition)
β[J ′] = β[J ] and β[J ′, A\J ′] = β[J,A\J ].

Using the Ui, we see that this implies β[J ′] ⊆ β++, β[J ′, B1 \ J ′] ⊆ β+−,
β[J ′, B2 \ J ′] ⊆ β−+, and β[J ′, A \ (B1 ∪ B2)] ⊆ β−−. This guarantees that A′,
which is obtained from Â′ just by dropping the interpretations of U1 and U2, is an
EQ[τ0;E1, E2]-structure, and that J′ is an intersection of A′.

We may apply the above process to all intersections of a countable A |= ϕ in
EQ[τ0, E1, E2] as in the construction of a model with small classes from Section 4.1.1.
This finishes the proof of the lemma. 2

When we look for models for a formula ϕ, we may now restrict attention to struc-
tures whose intersections have a bounded size. From this point onward we consider
only such structures.
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5.3 Coloured castles problems
In our auxiliary problem we look for arrangements of coloured castles on the infinite
chessboard, satisfying some constraints. In the simplified version of the problem the
constraints are put on the multisets of colours of the castles in a single row or in a
single column, and on the pairs of colours of castles in skew positions. Two chessboard
positions are called skew if they are neither part of the same column nor of the same
row.

The intuitive connection between chessboard setting and EQ[τ0, E1, E2] structures,
which is to be made more precise in Section 5.3.1 below, is the following: rows and
columns on the chessboard correspond to E1- and E2-equivalence classes so that chess-
board positions are potential intersections; placement of a castle indicates that the cor-
responding intersection is non-empty, the colour of the castle determines the intersec-
tion type; colour multiplicities in rows and columns determine the β−+- and β+−-
types; an additional stipulation of coloured arrows between castles in skew positions
of the chessboard similarly takes care of β−−-types.

We use the following natural terminology concerning multiplicities: the multi-
plicity of a colour δ ∈ ∆ in a ∆-coloured set B is the cardinality of the set {b ∈
B : b has colour δ }; we associate a multiplicity function θB : ∆ → N ∪ {∞} with
these multiplicities and say that B realises some given multiplicity function θ : ∆ →
N ∪ {∞} if θB = θ. In particular, for a partially ∆-coloured chessboard, we say that
a row or column realises the multiplicity function θ if the set of ∆-coloured castles
placed in this row or column realises θ.

Definition 15 Let ∆ and E be two disjoint sets of colours called the set of castle
colours and the set of arrow colours, respectively.

(i) A multiplicity function (over ∆) is a function of type θ : ∆ → N ∪ {∞}; such θ
is called finite if θ(δ) ∈ N for all δ ∈ ∆.

(ii) We say that a multiplicity function θ′ safely extends a multiplicity function θ if
for all δ ∈ ∆

– if θ(δ) < 2 then θ′(δ) = θ(δ),

– if θ(δ) ≥ 2 then θ′(δ) ≥ θ(δ).

(iii) A placement (over ∆, E) π is a pair of functions (π∆, πE),

π∆ : N× N −→ ∆ ∪ {⊥},
πE : (N× N)× (N× N) −→ E ∪ {⊥},

such that for a, b ∈ N×N if πE(a, b) ∈ E then π∆(a), π∆(b) ∈ ∆, and if (i, j),
(i′, j′) are such that i = i′ or j = j′ then πE((i, j), (i′, j′)) = ⊥.
If πE(a, b) = ⊥ for all (a, b), then we identify π with just π∆ and call this
placement simple.

We visualise a placement as an arrangement of ∆-coloured castles on the infinite
N× N chessboard, with some castles linked by E-coloured arrows. π∆(i, j) = δ ∈ ∆
corresponds to “putting a castle of colour δ” on field (i, j); π∆(i, j) = ⊥ indicates that
there is no castle in field (i, j); we correspondingly refer to a = (i, j) with π∆(i, j) 6=
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⊥ as a castle a. If πE(a, b) = ε 6= ⊥ for castles a, b, then we say that the castle a sends
an arrow of colour ε to b. Note that a may send an arrow to b and, simultaneously, b
may send another arrow, of possibly different colour, to a.

5.3.1 Correspondence

There is a natural correspondence between placements and (partially defined) struc-
tures with two equivalence relations.

Let τ = (τ0, E1, E2) be a signature. Let ∆ be the set of possible types of inter-
sections over τ , E the set of possible types of pairs of intersections in a free position.
Consider the following translations between τ -structures and chessboard placements.

Structures to placements. From a given countable τ -structure A we abstract a place-
ment over (∆, E). Every intersection J in A corresponds to a castle, which is coloured
by the type of J . Two castles are placed in the same row (column) if, and only if, they
belong to the same E1-class (E2-class). For castles a, b in a skew position, πE(a, b) is
set to the type of the corresponding pair of intersections. We remark that this translation
does not specify a unique target placement, but that will also not be necessary.

Placements to structures. Let π = (π∆, πE) be a placement satisfying the fol-
lowing conditions: for every a, b if πE(a, b) = ε 6= ⊥ then the type ε is consistent
with the isomorphism types of intersections π∆(a), π∆(b), i.e., there is a τ -structure
built from two intersections J1, J2 in a free relation such that J1 has type π∆(a), J2
has type π∆(b) and the pair (J1, J2) has the type πE(a, b); moreover, if additionally
πE(b, a) 6= ⊥, then the types of pairs of intersections πE(a, b) and πE(b, a) are also
consistent with each other, i.e., there is a structure as above in which additionally the
pair (J2, J1) has the type πE(b, a).

Under these conditions π can be transformed into a partially defined structure in
the following way. Every castle a corresponds to an intersection of type π∆(a). Two
intersections are made E1-equivalent (E2-equivalent) if their castles come from the
same row (column). If π∆(a, b) = ε 6= ⊥ then the type of the pair of intersections
corresponding to a, b is made to be ε. The connections within Ei-classes and between
the remaining intersections in free positions remain unspecified.

5.3.2 The coloured castles problem

We give the formal definition of two variants of the coloured castles problem.

Coloured castles (simplified version). An instance of the simple version of the
coloured castles problem is of the form (∆, Trow, Tcol,Frb) where

– ∆ is a finite set of colours for castles.
– Trow and Tcol are finite collections of finite multiplicity functions over ∆.
– Frb ⊆ ∆×∆ is a set of forbidden pairs of colours.

The problem is to decide whether there exists some simple placement π = π∆ with
at least one castle such that
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– every row (column) realises a (not necessarily finite) multiplicity function θ
safely extending one of the functions from Trow (Tcol);

– if castles a, b are in a skew position then (π∆(a), π∆(b)) 6∈ Frb.

Coloured castles (regular version). An instance of the regular version is of the form

(∆, Trow, Tcol,Frb, E, InvE ,EndsE ,SReq)

where ∆, Trow, Tcol,Frb are as in the simple version and
– E is a finite set of colours for arrows;
– InvE : E → E is an involution, i.e., a function such that InvE ◦ InvE = id;
– EndsE is a function EndsE : E → ∆×∆;
– SReq is a function which for every colour δ ∈ ∆ returns a (possibly empty)

finite collection of skew requirements SReq(δ) = {S1, . . . , Sk} where every Si

is a subset of E.
The problem is to decide whether there exists a placement π = (π∆, πE) with at

least one castle such that:
– all requirements for a solution for the simple version are fulfilled;
– if πE(a, b), πE(b, a) 6= ⊥ then πE(a, b) = InvE(πE(b, a));
– if πE(a, b) = ε 6= ⊥ then EndsE(ε) = (π∆(a), π∆(b)).
– the skew requirements are satisfied for every castle a, i.e., for every a there is

some S ∈ SReq(π∆(a)) such that a sends an arrow of colour ε to some castle
a′, for every ε ∈ S; note that SReq(δ) = ∅ means that the skew-requirements of
δ are unsatisfiable, and that if ∅ ∈ SReq(δ) then δ has no skew requirements.

