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Abstract. For a finite connected graph E with set of edges E, a finite
E-generated group G is constructed such that the set of relations p = 1
satisfied by G (with p a word over E ∪E−1) is closed under deletion of
generators (i.e. edges). As a consequence, every element g ∈ G admits
a unique minimal set of edges needed to represent g (the content of
g). The crucial property of the group G is that the connectivity in the
graph E is encoded in G in the following sense: if a word p forms a path
u −→ v in E then the content of the corresponding group element [p]G
spans a connected subgraph of E containing the vertices u and v. As an
application it is shown that every finite inverse monoid admits a finite
F -inverse cover. This solves a long-standing problem of Henckell and
Rhodes.

1. Introduction

In the influential paper [11], Henckell and Rhodes stated a series of con-
jectures and two problems. The paper was concerned with the celebrated
question whether every finite block group M (a monoid in which every von
Neumann regular element admits a unique inverse) is a quotient of a sub-
monoid of the power monoid P(G) of some finite group G. The authors
presented an affirmative answer to the question modulo some conjecture,
namely about the structure of pointlike sets; a subset X of a finite monoid
M is pointlike (with respect to groups) if and only if in every subdirect
product T ⊆ M × G of M with a finite group G there exists an element
g ∈ G with X × {g} ⊆ T (that is, all elements of X relate to some point
g ∈ G.) All stated conjectures concerned various aspects of pointlike sets.
For example, for inverse monoidsM the conjecture was that a subset ofM is
pointlike if and only if it admits an upper bound with respect to the natural
partial order of M . Shortly after, all stated conjectures and one of the two
problems (about liftable tuples of monoids) have been verified respectively
solved by Ash in his celebrated paper [3]. The importance of the latter
paper went beyond its immediate task as in the following years interesting
and deep connections with the profinite topology of the free group [21] and
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finite model theory [12] have been revealed and studied [1, 2]. Yet the sec-
ond stated problem which was called by the authors a “stronger form of the
pointlike conjecture for inverse monoids” has not been solved in Ash’s paper
and has since then attracted considerable attention [14, 25, 26, 5, 24, 23, 8].
It asked:

Problem 1.1. Does every finite inverse monoid admit a finite F -inverse
cover?

An inverse monoid is F -inverse if every congruence class of the smallest
group congruence σ of F admits a greatest element (with respect to the
natural partial order) and an inverse monoid F is a cover of an inverse
monoidM if there exists a surjective, idempotent separating homomorphism
F →M .

The second author was the first to understand that Problem 1.1 admits
a positive solution. In his paper [9] and his dissertation [10] he presented a
proof which strongly relied on a result of the third author [17, 18] about the
existence of certain finite groupoids. Later, some flaws were discovered in
[17, 18] which, however, have been fixed in the meantime [19]. The intention
of the present paper is to give a complete and self-contained presentation of
the solution to Problem 1.1 (up to classical results on inverse monoids) which
is based on the ideas and proofs of [19] but is in a sense tailored for what is
needed in the present context, and is presented in a language which (hope-
fully) makes it easier accessible to the semigroup community. The paper is
organised as follows: Section 2 collects prerequisites from inverse monoids,
graphs and a proof that the existence of certain groups yields a positive
solution of Problem 1.1. Section 3 introduces the main graph theoretic tools
while Section 4 presents two crucial technical results. Finally, in Section 5
we present a construction of the required groups. This construction intends
to “reflect the geometry” of a given finite graph.

2. Inverse monoids

2.1. Preliminaries. A monoidM is inverse if every element x ∈M admits
a unique element x−1, called the inverse of x, satisfying xx−1x = x and
x−1xx−1 = x−1. This gives rise to a unary operation −1 : M → M and
an inverse monoid may equivalently be defined as an algebraic structure
(M ; ·,−1, 1) with · an associative binary operation, 1 a neutral element with
respect to · and a unary operation −1 satisfying the laws

(x−1)
−1

= x, (xy)−1 = y−1x−1, xx−1x = x and xx−1yy−1 = yy−1xx−1.

In particular, the class of all inverse monoids forms a variety of algebraic
structures (in the sense of universal algebra), the variety of all groups
(G; ·,−1, 1) being a subvariety. From basic facts of universal algebra it fol-
lows that every inverse monoid M admits a smallest congruence such that
the corresponding quotient structure is a group. This congruence is usually
denoted σ and it can be characterised as the smallest congruence on M that
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identifies all idempotents ofM with each other. Another way to characterise
this congruence is this: two elements x, y ∈ M are σ-related if and only if
xe = ye for some idempotent e of M (and this is equivalent to fx = fy for
some idempotent f of M).

Every inverse monoid M is equipped with a partial order ≤, the natural
order, defined by x ≤ y if and only if x = ye for some idempotent e of M
(this is equivalent to x = fy for some idempotent f of M). This order is
compatible with the binary operation of M . In terms of the natural order,
the congruence σ can be characterised as the smallest congruence for which
the natural order on the quotient is the identity relation, and, likewise as
the smallest congruence that identifies every pair of ≤-comparable elements;
the latter leads to yet another description of σ: two elements x and y are
σ-related if and only if they admit a common lower bound with respect to
≤. For further information on inverse monoids the reader is referred to the
monographs by Petrich [20] and Lawson [14].

An inverse monoid is F -inverse if every σ-class possesses a greatest ele-
ment with respect to ≤. For recent developments concerning the systematic
study of F -inverse monoids and their relevance in various contexts the reader
is referred to [7] and the literature cited there. An F -inverse monoid F is an
F -inverse cover of the inverse monoid M if there exists a surjective idempo-
tent separating homomorphism F →M . As mentioned in the introduction,
it has been an outstanding open problem whether every finite inverse monoid
M admits a finite F -inverse cover. In order to formulate the following very
useful result [20, Theorem VII.6.11] we need the concept of premorphism:
for inverse monoids M and N , a mapping ψ : M → N is a premorphism if
ψ(1) = 1, ψ(m−1) = (ψm)−1 and (ψm)(ψn) ≤ ψ(mn) for all m,n ∈M .

Theorem 2.1. Let H be a group andM be an inverse monoid; if ψ : H →M
is a premorphism such that, for every m ∈ M , there exists h ∈ H with
m ≤ ψ(h), then the subdirect product

F := {(m,h) ∈M ×H | m ≤ ψ(h)}

is an F -inverse cover of M . Conversely, every F -inverse cover of M can be
so constructed.

The following is an easy observation.

Observation 2.2. Suppose that ψ : H → M is as in Theorem 2.1 and
π : M → N is a surjective homomorphism with N an inverse monoid; then
the composition π ◦ ψ : H → N is a premorphism which also satisfies the
condition of Theorem 2.1.

Hence the task for Problem 1.1 is, given a finite inverse monoid N , to
find a finite group H which admits a premorphism H → N satisfying the
condition of Theorem 2.1. Observation 2.2 eases the situation a bit since we
need to do so only for a special type of inverse monoids (in the rôle of M)
which we shall describe below (see § 2.4).
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Throughout, for any non-empty set X (of letters, of edges, etc.) we let
X−1 := {x−1 | x ∈ X} be a disjoint copy of X consisting of formal inverses

of the elements of X, and set X̃ := X ∪ X−1. The mapping x → x−1 is

extended to an involution of X̃ by setting (x−1)
−1

= x, for all x ∈ X. We let

X̃∗ be the free monoid over X̃, which, subject to (x1 · · · xn)
−1 = x−1

n · · · x
−1
1

(where xi ∈ X̃), is the free involutory monoid over X. The elements of X̃∗

are called words over X̃ , and we let 1 denote the empty word.

2.2. Graphs. In this paper, we consider a very liberal notion of graph struc-
tures, admitting multiple directed edges between pairs of vertices, includ-
ing directed loops at individual vertices. In the literature, such structures
are often called directed multigraphs or quivers. The following formalisa-
tion is convenient for our purposes. A graph E is a two-sorted structure
(V ∪K;α, ω,−1) with V its set of vertices, K its set of edges (disjoint from
V ), with incidence functions α : K → V and ω : K → V , selecting, for
each edge e the initial vertex αe and the terminal vertex ωe, and involution
−1 : K → K satisfying αe = ωe−1, ωe = αe−1 and e 6= e−1 for every edge
e ∈ K. Instead of initial/terminal vertex the terms source/target are also
used in the literature. One should think of an edge e with αe = u and ωe = v

in “geometric” terms as e : •
u
−−−−→•

v
and its inverse e−1 : •

u
←−−−−•

v
as “the

same edge but traversed in the opposite direction”. A graph (V ∪K;α, ω,−1)

is oriented if the edge set K is partitioned as K = E ∪ E−1 = Ẽ such that
every −1-orbit contains exactly one element of E and one of E−1; the edges
in E are the positive or positively oriented edges, those in E−1 the negative
or negatively oriented ones. An oriented graph E with set of positive edges

E will be denoted as E = (V ∪ Ẽ;α, ω,−1).
A subgraph of the graph E is a substructure that is induced over a subset

of V ∪ K which is closed under the operations α and −1 (and therefore
also under ω). In particular, every subset S ⊆ V ∪ K generates a unique
minimal subgraph 〈S〉 of E containing S, which is the subgraph of E spanned
by S. An automorphism of a graph E = (V ∪ K;α, ω,−1) is a map ϕ =
ϕV ∪ ϕK : V ∪K → V ∪K with ϕV : V → V , ϕK : K → K being bijections
satisfying for all e ∈ K:

αϕK(e) = ϕV (αe), ωϕK(e) = ϕV (ωe), ϕK(e−1) = (ϕK(e))−1.

We note that the second equality is a consequence of the first and third. In
the oriented case we require in addition that ϕẼ(E) = E and (therefore also)

ϕẼ(E
−1) = E−1. A benefit from our definition of a graph as a two-sorted

functional rather than a relational structure is that there is no distinction
between weak and induced subgraphs and that concepts like quotient and
homomorphism are easier to handle.

Let A be a finite set; a labelling of the graph E = (V ∪K;α, ω,−1) by the

alphabet A (an A-labelling, for short) is a mapping ℓ : K → Ã respecting the

involution: ℓ(e−1) = ℓ(e)−1 for all e ∈ K. The labelling ℓ : K → Ã gives rise
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to an orientation of E: setting E := {e ∈ K | ℓ(e) ∈ A} (positive edges) and
E−1 := {e ∈ K | ℓ(e) ∈ A−1} (negative edges) then E ∩ E−1 = ∅ and we

get K = Ẽ.
We consider A-labelled graphs as structures (V ∪K;α, ω,−1, ℓ, A) in their

own right. By a subgraph of an A-labelled graph we mean just a subgraph
with the induced labelling. Morphisms of A-labelled graphs are naturally de-
fined as follows. LetK = (V ∪K;α, ω,−1, ℓ, A) and L = (W∪L;α, ω,−1, ℓ, A)
be A-labelled graphs. A morphism ϕ : K→ L of A-labelled graphs is a map-
ping ϕ : V ∪K → W ∪ L, mapping vertices to vertices and edges to edges,
that is compatible with the operations α and −1 (and therefore also ω) as
well as with the labelling.

A congruence Θ on the A-labelled graph K = (V ∪K;α, ω,−1, ℓ, A) is an
equivalence relation on V ∪ K contained in (V × V ) ∪ (K × K) which is
compatible with the operations α and −1 (therefore also ω) and respects ℓ:

e Θ f =⇒ αe Θ αf, ωe Θ ωf, e−1 Θ f−1 for all e, f ∈ K

and

e Θ f =⇒ ℓ(e) = ℓ(f) for all e, f ∈ K.

The definition of the quotient graph K/Θ for a congruence Θ is obvious,
and we have the usual Homomorphism Theorem.

A non-empty path π in E is a sequence π = e1e2 · · · en (n ≥ 1) of con-
secutive edges (that is ωei = αei+1 for all 1 ≤ i < n); we set απ := αe1
and ωπ = ωen (denoting the initial and terminal vertices of the path π);
the inverse path π−1 is the path π−1 := e−1

n · · · e
−1
1 ; it has initial vertex

απ−1 = ωπ and terminal vertex ωπ−1 = απ. We also consider, for each
vertex v, the empty path at v, denoted εv for which we set αεv = v = ωεv
and ε−1

v = εv (it is convenient to view εv as the “empty edge at v” and one
may identify this with the vertex v itself). We say that π is a path from
u = απ to v = ωπ, and we will also say that u and v are connected by π (and
likewise by π−1). A graph is connected if any two vertices can be connected
by some path. The subgraph 〈π〉 spanned by the non-empty path π is the
graph spanned by the edges of π, it coincides with 〈π−1〉; the graph spanned
by an empty path εv simply is {v} (one vertex, no edge). For a path e1 · · · ek
in an A-labelled graph E, its label is ℓ(e1 · · · ek) := ℓ(e1) · · · ℓ(ek) which is a

word in Ã∗.

2.3. A-generated inverse monoids. We fix a non-empty set A (called
alphabet in this context). An inverse monoid M together with a (not nec-
essarily injective) mapping iM : A → M (called assignment function) is
an A-generated inverse monoid if M is generated by iM (A), as an inverse
monoid, that is, generated with respect to the operations 1, ·,−1. For every
congruence ρ of an A-generated inverse monoid M , the quotient M/ρ is A-
generated with respect to the map iM/ρ = πρ ◦ iM where πρ is the projection
M → M/ρ. A morphism ψ from the A-generated inverse monoid M to
the A-generated inverse monoid N is a homomorphism M → N respecting
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generators from A, that is, satisfying iN = ψ ◦ iM . If it exists, such a mor-
phism is unique and surjective and is called canonical morphism, denoted
ψ : M ։ N . In this situation, M is an expansion of N . The special case of
A-generated groups will play a significant rôle in this paper.

