
FINITE APPROXIMATION OF FREE GROUPS I:

THE F -INVERSE COVER PROBLEM

K. AUINGER, J. BITTERLICH AND M. OTTO

Abstract. For a finite connected graph E with edge set E, a finite
E-generated group G is constructed such that the set of relations p = 1
satisfied by G (with p a word over E ∪E−1) is closed under deletion of
generators (i.e. edges); as a consequence, every element g ∈ G admits a
unique minimal set C(g) of edges (the content of g) needed to represent
g as a word over C(g) ∪C(g)−1. The crucial property of the group G is
that connectivity in the graph E is reflected in G in the following sense:
if a word p forms a path u −→ v in E then there exists a G-equivalent
word q which also forms a path u −→ v and uses only edges from their
common content; in particular, the content of the corresponding group
element [p]G = [q]G spans a connected subgraph of E containing the
vertices u and v. As the free group generated by E obviously has these
properties, the construction provides another instance of how certain
features of free groups can be “approximated” or “simulated” in finite
groups. As an application it is shown that every finite inverse monoid
admits a finite F -inverse cover. This solves a long-standing problem of
Henckell and Rhodes.

1. Introduction

In the influential paper [16], Henckell and Rhodes stated a series of con-
jectures and two problems. The paper was concerned with the celebrated
question whether every finite block group M (a monoid in which every von
Neumann regular element admits a unique inverse) is a quotient of a sub-
monoid of the power monoid P(G) of some finite group G. Henckell and
Rhodes presented an affirmative answer to the question modulo some con-
jecture, namely about the structure of pointlike sets; a subset X of a finite
monoid M is pointlike (with respect to groups) if and only if in every sub-
direct product T ⊆ M × G of M with any finite group G there exists an
element g ∈ G with X × {g} ⊆ T (that is, all elements of X relate to some
point g ∈ G.) The questions raised by Henckell and Rhodes in [16] con-
cerned the algorithmic recognisability of certain subsets of M and relations
on M for a given finite monoid M . These subsets and relations are defined
by use of the collection of all subdirect products T ⊆ M × G of M with
arbitrary finite groups G.
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Shortly after, all stated conjectures and one of the two problems (about
liftable tuples) were verified respectively solved by Ash in his celebrated
paper [5]. Roughly speaking, Ash proved that in the situations mentioned,
and even beyond those, the collection of all subdirect products T ⊆ M ×
G of M with finite groups G has the same “computational power” as a
particularly chosen “canonical” subdirect product τ ⊆ M × F of M with
some free group F . This is a strong form of approximation in finite groups
of the free group F . The algorithmic recognisability of the aforementioned
subsets and relations of M is an immediate consequence. The importance
of Ash’s paper went beyond its immediate task as in the following years
interesting and deep connections with the profinite topology of the free group
[27] and model theory [17] have been revealed and studied [2, 3].

Yet the second problem stated, which was called in [16] a “stronger form
of the pointlike conjecture for inverse monoids”, was not solved in Ash’s
paper and has since then attracted considerable attention [19, 20, 32, 33, 7,
31, 30, 11]. It asked:

Problem 1.1. Does every finite inverse monoid admit a finite F -inverse
cover?

An inverse monoid S is F -inverse if every congruence class of the least
group congruence σ of S admits a greatest element (with respect to the
natural partial order) and an inverse monoid S is a cover of an inverse
monoid M if there exists a surjective, idempotent separating homomorphism
S →M .

When reading the paper [7] by Szendrei and the first author, the second
author understood that a result by the third author [23, 24] about the exis-
tence of certain finite groupoids can be used to given an affirmative answer
to Problem 1.1. He presented this solution in his dissertation [13] and his
paper [12]. Later, some flaws were discovered in [23, 24] which, however,
have been fixed in the meantime [25]. The intention of the present paper is
to give a complete and self-contained presentation of the solution to Prob-
lem 1.1 (up to classical results on inverse monoids), which is based on the
ideas and proofs of [25] but is in a sense tailored for what is needed in the
present context and presented in a language which (hopefully) makes it more
accessible to the semigroup community.