5.4 From satisfiability to the coloured castles problem
Let ϕ be in EQ[τ0, E1, E2]-Scott normal form. For s ∈ {+,−}2, we denote by ϕs the
formula obtained from ϕ by removing all ∀∃ requirements except those of type s. Note
that, if A |= ϕ, then A�J |= ϕ++ for every intersection J ; A�C |= ϕ+− ∧ϕ++ for every
E1-class C; and similarly A�C |= ϕ−+ ∧ ϕ++ for every E2-class C.

We construct an input (∆, Trow, Tcol,Frb, E, InvE ,EndsE ,SReq) to the coloured
castles problem, which will have a solution if, and only if, ϕ is satisfiable. If ϕ−−

is empty we will have E = ∅, SReq(δ) = {∅} for every δ, and thus the associated
instance may be regarded as an input to the simple version of the problem.

We define ∆ to be the set of those isomorphism types of intersections which, from
the local point of view, may be used in a model of ϕ: formally δ ∈ ∆ if intersections
of type δ satisfy ϕ++. Recall that we consider only types of intersections of size expo-
nential in the size of the signature, so the number of possible types is bounded doubly
exponentially in |ϕ|.

As shown by one of the examples, we sometimes require infinite classes in models.
From a local point of view, however, finite classes are sufficient in the sense of the
following lemma. The lemma says that every equivalence class can be approximated
in a sense by a class of a bounded size.
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Lemma 16 Let C |= ϕ+− ∧ ϕ++ ∧ ∀xyE1xy. Then there is a finite structure C′ |=
ϕ+− ∧ ϕ++ ∧ ∀xyE1xy such that

(i) C′ and C realise the same types of intersections,
(ii) C′ and C realise the same types of pairs of intersections,

(iii) for every type of an intersection δ the number of intersections of type δ in C′ is
not greater then the number of intersections of type δ in C,

(iv) the overall number of intersections in C′ is bounded by M = 3s4, where s is the
number of types of pairs of intersections realised in C.

We note that the bound in (iv) is doubly exponential in |τ0| . A symmetric claim obtains
for E2-classes and ϕ−+.

Proof Consider a structure F over a new language τ ′, whose universe is the set of in-
tersections from C, 1-types of elements correspond to types of intersections and 2-types
of pairs of elements correspond to types of pairs of the corresponding intersections.
More precisely, tpF(J1) = tpF(J2) if and only if types of intersections of J1 and J2 in
C are equal, and tpF(J1, J2) = tpF(J3, J4) if and only if types of pairs of intersections
(J1, J2) and (J3, J4) in C are equal.

Let F0 be the set of those elements in F whose 1-types are realised more than 3s3

times (note that s is the number of 2-types in F). We apply Proposition 4 taking A := F
and B := F0. We obtain a finite structure F′ in which every 1-type is realised at most
3s3 times. The structure F′ can be now transformed back in a natural manner into a
τ -structure C′ with intersections corresponding to elements of F. The properties of F′

listed in Proposition 4 clearly guarantee that C′ is as required.
In the proof we apply our small substructure lemma rather than, e.g., the small

model construction for FO2 from [12] since the latter may increase the number of
elements of some 1-type, which would violate (iii). 2

We are now ready to construct Trow and Tcol. We enumerate all possible multisets
of types of intersections of cardinality up to M , where M is as in Lemma 16. For
each such multiset we nondeterministically check if it is possible to build a structure
C from intersections of the given types such that C |= ϕ+− ∧ ϕ++ ∧ ∀xyE1xy (C |=
ϕ−+ ∧ ϕ++ ∧ ∀xyE2xy). If such C exists then, clearly, every isomorphism type of an
intersection from C belongs to ∆. Let θ be the multiplicity function which for every
δ ∈ ∆ returns the number of realisations of δ in C. We add θ to Trow (Tcol).

To define Frb we consider all pairs δ, δ′ ∈ ∆. If there is no structure D built from
two intersections J of type δ and J ′ of type δ′ in a free position such that D satisfies
the ∀∀ constituents of ϕ, then we add (δ, δ′) to Frb.

If ϕ−− is empty (ϕ requires no free witnesses) we set E := ∅, and SReq(δ) := {∅}
for every δ ∈ ∆. In this case we have in fact constructed an instance of the simple
version of the coloured castles problem.

If ϕ−− is not empty we proceed as follows.
For every δ, δ′ ∈ ∆ and every structure D built from intersections J of type δ and

J ′ of type δ′ in a free position such that D satisfies the ∀∀ constituents of ϕ, let ε be
the type of the pair (J, J ′) in D. We add ε to E, set InvE(ε) to be the type of the pair
(J ′, J) and set EndsE(ε) := (δ, δ′). Note that InvE is an involution as required.
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It remains do define SReq. For each δ ∈ ∆ and k 6 N , where N is the product of
the maximal possible size of an intersection whose type is from ∆ and the number of
conjuncts of type ∀∃ in ϕ−−, we repeat the following.

Generate all possible structures D consisting of an intersection J0 of type δ and
intersections J1, . . . , Jk of types from ∆ with all pairs (J0, Ji) in a free position. If
all elements from J0 have all the required free witnesses and the ∀∀ constituent of ϕ is
satisfied in each D�J0 ∪ Ji, we add {ε1, . . . , εk} to SReq(δ), where εi is the type of
the pair (J0, Ji) in D.

Proposition 17 Let ϕ be in EQ[τ0, E1, E2] normal form and let λ = (∆, Trow, Tcol,
Frb, E, InvE ,EndsE ,SReq) be the input to the coloured castles problem as described
above. Then λ has a solution if and only if ϕ is satisfiable in EQ[τ0, E1, E2].

Proof (⇐) Let A |= ϕ be a structure with exponentially bounded intersections. We
obtain from A a placement π = (π∆, πE) as in Section 5.3.1. Let us check that it fulfils
all the requirements of a solution.

Consider the multiplicity function θ of a row in π. Assume that this row corre-
sponds to an E1-class C in A. Let C′ be the structure whose existence is postulated
by Lemma 16. Let θ′ be the function returning for a given type δ the number of inter-
sections of this type in C′. By the construction of the coloured castle instance we have
θ′ ∈ Trow. Observe that θ safely extends θ′ since any intersection type which appears
at most once in C′ cannot appear more times in C (because C and C′ have exactly the
same types of pairs of intersections). Column multiplicities are treated analogously.

Consider now any pair of castles a of colour δ and a′ of colour δ′ in a skew position
in π. Observe that intersections corresponding to a, a′ are in a free position in A. Thus
(δ, δ′) 6∈ Frb.

By the choice of functions InvE and EndsE , the corresponding conditions on so-
lutions are obviously satisfied.

Finally, if E 6= ∅, then consider any castle a of colour δ. Let J0 be the intersection
in A corresponding to a. Let J1, . . . , Jk be a minimal collection of intersections such
that all elements from J find all of their required free witnesses in A�(J0 ∪ J1 ∪ . . . ∪
Jk). Let εi be the type of the pair (J0, Ji). It is clear by the choice of SReq that
{ε1, . . . , εk} ∈ SReq(δ). Since a sends arrows of colours ε1, . . . , εk to the castles
corresponding to the intersections J1, . . . , Jk, the SReq-condition on solutions is also
satisfied.