As already mentioned, the assignment function is not necessarily injective,
and, what is more, some generators may even be sent to the identity element
ofM . This is not a deficiency, but rather is adequate in our context, since we
want the quotient of an A-generated structure to be again A-generated. In
particular M/σ, the quotient of an A-generated inverse monoid M modulo
the smallest group congruence σ, is an A-generated group.

The assignment function iM is usually not explicitly mentioned; it uniquely
extends to a homomorphism [ ]M : Ã∗ → M (of involutory monoids). For

every word p ∈ Ã∗, [p]M is the value of p in M . For two words p, q ∈ Ã∗, the
A-generated inverse monoid M satisfies the relation p = q if [p]M = [q]M
and M avoids the relation p = q if [p]M 6= [q]M .

2.4. Cayley graphs of A-generated groups and the Margolis–Meakin

expansion. Given an A-generated group Q we define the Cayley graph Q

of Q by the following data; as an A-labelled graph, this graph Q depends on
the underlying assignment function iQ:

– the set of vertices of Q is Q,

– the set of edges of Q is Q× Ã, and, for g ∈ Q, a ∈ Ã, the incidence
functions, involution and labelling are defined according to

α(g, a) := g,

ω(g, a) := g[a]Q,

(g, a)−1 := (g[a]Q, a
−1),

ℓ(g, a) := a.

The edge (g, a) should be thought of as •
g

a
−−−−→•

ga
, its inverse as •

g

a−1

←−−−−•
ga
,

where ga stands for g[a]Q. We note that Q acts on Q by left multiplication
as a group of automorphisms via

g 7−→ hg := hg and (g, a) 7−→ h(g, a) := (hg, a)

for all g, h ∈ Q and (g, a) ∈ Q× Ã, where h is an element of the acting group
Q, g a vertex of Q and (g, a) an edge of Q.

We arrive at the important concept of the Margolis–Meakin expansion
M(Q) of an A-generated group Q [15]. For a given A-generated group Q,
the Margolis–Meakin expansionM(Q) consists of all pairs (K, g) with g ∈ Q
and K a finite connected subgraph of the Cayley graph Q of Q containing
the vertices 1 and g. Endowed with the multiplication

(K, g)(L, h) = (K ∪ gL, gh)
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and involution

(K, g)−1 = (g
−1

K, g−1)

the setM(Q) becomes an A-generated inverse monoid with identity element
({1}, 1) and with respect to the assignment function

A→M(Q), a 7→ (〈(1, a)〉, [a]Q).

The value of some word p ∈ Ã∗ in M(Q) is

[p]M(Q) = (〈πQ1 (p)〉, [p]Q),

where πQ1 (p) is the path in Q starting at 1 and having label p; the natural
partial order on M(Q) is given by

(K, g) ≤ (L, h) if and only if K ⊇ L and g = h.

The Margolis–Meakin expansion plays an important rôle in the theory of
inverse semigroups; for its universal property the reader is referred to [15] or
[7]. Most relevant for our purpose is the following, which is a consequence
of the results of [15].

Theorem 2.3. Every finite inverse monoid M arises as a quotient of the
Margolis–Meakin expansion M(Q) of some finite A-generated group Q for
some finite alphabet A.

Consequently, in order to find, for a finite inverse monoid M , a finite
group H with a premorphism ψ : H → M satisfying the condition of The-
orem 2.1, according to Observation 2.2 it is sufficient to do so for M being
the Margolis–Meakin expansion M(Q) of any finite A-generated group Q.

2.5. F -inverse covers. For a given A-generated group Q as above, we now
seek to provide an expansionH of Q, which will allow us to use Theorems 2.1
and 2.3 together with Observation 2.2 towards the construction of F -inverse
covers, as in Theorem 2.7 below. First we isolate an important property of
groups generated by an alphabet.

Definition 2.4 (X-generated group with content function). Let X be any
alphabet; an X-generated group R has a content function C if for every
element g ∈ R there is a unique ⊆-minimal subset C(g) of X such that g is
represented as a product of elements of C(g) and their inverses.

We need to define one further property, which will be crucial towards the
construction of a group H admitting a premorphism ψ : H →M(Q), to the
Margolis–Meakin expansion M(Q) satisfying the condition of Theorem 2.1.

Definition 2.5 (group reflecting the structure of a Cayley graph). Let Q
be an A-generated group with Cayley graph Q and let E = Q × A be the
set of positive edges of Q. An E-generated group G reflects the structure of
Q if the following hold.
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(1) The action of Q on E by left multiplication extends to an action of
Q on G by automorphisms on the left (denoted (g, ξ) 7→ gξ for g ∈ Q
and ξ ∈ G).

(2) G has a content function C such that, for any p ∈ Ẽ∗ which forms a
path g −→ h in Q the following hold:
(a) if C([p]G) = ∅, that is if [p]G = 1, then g = h,
(b) if C([p]G) 6= ∅, that is if [p]G 6= 1, then the content C([p]G)

spans a connected subgraph of Q containing g and h.

Next let Q be an A-generated group and, for E = Q × A, let G be an
E-generated group which reflects the structure of the Cayley graph Q of Q.
Since Q acts on G by automorphisms on the left, we can form the semidirect
product G ⋊ Q, which consists of the set G × Q endowed with the binary
operation

(γ, g)(η, h) := (γ · gη, gh),

inversion

(γ, g)−1 := (g
−1

γ−1, g−1)

and identity element (1G, 1Q). Consider the following A-generated subgroup
H of G⋊Q

H := 〈([(1, a)]G, [a]Q) | a ∈ A〉 ≤ G⋊Q. (2.1)

Similarly to the value [p]M(Q) mentioned above one has that for a word

p ∈ Ã∗ the value of p in H is

[p]H = ([πQ1 (p)]G, [p]Q) (2.2)

where, again, πQ1 (p) is the unique path in Q starting at 1 and being labelled

p, interpreted as a word over Ẽ. In particular, H is an expansion of Q with
canonical morphism ([πQ1 (p)]G, [p]Q) 7→ [p]Q.

Theorem 2.6. Let Q be an A-generated group, for E = Q×A let G be an
E-generated group (with content function C) which reflects the structure of
the Cayley graph Q of Q (Definition 2.5), and let H be the group defined by
(2.1). Then the mapping

ψ : H →M(Q), (γ, g) 7→

{
({1Q}, 1Q) if (γ, g) = (1G, 1Q)

(〈C(γ)〉, g) if (γ, g) 6= (1G, 1Q)

is a premorphism which satisfies the condition formulated in Theorem 2.1.

Proof. Recall that for γ ∈ G, C(γ) = ∅ if and only if γ = 1G. The definition

of ψ makes sense only if (1G, g) ∈ H implies g = 1Q. Let p ∈ Ã∗ be such

that [p]H = (1G, g); then 1G = [πQ1 (p)]G and πQ1 (p) is the path in Q starting
at 1Q and being labelled p. By (2.2) the terminal vertex of this path is
[p]Q = g; but from Definition 2.5 (2a) it follows that this path is closed, hence

[p]Q = 1Q. So, if [p]H 6= 1H then [πQ1 (p)]G 6= 1G and, by Definition 2.5 (2b),

the content C([πQ1 (p)]G) spans a connected subgraph of Q containing 1Q and
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[p]Q so that ψ([p]H ) ∈ M(Q), as required. Definition 2.5, C(γ−1) = C(γ),
C(gγ) = gC(γ) and C(γ · η) ⊆ C(γ) ∪C(η) imply that ψ is a premorphism.

Finally, let (K, g) ∈ M(Q) and p ∈ Ã∗ be such that [p]M(Q) = (K, g).

Then K = 〈πQ1 (p)〉, g = [p]Q and [p]H = (γ, g) where γ = [πQ1 (p)]G (the

G-value of the path πQ1 (p)). If C(γ) = ∅, that is, γ = 1G then g = 1Q, hence
ψ(γ, g) = ({1Q}, 1Q) ≥ (K, 1Q) = (K, g). Otherwise, if C(γ) 6= ∅ then every

edge of C([πQ1 (p)]G) belongs to 〈π
Q
1 (p)〉, hence

〈C(γ)〉 = 〈C([πQ1 (p)]G)〉 ⊆ 〈π
Q
1 (p)〉,

so that ψ(γ, g) = (〈C(γ)〉, g) ≥ (K, g), as required. �

Theorem 2.1 now implies that an F -inverse cover of M(Q) can be con-
structed as a subdirect product of H with M(Q). Observation 2.2 in com-
bination with Theorem 2.3 implies the result promised in the title of the
paper.

Theorem 2.7. Every finite inverse monoid admits a finite F -inverse cover.

In order to prove this theorem it is sufficient to construct, for any finite
A-generated group Q and E = Q × A a finite E-generated group G which
reflects the structure of the Cayley graph Q of Q according to Definition 2.5.
The existence of such a group G is guaranteed by the following more general
lemma, which is the main result of the paper. For item (1) recall that
every automorphism of an oriented graph induces a permutation of its set
of positive edges.

Lemma 2.8 (main lemma). For every finite connected oriented graph E =

(V ∪ Ẽ;α, ω,−1) there exists a finite E-generated group G which has the
following properties:

(1) Every permutation of E induced by an automorphism of E extends
to an automorphism of G.

(2) The set of relations p = 1 satisfied by G (with p ∈ Ẽ∗) is closed
under the deletion of generators and thus G has a content function
C (Proposition 3.1).

(3) For any word p ∈ Ẽ∗ which forms a path u −→ v in E (with u and
v not necessarily distinct vertices of E) the following hold:
(a) if C([p]G) = ∅ then u = v,
(b) if C([p]G) 6= ∅ then C([p]G) spans a connected subgraph of E

containing the vertices u and v.

The remainder of the paper is devoted to proving Lemma 2.8. This re-
quires quite a bit of work. It will be accomplished in Section 5. In order to
achieve this goal we introduce several graph-theoretic constructions which
will be presented in Sections 3 and 4. The results in these two sections are
of a more general nature and are of independent interest.
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3. Tools

In this section we introduce some graph theoretic constructions which
later will enable the construction of a group G as mentioned above. The
group itself will be realised as a permutation group defined by its action
graph. It is a well-established approach to construct finite A-generated
groups which avoid certain unwanted relations to proceed as described in
the following. First encode the relations in a finite A-labelled directed graph
X — the set of unwanted relations will usually be infinite, but must in some
sense be regular (recognisable by a finite automaton). Next take a quotient
X/≡ of X which guarantees that the edge labels from A induce partial injec-

tive mappings on the vertex set. Finally form some completion X/≡ of X/≡,
through extending the partial injective mappings to total permutations of
the vertex set of X/≡ or of some finite superset. The letters a ∈ A then

act as permutations on the finite set of vertices of X/≡ and one gets a finite
permutation group that avoids the unwanted relations. A meanwhile clas-
sical application of this approach is Stallings’ proof of Hall’s Theorem that
every finitely generated subgroup of a free group F is closed in the profi-
nite topology of F [22]. Many more examples can be found in [13, 6] and
elsewhere. In his paper [3] Ash has definitely developed some mastership
of arguments of this kind. Independently, the third author has suggested a
considerable refinement of this approach [16]. He proposed a construction
which is inductive on the subsets of the generating set A in the sense that
the kth group Gk satisfies/avoids all relations p = 1 in at most k letters that
should be satisfied/avoided by the final group G. In the step Gk  Gk+1

not only new relations p = 1 in more than k letters are added which are to
be avoided (by adding components to the graph which defines Gk) but, at
the same time, the relations in at most k letters must be preserved. The
motivation for this approach has come from some relevant applications to
hypergraph coverings and model theory [16]. The constructions in this sec-
tion and the results of the next section are of this flavour and are taken from
the third author’s [19].

3.1. E-graphs and E-groups. We slightly change perspective: since the
edges of the graph E of Lemma 2.8 are the letters of the labelling alphabet
we now denote the labelling alphabet by E. An E-labelled graph is folded

[13] or an E-graph if every vertex u has, for every label a ∈ Ẽ, at most one
edge with initial vertex u and label a. In an E-graph K, for every word

p ∈ Ẽ∗ and every vertex u there is at most one path π = πKu with initial
vertex απ = u and label ℓ(π) = p. For a path π in K with initial vertex

u, terminal vertex v and label p ∈ Ã∗ (for A ⊆ E) we write u
p
−→ v or

p : u −→ v and we call π an A-path u −→ v; the vertices u and v are A-
connected in K. The A-component of a vertex v of the E-graph K, denoted
vK[A], is the subgraph of K spanned by all paths in K having initial vertex

v and whose labels are in Ã∗. A labelled graph K is called complete or a
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(group) action graph (also called permutation automaton) if every vertex u

has, for every label a ∈ Ẽ exactly one edge f with initial vertex αf = u and

label ℓ(f) = a; in this case, for every word p ∈ Ẽ∗ and every vertex u there
exists exactly one path π = πKu (p) starting at u and having label p. We set
u · p := ω(πKu (p)), the terminal vertex of the path starting at u and being

labelled p; then, for every p ∈ Ẽ∗, the mapping u 7→ u · p is a permutation

[p] of the set V of vertices of K. Thus the involutory monoid Ẽ∗ acts on V
by permutations on the right. The permutation group

T (K) := {[p] | p ∈ Ẽ∗} (3.1)

obtained this way, is called the transition group T (K) of the graph K. This
transition group T (K) is an E-generated group in a natural way, the letter

e ∈ Ẽ induces the permutation [e] which maps every vertex u to the terminal
vertex ωπu(e) of the edge πu(e) which is the unique edge with initial vertex
u and label e. Note that this edge may be a loop edge for every vertex u (so
[e] might be the identity element of T (K)). Moreover, it may happen that
distinct letters e 6= f ∈ E induce the same permutation.