Since an infinite F -inverse cover can be constructed for every inverse
monoid M by use of a free group F , the task for finite M is, to replace
F by a suitable finite group H. The group H needs to have a sufficiently
high combinatorial complexity in order to “simulate” the required behaviour
of the free group F with respect to the monoid M . Hence the task is to
approximate the free group F sufficiently well by a finite group H. What
this exactly means in the present context is one of the essentials of the paper.

The paper is organised as follows: Section 2 collects prerequisites from
inverse monoids, graphs and a proof that the existence of certain finite
groups yields a positive solution of Problem 1.1. Section 3 introduces the
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main graph-theoretic tools while Section 4 presents two crucial technical
results. Finally, in Section 5 we obtain the required group in a construction
which intends to “reflect the geometry” of a given finite graph E and thereby
prove the main result of the paper (Lemma 2.5).

2. Inverse monoids

2.1. Preliminaries. A monoid M is inverse if every element x ∈M admits
a unique element x−1, called the inverse of x, satisfying xx−1x = x and
x−1xx−1 = x−1. This gives rise to a unary operation −1 : M → M and
an inverse monoid may equivalently be defined as an algebraic structure
(M ; ·,−1, 1) with · an associative binary operation, 1 a neutral element with
respect to · and a unary operation −1 satisfying the laws

(x−1)
−1

= x, (xy)−1 = y−1x−1, xx−1x = x and xx−1yy−1 = yy−1xx−1.

In particular, the class of all inverse monoids forms a variety of algebraic
structures (in the sense of universal algebra), the variety of all groups
(G; ·,−1, 1) being a subvariety. By the Wagner–Preston Theorem [20, Chap-
ter 1, Theorem 1], inverse monoids may as well be characterised as monoids
of partial bijections on a set, closed under composition of partial mappings
and inversion. Therefore, while groups model symmetries of mathematical
structures, inverse monoids (or semigroups) model partial symmetries, that
is, symmetries between substructures of mathematical structures.

From basic facts of universal algebra it follows that every inverse monoid
M admits a least congruence such that the corresponding quotient structure
is a group. This congruence is usually denoted σ and it can be characterised
as the least congruence on M that identifies all idempotents of M with each
other. Another way to characterise this congruence is this: two elements
x, y ∈ M are σ-related if and only if xe = ye for some idempotent e of M
(and this is equivalent to fx = fy for some idempotent f of M).

Every inverse monoid M is equipped with a partial order ≤, the natural
order, defined by x ≤ y if and only if x = ye for some idempotent e of M
(this is equivalent to x = fy for some idempotent f of M). In particular,
e ≤ 1 for every idempotent e of M . If an inverse monoid M is represented
as a monoid of partial bijections, then the idempotents of M are exactly the
restrictions of the identity function and for x, y ∈ M we have x ≤ y if and
only if x ⊆ y, that is, x is a restriction of y. The order is compatible with
the binary operation and inversion of M where the latter means that x ≤ y
implies x−1 ≤ y−1. In terms of the natural order, the congruence σ can
be characterised as the least congruence for which the natural order on the
quotient is the identity relation, and, likewise as the least congruence that
identifies every pair of ≤-comparable elements. This leads to yet another
description of σ: two elements x and y are σ-related if and only if they
admit a common lower bound with respect to ≤. For further information
on inverse monoids the reader is referred to the monographs by Petrich [26]
and Lawson [20].
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An inverse monoid S is F -inverse if every σ-class of S possesses a greatest
element with respect to ≤. For recent developments concerning the system-
atic study of F -inverse monoids and their relevance in various contexts the
reader is referred to [9] and the literature cited there. An F -inverse monoid
S is an F -inverse cover of the inverse monoid M if there exists a surjec-
tive idempotent separating homomorphism S → M . As mentioned in the
introduction, it has been an outstanding open problem whether every finite
inverse monoid M admits a finite F -inverse cover.