(⇒) Let π = (π∆, πE) be a solution to λ. Note that the construction of InvE and
EndsE allows us to build a partially defined structure A as described in Section 5.3.1.
We have still to define connections between some pairs of intersections of A.

Let J, J ′ be a pair of intersections in a free position such that the connection be-
tween them is not yet specified (this happens when πE(a, b) = ⊥ and πE(b, a) = ⊥
where a, b are castles corresponding to the intersections J, J ′). Since (π∆(a), π∆(b)) 6∈
Frb, there exists a type of a pair of intersections ε which may be given to (J, J ′) so as
to be consistent with the ∀∀ constituents of ϕ; we set the type of (J, J ′) to ε.

It remains to set the connection between intersections inside equivalence classes.
Consider, for instance, an E1-class C in A corresponding to row i in π. Let θ be
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the multiplicity function of i and θ′ a function in Trow which is safely extended by θ.
We choose a set of castles in i consisting of exactly θ′(δ) castles coloured by δ, for
every δ ∈ ∆. By the definition of Trow, we may define a structure on the intersections
corresponding to the chosen castles and satisfying ϕ++ ∧ ϕ+− ∧ ∀xyE1xy. Let us call
this structure C0. The remaining intersections from the class C can be joined to C0 in
the following way. Let J be an intersection in C\C0; its type is realised at least twice in
C0 (otherwise J would have to belong to C0, because θ′(δ) = 1 implies that θ(δ) = 1
and that the only intersection of this type in C would thus be in C0). Let J1, J2 be
distinct realisations of δ in C0. For any intersection J ′ in C0 except J1 we set the type
of (J, J ′) to be equal to the type of (J1, J ′); the type of (J, J1) to be equal to the type
of (J1, J2). This ensures that the resulting class still satisfies ϕ++ ∧ ϕ+− ∧ ∀xyE1xy.

The above steps guarantee that A |= ϕ++∧ϕ+−∧ϕ−+. It remains to see that also
A |= ϕ−−. Let w ∈ A and let J be the intersection containing w. Let δ be the type of
J , and let c be the castle in π corresponding to J . Let S = {ε1, . . . , εk} ∈ SReq(δ) be
the set whose existence in postulated by the conditions on the solution. Let c1, . . . , ck
be such that c sends an arrow of colour εi to ci. The construction of SRow ensures
that all elements of J , and in particular w, have all the required free witnesses in the
intersections corresponding to the castles c1, . . . , ck. 2

5.5 Solving the coloured castles problem (simplified version)
5.5.1 Certificates (simplified version)

We introduce the notion of a certificate for a solution of an instance of the simplified
coloured castles problem. We prove that a solution of the problem exists if, and only
if, there exists a certificate of a bounded size.

Before presenting a precise definition of the notion of a certificate we describe it
informally and roughly sketch how a solution is constructed from a certificate.

One of the elements of the certificate is a simple placement π0 containing finite
number of castles. Some of the rows and columns in π0 have multiplicity functions
safely extending those from Trow and Tcol. We will call such rows and columns, as
well as empty rows and columns, safe. Each of the remaining contains at most one
castle. The placement π0 serves as an initial part of the whole solution. From there we
proceed in stages: in the stage k + 1 we construct a placement πk+1 by adding some
finite number of castles to πk in order to make previously non-safe rows and columns
safe.

In each stage we consider non-safe rows or columns, which by our assumptions
contain single castles each. Depending on the colour of such a castle we find a pattern
in the certificate which tells how many castles of which colours are to be added to this
row or column to make it safe. Most of the newly added castles in some previously non-
safe row are put in new (i.e., previously empty) columns; some, however, are required
by the pattern to be joined to existing columns, which were safe in π0. Analogous
provisions apply to to process of filling up some column so as to make it safe.

Definition 18 Let π be a (simple) placement over ∆, and Srow, Scol ⊆ N be finite
subsets of N. The type of a castle a = (i, j) in π relative to sets Srow and Scol is the
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triple
δ̄ = (π∆(a), i′, j′) ∈ ∆× (Srow ∪ {⊥})× (Scol ∪ {⊥})

where i′ = i if i ∈ Srow and i′ = ⊥ else; and j′ = j if j ∈ Scol and j′ = ⊥ else.
If i′ 6= ⊥ and j′ 6= ⊥, then both the castle and its type are called royal.

Definition 19 A simple placement generator over ∆ is a tuple (π0, Srow, Scol,Prow,Pcol)
where

(a) π0 = π∆
0 is a simple placement with a finite number of castles.

(b) Srow and Scol are finite subsets of N, called sets of special rows and special
columns, respectively.

(c) Prow and Pcol are partial functions that return a row or column pattern for a given
colour δ.
A row pattern is of the form (B,w, ν∆,Col), a column pattern is of the form
(B,w, ν∆,Row), where

– ν∆ : B → ∆ is a finite ∆-coloured set;
– w is a distinguished element w ∈ B with ν∆(w) = δ;
– Col (in row patterns) is a function Col : B → Scol∪{⊥} with Col(w) = ⊥;

similarly Row (in column patterns) is a function Row: B → Srow ∪ {⊥}
with Row(w) = ⊥.

We say that a type δ̄ = (δ,⊥, j) appears in a row pattern (B,w, ν∆,Col) if there
exists a ∈ B \ {w} such that ν∆(a) = δ and Col(a) = j; similarly, δ̄ = (δ, i,⊥)
appears in a column pattern (B,w, ν∆,Row) if ν∆(a) = δ and Row(a) = i for some
a ∈ B \ {w}.

We say that a type δ̄ = (δ, i′, j′) appears in the placement generator if there exists a
castle of type δ̄ in π0 or δ̄ appears in a row pattern or a column pattern of this placement
generator.

Definition 20 A placement generator λ = (π0, Srow, Scol,Prow,Pcol) is a certificate
for a solution of an instance (∆, Trow, Tcol,Frb) of the simplified coloured castles
problem if the following are satisfied (we group these conditions under four separate
headings).

Initial Placement π0.
(I1) Each row (column) is safe or contains at most one castle.
(I2) If a row (column) belongs to Srow (Scol) then it is safe.
(I3) If castles a, a′ are in a skew position then (π∆(a), π∆(a′)) 6∈ Frb.
(I4) Every castle from a row in Srow belongs to a safe column;

similarly, the rows of castles in special columns are safe.
Row Patterns.
(R0) If a type (δ,⊥,⊥) appears in λ then Prow(δ) is defined.
For all colours δ, if Prow(δ) = (B,w, ν∆,Col), then
(R1) the multiplicity function of B (with colouring ν∆) belongs to Trow,
(R2) if j ∈ N then Col(a) = j for at most one a ∈ B,

24



(R3) if a ∈ B \ {w} is such that Col(a) = l 6= ⊥ and δ′ = ν∆(a), then column l of
placement π0 contains at least two castles of colour δ′.

Column Patterns.

(C0) – (C4) strictly analogous to the above, with roles of rows and columns exchanged.

Forbidden Pairs of Colours.
(F1) For any pair (δ, i, j) and (δ′, i′, j′) of types appearing in λ:

i = i′ ∈ N or j = j′ ∈ N or (δ, δ′) 6∈ Frb.

The next two sections will show that certificates are adequate in the sense of the
following assertion.

Lemma 21 An instance of the simplified coloured castles problem has a solution if,
and only if, it possesses a certificate.

5.5.2 From a certificate to a solution (simplified version)

Let (∆, Trow, Tcol,Frb) be an instance to the simplified coloured castles problem and
let λ = (π0, Srow, Scol,Prow,Pcol) be a certificate for this instance.