A crucial fact concerning the transition group G = T (K) is the following:
for every connected component C of K and every vertex u of C there is a
unique surjective graph morphism ϕu : G ։ C for which ϕu(1) = u (G the
Cayley graph of G with 1 the identity vertex); we call ϕu the canonical
morphism G։ C with respect to u; occasionally we shall leave the vertex u
undetermined and shall speak of some canonical morphism G։ C.

An E-graph is weakly complete if, for every letter a ∈ Ẽ, the partial
injective mapping on V induced by a is a permutation on its domain; in
other words, provided that the graph is finite, the subgraph spanned by all
edges with label a is a disjoint union of cycle graphs (a-cycles). For every
weakly complete graph K we denote by K its trivial completion, that is, the

complete graph obtained by adding, for every a ∈ Ẽ, a loop edge with label
a to every vertex not already contained in an a-cycle of K.

3.2. k-retractable groups, content function and k-stable expansions.

For a ∈ E and p ∈ Ẽ∗ let pa→1 be the word obtained from p by deletion of
all occurrences of a and a−1 in p. Let G be an E-group; for every A ⊆ E
let G[A] be the A-generated subgroup of G. An E-group G is retractable if,

for all words p, q ∈ Ẽ∗ and every letter a ∈ E the following holds:1

[p]G = [q]G =⇒ [pa→1]G = [qa→1]G.

This definition means that for every subset A ⊆ E the mapping

E → E ∪ {1}, a 7→

{
a if a ∈ A

1 if a /∈ A

1It suffices to restrict this postulate to the case q = 1.
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extends to an endomorphism ψA of G, which in fact is a retract endomor-
phism onto G[A] (the image of ψA is G[A] and its restriction to G[A] is the
identity mapping). Moreover, G is A-retractable if G[A] is retractable (as an
A-group), and, for k ≤ |E|, G is k-retractable if G is A-retractable for every
A ⊆ E with |A| = k. Of course, k-retractability implies l-retractability for
all l ≤ k, and every group is 1-retractable.

For a word p ∈ Ẽ∗ the content co(p) is the set of all letters a ∈ E for
which a or a−1 occurs in p. The importance of retractable E-groups for our
purpose comes from the fact that such E-groups admit a content function.

Indeed, assume that G is retractable. Then, for p, q ∈ Ẽ∗ and a ∈ E the
equality [p]G = [q]G implies [pa→1]G = [qa→1]G. Suppose now that a ∈ co(p)
but a /∈ co(q). Then the words q and qa→1 are identical. Hence [p]G = [q]G
implies

[pa→1]G = [qa→1]G = [q]G = [p]G.

In this way, we may delete (without changing its value [p]G) every letter in
a word p which does not occur in every other representation q of the group
element [p]G. The set of all letters of co(p) which cannot be deleted this way
is the content C([p]G) of the group element [p]G.

Proposition 3.1. Every retractable group has a content function.

In case G is retractable, for any two subsets A,B ⊆ E we have

G[A] ∩G[B] = G[A ∩B]. (3.2)

Groups satisfying this condition for all A,B ⊆ E have been called 2-acyclic
by the third author in [16, 19]; in that terminology, retractable groups even
enjoy the stronger property of being 3-acyclic. For two cosets gG[A] and
hG[B] in G condition (3.2) implies that their intersection is either empty
or is a coset of the form kG[A ∩ B]. We will often use a graph theoretic
version of this fact: if, in the Cayley graph G of G, two vertices u and v
are connected by an A-path as well as by a B-path then there is even an
(A ∩B)-path u −→ v.

For A ⊆ E, an expansion H ։ G of E-groups is A-stable if the canonical
morphism is injective when restricted to H[A]; it is k-stable (for k < |E|)
if it is A-stable for every k-element subset A of E. For an E-group G and
A ⊆ E we denote the Cayley graph of G[A], considered as an A-graph by
G[A]; this graph is weakly complete as an E-graph and we denote its trivial

completion by G[A]. We arrive at our first basic construction. Here and in
the following we use ⊔ and

⊔
to denote the disjoint union of graphs; recall

the definition of the transition group of a complete graph (3.1).

Theorem 3.2. Let X be a complete E-graph, 1 ≤ k < |E| and suppose that
the transition group G = T (X) is k-retractable. Then the transition group

H := T

(
X ⊔

⊔

C⊆E
|C|=k

G[C]

)
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is (k + 1)-retractable and is a k-stable expansion of G. Moreover, every
k-stable expansion of H is also (k + 1)-retractable.

Proof. We first show that H is a k-stable expansion of G. So, let p ∈ Ẽ∗

be a word with | co(p)| ≤ k und suppose that [p]G = 1. We need to show
that [p]H = 1. In order to do so it is sufficient to show that, for every vertex

v in X ⊔
⊔

|C|=k G[C] the path πv(p) which starts at v and has label p is a

cycle. This is obvious for every v ∈ X and v ∈ G[A] when A is a set of k

letters for which p ∈ Ã∗. So, let B ⊆ E with |B| = k and suppose that

p /∈ B̃∗ which means that at least one element of the content of p does not
belong to B and let v be a vertex of G[B]. Let p′ be the word obtained from
p by deletion of all letters from co(p) \B. Since G is k-retractable we have
[p′]G = 1 and hence also [p′]G[B] = 1 since p′ contains only letters from B.

It follows that the path π
G[B]
v (p′) is closed and hence so is π

G[B]
v (p′). Since

the paths π
G[B]
v (p) and π

G[B]
v (p′) meet exactly the same vertices — the two

paths differ only in loop edges labelled by letters from co(p)\B — it follows

that π
G[B]
v (p) is also closed. Altogether, [p]H = 1 and the expansion H ։ G

is k-stable.
Now let A ⊆ E with |A| = k+1 and take a word p with content co(p) = A

such that [p]H = 1. In particular, πH1 (p) is a closed path at vertex 1 in the

Cayley graph H of H. Let a ∈ A and B = A \ {a}. Then |B| = k and G[B]
is a connected component of the complete graph that defines H. Hence
there is a canonical graph morphism ϕ : H։ G[B] (for example ϕ1, the one

that maps 1→ 1). By this morphism the path πH1 (p) is mapped to π
G[B]
1 (p)

which therefore is also closed. In the latter path, every edge labelled a is a

loop edge. Hence the path π
G[B]
1 (pa→1) is also closed, that is, pa→1 labels a

closed path (at 1) in G[B]. It follows that [pa→1]G[B] = 1, hence [pa→1]G = 1
and thus [pa→1]H = 1 since H is a k-stable expansion of G. This applies
to every letter occurring in p. That we may delete further letters from
pa→1 without changing the H-value now follows from the fact that H is a
k-stable expansion of G and G is k-retractable. Moreover the arguments of
this paragraph apply to every k-stable expansion of H thereby proving the
assertion of the last sentence of the theorem. �

The principal idea of the paper is to construct a series of E-generated
permutation groups

G1 և G2 և · · ·և G|E| =: G (3.3)

defined by an ascending sequence X1 ⊆ X2 ⊆ · · · ⊆ X|E| of complete E-
graphs such that Gk = T (Xk) is k-retractable and Gk+1 ։ Gk is k-stable
for every k. The crucial property of this sequence is the following:

For every word p ∈ Ẽ∗ on k + 1 letters which forms a path

u
p
−→ v in E and every letter a ∈ co(p) either there is a
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word q in the letters co(p) \ {a} such that [p]G = [q]G and

q also forms a path u
q
−→ v in E, or otherwise (if no such q

exists) there is a component in Xk+1 \ Xk which guarantees
that Gk+1 avoids the relation p = pa→1, so that a belongs to
the content of [p]G.

The graph theoretic constructions to be introduced in the following are
designed to serve this purpose. In order to guarantee that Gk+1 ։ Gk

is k-stable, the components L of Xk+1 \ Xk will be assembled in a way
that for every k-element subset A of E, every A-component of L appears
as a subgraph of Xk or is isomorphic with Gk[A]. This turns out to be a
challenging task.

3.3. Two crucial constructions: clusters and coset extensions. We
introduce two crucial constructions involving Cayley graphs. Let G be an
E-generated group; for A ⊆ E and g ∈ G, gG[A] has the obvious meaning:
it denotes the A-component of the vertex g of G and is isomorphic (as an A-
graph) with G[A] — we shall call such graphs A-coset graphs or simply coset
graphs if the set of labels is understood. In the following subsections we shall
construct new (bigger) graphs by gluing together disjoint copies of various
coset graphs for different subsets A ⊆ E. In this context, the notation vG[A]
where v is some vertex of a graph means that the A-component of v in the
graph in question is isomorphic with the full A-coset graph G[A].

3.3.1. Clusters. Let G be an E-group, A ⊆ E and assume that G[A] is
retractable. For every set P of proper subsets of A, the graph

CL(G[A],P) :=
⋃

B∈P

G[B]

is an A-cluster. Note that CL(G[A],P) is the subgraph of G[A] which is
spanned by all B-paths in G[A] starting at 1 where B ∈ P. The core of
the cluster is the subgraph formed by the intersection

⋂
B∈P G[B], and by

retractability of G[A],
⋂

B∈P G[B] = G[
⋂

B∈PB]. This core is always non-
empty but may consist of the vertex 1 only; the subgraphs G[B], for B ∈ P,
are the constituent cosets of the cluster CL(G[A],P). Included in the defi-
nition of an A-cluster is for P = {B} every graph G[B] with B ( A. The
structure of CL(G[A],P) as an A-graph actually only depends on the collec-
tion of the “small” subgroups G[B], B ∈ P rather than on the entire group
G[A]: indeed the cluster can be assembled from the constituents G[B] by
forming their disjoint union and factoring by the congruence which identi-
fies an element (vertex or edge) of some G[B] and some G[C] if and only if
these elements coincide in G[B ∩C].

We first analyse the structure of B-components of A-clusters for B ( A.
Let P = {A1, . . . , Ak} be a set of proper subsets of A and let B ( A; let
v ∈ G[A] and vG[B] be the B-component of v in G[A]. For the intersection
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of vG[B] with the cluster we have

CL(G[A],P) ∩ vG[B] =
k⋃

i=1

(G[Ai] ∩ vG[B]).

The intersection G[Ai]∩vG[B] is either empty or a (B∩Ai)-coset viG[B∩Ai]
for some (any) vi ∈ G[Ai] ∩ vG[B]. For our purpose we may assume that
G[Ai]∩ vG[B] 6= ∅ for every i. Indeed, we may assume that we have already
removed those sets Ai for which G[Ai] ∩ vG[B] = ∅.

Lemma 3.3. If G[Ai] ∩ vG[B] 6= ∅ for i = 1, . . . , k then

G[A1] ∩ · · · ∩ G[Ak] ∩ vG[B] 6= ∅.

Proof. Let t ≤ k and assume that we have already proved that

t−1⋂

i=1

G[Ai] ∩ vG[B] 6= ∅.

So, let u ∈
⋂t−1

i=1 G[Ai] ∩ vG[B] = G[
⋂t−1

i=1 Ai] ∩ vG[B] and w ∈ G[At] ∩ vG[B].

Let p ∈ (Ã1 ∩ · · · ∩ Ãt−1)
∗ be such that [p]G = u−1 and q ∈ Ãt

∗
be such that

1

x

w

u

p p1

q

r

q1

G[At]

vG[B]

G[A1 ∩ · · · ∩At−1]

Figure 1

[q]G = w−1; moroever, let r ∈ B̃∗ be a word which labels a path u −→ w
running entirely in vG[B] (recall that all this happens in G[A]). Let p1 and
q1 be, respectively, the words obtained from p and q by deletion of all letters

not in B. Since [pq−1]G = [r]G and r ∈ B̃∗ we have [p1q
−1
1 ]G = [r]G, by

retractability. Let x := u ·p1 = w ·q1. Then p
−1p1 labels a path 1 −→ x and

so does q−1q1. Since p
−1p1 ∈ (Ã1∩· · ·∩Ãt−1)

∗ and q−1q1 ∈ Ãt
∗
it follows that

x ∈ G[A1∩· · ·∩At−1]∩G[At] = G[A1∩· · ·∩At]. From x = u ·p1 and p1 ∈ B̃
∗

it follows that x ∈ uG[B] = vG[B], altogether x ∈ G[A1∩· · ·∩At]∩vG[B]. �

If we consider the automorphism of G induced by left multiplication by
x−1 (x as in the proof above) then we see that the intersection

CL(G[A],P) ∩ xG[B] =

k⋃

i=1

(G[Ai] ∩ xG[B])
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is isomorphic with the B-cluster CL(G[B],O) where O = {B ∩Ai | Ai ∈ P}
(some of the sets B∩Ai may be empty) which perhaps degenerates to a full
B-coset. This allows us to characterise the B-components of A-clusters for
B ( A.

Corollary 3.4. Let P be a set of proper subsets of A and B ( A. Then
every B-component of the cluster CL(G[A],P) is either a B-coset, that is,
isomorphic with G[B], or isomorphic with the B-cluster CL(G[B],O) where
O = {C ∩B | C ∈ P} (note that some C ∩B may be empty).

Proof. The intersection CL(G[A],P) ∩ vG[B] is either the B-coset vG[B] it-
self (if it is contained in some constituent G[C] with C ∈ P) or otherwise is
isomorphic with the B-cluster CL(G[B],O), as indicated above. Now let v
be a vertex of CL(G[A],P); then the B-component B of v in CL(G[A],P) is
certainly contained in CL(G[A],P)∩ vG[B]. Since the latter intersection is a
B-cluster it is connected and therefore B must coincide with this intersec-
tion. �

Corollary 3.5. Let B,C ( A; then the intersection B∩C of a B-component
B with a C-component C of an A-cluster CL is either empty or a B∩C-coset
or a (B ∩ C)-cluster.

Proof. As mentioned above, B = CL ∩ vG[B] and C = CL ∩ wG[C] for some
cosets vG[B] and wG[C]. The latter two have either empty intersection
or their intersection is a (B ∩ C)-coset uG[B ∩ C] from which the claim
follows. �

We will need a generalisation of clusters which we are going to present
next. Let again be G[A] be retractable, P be a set of proper subsets of A, v
be a vertex of CL(G[A],P) and B ( A. Under these assumptions we define

CL(G[A],P)©v G[B] :=
⋃

C∈P

G[C] ∪ vG[B]

considered as a subgraph of G[A] and call the latter graph a B-augmented
A-cluster or, more specifically, the B-augmentation of CL(G[A],P) at v. We
have already seen that the intersection CL(G[A],P)∩vG[B] is a B-component
of CL(G[A],P). It follows that the structure of the graph CL(G[A],P)©v G[B]
only depends on the collection {G[C] | C ∈ P}, the vertex v and G[B]
rather than on the entire group G[A]. Indeed, as mentioned earlier, the
structure of CL(G[A],P) depends only on the graphs G[C] for C ∈ P and
the B-component of v is a certain B-cluster B which is isomorphic with a
certain subgraph of G[B] via a monomorphism ι : B→ G[B]. The augmented
cluster CL(G[A],P)©v G[B] then can be obtained as the disjoint union of
CL(G[A],P) and G[B] factored by the congruence whose non-singleton classes
are {x, ι(x)} for all x ∈ B (x an edge or a vertex).

As the last result in this subsection we need to clarify, for C ( A, the
structure of C-components of B-augmented A-clusters. These will turn out
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to be (B ∩ C)-augmented C-clusters. We noticed already that every C-
component of an A-cluster is a C-cluster (or a C-coset).

Corollary 3.6. Let B,C ( A and let G[A] be retractable; then every C-
component of a B-augmented A-cluster is a (B ∩ C)-augmented C-cluster
(which includes C-clusters as a special case).

Proof. Let the group G and A,B,C ⊆ E be as in the statement of the
corollary. Let CL(G[A],P)©v G[B] be a B-augmentation of the A-cluster
CL(G[A],P) and let u be a vertex of this cluster. If the C-component C

of u in CL(G[A],P) has empty intersection with the B-component B of v in
CL(G[A],P) then C coincides with the C-component of u in the augmented
cluster and we are done as this is just a C-cluster (or a C-coset). Now as-
sume that C ∩ B 6= ∅ with w a vertex in C ∩ B. We know that C ∩ B is
a (C ∩ B)-cluster (Corollary 3.5) or a (C ∩ B)-coset and the C-component
of w within vG[B] = wG[B] consists exactly of the coset wG[B ∩ C]. It
follows that the C-component of w in CL(G[A],P)©v G[B] coincides with
C ∪ wG[B ∩ C] = C©wG[B ∩ C] which is a (B ∩ C)-augmentation of the
C-cluster C. �

3.3.2. Coset extensions. The second construction can be seen as a gener-
alisation of clusters but is more involved. Let us fix an E-group G and a
set A ⊆ E of size |A| ≥ 2 and assume that G is A-retractable. Let K be
a connected A-subgraph of the Cayley graph G of G. We recall that be-

ing an A-subgraph means that all labels of edges of K belong to Ã (but
not necessarily all such letters actually need to occur in K). For some set
B ( A let B = vK[B] be some B-component of K; this graph is embedded
in vG[B] ∼= G[B]. Moreover, for B1, B2 ( B any B1- and B2-components B1

and B2 of B are also embedded in vG[B].

Definition 3.7. The graph K is admissible for (A-coset extension if, for all
choices B1, B2 ( B ( A and all possible components B1,B2 ⊆ B ⊆ vG[B]
(in the situation described above) the following holds

B1 ∩B2 = ∅ in B =⇒ v1G[B1] ∩ v2G[B2] = ∅ in vG[B] (3.4)

for some (equivalently all) vertices v1 ∈ B1, v2 ∈ B2.

In other words, the patterns depicted in Figure 2 are forbidden in the
context of a graph K that is admissible for (A-coset extension (the second
picture is for the case B1 = B2). In [19] the condition formulated in Def-
inition 3.7 has been termed the freeness condition of the embedded graph
K. We note that, if K is admissible for (A-coset extension, then, for ev-
ery B ⊆ A, every B-component vK[B] is admissible for (B-coset extension.
Now let K be a subgraph of G that is admissible for (A-coset extension
and fix a set B ( A. Let B1, . . . ,Bk be all the B-components of K. For
every i = 1, . . . , k select a vertex vi ∈ Bi. Then, in G, the coset viG[B]
contains Bi as a subgraph. Let now CE(G,K;B) be the graph obtained
by extending each component Bi in K to the entire coset viG[B]. In other
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K

B1 B2Bv1 v2

v1G[B1]
v2G[B2]

vG[B]

K

B1 B2Bv1 v2

v1G[B1] = v2G[B2]

vG[B]

Figure 2

words, CE(G,K;B) is the graph obtained by attaching in K to each vertex
vi a copy viG[B] of G[B] and then identifying all of Bi with its copy inside
viG[B], but without performing any further identification (of vertices and/or
edges). The graph CE(G,K;B) thus appears as a bunch of pairwise disjoint
copies of G[B], connected by edges labelled by letters from A\B. The union
of the latter edges with all Bi then spans the graph K.

We give a more formal definition of CE(G,K;B). Let K be given with
B-components B1, . . . ,Bk and selected vertices vi ∈ Bi for i = 1, . . . , k. For
every i let ιi : Bi → G[B] be the unique graph monomorphism mapping vi
to 1. Then

CE(G,K;B) := K ∪
k⋃

i=1

G[B]× {i} /Θ (3.5)

where Θ is the equivalence relation all of whose non-singleton equivalence
classes are exactly the two element sets

{x, (ιi(x), i)} with x ∈ Bi, i = 1, . . . , k

where x denotes a vertex or and edge of Bi. The union on the right hand
side of (3.5) is a union of pairwise disjoint connected graphs and Θ is cer-
tainly a congruence relation. The resulting graph CE(G,K;B) is the B-coset
extension of the A-graph K; in this context, the subgraph K of CE(G,K;B)
is the skeleton of CE(G,K;B) and the subgraphs viG[B] are the constituent
cosets of CE(G,K;B). Definition 3.7 implies for C ( B ( A (by taking
B1 = C,B2 = ∅ or B1 = C = B2) that the identity morphism K → K ex-
tends to an embedding CE(G,K, C) →֒ CE(G,K;B) hence CE(G,K;C) can
be seen as a subgraph of CE(G,K;B) in this case. So, the set of all graphs
CE(G,K;B) for B ( A is partially ordered by inclusion, and for B,C ( A
we have

CE(G,K;B) ∩ CE(G,K;C) = CE(G,K;B ∩C). (3.6)
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Now let P be a set of proper subsets of A. Then the P-coset extension of K
is defined as

CE(G,K;P) :=
⋃

B∈P

CE(G,K;B)× {B}
/
Ψ (3.7)

where Ψ is the congruence defined on the disjoint union of all B-coset ex-
tensions CE(G,K;B) with B ∈ P, by setting

(x1, B1) Ψ (x2, B2) :⇐⇒ x1 = x2 ∈ CE(G,K;B1 ∩B2).

In other words, an edge or a vertex of CE(G,K;B1) is identified with one
in CE(G,K;B2) if they represent the same element in CE(G,K;B1 ∩ B2).
Provided that B ∈ P, the coset extension CE(G,K;B) is embedded in
CE(G,K;P) via x 7→ (x,B)Ψ where (x,B)Ψ denotes the Ψ-class of (x,B).

Geometrically, the coset extension CE(G,K;P) can be viewed as follows.
For every B ∈ P consider CE(G,K;B) and attach these graphs to each
other by identification of their skeleton K, then form the largest E-graph
quotient (that is, perform all identifications necessary to obtain an E-graph,
but not more). If every label of K appears in some member B of P, then
CE(G,K,P) is weakly complete since every edge of CE(G,K;P) occurs in
some coset subgraph vG[B]. Most relevant will be the case P = PA, the set
of all proper subsets of A: we call CE(G,K;PA) the full

(A-coset extension of
K. In case K = {v} (one vertex, no edge) the P-coset extension CE(G,K;P)
reduces to the cluster CL(G[A],P).

Remark 3.8. An A-graph K which is admissible for (A-coset extension
may actually only contain edges labelled by letters from some set B ( A.
In this case CE(G,K;B) ∼= G[B]; however, this is not in conflict with the
definition of the full (A-coset extension. For sets C ( A with C * B, the
C-components of K coincide with the C ∩ B-components, but nevertheless
every such C ∩B-component is extended to a full C-coset vG[C] in order to
get CE(G,K;C).

We continue with further investigations of (A-coset extensions.

Proposition 3.9. Let K ⊆ G[A] be admissible for (A-coset extension and P
be a set of proper subsets of A. Then the inclusion monomorphism ι : K →֒
G[A] admits a unique extension to a graph morphism ιP : CE(G,K;P) →
G[A].

Proof. We first establish a unique extension ιB : CE(G,K;B) → G[A]. Let
B1, . . . ,Bk be all B-components of K with selected vertices vi ∈ Bi for all i.
Then for every i there is a unique graph monomorphism κi : G[B] × {i} →
G[A] such that κi(1, i) = vi. The image of κi coincides with the coset

subgraph viG[B] of G[A]. Then, the union κ := ι ∪
⋃k

i=1 κi is a morphism

κ : K ∪

k⋃

i=1

G[B]× {i} → G[A]
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for which, for all i and x ∈ Bi,

κ(x) = ι(x) = x = κi(ιi(x), i) = κ(ιi(x), i)

where ιi : Bi → G[B] is the unique graph monomorphism mapping vi to 1
that occurred in the definition of CE(G,K;B). It follows that the congruence
Θ in (3.5) is contained in the kernel of κ (that is, the equivalence relation
induced by κ on its domain) and hence κ factors through CE(G,K;B) as
κ = ιB ◦ πΘ (where πΘ is the canonical projection πΘ(x) = xΘ). The
morphism ιB is not injective in general.

Next consider the disjoint union
⋃

B∈P

CE(G,K;B) × {B}

and let

κP :=
⋃

B∈P

ῑB :
⋃

B∈P

CE(G,K;B) × {B} → G[A]

where ῑB : CE(G,K, B)×{B} → G[A] is defined by ῑB(x,B) = ιB(x). Similar
to Θ and κ, the congruence Ψ that occurred in (3.7) is contained in the
kernel of κP, hence κP factors through CE(G,K;P) as κP = ιP ◦ πΨ for
some unique morphism ιP : CE(G,K;P) → G[A] (with πΨ being again the
projection x 7→ xΨ). �

We note that ιP is injective when restricted either to the skeleton K or to
any constituent coset vG[B] for B ( A. We are able to sharpen an earlier
remark. Let K be a connected A-graph admissible for (A-coset extension,
let B ( A and let B ⊆ K be a B-component of K with v a vertex of B. By
construction of CE(G,K;PA),

v ∈ B ⊆ vG[B] ⊆ CE(G,K;PA).

But B is itself admissible for (B-coset extension and hence CE(G,B;PB) is
well defined. Admissibility of K (Definition 3.7) implies that in this case the
morphism ιPB

: CE(G,B;PB)→ G[B] of Proposition 3.9 is injective, so that
we do have, in fact:

Lemma 3.10. Let G be A-retractable and K be a subgraph of G[A] which
is admissible for (A-coset extension. Let B ( A with |B| ≥ 2; then every
B-component B of K is admissible for (B-coset extension and the morphism
ιPB

: CE(G,B;PB)→ G[B] is injective. In particular, for any vertex v ∈ B,

v ∈ B ⊆ CE(G,B;PB) ⊆ vG[B] ⊆ CE(G,K;PA).

Another consequence is the following. In terms of [19] this means that a
graph which is admissible for (A-coset extension is 2-acyclic.