We construct a (possibly infinite) chain of simple placements π0, π1 . . ., starting
from the placement π0 given in the certificate, such that πk+1 is obtained from πk by
adding some finite number of castles. By

⋃
k∈N πk we denote the natural limit of this

chain, i.e., the simple placement which has a castle of colour δ in the field (i, j) if there
is a castle of colour δ in field (i, j) of πk for some k ∈ N.

Every placement πk will satisfy properties (I1) – (I4) from Definition 20 and will
contain only castles of types appearing in λ. Placements are extended in such a way
that each castle of πk will be safe (i.e., its row and column will be safe) in πn from
n = k + 1 onward. It follows that the limit placement

⋃
k∈N πk is a correct solution.

Note that it may contain infinite number of castles.
The inductive extension from πk to πk+1 is performed as follows.

From πk to πk+1. Assume that πk satisfies (I1) – (I4) and contains only castles of
types appearing in λ.

For castle a in πk in field (i, j) proceed as follows.

(a) If row i is not safe, add some castles to this row to make it safe. By (I1), a is the
only castle in i; by (I2), i 6∈ Srow; by (I4), j /∈ Scol. Thus the type δ̄ of a in πk,
which by the assumption appears in λ, is of the form (δ,⊥,⊥). Hence, by (R0),
Prow(δ) is defined. Let Prow(δ) = (B,w, ν∆,Col) and enumerate the elements
of B \ {w} as b1, . . . , bl. For each bj put a new castle of colour ν∆(bj) in row i;
if Col(bj) = ⊥, this new castle is put in an empty column, otherwise it is put
into column Col(bj). By (R2) there is no danger that two castles are put in the
same field.

(b) If column j is not safe, proceed analogously.

Note that for k > 0 we need to take actions according to (a) or (b) only for castles
added in step k. Also, no castle needs to be treated in both (a) and (b). For some new
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castles, no further action is required; this is because every new castle comes with a
safe row or column (built according to a pattern), and some of these castles are put in
special columns or rows, whence both their row and column are safe already.

It should be clear that all types of castles in πk+1 appear in λ. We argue that πk+1

satisfies properties (I1) – (I4). Suppose castle a has been newly added in row i. If it
was added in (a), then the multiplicity function of i is safe by (R1); otherwise, either
i ∈ Srow (and in this case row i remains safe by (C4)), or a is the only castle in row i.
Analogously we can show that the column of a is either safe or contains only a. This
implies (I1) and (I2). For (I3) consider a pair of castles in a skew position in πk+1:
their types appear in λ and their pair of colours is not in Frb by (F1); hence (I3) is
satisfied. (I4) is clearly preserved.

5.5.3 Extracting a certificate from a solution (simplified version)

Let (∆, Trow, Tcol,Frb) be an instance of the simplified coloured castles problem. Let
π = π∆ be a simple placement solving the problem. We show how to extract a certifi-
cate (π0, Srow, Scol,Prow,Pcol) from π.

Special rows and columns. We first distinguish a set Srow of special rows, a set Scol

of special columns and a set ∆0 ⊆ ∆ of special colours. Intuitively, a colour δ belongs
to ∆0 if it can appear only some specific number of times in a solution, or can only
appear in some specific number of rows or columns. Srow and Scol are, respectively,
rows and columns containing castles coloured with special colours.

The sets ∆0, Srow and Scol are obtained by saturating initial instantiations recur-
sively in order to achieve suitable closure conditions. We present a recursive process
for their definition that will also facilitate the proof of an exponential size bound on
Srow and Scol in Lemma 22 below.
Initialisation.

(0) If a single row (column) i contains all castles of some colour δ ∈ ∆, then add δ
to ∆0 and i to Srow (Scol); in particular, if there is only one castle of colour δ in
π, then both its row and its column become special in this step.

(0’) If a row i and a column j intersect in a castle and together contain all castles of
some colour δ ∈ ∆, but if no single row or column contains all those castles,
then add δ to ∆0, i to Srow and j to Scol.

Recursive saturation.
(1) If for some δ which is not yet in ∆0, every castle of colour δ belongs to a row

from Srow or to a column from Scol, then add δ to ∆0.
(2) If a is the only castle of colour δ ∈ ∆0 in some row i ∈ Srow and the column j

of a is not in Scol, then add j to Scol; similarly, if a is the only castle of colour
δ ∈ ∆0 in some column j ∈ Scol and its row i is not in Srow, add i to Srow.

We call castles coloured with special colours δ ∈ ∆0 special castles. Note that
special castles belong to special rows or special columns (or to both), but that special
rows and columns may contain non-special castles.

26



Let us consider again models from our examples in Section 5.1. They naturally
correspond to simple placements (see Section 5.3.1). Let us see which classes in those
models are translated into special rows and columns (call those classes special as well).
In Fig. 1 (a) the only special classes are the E1- and E2-classes of the leftmost element
(the latter is a singleton). In Fig. 1 (b) we find one more special class, viz. the lower line
of elements satisfying R. In both examples the classes are special already according
to (0). In Fig. 3 all four classes are special according to (0’).

The model from Fig. 2 is more interesting in that it illustrates a non-trivial saturation
process. Initially, by step (0), only the E2-class formed by the bottom line of elements
in S, both classes of the root (its E2-class is trivial) and two E2-classes containing
elements from P1 are special.5 By repeated applications of steps (1) and (2), however,
all classes and intersections successively become special.

This shows that the number of special classes may be necessarily exponential in
the number of colours6 in ∆. The following Lemma establishes a corresponding upper
bound.

Lemma 22 The size of Srow and the size of Scol are at most exponential in |∆|.

Proof Let t = |∆|. Step (1) can be executed at most t times. Let us denote by s0
the sum of the number of elements in Srow and in Scol after steps (0) and (0’), and
by sk the sum of the number of elements in Srow and the number of elements in Scol

after the k-th iteration of step (1). Clearly s0 ≤ 4t initially.7 Between the k-th and
(k + 1)-st iteration of (1), step (2) can be executed no more than tsk times, since
every (δ, i) ∈ ∆0 × Srow can produce at most one new member j of Scol and every
(δ, i) ∈ ∆0 × Scol can produce at most one new i ∈ Srow (and if a row (column) i
contains a castle a whose colour is a member of the current ∆0, then the column (row)
of a is already in Scol (Srow)). Therefore sk+1 ≤ sk + tsk ≤ (1 + t)sk, and it follows
that st ≤ (1 + t)t4t, which is exponential in t. 2

The following simple observation will be helpful later.

Lemma 23 Let δ = π∆(a), δ′ = π∆(a′) for some castles a, a′ that do not share a
special row or a special column (but may belong to the same non-special row or non-
special column). Then (δ, δ′) 6∈ Frb.

Proof Let a1, a2, . . . be the list of all castles of colour δ′. If one of them is in a skew
position with a in π then (δ, δ′) 6∈ Frb, since π is a correct solution. Otherwise, there
are three possible cases: all ai, including a′, are in the row of a; all ai are in the column
of a; or all ai are in the union of both. In the first case, the row of a becomes special
in step (0); in the second case, the column of a becomes special in step (0); and in the
third case, both the row and the column of a become special in step (0’). Thus a and a′

share a special row or a special column, contrary to the assumption of the lemma. 2

5Note that the elements in P1 have different colours, since only one of them is in L.
6And triply exponential in terms of formula size, if we translate the problem
7We bound s0 by 4t, rather than 2t, because sometimes an castle can produce two special rows and two

special columns, cf. Fig. 3.
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The initial placement π0. We construct π0 from π in three steps.
(1) For every row i ∈ Srow (column i ∈ Scol), for every δ ∈ ∆, mark exactly θ(δ)
castles in i, where θ ∈ Trow (θ ∈ Tcol) is a function which is safely extended by the
multiplicity function of row or column i.
(2) For every castle (i, j) marked in step (1) if i 6∈ Srow (j 6∈ Scol) then mark exactly
θ(δ) castles in row i (column j), where θ ∈ Trow (θ ∈ Tcol) is a function which is
safely extended by the multiplicity function of i (j).
(3) Let π′ be the placement obtained from π by removing all castles that have not been
marked in the previous steps. If a row i (column j) in π′ is not safe then for every castle
in this row (column) move it to an empty row (column) without changing its column
(row); this is always possible since we have only finitely many marked castles. Let π0

be the structure obtained at the end of this process.
It is readily checked that π0 meets conditions (I1), (I2) and (I4). For (I3) consider

two castle which were in the same row (column) in π but were moved to skew positions
in step (3): in this case, their original row (column) was not special, and by Lemma 23
their pair of colours is not forbidden.