Lemma 3.11. Suppose that G is A-retractable and that the graph K is
admissible for (A-coset extension. Then, for any B,C ( A, B 6= C, the
intersection B ∩ C of every B-component B and every C-component C of K
is connected and hence is a (B ∩ C)-component.
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Proof. Suppose that B 6= C and let u, v be vertices of B∩C and assume that
they belong to distinct components of B∩ C. Admissibility of K (by taking
B1 = B∩C = B2) implies that the cosets uG[B∩C] and vG[B∩C] are disjoint
(that is, distinct), and both cosets are contained in uG[B] = vG[B] as well as
uG[C] = vG[C]. Consider the graph morphism ιPA

: CE(G,K;PA) → G[A].
It maps the cosets uG[B] as well as vG[C] injectively to the corresponding
coset subgraphs of G[A]. Since uG[B∩C] and vG[B∩C] are disjoint it follows
that the intersection of the cosets uG[B] and vG[C] (in G[A]) is disconnected
as it has at least the two components uG[B ∩ C] and vG[B ∩ C]. However,
the latter contradicts the assumption that G[A] is retractable. �

3.3.3. Augmented coset extensions. Similarly to clusters we require aug-
mented coset extensions. Again fix an E-group G, let A ⊆ E with |A| ≥ 2
and assume that G[A] is retractable. Let K ⊆ G[A] be admissible for (A-
coset extension. Recall that the full (A-coset extension CE(G,K;PA) can be
seen as the union

⋃
B(A CE(G,K, B) where for B,C ( A, CE(G,K;B) ⊆

CE(G,K;C) if and only if B ⊆ C and also (3.6) holds. Every vertex x of
CE(G,K;PA) is sitting in some CE(G,K;B), and, inside CE(G,K;B) in a
unique constituent coset vG[B] with v ∈ K. The vertex v is not unique,
but unique is its B-component vK[B]. In this situation we say that the
pair (B, v) supports the vertex x or provides support for the vertex x in
CE(G,K;PA); the size of this support is |B|. This actually means that the
skeleton K may be accessed from the vertex x by a B-path whose terminal
vertex is v. We say that (B, v) provides unique minimal support if, when-
ever (C,w) provides support for x then B ⊆ C and vK[B] ⊆ wK[C]. Now
let J be a subgraph of CE(G,K;PA); for a set B ( A and a vertex v ∈ K

we say that (B, v) provides unique minimal support for J if (B, v) supports
some vertex x of J, and if some pair (C,w) supports some vertex y of J
then B ⊆ C and vK[B] ⊆ wK[C]. In this case we say that the unique
minimal support of J is attained at the vertex x. Notice that the condition
vK[B] ⊆ wK[C] implies that for the involved constituent cosets the inclu-
sion vG[B] ⊆ wG[C] = vG[C] holds. We come to a crucial property the full
(A-coset extension of a graph K may or may not have.

Definition 3.12. The full coset extension CE(G,K;PA) has the cluster
property if, for every B ( A the following hold:

(1) every B-component B of CE(G,K;PA) which has empty intersection
with the skeleton K is a B-cluster or a full B-coset;

(2) every B of (1) has unique minimal support which is attained at some
vertex x of the core of B (if B is a cluster).

Note that minimal support will typically not be attained at all core ver-
tices. We first show that the cluster property implies that components of
the coset extension intersect nicely, that is, the coset extension is 2-acyclic
in terms of [19].
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Proposition 3.13. Suppose that G is A-retractable, that K ⊆ G[A] is admis-
sible for (A-coset extension and that the full (A-coset extension CE(G,K;PA)
has the cluster property. Then, for all pairs B,C ( A the intersection B∩C
of any B-component B and any C-component C is connected and hence is a
(B ∩C)-component of CE(G,K;PA).

Proof. We consider several cases and start with the most difficult one: sup-
pose that both B and C have empty intersection with the skeleton K. We
need to show thatB∩C is connected. We know that B is aB-cluster, C is a C-
cluster, that is, B ∼= CL(G[B], {B1, . . . , Bk}) and C ∼= CL(G[C], {C1, . . . , Cl})
for Bi ( B and Cj ( C; it may also happen that k = 1 and/or l = 1 in
which case it may happen that B1 = B and/or C1 = C (that is, B and/or
C is a B-coset and/or C-coset) — the argument for this subcase is simi-
lar but more simple. Take a vertex x in the core of B, y a vertex in the
core of C and let the unique minimal support of B be (M,m) (attained at
x) and the unique minimal support of C be (N,n) (attained at y). Then

B =
⋃k

i=1 xG[Bi] and C =
⋃l

j=1 yG[Cj ]. Let u1 6= u2 be vertices of B ∩ C;

we may assume that u1 ∈ xG[B1]∩ yG[C1] and u2 ∈ xG[B2]∩ yG[C2]. Recall
that CE(G,K;PA) has the cluster property. The vertices u1 and u2 (as ∅-
components {u1} and {u2}) also have unique minimal support (F1, v1) and
(F2, v2), say. Then M,N ⊆ F1, F2 and even more holds, namely

mG[M ], nG[N ] ⊆ mG[F1] = v1G[F1] = nG[F1]

and mG[M ], nG[N ] ⊆ mG[F2] = v2G[F2] = nG[F1].

The equality mG[F1] = v1G[F1] follows from the fact that (F1, v1) provides
some support for B while (M,m) provides unique minimal support for B

hence M ⊆ F1 and m ∈ mG[M ] ⊆ v1G[F1]; likewise, (F1, v1) provides some
support for C while (N,n) provides unique minimal support for C, hence
N ⊆ F1 and n ∈ nG[N ] ⊆ v1G[F1] which implies v1G[F1] = nG[F1]. The
remaining two equalities are proved in the same fashion.

Consequently, v1G[F1] ∩ v2G[F2] 6= ∅ and hence also v1K[F1] ∩ v2K[F2] 6=
∅. By Lemma 3.11, this intersection is an F -component of K for F =
F1 ∩ F2. It follows that the subgraph of CE(G,K;PA) formed by the union
v1G[F1] ∪ v2G[F2] is isomorphic with the cluster CL(G[A], {F1, F2}). Setting
B′ := (B1 ∩ F1) ∪ (B2 ∩ F2) and C

′ := (C1 ∩ F1) ∪ (C2 ∩ F2) we see that u1
and u2 belong to the same B′- as well as C ′-component of that cluster, the
intersection of which is a (B′∩C ′)-component of that cluster. Consequently,
u1 and u2 are in the same (B′ ∩ C ′)-component of CL(G[A]; {F1, F2}) and
hence in the same (B ∩C)-component of CE(G,K;PA), see Figure 3.

Next consider the case when B has non-empty intersection with the skele-
ton K. In this case, B = vG[B] for some vertex v ∈ K. Let u1 ∈ B∩C1, u2 ∈
B∩C2, and let x be a vertex in the core of C which attains minimal support
of C. In this case, (B, v) supports u1 as well as u2 and therefore also x,
so that u1, x, u2 ∈ B = vG[B], see Figure 4. Hence there is a (B ∩ C)-path
u1 −→ x and also a (B∩C)-path x −→ u2, altogether there is a (B∩C)-path
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Figure 4

u1 −→ u2. Finally, the case when B as well as C have non-empty intersection
with the skeleton K is obvious, since in this case B∩C is a (B∩C)-coset. �

We are led to a further construction. Let K be admissible for (A-coset
extension and suppose that the full (A-coset extension CE(G,K,PA) has the
cluster property. For a vertex v ∈ CE(G,K;PA) and some B ( A the B-
component B of v is either a B-coset vG[B] (in this case, B may or may
not intersect with the skeleton K) or a proper B-cluster (in which case it
does not intersect with the skeleton K). In any case, B embeds into G[B] via
some graph monomorphism ι : B →֒ G[B] (which is unique if one additionally
assumes that ι(v) = 1). We define the B-augmentation at v of CE(G,K;PA)
by

CE(G,K,PA)©v G[B] := CE(G,K;PA) ⊔ G[B] /Ω

where Ω is the congruence the set of whose non-singleton congruence classes
is given by {{x, ι(x)} | x ∈ B}. We note that CE(G,K;PA)©v G[B] can be
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written as the union

CE(G,K;PA) ∪ vG[B]

of the two subgraphs CE(G,K;PA) and vG[B] whose intersection is just the
B-component B of v in CE(G,K;PA).

Proposition 3.14. Let B,C ( A and K be admissible for (A-coset exten-
sion such that the full (A-coset extension CE(G,K;PA) enjoys the cluster
property. Then every C-component of some B-augmented full coset exten-
sion CE(G,K;PA)©v G[B] is either a C-coset or a (B ∩ C)-augmented C-
cluster.

Proof. Let C be a C-component of CE(G,K;PA)©v G[B]; then

C = (CE(G,K;PA) ∩ C)︸ ︷︷ ︸
C1

∪ (vG[B] ∩ C)︸ ︷︷ ︸
C2

.

Let Bv be the B-component of v in CE(G,K;PA). If C ∩ Bv = ∅ then
vG[B] ∩ C = ∅ and C coincides with some C-component of CE(G,K;PA)
which is a C-coset or a C-cluster. Suppose that C ∩Bv 6= ∅ and let w be a
vertex of C ∩Bv . Then, on the one hand,

C ∩ vG[B] = C ∩ wG[B] = wG[B ∩ C]

while, on the other hand

C ∩Bv = wG[B ∩ C] ∩ CE(G,K;PA).

The latter graph is the (B ∩ C)-component of w in CE(G,K;PA), which
happens to be a (B ∩ C)-cluster or a (B ∩ C)-coset contained in the C-
component C. Consequently, C is the union of the C-cluster C∩CE(G,K;PA)
and the (B ∩ C)-coset wG[B ∩ C] whose intersection with CE(G,K;PA) is
the (B ∩ C)-cluster C ∩Bv. Altogether, this just means that

C = (C ∩ CE(G,K;PA))©wG[B ∩ C],

that is, a (B ∩ C)-augmented C-cluster, as required. �

4. The two main technical results

In this section we prove the two main technical results. They will be
essential to set up the inductive procedure to gain the series (3.3). In order
to do so, we need another crucial definition. Assume, as above, that |A| ≥
2, that G[A] is retractable and that K ⊆ G[A] is admissible for (A-coset
extension.

Definition 4.1. The full coset extension CE(G,K;PA) is bridge-free if

(1) the morphism ιPA
: CE(G,K;PA)→ G[A] (Proposition 3.9) is an em-

bedding;
(2) for every B ( A, if two vertices u, v ∈ CE(G,K;PA) ⊆ G[A] (as

per (1)) are B-connected in G[A] then they are B-connected even in
CE(G,K;PA).
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In Theorem 4.2 below one has to take into account that, by Lemma 3.10,
if for some group H, some subgraph L ⊆ H[A] is admissible for (A-coset
extension, then, for all B ( A, every B-component vL[B] is admissible for
(B-coset extension and the morphism of Proposition 3.9 is an embedding
CE(H, vL[B];PB) →֒ vH[B].

Theorem 4.2 (forward induction). Let H be an E-group, A ⊆ E, |A| ≥ 3
and suppose that H[A] is retractable. Let L ⊆ H[A] be a connected A-graph
which is admissible for (A-coset extension. Assume that for all B ( A and
every vertex v ∈ L the following hold:

(1) the full (B-coset extension CE(H, vL[B];PB) is bridge-free in H[B];
(2) the full (B-coset extension CE(H, vL[B];PB) has the cluster prop-

erty.

Then the full (A-coset extension CE(H,L;PA) has the cluster property.

Proof. Let B ( A, let B be a B-component of CE(H,L;PA) and suppose
that B has empty intersection with the skeleton L. Consider first the case
that no vertex of B has support of size smaller than |A|− 1, and let (A1, v1)
be some support of B. That is, A1 ( A, |A1| = |A| − 1 and v1H[A1]
has non-empty intersection with B. We claim that, in this case, the entire
component B is contained in the coset v1H[A1], hence B is a (B ∩A1)-coset
inside v1H[A1] and (A1, v1) is the unique minimal support of B. Suppose
this claim were not true. Then B has non-empty intersection with some
constituent coset v2H[A2] for some A2 6= A1 such that there exists a vertex
s1 ∈ B∩ v1H[A1] which is connected with some vertex s2 ∈ (B∩ v2H[A2]) \
v1H[A1] by some edge e. Since s2 /∈ v1H[A1] also e /∈ v1H[A1]. Then e
belongs to a coset v3H[A3] (which perhaps coincides with v2H[A2]) with
A3 6= A1. In any case, s1, s2 ∈ v3H[A3] (if a graph contains an edge then
also its initial and terminal vertices). It follows that s1 is supported by
(A3, v3), that is, s1 ∈ v1H[A1] ∩ v3H[A3] = vH[A1 ∩ A3] for some vertex v.
Altogether this contradicts the assumption that no vertex of B has support
of size smaller than |A| − 1.

We are left with the case that B admits support of size strictly smaller
than |A|− 1. It follows from the arguments of the preceding paragraph that
every non-empty intersection of B with some constituent coset of CE(H,L;PA)
admits a vertex which is supported by less than |A| − 1 letters. Denote the
constituent cosets of CE(H,L;PA) having non-empty intersection with B by
v1H[A1], . . . , vnH[An], where |Ai| = |A| − 1 for all i. That is,

B = B ∩

(
n⋃

i=1

viH[Ai]

)
=

n⋃

i=1

(B ∩ viH[Ai]) =
n⋃

i=1

Bi

for Bi = B ∩ viH[Ai]. Every Bi is a Bi-coset subgraph of viH[Ai] where
Bi = B∩Ai and all Bi have size at most |A|−2. (If for some i, |Bi| = |A|−1
then Bi = Ai and Bi = viH[Ai] would have non-empty intersection with the
skeleton L.)
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Figure 5

We need to verify items (1) and (2) of Definition 3.12. For i = 1, . . . , n de-
note byAi theAi-component viL[Ai] of vi in L. By Lemma 3.10, Ai is admis-
sible for (Ai-coset extension and the full (Ai-coset extension CE(H,Ai;PAi

)
embeds into viH[Ai] (via the mapping of Proposition 3.9). Since Bi ad-
mits vertices supported by fewer than |Ai| = |A| − 1 letters we have that
Bi ∩ CE(H,Ai;PAi

) 6= ∅ — once more we take into account that

CE(H,Ai;PAi
) ⊆ viH[Ai] ⊆ CE(H,L;PA).

Bridge-freeness of CE(H,Ai;PAi
) (assumption (1)) implies that

Bi ∩ CE(H,Ai;PAi
)

is connected. By assumption (2) therefore, Bi ∩ CE(H,Ai;PAi
) has unique

minimal support in CE(H,Ai;PAi
), say (Di, ui). But then the pair (Di, ui)

also provides unique minimal support of Bi in CE(H,L;PA). In particular,
this means that in order to connect Bi with L we require (at least) a Di-
path which necessarily leads to the Di-component uiAi[Di]. So, for every

i, there exist vertices si ∈ Bi, ui ∈ Ai and a word mi ∈ D̃i
∗
labelling a

path si −→ ui which runs entirely inside the coset uiH[Di] which in turn is
contained in viH[Ai] = uiH[Ai].

Since B =
⋃n

i=1Bi is connected there are i, j such that Bi ∩ Bj 6= ∅;
after some renumbering we may assume that B1 ∩ B2 6= ∅. Then also
v1H[A1] ∩ v2H[A2] 6= ∅ and thus v1H[A1] ∩ v2H[A2] = vH[A1 ∩ A2] for
some v ∈ A1 ∩A2; notice that by Lemma 3.11, A1 ∩A2 = vL[A1 ∩A2] is an
(A1∩A2)-component of L. The intersection B1∩B2 is a B∩A1∩A2 coset in
vH[A1∩Ai]. Similarly as for B1 one argues that B1∩B2 has unique minimal
support in CE(H,A1 ∩ A2;PA1∩A2

), (D,u) say, which (as for B1) provides
unique minimal support of B1 ∩ B2 in CE(H,L;PA). Let s ∈ B1 ∩B2 be a
vertex which attains the support (D,u). So far, the situation is depicted in
Figure 5. We note that D ⊆ A1 ∩A2 and so

uH[D] ⊆ uH[A1 ∩A2] = v1H[A1] ∩ v2H[A1].

Since (D,u) is some support of B1 we have D1 ⊆ D and u1H[D1] ⊆ uH[D].
Hence there is a D-path u1 −→ u labelled k, say, which runs inside A1, and
a D-path u −→ s labelled m. Altogether, there is a D-path s1 −→ s labelled
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m1km (this path runs entirely in v1H[A1]). Since s1, s ∈ B1 there is also a
B1-path s1 −→ s where B1 = B ∩A1, labelled p, say. Again, this path runs
inside v1H[A1]. Since H[A1] is retractable we have [p]H[A1] = [p′]H[A1] where

p′ is the word obtained from p by deletion of all letters not inD. Hence, there
is a D-path s1 −→ s which runs entirely in B1 ∩ uH[D] and, in particular,
s1 ∈ uH[D] ⊆ uH[A1 ∩ A2] = v1H[A1] ∩ v2H[A2] so that s1 ∈ B1 ∩ B2.
Since (D1, u1) supports s1 and therefore also B1 ∩ B2 it follows D ⊆ D1

and therefore D = D1 as the converse inclusion has been already shown. In
particular, (D,u) provides unique minimal support of B1 which is attained
at s1 ∈ B1 ∩B2. So the configuration in Figure 5 really looks as depicted in
Figure 6. By the same reasoning we obtain that s2 ∈ B1 ∩B2 and D2 = D.
Altogether, s1, s2 ∈ B1 ∩ B2 and (D,u) provides unique minimal support
of B1 as well as B2, attained at s1 was well as s2. Now we continue by
induction. Let 2 ≤ k < n and suppose, subject to some renumbering of
the cosets Bi we have already shown that s1, . . . , sk ∈ B1 ∩ · · · ∩ Bk and
all these Bi have unique minimal support (D,u) attained at all these si.
Again there are j ∈ {1, . . . , k} and i ∈ {k+1, . . . , n} such that Bj ∩Bi 6= ∅
and after some renumbering we may assume that j = k and i = k + 1.
Then, as for the case k = 1, sk, sk+1 ∈ Bk ∩ Bk+1 and the unique minimal
support of Bk ∩ Bk+1 is (D,u). Again, sk ∈ B1 ∩ · · · ∩ Bk ∩ Bk+1 and
so Bj ∩ Bk+1 6= ∅ for all j ≤ k, therefore sj, sk+1 ∈ Bj ∩ Bk+1 and hence
s1, . . . , sk+1 ∈ B1∩· · ·∩Bk+1 and (D,u) provides unique minimal support for
Bk+1 attained at sk+1. So s1, . . . , sn ∈ B1∩· · ·∩Bn and

⋃n
i=1 Bi has unique

minimal support (D,u) attained at some elements of
⋂n

i=1Bi; the union of
any two cosets Bi∪Bj is contained in the A-cluster viH[Ai]∪vjH[Aj ], hence
is itself a cluster. So the intersection Bi ∩ Bj of any two of these cosets is
connected. Altogether, the union B =

⋃
Bi is isomorphic with the cluster

CL(H[B], {B ∩Ai | i = 1, . . . , n}). �

The case |A| = 2 which is not handled in Theorem 4.2 is actually trivial.
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Proposition 4.3. Let H be an E-group, A ⊆ E with |A| = 2 and H[A]
be retractable. Then every connected A-subgraph L is admissible for (A-
coset extension and the full (A-coset extension CE(H,L;PA) has the cluster
property.

Proof. Definition 3.12 is fulfilled for trivial reasons: only the empty set
C = ∅ satisfies C ( B ( A. Every constituent coset of CE(H,L;PA) is
of the form vH[a] for some letter a ∈ A. Hence, for B ( A, the only
B-components of CE(H,L;PA) which have empty intersection with L are
singleton vertices which clearly have unique minimal support. �

Combination of this with Theorem 4.2 implies the next result.

Corollary 4.4. Let H be an E-group, A ⊆ E, |A| ≥ 3 and suppose that
H[A] is retractable. Let L ⊆ H[A] be a connected A-graph which is admis-
sible for (A-coset extension. Assume that for all B ( A and every vertex
v ∈ L the full (B-coset extension CE(H, vL[B];PB) embeds into vH[B] and
is bridge-free; then the full (A-coset extension CE(H,L;PA) has the cluster
property.

Proof. This is by induction on |A|. For |A| = 3 we note that for any B ( A
we only need to consider |B| = 2, and by Proposition 4.3, CE(H, vL[B];PB)
has the cluster property. Hence the assumption of the corollary implies, by
Theorem 4.2, that CE(H,L;PA) has the cluster property. Now let |A| > 3
and suppose that claim is true for all B with |B| < |A|. In particular,
CE(H, vL[B];PB) has the cluster property. Together with the assumption
of the Corollary, Theorem 4.2 then implies that CE(H,L;PA) has the cluster
property. �

Let H և G be an expansion of E groups and ϕ : G ։ H be the induced
canonical graph morphism. Let L ⊆ H be a connected subgraph. A cover
of L in G (a G-cover for short) is any connected component of the graph
ϕ−1(L) ⊆ G. Recall that a crucial feature of covers is the path lifting prop-

erty : if L admits a path u −→ v labelled p ∈ Ẽ∗ and u′ is any vertex of
ϕ−1(L) such that ϕ(u′) = u, then ϕ−1(L) admits a path labelled p with
initial vertex u′ (which path is mapped under ϕ onto the original path in
L).

Theorem 4.5 (upward induction). Let 1 ≤ k < |E| and let H be an E-
group which is (k + 1)-retractable. Let A ⊆ E with |A| = k + 1 and let LH

be a connected A-subgraph of H[A] such that

(1) LH is admissible for (A-coset extension,
(2) the full (A-coset extension CE(H,LH ;PA) has the cluster property.

Let H և G be a k-stable expansion such that, for all B ( A the trivial com-
pletion CE(H,LH ;PA)©v H[B] of every B-augmented full (A-coset extension

CE(H,LH ;PA) (thus, in particular CE(H,LH ;PA) itself) is the image of G
under some canonical graph morphism. Then the following hold:
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(i) any cover LG of LH in G is admissible for (A-coset extension,
(ii) the full (A-coset extension CE(G,LG;PA) embeds into G[A],
(iii) the full (A-coset extension CE(G,LG;PA) is bridge-free.

Proof. As for (i), that LG is admissible for (A-coset extension follows from
the fact that LH is admissible for (A-coset extension and that the canonical
morphism G։ H is k-stable. In this case, the canonical morphism ϕ : G։
H is injective on B-components for B ( A so that condition (3.4) is satisfied
for LG if it is satisfied for LH = ϕ(LG).

Towards injectivity as required for (ii), let ψ : CE(G,LG;PA) → G[A] be
the canonical graph morphism of Proposition 3.9. We first show that for
every B ( A its restriction to CE(G,LG;B) is injective. Suppose this were
not the case. Since the restriction to LG is an embedding, that could only
happen if two elements of two distinct constituent cosets uG[B] and vG[B] of
CE(G,LG;B) were mapped onto each other and therefore both cosets uG[B]
and vG[B] were mapped onto each other. The result in G[A] is depicted
in Figure 7 (left-hand side). Take a canonical graph morphism ϕ : G ։

CE(H,LH ;PA). Since the expansion G ։ H is k-stable and |B| ≤ k the
morphism ϕmaps uG[B] = vG[B] isomorphically onto ϕ(u)H[B] and likewise
onto ϕ(v)H[B], hence ϕ(u)H[B] = ϕ(v)H[B] in CE(H,LH ;PA) so that ϕ(u)
and ϕ(v) are in the same B-component of LH . It follows that ϕ(u) and ϕ(v)
can be connected by a B-path which runs in LH . However, that path could
then be lifted to a B-path between u and v which runs in LG since ϕ is
bijective beween uG[B] and ϕ(u)H[B]. This contradicts our assumption
that the restriction ψ ↾ CE(G,LG;B) is not injective (Figure 7).

So it is sufficient to consider the case when vertices of distinct coset ex-
tension CE(G,LG;B) and CE(G,LG;C) are mapped onto each other. Let
B,C ( A, B 6= C and x ∈ CE(G,LG, B) and y ∈ CE(G,LG;C) be vertices
such that ψ(x) = ψ(y). We need to show that x = y in CE(G,LG;PA) (that
is, x and y both are in CE(G,LG;B ∩ C) and coincide). From ψ(x) = ψ(y)
we see that in G[A] the situation is as depicted in Figure 7 (right hand side)
with ψ(x) = z = ψ(y). That is, u and z are connected by a B-path while
v and z are connected by a C-path, and altogether z ∈ uG[B] ∩ vG[C]. Let

us consider some canonical graph morphism G։ CE(H,LH ;PA) (according
to the statement of the Theorem). It maps LG onto LH , and let u′, v′, z′

be the image vertices of u, v, z, respectively, under this morphism. Then
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u′, v′ ∈ LH and z′ ∈ u′H[B] ∩ v′H[C]. The latter intersection is a (B ∩ C)-
(constituent) coset of CE(H,LH ;PA), having non-empty intersection with
the skeleton LH , say u′H[B]∩ v′H[C] = cH[B ∩C] for some c ∈ LH . More-
over, both intersections LH∩u

′H[B] and LH∩v
′H[C] are connected (namely

B- respectively C-components of LH). The situation is depicted in Figure 8.

So there are paths u′
p
−→ c in LH ∩ u

′H[B], v′
q
−→ c in LH ∩ v

′H[C] and

c
r
−→ z′ in u′H[B] ∩ v′H[C]. In particular, pr labels a path u′ −→ z′, qr

labels a path v′ −→ z′. From k-stability of the expansion G։ H it follows
that the morphism G։ CE(H,LH ;PA) is injective on all cosets xG[D] for all
D ( A. In particular, this morphism is bijective between uG[B] and u′H[B]
as well as between vG[C] and v′H[C]. From this it follows that the paths in
u′H[B] ∪ v′H[C] just mentioned lift to paths in uG[B] ∪ vG[C]: hence there
is a path u −→ z labelled pr and one v −→ z labelled qr. It follows that, in
CE(G,LG;PA),

u · p = z · r−1 = v · q.

Since p : u′ −→ c runs in LH and so does q : v′ −→ c, the path p : u −→ z ·r−1

runs in LG, and so does the path q : v −→ z · r−1. It follows that

uG[B] = (z · r−1)G[B] and vG[C] = (z · r−1)G[C],

thus uG[B] ∩ vG[C] = (z · r−1)G[B ∩C] so that, in CE(G,LG; {B,C}):

x = (z · r−1) · r = y,

that is, x and y represent the same vertex in CE(G,LG;B ∩C), as required.
Altogether, CE(G,LG;PA) embeds in G[A] via the morphism of Proposi-
tion 3.9.

It remains to argue for (iii): we need to show that CE(G,LG;PA) is bridge-
free. So we have two vertices v1, v2 ∈ LG, A1, A2 ( A and vertices s1 ∈
v1G[A1], s2 ∈ v2G[A1]; in addition, for some B ( A there is a B-path

s1
p
−→ s2 running in G[A] (all the following takes place in G[A]) as depicted

in Figure 9. In addition, there are an A-path v1
q
−→ v2 running in LG and

Ai-paths (for i = 1, 2) vi
fi
−→ si running in viG[Ai]. We first consider the
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canonical graph morphism G ։ CE(H,LH ;PA) which maps LG onto LH .
Let i ∈ {1, 2} and v′i be the image of vi in LH under this morphism. The

path v1
q
−→ v2 is thereby mapped to the path v′1

q
−→ v′2. Next denote by s′i

the image of si; the path vi
fi
−→ si running in viG[Ai] is mapped to the path

v′i
fi
−→ s′i which runs in v′iH[Ai]. So far, these paths run in CE(H,LH ;PA).