Patterns. We describe the process of defining row patterns. The process for column
patterns is analogous. Let δ̄ = (δ,⊥,⊥) be a type realised in π by a castle a. Thus
δ ∈ ∆\∆0. Let i be the row of a; according to δ̄, i 6∈ Srow. Let θ ∈ Trow be a function
which is safely extended by the multiplicity function of row i. We mark exactly θ(δ′)
castles in i for every δ′ ∈ ∆. This is done in such a way that a is one of the marked
elements. Let B consists of all the marked castles.

Let ν∆(b) = π∆(b) for all b ∈ B. Consider b ∈ B and let (δ′,⊥, j) be its type
in π. If the type (δ′,⊥,⊥) is realized in π (by b or some other castle) then we set
Col(b) = ⊥, otherwise we set Col(b) = j (which may happen to be ⊥ as well). We
define Prow(δ̄) to be (B, a, ν∆,Col).

We repeat the process for all appropriate δ.
Let us now consider the conditions for certificates related to row patterns. We note

that all types in patterns or in π0 appear in π. Since we build a pattern for all types of
the form (δ,⊥,⊥), (R0) is satisfied. (R1) and (R2) are straightforward. Considering
(R3), let δ be the colour of a. Note that δ ∈ ∆0. The pattern B is constructed from
a non-special row i in π which intersects column Col(a) in an element of colour δ.
Column Col(a) in π has to contain at least two castles of colour δ, since otherwise
step (2) in the collection of special rows would have made row i special; at least two
such castles are retained in π0, by our choice of π0.

Forbidden pairs of colours. Property (F1) for certificates is satisfied: all types ap-
pearing in the certificate are types from π so that (F1) is a direct consequence of
Lemma 23.

5.5.4 Size of certificates (simplified version)

Let (∆, Trow, Tcol,Frb) be an instance of the simplified coloured castles problem. Let
max(Trow) = max{

∑
δ∈∆ θ(δ) : θ ∈ Trow}, i.e., max(Trow) is the maximal size of a
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set whose multiplicity function is taken from Trow; similarly define max(Tcol). Let λ =
(π0, Srow, Scol,Prow,Pcol) be a certificate extracted from a solution π. The number of
castles in the initial placement π0 can be bounded by |Srow|max(Trow)max(Tcol) +
|Scol|max(Tcol)max(Trow). Prow and Pcol are defined for at most |∆| colours, and
each of the patterns has at most max(Trow) or max(Tcol) elements. Finally, |Frb| can
be bounded by |∆|2.

Recall that, by Lemma 22, |Srow| and |Scol| are at most exponential in |∆|. Hence,
the whole certificate can be described in size that is exponential with respect to the
input size.

5.6 Solving the coloured castles problem (regular version)
The construction for the regular version goes along the same lines as the simplified
version. We emphasise the most important differences.

5.6.1 Certificates (regular version)

The new component of the certificate is a pattern function Pskw indicating a strategy
to satisfy skew requirements. For technical reasons, pattern functions now take as an
input not only the colour of a castle but also the information whether and to which
special row or column it belongs. We do not maintain property (I4) from the simplified
version; instead we impose additional restrictions (I4) – (I7) on π0 related to skew
requirements and consistency of arrow connections. Obviously some conditions on
skew patterns also appear.

The new complete definitions of placement generators and certificates are as fol-
lows.

Definition 24 A placement generator over (∆, E) is a tuple (π0, Srow, Scol,Prow,Pcol,Pskw)
where

(a) π0 = (π∆
0 , πE

0 ) is a placement with a finite number of castles.
(b) Srow and Scol are finite subsets of N, called sets of special rows and special

columns, respectively.
(c) Prow,Pcol and Pskw are partial functions that return a row, column, or skew pat-

tern for a given type (δ, i, j).
A row pattern is of the form (B,w, ν∆,Col), a column pattern is of the form
(B,w, ν∆,Row), and a skew pattern is of the form (B, ν∆, νE ,Row,Col),
where

– ν∆ : B → ∆ is a finite ∆-coloured set;
– w is a distinguished element w ∈ B with ν∆(w) = δ;
– Col (in row or skew patterns) is a function Col : B → Scol ∪ {⊥} with
Col(w) = j; similarly Row (in column or skew patterns) is a function
Row: B → Srow ∪ {⊥} with Row(w) = i.

We say that a type δ̄ = (δ,⊥, j) appears in a row pattern (B,w, ν∆,Col) if there
exists a ∈ B \ {w} such that ν∆(a) = δ and Col(a) = j; similarly, δ̄ = (δ, i,⊥)
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appears in a column pattern (B,w, ν∆,Row) if ν∆(a) = δ and Row(a) = i for some
a ∈ B \ {w}; and a type δ̄ = (δ, i, j) appears in a skew pattern (B, ν∆, νE ,Row,Col)
if ν∆(a) = δ, Row(a) = i and Col(a) = j for some a ∈ B.

We say that a type δ̄ = (δ, i, j) appears in the placement generator if there exists a
castle of type δ̄ in π0 or δ̄ appears in a row pattern, a column pattern or a skew pattern
of this placement generator.

A certificate for an instance of the regular version of the coloured castles problem
serves the same purpose as in the simple version. There are a few differences in the
actual format:

• (I4) from the simplified version is replaced by new conditions (I4) – (I7), which
are related to skew requirements and arrow connections.

• (R0) and (C0) are slightly modified.

• There is a whole new group of conditions, (S0) – (S5), related to skew patterns.

Definition 25 A placement generator λ = (π0, Srow, Scol,Prow,Pcol,Pskw) is a cer-
tificate for a solution of an instance (∆, Trow, Tcol,Frb, E, InvE ,EndsE ,SReq) of the
regular version of the coloured castles problem if it satisfies the following.

Initial Placement π0.
(I1) Each row (column) is safe or contains at most one castle.
(I2) If a row (column) belongs to Srow (Scol) then it is safe.
(I3) If castles a, a′ are in a skew position then (π∆

0 (a), π∆
0 (a′)) 6∈ Frb.

(I4) Each royal castle has its skew requirements satisfied in π0.
(I5) Each castle either has its skew requirements satisfied in π0 or has no arrows to

or from royal castles.
(I6) If πE

0 (a, b) = ε 6= ⊥ for castles a, b, then EndsE(ε) = (π∆
0 (a), π∆

0 (b)).
(I7) If πE

0 (a, b) = ε 6= ⊥ and πE
0 (b, a) = ε′ 6= ⊥ for castles a, b, then InvE(ε) = ε′.