Further, the path s1
p
−→ s2 is mapped to the path s′1

p
−→ s′2 which runs

in CE(H,LH ;PA). It follows that there is a B-path s′1
ṗ
−→ s′2 which runs

in CE(H,LH ;PA) (in fact, ṗ is the word obtained from p by deletion of the

letters which traverse loop edges of CE(H,LH ;PA) \ CE(H,LH ;PA)).
So consider the B-component B of CE(H,LH ;PA) which contains the

two vertices s′1 and s′2. The cluster property of CE(H,LH ;PA) shows the
following: either B has non-empty intersection with the skeleton LH , or else
B is a B-cluster (the existence of unique minimal support is not needed in
this context). Assume the latter case first: as a B-cluster B is the union
B = B1 ∪ · · · ∪ Bn of (B ∩ Ci)-cosets where Ci ( A, |Ci| = |A| − 1 and we
may assume that s′i ∈ Bi for i = 1, 2. The pairs (A1, v

′
1) and (A2, v

′
2) provide

support for s′1 and s′2, respectively, and B1 ⊆ v′1H[C1] and B2 ⊆ v′2H[C2],
and the two cosets B1 = s′1H[C1∩B] and B2 = s′2H[C2∩B] have non-empty
intersection (indeed, B1 ∩ B2 contains the core of B). Hence v′1H[C1] ∩
v′2H[C2] 6= ∅ so that v′1H[C1]∩ v

′
2H[C2] = vH[C] for C = C1∩C2 and some

vertex v ∈ LH . The situation is depicted in Figure 10. In particular, there
is a vertex s ∈ s′1H[B ∩C1] ∩ s

′
2H[B ∩ C2] and there are B ∩ Ci-paths

s′1
p1
−→ s

p2
−→ s′2

labelled pi (i = 1, 2). We now consider theB-augmentation of CE(H,LH ;PA)
at the vertex s and the canonical graph morphism

ψ : G։ CE(H,LH ;PA)©s H[B]

mappingLG onto LH . The graphs CE(H,LH ;PA) and CE(H,LH ;PA)©s H[B]
very much look the same except that the cluster B in CE(H,LH ;PA) is
blown up to the full coset sH[B] in the latter graph. The morphism ψ now

maps the path s1
p
−→ s2 to the path s′1

p
−→ s′2 which runs in sH[B]; but
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s′1
p1
−→ s

p2
−→ s′2 also run in sH[B] which implies that [p]H = [p1p2]H . Since

the expansion G։ H is k-stable and |B| ≤ k, it follows that [p]G = [p1p2]G.

But then, the path s1
p1p2
−→ s2 runs entirely in CE(G,LG;PA) and thus pro-

vides a B-path between s1 and s2 in the coset extension CE(G,LG;PA).

This follows from the fact that the path s1
p1
−→ s · p1 runs in v1G[C1] while

s1 · p1
p2
−→ s1 · p1p2 = s2 runs in v2G[C2] since ψ provides isomorphisms

v1G[C1]։ v′1H[C1] and v2G[C2]։ v′2H[C2].
Now consider the (first) case when B has non-empty intersection with the

skeleton LH . In this case B is a full B-coset B = vH[B] for some vertex

v ∈ LH . The canonical morphism ϕ : G։ CE(H,LH ;PA) induces an isomor-
phism between vH[B] and ϕ−1(vH[B]) = ϕ−1(v)G[B] = s1G[B] = s2G[B].
But ϕ−1(v) ∈ LG so that s1G[B] = s2G[B] is contained in CE(G,LG;PA). �

5. Construction of the group G

The group G announced in Lemma 2.8 will be constructed via a series of
expansions

G1 և H1 և G2 և · · ·և G|E|−1 և H|E|−1 և G|E| = G (5.1)

where, for every k, the expansions Gk և Hk and Hk և Gk+1 are k-stable
and the groupsHk and Gk+1 are (k+1)-retractable. Compare the series (3.3)
above, now interleaved with the intermediate stages Hk in (5.1). Each group
in this series is the transition group of a certain graph,

Gk = T (Xk) and Hk = T (Yk),

where Yk is obtained from Xk by adding certain connected components, and
similarly Xk+1 from Yk. The idea of this iterative procedure is as follows.

The given oriented graph E = (V ∪Ẽ;α, ω,−1) is considered as an E-labelled
graph where every edge gets its own label and X1 is a certain completion of



F -INVERSE COVERS 33

it. Suppose that for k ≥ 1 the graph Xk and therefore its transition group
Gk have already been constructed. The step Xk  Yk, and hence the step
Gk  Hk, raises the “degree of retractability” from k to k + 1 and thereby
lays the ground for the transition Hk  Gk+1. This step is intended to
ensure the following: suppose that p is a word over k+1 letters which forms
a path u −→ v in E and a ∈ co(p) for some a ∈ E; if Hk satisfies the relation
p = pa→1 and there is no word q in the letters co(p) \ {a} labelling a path
u −→ v in E and such that Hk satisfies the relation pa→1 = q then some
component of Xk+1 \ Yk guarantees that Gk+1 avoids the relation p = pa→1.

5.1. Definition of G1 and the transition Gk  Hk. The idea of the
construction of the graph X1 is to extend the given oriented graph E =

(V ∪ Ẽ, α, ω,−1) to a complete E-graph on the vertex set V in whose
transition group the permutation [e] corresponding to any non-loop edge
e is the transposition of V that swaps the two vertices αe and ωe. Let

E = (V ∪ Ẽ;α, ω,−1) be a finite connected oriented graph. We let the set of
positive edges E be our alphabet and label every edge e by itself. Thereby

we get the E-labelled graph (V ∪ Ẽ;α, ω,−1, ℓ, E) where ℓ is the identity

function mapping every e ∈ Ẽ, considered as an edge, to itself, considered
as a label. The resulting graph is even an E-graph for trivial reasons, since
every label appears exactly once.

Next, for every non-loop edge e we add a new edge ē and set

αē := ωe, ωē := αe, ℓ(ē) := ℓ(e) = e.

We have thus completed every non-loop edge eu v to a 2-cycle
e

e
u v.

Let us denote the set of all positve edges so obtained (the original ones and

the added ones) by F ; then the oriented E-graph F = (V ∪ F̃ ;α, ω,−1, ℓ, E)
is weakly complete. Let X1 := F be its trivial completion. The transition
group G1 := T (X1) is an E-generated group of permutations acting on the
vertex set V . For every e ∈ E, [e]G1

is either a transposition (if e is not a
loop edge then [e] swaps αe and ωe) or the identity permutation (if e is a
loop edge). Note that two distinct labels e, f ∈ E may represent the same
permutation of V (since we allow multiple edges in E).

Remark 5.1. Instead of completing all non-loop edges to 2-cycles we could
equally well complete every such edge e to an n-cycle for any fixed n ≥ 2,

by attaching to the edge u
e
−→ v an e-path u

e
←− · · ·

e
←− v consisting of a

sequence of n− 1 new edges labelled e and n− 2 new intermediate vertices.
In the resulting transition group, the permutation [e] assigned to e then is
a cyclic permutation of length n mapping αe to ωe. Distinct labels coming
from non-loop edges then automatically represent different permutations
provided that n ≥ 3.
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The transition fromGk toHk is easily described. Suppose we have already
defined the graph Xk and thus the group Gk = T (Xk). We set

Yk := Xk ⊔
⊔

A⊆E
|A|=k

Gk[A].

Provided that Gk is k-retractable, this expansion is k-stable and Hk =
T (Yk) is (k+1)-retractable (Theorem 3.2). In particular, H1 is 2-retractable.

5.2. The transition Hk  Gk+1. The expansion Hk և Gk+1 is more
delicate. We let Xk+1 = Yk⊔Zk where Zk is a weakly complete graph whose
components we shall define now. As inductive hypothesis on Gk we assume
that

(i) Gk is k-retractable

and, for every B ⊆ E with |B| ≤ k, for the Gk-cover CGk
of every connected

component C of B = 〈B〉 the following hold:

(ii) CGk
is admissible for (B-coset extension,

(iii) the full (B-coset extension CE(Gk,CGk
;PB) embeds into Gk[B],

(iv) the full (B-coset extension CE(Gk,CGk
;PB) is bridge-free.

By (i) and Theorem 3.2, Hk ։ Gk is k-stable. Let ψk : Gk ։ X1 be some
canonical graph morphism, χk : Hk ։ Gk the graph morphism induced by
the canonical morphism Hk ։ Gk, and let ϕk = ψk ◦ χk. Note that χk is
injective on connected B-subgraphs for |B| ≤ k (by k-stability).

Let A ⊆ E, which is a subset of (positive) edges of E ⊆ X1; assume that
|A| = k + 1 and let A = 〈A〉 be the subgraph of E spanned by A. Let C

be a connected component of A and CHk
be an Hk-cover of C, that is, some

connected component of ϕ−1
k (C). We intend to show that CHk

is admissible
for (A-coset extension (with respect to Hk) and that CE(Hk,CHk

;PA) has
the cluster property.

Let B ( A and let U ⊆ CHk
be some B-component of CHk

. Then U′ :=
ϕk(U) ⊆ C is a B-component of C and hence is a connected component of
B := 〈B〉. By the inductive hypothesis, any Gk-cover U

′
Gk

of U′ is admissible

for (B-coset extension (with respect to Gk) and CE(Gk,U
′
Gk
;PB) embeds

into Gk[B] and is bridge-free. Since the morphism χk : Hk ։ Gk is injective
on B-components (that is, injective on B-cosets) it follows that U′

Gk

∼= U

and hence also

CE(Gk,U
′
Gk
;PB) ∼= CE(Hk,U;PB). (5.2)

As the latter graph embeds into Hk[B] ∼= Gk[B], it follows that condition
(3.4) of Definition 3.7 is fulfilled so that CHk

is admissible for (A-coset ex-
tension (with respect to Hk). Once more by the inductive hypothesis, every
graph in (5.2) is bridge-free. Then, by Corollary 4.4, the full (A-coset ex-
tension CE(Hk,CHk

;PA) itself has the cluster property. We can now define
the components of the graph Zk.

Definition 5.2. The graph Zk is the disjoint union of
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(1) all augmented A-clusters

CL(Hk[A],P)©v Hk[B]

for A ⊆ E with |A| = k+1, P a set of proper subsets of A, v a vertex
of CL(Hk[A],P) and B ( A;

(2) all augmented full (A-coset extensions

CE(Hk,CHk
;PA)©v Hk[B]

for A ⊆ E with |A| = k + 1, C a connected component of A = 〈A〉,
CHk

an Hk-cover of C, PA the set of all proper subsets of A, v a
vertex of CE(Hk,CHk

;PA) and B ( A.

We note that the augmented clusters and augmented coset extensions
contain, for B = ∅, all “plain” clusters and coset extensions. Recall that
Gk+1 = T (Xk+1) = T (Yk ⊔ Zk).

Proposition 5.3. The expansion Hk և Gk+1 is k-stable and hence Gk+1

is (k + 1)-retractable.

Proof. We need to prove k-stability, the second assertion then follows from
Theorem 3.2 by inductive hypothesis (i) and the definition of Hk. Let C ⊆ E

with |C| = k, let p ∈ C̃∗ and assume that [p]Gk+1
6= 1; we need to show

that [p]Hk
6= 1. There exists a component L of Yk or of Zk witnessing

the inequality [p]Gk+1
6= 1. That is, in this component there is a vertex v

such that v · p 6= v. If the witnessing component L belongs to Yk, then we
are done since then [p]Hk

6= 1 immediately follows as Hk = T (Yk). If L

is a component of Zk, then L = M where M is of the form (1) or (2) of
Definition 5.2 and the path p : v −→ v · p runs in the C-component vM[C].
Recall that vM[C] denotes the C-component of v in the graph M while

vM[C] is the trivial completion of vM[C], that is, the trivial completion of
the C-component of v in M. We have the inclusions

vM[C] ⊆ vM[C] ⊆ vM[C],

where the latter two graphs differ only in loop edges having labels not in
C. Hence C-paths in vM[C] and vM[C] traverse the same edges and meet

the same vertices. It is therefore sufficient to look at vM[C] instead of
vM[C]. From Corollaries 3.4, 3.6 and Proposition 3.14, and since the coset
extensions of Definition 5.2 (2) have the cluster property, it follows that, for
the graph M in question, the C-component vM[C] must be isomorphic to
one of the following:

(i) a full C-coset Hk[C], or
(ii) a C-cluster CL(Hk[C],P) for some set P of proper subsets of C (this

includes for P = {B} also B-cosets Hk[B] for B ( C), or
(iii) a D-augmented C-cluster CL(Hk[C],P)©wHk[D] for some set P of

proper subsets of C and D some proper subset of C.
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In case (i), vM[C] ∼= Hk[C], the claim [p]Hk
6= 1 again follows immediately.