Row Patterns. (unchanged)
(R0) If a type δ̄ = (δ,⊥, j) appears in λ then Prow(δ̄) is defined.
For all types (δ,⊥, j), if Prow(δ,⊥, j) = (B,w, ν∆,Col), then:
(R1) the multiplicity function of B belongs to Trow,
(R2) if j′ ∈ N then Col(a) = j′ for at most one a ∈ B,
(R3) if a ∈ B \ {w} is such that Col(a) = l 6= ⊥ and δ′ = ν∆(a), then column l of

π0 contains at least two castles of colour δ′.
Column Patterns. (unchanged)
(C0) – (C4) strictly analogous to the above, with roles of rows and columns exchanged.

Skew Patterns. (new)
(S0) Pskw is defined for all non-royal types (δ, i, j) appearing in λ.

If Pskw(δ, i, j) = (B, ν∆, νE ,Row,Col) then
(S1) EndsE(νE(a)) = (δ, ν∆(a)) for all a ∈ B;

30



(S2) Row(a) 6= i or Row(a) = ⊥ for all a ∈ B; similarly, Col(a) 6= j or Col(a) =
⊥;

(S3) if for some a ∈ B the colour ν∆(a) = δ′ is not royal and Row(a) = l 6= ⊥, then
row l of π0 contains at least two castles of colour δ′; similarly, for columns;

(S4) there is some S ∈ SReq(δ) such that every ε ∈ S is attained as value νE(a) = ε
for some a ∈ B;

(S5) If a royal type appears in a skew pattern then it also appears in π0.
Forbidden Pairs of Colours. (unchanged)
(F1) For any pair (δ, i, j) and (δ′, i′, j′) of types appearing in λ:

i = i′ ∈ N or j = j′ ∈ N or (δ, δ′) 6∈ Frb.

We establish the following in Sections 5.6.2 and 5.6.3 below.

Lemma 26 There exists a solution for an instance to the regular version of the coloured
castles problem if and only if it possesses a certificate.

5.6.2 From a certificate to a solution (regular version)

Let (∆, Trow, Tcol,Frb, E, InvE ,EndsE ,SReq) be an instance to the regular version
of the coloured castles problem and let λ = (π0, Srow, Scol,Prow,Pcol,Pskw) be a
certificate for this instance.

We construct a (possibly infinite) chain of finite placements π0, π1 . . ., starting from
the initial placement π0 provided by the certificate, such that πk+1 is obtained from πk

by adding some finite number of castles. Every placement πk will satisfy properties
(I1) – (I7) from Definition 25 and will contain only castles of types appearing in λ. We
extend placements in such a way that every castle from πk will have its row and its
column made safe and its skew requirements satisfied in πk+1. Thus the natural limit
of the chain of placements, defined as in the simple case, will be a correct solution.

The inductive extension from πk to πk+1 is performed as follows.

From πk to πk+1. Assume that πk satisfies (I1) – (I7), contains only castles of types
appearing in λ and contains no new royal types except those realised in π0. We extend
this placement to πk+1.

For castle a in πk in field (i, j) proceed as follows.

(a) If row i of a is not safe, add some castles to this row. By (I1), a is the only
castle in i; by (I2) i 6∈ Srow. Thus the type δ̄ of a in πk is of the form (δ,⊥, j)
and by the inductive assumption it appears in λ. By (R0), Prow is defined for
δ̄. Let Prow(δ̄) = (B,w, ν∆,Col) and let b1, . . . , bl enumerate the elements of
B \ {w}. For each bj put a new castle of colour ν∆(bj) in row i; if Col(bj) = ⊥
the new castle is put into an empty column, otherwise into column Col(bj). By
(R2) there is no danger that two castles are put in the same field.

(b) If column j of a is not safe proceed analogously.
(c) If a has its skew requirements not already satisfied in πk, then we satisfy them

in πk+1 as follows. By (I4) and the inductive assumption about royal types, a
is not royal; by (S0) this implies that Pskw is defined for the type δ̄ = (δ, i, j)
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of a. Let Pskw(δ̄) = (B, ν∆, νE ,Row,Col) and enumerate the elements in B
as b1, . . . , bl. If Row(bj) 6= ⊥ and Col(bj) 6= ⊥, find a royal castle c in πk of
type (ν∆(bj),Row(bj),Col(bj)); such a castle exists by (S5); by (I5) it is not
yet connected to a by an arrow, so we may put an arrow of colour νE(bj) from
a to c.
For each of the remaining bj put a new castle of colour ν∆(bj) in πk+1; if
Row(bj) = Col(bj) = ⊥ the new castle is put it in an arbitrary intersection
of an empty row with and empty column; if Row(bj) = i ∈ N into row i (and a
fresh column); if Col(bj) = j ∈ N into column j (and a fresh row).

Note that, similarly to the simplified version, we need to take some actions only for
some castles added in step k. This time, however, there may be castles for which we
have to perform some actions in all of (a), (b), (c), since some castles added according
to skew patterns come without a safe row or a safe column. Observe also that, in
contrast to the simplified version, we sometimes have to construct a safe row (column)
for a castle in a special column (row); again, this is because some castles are put in
special columns or rows according to skew patterns.

It should be clear that all types of castles in πk+1 appear in λ. Our strategy of
extending placements and (S5) guarantee also that no new royal types are realised in
πk+1.

It is also not hard to see that πk+1 satisfies properties (I1) – (I5). Consider the row
of a newly added castle a. If it was added in (a) then its multiplicity function is safe
by (R1). In the other case the row either belongs to Srow (and in this case it remains
safe by (C3) or (S3)), or contains only a. Analogously we can show that the column
of a is either safe or contains only a. This implies (I1) and (I2). (I3) is satisfied due to
(F1) (cf. the simple version). (I4) and (I5) obviously remain true. (I6) is preserved due
to (S1). (I7) is maintained since there may be arrows simultaneously from a to b and
from b to a only if a, b are castles from π0.

5.6.3 Extracting a certificate from a solution (regular version)

Let (∆, Trow, Tcol,Frb, E, InvE ,EndsE ,SReq) be an instance of the regular version
of the coloured castles problem and let π = (π∆, πE) be a solution. We extract a valid
certificate λ = (π0, Srow, Scol,Prow,Pcol,Pskw) from π.

Special rows and columns. These are defined exactly as in the simple version.

The initial placement. We construct π0 from π in the following steps.
(1) In every row i ∈ Srow (column i ∈ Scol), for every δ ∈ ∆, mark exactly θ(δ)
many castles where θ ∈ Trow (θ ∈ Tcol) is a function that is safely extended by the
multiplicity function of i. Additionally mark all royal castles.
(2) For every royal castle c mark a minimal number of castles to ensure that all skew
requirements of c are satisfied.
(3) For every non-royal castle a marked in step (2) mark a minimal number of castles
to ensure that all skew requirements of a are satisfied.
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(4) For every royal castle a retain the arrows from a to castles added in (2) to satisfy
its skew requirements. Similarly, for every castle a added in step (2), retain the arrows
from a to castles added in (3) to satisfy its skew requirements. All remaining arrows
and all non-marked castles are removed; let π′

0 be the placement thus obtained.
(5) If a row i (column j) in π′

0 is not safe, we move every castle in this row (column)
to an empty row (column) without changing its column (row). This is always possible
since there are only finitely many marked castles. Every castle moved in this process
retains all arrow links with other castles.

Let π0 be the placement thus obtained.
It is readily checked that π0 meets conditions (I1) and (I2). The only potential

problem with (I3) arises if some castles, which originally were in the same row or
column, are moved to skew positions in step (5). But in this case, their original shared
row or column was not special and by Lemma 23 their pair of colours is not forbidden.
(I4) is ensured in steps (2) and (4); (I5) in steps (3) and (4). For (I6) and (I7) observe
that in π′

0 all castles and arrows are taken from the original solution π (we only removed
some castles and arrows). So π′

0 satisfies (I6) and (I7). Moving some castles to another
positions according to (5) cannot spoil these properties.

Row and column patterns. We describe the process of defining row patterns. The
process for column patterns is analogous.

Let δ̄ = (δ,⊥, j) be a type realised in π by a castle a. Let i be the row of a. Let
θ ∈ Trow be a function which is safely extended by the multiplicity function of the
row i. We mark exactly θ(δ′) castles in i for every δ′ ∈ ∆; we do this in such a way
that a is one of the marked elements. Let B consist of all the marked castles. We put
ν∆(b) := π∆(b) for all b ∈ B. Put Col(a) := j. Consider some b ∈ B \ {a}, of
type (δ′,⊥, j) according to π. If the type (δ′,⊥,⊥) is realized in π (by b or some other
castle) then we set Col(b) = ⊥, otherwise we set Col(b) = j (which may happen to be
⊥). We define Prow(δ̄) to be (B, a, ν∆,Col).

We repeat the process for all appropriate δ̄.
Let us now consider requirements (R0) – (R3) on certificates. All types that ap-

pear in patterns or in π0 are realised in π; thus (R0) is satisfied. (R1) and (R2) are
straightforward.

Consider now (R3). Let (B,w, ν∆,Col) be the row pattern returned for some
(δ,⊥, j). Let a ∈ B \ {w}, Col(a) = l 6= ⊥ and let δ′ = ν∆(a). Note that δ′

is a special colour, since otherwise we would have a castle coloured by δ′ in a non-
special row and a non-special column, and thus, when constructing the pattern, we
would set Col(a) = ⊥. The pattern B is constructed from a non-special row i in π
which intersects column Col(a) in an element of colour δ′. The column Col(a) in π
has to contain at least two realisations of δ, since otherwise step (2) of distinguishing
special rows and column would have made row i special; at least two such castles are
retained in π0, by our choice of π0.

Skew patterns. Let δ̄ = (δ, i, j) with i = ⊥ or j = ⊥ be a type realised in π. Let
a be a realisation of δ̄ in π. Let S ∈ SReq(δ, i, j) be a set such that a sends arrow of
colour ε for all ε ∈ S. For every ε ∈ S choose some castle b such that a sends an
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arrow of colour ε to b. Add b to B and set ν∆(b) := π∆(b). Let i′ be the row of b
and j′ its column. If i′ ∈ Srow and j′ ∈ Scol (i.e., the type of b is royal) or i′ 6∈ Srow

and j′ 6∈ Scol or if there is no realisation of (δ,⊥,⊥) in π, then set Row(b) = i′ and
Col(b) = j′, otherwise set Row(b) = Col(b) = ⊥. Set νE(b) = πE(a, b).

Properties (S0) – (S2) are straightforward to check. (S3) holds because of the same
arguments as used for (R3). (S4) and (S5) easily follow from the construction.

5.6.4 Size of certificates (regular version)

The analysis of the size of certificates is very similar to the simple case: the number of
castles in the initial placement is still at most exponential with respect to the size of the
input. Pattern functions Prow,Pcol,Pskw are defined for an at most exponential number
of types. So the whole certificate can still be described in exponential size.

5.7 Complexity issues
Consider an FO2-formula ϕ . In polynomial time we can transform it into EQ[τ0, E1, E2]-
normal form formula ϕ′, such that ϕ and ϕ′ are satisfiability equivalent over EQ[τ0, E1, E2].
We reduce satisfiability of ϕ′ to the coloured castles problem as described in Sec-
tion 5.4. This reduction requires generating some objects of size doubly exponential
with respect to |ϕ| and checking whether they satisfy certain properties, which are
simple to verify. Thus it works in in doubly exponential time.

Given an instance of the coloured castles problem we check whether it is solvable
in a straightforward manner by guessing a pattern generator of at most exponential
size and checking the requirements for a valid certificate. This procedure works in
nondeterministic exponential time with respect to the size of the instance.

Combining the above, we finally obtain a 3NEXPTIME upper bound on the satisfi-
ability problem of FO2 over the class of models with two equivalence relations. This
proves part (ii) of Theorem 1.

6 Three Equivalence Relations
It is shown in [13] that FO2 is undecidable over equivalence structures with four equiva-
lence relations. We sharpen this result by reducing the number of equivalence relations
to three, thus completing the picture. In fact we obtain a stronger result. Its proof uses a
special adaptation of a reduction of the domino tiling problem [3], which is particularly
suited for FO2, as presented in [26] based on work in [13, 15].

A conservative reduction from one logic to another is a reduction that simultane-
ously translates both the satisfiability problem (satisfiability over all structures) and
the finite satisfiability problem (satisfiability in finite structures). The existence of a
conservative reduction from FO to some other logic L implies not just that SAT(L)
and FINSAT(L) are both undecidable, but even that the complement of SAT(L) is
recursively inseparable from FINSAT(L), cf. [3]. A logic (fragment of FO) admit-
ting a conservative reduction from FO is classically referred to as a conservative re-
duction class. These notions and this observation extend naturally to the setting with
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additional semantic restrictions on the class of (finite) models admitted for L. In our
case, a conservative reduction to FO2 over equivalence structures with three equiv-
alence relations in particular implies an analogous inseparability result concerning
SAT(FO2, EQ[τ0;E1, E2, E3]) and FINSAT(FO2, EQ[τ0;E1, E2, E3]).

Proposition 27 FO2 over EQ[τ0;E1, E2, E3] forms a conservative reduction class.

A closer inspection of the formulae used in the basic reductions given below, or
ramifications of these, show that FO2 can be further restricted to the two-variable
guarded fragment without equality and in a vocabulary consisting of just unary predi-
cates apart from E1, E2, E3.

Corollary 28 Satisfiability and finite satisfiability in EQ[τ0;E1, E2, E3] are undecid-
able even for the following fragment of FO2 in vocabularies τ0 consisting only of unary
predicates: conjunctions of sentences of the forms

(a) ∀x∀y(Eixy → χ(x, y)), and
(b) ∀x(α(x) → ∃y(Eixy ∧ α′(y))),

for quantifier-free and equality-free formulae χ and α and α′. This fragment is in par-
ticular contained in the two-variable guarded fragment (note however, that equivalence
symbols are allowed in χ).

Our underlying reduction of the tiling problem to FO2 satisfiability in restricted
classes of structures, which serves to establish a conservative reduction, is closely based
on the framework of [13, 15] and its ramifications in [26]. We include the following
basic definitions and lemmas (without proofs) from [26] for convenience.

Let GZ be the canonical grid structure on Z× Z:

GZ = (Z2, H, V ),

H = {((p, q), (p+ 1, q)) : p, q ∈ Z},

V = {((p, q), (p, q + 1)) : p, q ∈ Z},

and let GN denote the standard grid on N × N, which is just the restriction of GZ to
N× N. Let Gm denote the standard grid on a finite m×m torus:

Gm = (Z/mZ× Z/mZ,H, V ),

H = {((p, q), (p′, q)) : p′ − p ≡ 1 mod m},

V = {((p, q), (p, q′)) : q′ − q ≡ 1 mod m}.

Let Ai = (Ai,Hi, Vi), i = 1, 2. A1 is homomorphically embeddable into A2 if
there is a homomorphism π : A1 → A2, i.e., a mapping π such that for all v, v′ ∈ A1:
(v, v′) ∈ H1 ⇒ (π(v), π(v′)) ∈ H2 and (v, v′) ∈ V1 ⇒ (π(v), π(v′)) ∈ V2. For
instance, GN is homomorphically embeddable into GZ, and both are homomorphically
embeddable into every Gm.