In cases (ii) or (iii) all members of the set P involved are proper subsets of
C, hence have at most k − 1 elements; then

vM[C] ∼= CL(Hk[C],P) ∼= CL(Gk[C],P) ∼= CL(Hk−1[C],P)

or vM[C] ∼= CL(Hk[C],P)©wHk[D] ∼= CL(Gk[C],P)©wGk[D]

∼= CL(Hk−1[C],P)©wHk−1[D]

imply that vM[C] is isomorphic with a component of Zk−1 so that [p]Gk
6= 1,

from which again [p]Hk
6= 1 follows. �

From Theorem 4.5 it follows that for every set A ⊆ E with |A| = k + 1
and every connected component C of A, every Gk+1-cover CGk+1

(that is,

every connected component of ψ−1
k+1(C) in Gk+1 where ψk+1 : Gk+1 ։ X1 is a

canonical graph morphism) is admissible for (A-coset extension, and the full
(A-coset extension CE(Gk+1,CGk+1

;PA) embeds into Gk+1[A] and is bridge-
free. If |A| = l < k + 1 we have by induction that, for every connected
component C of A the full (A-coset extension CE(Gl,CGl

;PA) embeds into
Gl[A]. But the expansion Gl և Gk+1 is l-stable whence CE(Gl,CGl

;PA) ∼=
CE(Gk+1,CGk+1

;PA) and Gl[A] ∼= Gk+1[A]. Altogether we see that

(i) Gk+1 is (k + 1)-retractable (by Proposition 5.3)

and, for every A ⊆ E with |A| ≤ k + 1, for the Gk+1-cover CGk+1
of every

connected component C of A = 〈A〉 the following hold:

(ii) CGk+1
is admissible for (A-coset extension,

(iii) the full (A-coset extension CE(Gk+1,CGk+1
;PA) embeds into Gk+1[A],

(iv) the full (A-coset extension CE(Gk+1,CGk+1
;PA) is bridge-free.

We have thus verified that Gk+1 satisfies the conditions inductively assumed
for Gk. In addition, the base case for this inductive procedure also works.
The group H1 is 2-retractable and so is G2 since G2 ։ H1 is 1-stable.
By Proposition 4.3, for every set A ⊆ E with |A| = 2, every H1-cover
CH1

of every component C of A is admissible for (A-coset extension (with
respect to H1) and CE(H1,CH1

;PA) has the cluster property. Theorem 4.5
then implies that the G2-cover CG2

is admissible for (A-coset extension (with
respect to G2) and that CE(G2,CG2

;PA) embeds in G2[A] and is bridge-free
(the assertions for G2 can also be checked by direct inspection). Altogether
the series of expansions

G1 և H1 և G2 և · · ·և G|E|−1 և H|E|−1 և G|E|

is well defined and G = G|E| is retractable.

5.3. Properties of G = G|E|. We need to argue that G satisfies the require-
ments of Lemma 2.8. Requirement (2), that G is retractable, and therefore
has a content function by Proposition 3.1, has already been proved. We
are left with showing requirement (3), that the G-content of every word
which labels a path u −→ v in E spans a connected graph containing the
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vertices u and v or u = v in case of empty content, and requirement (1),
that every permutation of E induced by an automorphism of E extends to
an automorphism of G. In this context, by “automorphism of E” we mean

automorphism of the unlabelled oriented graph E = (V ∪ Ẽ;α, ω,−1). Re-
call from the definition of an automorphism of an oriented graph that every
such automorphism of E is required to induce a permutation on the set E of
positive edges of E, hence induces a permutation on our labelling alphabet
E. Similarly, “automorphism of G” means automorphism of the mere group
G (rather than G as an E-group). We start with item (1); (3) will then be
dealt with in Lemma 5.5 and Corollary 5.6.

Proposition 5.4. Every permutation E → E induced by an automorphism
of the oriented graph E extends to an automorphism of G.

Proof. Let γ be a permutation of E induced by an automorphism of E, also
denoted γ. We demonstrate the required property for all Gk and Hk, by
induction on k. First note that γ (uniquely) extends to an automorphism
γ̂ of X1 from which the claim follows for the group G1. Indeed, for every

pair of vertices u, v ∈ X1 and every word p ∈ Ẽ∗, we have p : u −→ v if and

only γp : γ̂u −→ γ̂v. Consequently, for every word p ∈ Ẽ∗, G1 satisfies the
relation p = 1 if and only if it satisfies γp = 1.

So, let k ≥ 1 and assume inductively that γ extends to an automorphism
γ̂ of Xk (this means that there is an automorphism γ̂ of the oriented graph
Xk such that for every edge e ∈ Xk we have ℓ(γ̂e) = γℓ(e)); by the same
reasoning as for k = 1 we see that in this case γ extends to an automorphism
of Gk. From the definition of the graph Yk it now follows that γ extends to
an automorphism γ̂ of Yk which again implies that γ extends to an automor-
phism of Hk. From this in turn it follows that γ extends to an automorphism
of Xk+1 and therefore again to an automorphism of Gk+1. �

The assertion of the last proposition is essentially a direct consequence
of the fact that the entire process behind our construction of G, on the
basis of the given oriented graph E, is symmetry-preserving. Indeed, none
of the intermediate steps involves any choices that could possibly break
symmetries in the input data, i.e. could be incompatible with isomorphisms
between oriented input graphs E. In particular, the inductive construction
steps reflected in Theorems 4.2 and 4.5, proceed by cardinality of subsets
of E and treat all subsets of the same size uniformly and in parallel.2 Any
isomorphism between oriented graphs E ∼= E′ would successively extend to
isomorphisms between the associated graphs Xi

∼= X′
i and Yi

∼= Y′
i and

induced isomorphisms between their transition groups Gi
∼= G′

i and Hi
∼=

Hi. In this sense, the entire inductive process underlying the expansion
chain (5.1) is isomorphism-respecting, hence in particular compatible with
permutations of E stemming from automorphisms of E.

2This should be contrasted e.g. with constructions based on some enumeration of E,
which could well break symmetries.
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Finally, we have to deal with requirement (3) of Lemma 2.8. Recall that

for a word p ∈ Ẽ∗, co(p) is the set of all letters a ∈ E for which a or a−1

occurs in p. We know that G is retractable hence for g ∈ G we define the
content C(g) of g by setting

C(g) :=
⋂

p∈Ẽ∗

[p]G=g

co(p).

Then every g ∈ G has a representation g = [q]G which uses exactly the letters
from C(g) (and/or their inverses), that is, C(g) = co(q). We shall now prove

that for a word p ∈ Ẽ∗ which forms a path u −→ v in E the content C([p]G)
(if non-empty) spans a connected graph containing the vertices u and v.
The following lemma is crucial for this.

Lemma 5.5. Let p ∈ Ẽ∗ be a word that forms a path u −→ v in E; let
A = co(p) and suppose that for some letter a ∈ A and B = A \ {a} there

exists a word r ∈ B̃∗ such that [p]G = [r]G. Then there exists a word q ∈ B̃∗

such that [p]G = [q]G and, in addition, q forms a path u −→ v in E.

Proof. If p contains only loop edges then u = v and the path meets only the
vertex u. Moreover, [p]G = 1 so that for q we may choose the empty word
1 which labels the empty path u −→ u and [q]G = [1]G. Let us consider the
case that p contains non-loop edges. If e is not a loop edge then no power
en and e−n for n ≥ 2 forms a path; therefore, if |A| = 1 the only possibilities
for p are f(f−1f)n and (ff−1)n+1 for n ≥ 0 and f ∈ {e, e−1}. In these cases
the claim is obvious.

So, let |A| = k + 1, and let A = 〈A〉 = 〈πEu(p)〉 be the subgraph of E
spanned by A (which is connected) and let ϕk : Hk ։ X1 be the canonical
morphism mapping 1 ∈ Hk to u; let Ak ⊆ Hk be the cover of A in Hk

with 1 ∈ Ak (that is, the connected component of ϕ−1
k (A) which contains

the vertex 1). The path πEu(p) in E lifts to the path πAk

1 (p). In particular,
in Ak there is a p-labelled path starting at 1. We consider the full (A-coset
extension CE(Hk,Ak;PA) and note that CE(Hk,Ak;B) is a subgraph of it.

We also have the path πG1 (p) in G starting at 1 and being labelled p. The

canonical morphism ψk : G ։ CE(Hk,Ak;PA) (mapping 1 ∈ G to 1 ∈ Ak)

maps πG1 (p) to π
CE(Hk ,Ak;PA)
1 (p), but this path runs entirely in Ak hence

coincides with the path πAk

1 (p) mentioned earlier.

By assumption, [p]G = [r]G for some word r ∈ B̃∗. The paths πG1 (p) and

πG1 (r) have the same terminal vertex, namely [p]G = [r]G. The path πG1 (r)

is mapped by ψk onto the path π
CE(Hk ,Ak;PA)
1 (r). But the B-component

of 1 in CE(Hk,Ak;PA) is the full B-coset 1Hk[B] which is contained in
CE(Hk,Ak;B), hence the latter graph contains a path starting at 1 and

being labelled r: π
CE(Hk,Ak;B)
1 (r), and that path actually runs inside 1Hk[B].

Since the paths πG1 (r) and π
G
1 (p) have the same terminal vertex, so have the
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paths

π
1H[B]
1 (r) = π

CE(Hk ,Ak;B)
1 (r) and πAk

1 (p).

It follows that the terminal vertex v′ of πAk

1 (p) is in Ak ∩ 1Hk[B]. But
Ak ∩ 1Hk[B] is just the B-component of 1 in Ak which is a connected B-
graph. Altogether, there exists a path π : 1 −→ v′ running in Ak ∩ 1Hk[B];

let q ∈ B̃∗ be the label of that path. By construction, [q]Hk
= [r]Hk

,
hence [q]G = [r]G since the expansion Hk և G is k-stable, and therefore
also [q]G = [p]G. Finally, the canonical morphism ϕk : Hk ։ X1 maps

π = πAk∩1Hk

1 (q) to a path in A ⊆ E with initial vertex u = ψk(1) and
terminal vertex v = ψk(v

′) and label q. Altogether, q forms a path u −→ v
in E. �

This proof sheds some light on the rôles that the components of Zk play
in the transition Hk  Gk+1. If there is a word p with co(p) = A and
|A| = k + 1 such that p forms a path u −→ v in E, and some letter a ∈ A
does not belong to the Hk[A]-content of p then the subgraph CE(Hk,Ak;B)

of CE(Hk,Ak;PA) (for A = 〈A〉 and B = A \ {a}) guarantees that the
next group Gk+1 avoids the relation p = pa→1 (hence a does belong to the

Gk+1[A]-content of p) unless there is a word q ∈ B̃∗ such that [p]Hk
= [q]Hk

and q forms a path u −→ v in E. From this point of view it would be sufficient
to let Zk be comprised of weak completions of all graphs CE(Hk,Ak;B) of
the mentioned kind. However, when attempting this approach the authors
failed to prove k-stability of the expansion Hk և Gk+1, and it is not clear
whether or not k-stability can be achieved by this procedure. Hence, except
for the graphs CE(Hk,Ak;B) which appear as subgraphs of the full coset
extensions CE(Hk,Ak;PA) all the machinery used to set up the graph Zk —
(augmented) clusters, (augmented) full coset extensions, all of Section 4 —
serves to achieve k-stability of the transition Hk  Gk+1.

If, in Lemma 5.5, [p]G = 1 then necessarily u = v since in this case the

path πG1 (p) is closed and the canonical morphism ϕu : G ։ X1 maps this

path onto the path πX1
u (p) = πEu(p). Iterated application of Lemma 5.5 leads

to:

Corollary 5.6. Let p ∈ Ẽ∗ be a word which forms a path u −→ v in E;

then there exists a word q ∈ Ẽ∗ which uses only letters (i.e. edges) from the
content C([p]G) (and/or their inverses) such that [p]G = [q]G and q forms a
path u −→ v in E. If C([p]G) = ∅ then u = v and q is the empty word. If
C([p]G) 6= ∅ then the graph 〈C([p]G)〉 = 〈co(q)〉 is connected and contains
the vertices u and v.

5.4. Final remark: pointlike conjecture for inverse monoids ver-

sus F -inverse cover problem. What can we say about the gap between
these two problems? As already mentioned, the truth of the pointlike con-
jecture for inverse monoids follows from Ash’s result on inevitable labellings
of graphs. The construction in Ash’s paper is quite involved and the groups
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constructed there are not very well traceable. However, in [4] it has been
shown that the expansion QAbp of an A-generated group Q witnesses the
pointlike sets of the inverse monoid M(Q) and therefore is able to verify
the pointlike conjecture for inverse monoids. For any prime p, the so-called
universal p-expansion QAbp of Q is the largest A-generated expansion R of
Q with kernel of R ։ Q an elementary Abelian p-group. This expansion
can be obtained by the construction in (2.1), except that the E-generated
group G used there is replaced with the free E-generated Abelian group of
exponent p (which is the |E|-fold direct product of cyclic groups of order p),
in fact a very transparent group. Sufficient to verify the pointlike conjecture
is an E-generated group which reflects the structure of the Cayley graph
Q of Q in a very weak sense: the graph spanned by the content of a word

over Ẽ which forms a path u −→ v requires only a connected component
containing u and v. From this point of view, it seems to be justified to
say that the gap between the pointlike problem for inverse monoids and the
F -inverse cover problem is huge, indeed.

As already mentioned, Henckell and Rhodes considered Problem 1.1 as
a “stronger form” of the pointlike conjecture for inverse monoids. On the
other hand, in the last sentence of their paper they wrote: “We do not
necessarily believe [the F -inverse cover problem] has an affirmative answer.”
So, in contrast to what is often reported, Henckell and Rhodes did not really
conjecture that every finite inverse monoid does admit a finite F -inverse
cover, but rather seem to have been undecided about this question. In fact,
they seem to have had some feeling that the F -inverse cover problem might
be hard.
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