In order to allow for a simultaneous reduction of the infinite and periodic tiling
problems to satisfiability and finite satisfiability, one wants to work over a sufficiently
rich class of grid-like structures in the following sense.
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Definition 29 An infinite structure G = (G,H, V ) is called grid-like if GN is homo-
morphically embeddable into G; a finite G is grid-like if some Gm is homomorphically
embeddable into G.

A class G of grid-like structures is called rich if at least one of GN or GZ ∈ G, and
if for all n ≥ 1 there is some k such that Gk·n ∈ G.

The following Lemma gives a simple and sufficient local criterion for grid-likeness
(cf. Lemma 2.4 in [26]). We say that H is complete over V in G = (G,H, V ) if G
satisfies

∀x∀y∀x′∀y′((Hxy ∧ V xx′ ∧ V yy′) → Hx′y′).

Lemma 30 Let G = (G,H, V ) satisfy the FO2-axiom ∀x(∃yHxy ∧ ∃yV xy). If H is
complete over V , then G is grid-like.

Lemma 31 If a rich class G of grid-like structures is FO2-axiomatisable over C, then
SAT[FO2, C] and FINSAT[FO2, C] are undecidable. In fact, FO2 over C induces a
conservative reduction class so that the complement of SAT[FO2, C] is recursively in-
separable from FINSAT[FO2, C].

See [4, 16, 3] for the undecidability and recursive inseparability of corresponding
tiling problems, which serve as the natural intermediaries here, and [13] and Lemma 2.3
in [26] in particular for the last lemma.

For our present purposes it therefore suffices to show the following.

Proposition 32 There is a rich class G of grid-like structures that is FO2-axiomatisable
over EQ[τ0;E1, E2, E3]. In fact there is an FO2-sentence η such that

(a) GN and all G3m for m ≥ 1 admit expansions to EQ[τ0;E1, E2, E3] models of η.
(b) Every EQ[τ0;E1, E2, E3] model of η is grid-like.

Proof Let us expand the standard grid GN to the structure ḠN illustrated in Figure 4.
Besides grid relations H , V (omitted from the picture) and equivalence relations Ei,
i = 1, 2, 3, we use unary predicates Hi, Vi, for i = 0, 1, 2, which periodically mark
rows and columns of the grid. Note that the whole expansion is periodic and that the
size of all equivalence classes is bounded (a class consists of at most nine elements);
these two facts are crucial for the proof.

We capture some properties of ḠN by the sentence η, observe that every G3m can
also be expanded to a model of η and prove that every model of η which interprets
E1, E2, E3 as equivalence relations is grid-like.

The sentence η is the conjunction of the following formulae:
(1) The initial formulae

∃x(H0x ∧ V0x),

∀x(∃yHxy ∧ ∃yV xy),

∀x((
∨̇

0≤i≤2

Hix) ∧ (
∨̇

0≤i≤2

Vix)).
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Figure 4: Expansion of the grid GN. Elements on the borders and inside the lightgray,
darkgray and white areas form, respectively, E1-, E2- and E3-classes.

(2) A formula axiomatising H , which has the following shape

∀xy (Hxy → (
∨

0≤i,j≤2

ϕH
ij )),

where ϕH
ij describes values of unary predicates and equivalences on H-related vertices

(3k + i, 3l + j) and (3k + i+ 1, 3l + j), for k, l ∈ N, e.g.,

ϕH
00 ≡ E1xy ∧H0x ∧ V0x ∧H1y ∧ V0y, and

ϕH
11 ≡ E2xy ∧ E3xy ∧H1x ∧ V1x ∧H2y ∧ V1y.

(3) A formula axiomatising V , which is built similarly to the one for H .
(4) A group of nine formulae (one for each combination of values of Hi, Vj on hori-
zontally adjacent vertices) stating that some elements that are connected by one equiv-
alence relation are linked by H . Sample formulae from this group are

∀xy ((E2xy ∧H1x ∧ V1x ∧H2y ∧ V1y) → Hxy).

∀xy ((E3xy ∧H1x ∧ V2x ∧H2y ∧ V2y) → Hxy).

It should be clear that ḠN is a model of η. In particular, note that equivalence
relations connect only close elements, so (4) does not impose unwanted H-connections
between elements which are distant from each other in the grid. It is also not hard to
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see that every G3m can be expanded to a model of η. In fact, a natural quotient of the
above expansion of GN serves this purpose.

We sketch the argument for grid-likeness of a model G |= η. By (1), G satisfies
∀x(∃yHxy ∧ ∃yV xy) so we can use Lemma 30. We show that H is complete over V .
Assume that for a, a′, b, b′

G |= Hab ∧ V aa′ ∧ V bb′.

We show that then G |= Ha′b′.
We have to consider nine cases distinguished by values of the Hi and Vi on a. Let

us go through one of them, for instance, G |= H1a ∧ V1a.
By (2), we have

G |= H2b ∧ V1b ∧ E2ab ∧E3ab.

Similarly (3) implies

G |= H1a
′ ∧ V2a

′ ∧E2aa
′ ∧E3aa

′ and G |= H2b
′ ∧ V2b

′ ∧ E3bb
′.

From transitivity of E3 it follows that G |= E3a
′b′. Now an appropriate formula of the

form (4) guarantees G |= Ha′b′, which finishes the proof for this case. The remaining
eight cases can be treated in the same way. 2

Remark. The technique we used in the proof was provided in [26] for extensions of
FO2. It is not difficult to adapt it to extensions of the two-variable guarded fragment
GF2 without equality. All the formulae in our proof are essentially guarded. Moreover
relations H and V do not play a crucial role. They can be defined in terms of E1,
E2 and E3 and extra unary predicates. This means that we can show Corollary 28.
Similar result was obtained independently in [18]. For more about the satisfiability of
the guarded fragment in restricted classes of models see [9, 31, 19, 20, 18, 22].

7 Conclusion
We considered the satisfiability problem for two-variable logic FO2 in the class of
structures in which some designated subset of the binary relation symbols are required
to be interpreted as equivalence relations. We gave a complete classification regarding
decidability with respect to the number of equivalence relations. If just one relation
is required to be an equivalence relation, FO2 retains its finite model property and its
satisfiability problem is still decidable and NEXPTIME-complete. Over structures with
two equivalence relations FO2 does have infinity axioms, but the satisfiability problem
is still decidable – and we give a 3NEXPTIME upper bound. Over structures with three
equivalence relations the satisfiability problem for FO2 becomes undecidable.

There is one particular auxiliary result of independent interest: an arbitrary sub-
structure B of a structure A can be replaced by a substructure B′, whose size is ex-
ponentially bounded in the signature, in such a way that the new structure satisfies all
normal form FO2 sentences that are true in A.
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Since FO2 lacks the finite model property in the presence of two equivalence re-
lations, it is natural to ask about satisfiability in finite models in this case. The finite
satisfiability problem is shown to be decidable in [23]. That paper uses integer pro-
gramming and a more involved analysis of models. Roughly speaking, the technique
there consists in guessing a doubly exponential special fragment of a model (whereas
our construction of π0 is exponential in the number of colours, and thus triply exponen-
tial in the size of |ϕ|) and describing the remainder by a system of linear inequalities.
The authors of [23] conjecture that, by some Carathéodory-like results on integer pro-
gramming from [8], this approach can be extended to yield a 2NEXPTIME upper bound
for both the satisfiability and the finite satisfiability problem. A corresponding lower
bound has recently been obtained by Ian Pratt-Hartmann8, using ideas similar to those
from Section 5.1.2,

Acknowledgement. We would like to thank the anonymous referees for their com-
ments and criticism of an earlier version, which helped to improve the presentation.
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