2.2. A-generated inverse monoids. Throughout, for any non-empty set
X (of letters, of edges, etc.) we let X−1 := {x−1 : x ∈ X} be a disjoint

copy of X consisting of formal inverses of the elements of X, and set X̃ :=

X ∪ X−1. The mapping x 7→ x−1 is extended to an involution of X̃ by

setting (x−1)
−1

= x, for all x ∈ X. We let X̃∗ be the free monoid over

X̃, which, subject to (x1 · · ·xn)−1 = x−1
n · · ·x−1

1 (where xi ∈ X̃), is the free

involutory monoid over X. The elements of X̃∗ are called words over X̃,

and we let 1 denote the empty word. A word w ∈ X̃∗ is reduced if it does not

contain any factor of the form xx−1 for x ∈ X̃. Repeated deletion of such
factors in a word w, until no one is present any more, leads to the reduced
form red(w) of w.

We fix a non-empty set A (called alphabet in this context). An inverse
monoid M together with a (not necessarily injective) mapping iM : A →
M (called assignment function) is an A-generated inverse monoid if M is
generated by iM (A) as an inverse monoid, that is, generated with respect
to the operations 1, ·,−1. For every congruence ρ of an A-generated inverse
monoid M , the quotient M/ρ is A-generated with respect to the map iM/ρ =
πρ ◦ iM where πρ is the projection M → M/ρ. A morphism ψ from the
A-generated inverse monoid M to the A-generated inverse monoid N is a
homomorphism M → N respecting generators from A, that is, satisfying
iN = ψ ◦ iM . If it exists, such a morphism is unique and surjective and
is called canonical morphism, denoted ψ : M � N . On a more formal
level, an A-generated inverse monoid is an algebraic structure of the form
(M ; ·,−1 , 1, A) where every symbol a ∈ A is interpreted in M as a constant
(that is, as a nullary operation) via the assignment function iM . Canonical
morphisms of A-generated inverse monoids then are just homomorphisms of
algebraic structures in the signature {·,−1 , 1} ∪ A. If M � N then M is
an expansion of N . In our usage, the term “expansion” just concerns the
relationship between two individual A-generated inverse monoids M and N .
This somehow deviates from the widespread use of that term standing for a
functor on certain categories of monoids. The special case of A-generated
groups will play a significant rôle in this paper.

As already mentioned, the assignment function is not necessarily injective,
and, what is more, some generators may even be sent to the identity element
of M . This is not a deficiency, but rather is adequate in our context, since we
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want the quotient of an A-generated structure to be again A-generated. In
particular M/σ, the quotient of an A-generated inverse monoid M modulo
the least group congruence σ, is an A-generated group.

The assignment function iM is usually not explicitly mentioned; it uniquely
extends to a homomorphism [ ]M : Ã∗ → M (of involutory monoids). For

every word p ∈ Ã∗, [p]M is the value of p in M or simply the M -value of

p. For two words p, q ∈ Ã∗, the A-generated inverse monoid M satisfies
the relation p = q if [p]M = [q]M , in which case the words p and q are
M -equivalent, while M avoids the relation p = q if [p]M 6= [q]M .

Using the concept of “A-generatedness” we see that every inverse monoid
admits an F -inverse cover. Indeed, let M be an inverse monoid; choose a set
A with assignment function iM : A → M so that M becomes A-generated
and let F be the free A-generated group. Then the subdirect product

S := {([w]F , [w]M ) : w ∈ Ã∗} ⊆ F ×M (2.1)

is an F -inverse cover of M . This is well known and it is easy to see. Indeed,
the congruence σ on S can be described by

([u]F , [u]M ) σ ([v]F , [v]M ) if and only if [u]F = [v]F .

Furthermore, for two words u, v ∈ Ã∗ for which u is obtained from v by

(successive) deletion of some factors of the form aa−1 (a ∈ Ã) we have
[v]M ≤ [u]M in any A-generated inverse monoid M . Consequently, for a

given word w ∈ Ã∗ the maximum element of the σ-class of ([w]F , [w]M )
is the element ([red(w)]F , [red(w)]M ) = ([w]F , [red(w)]M ). However, the
inverse monoid S is infinite, no matter what M is. The Henckell–Rhodes
problem then asks if in case of a finite inverse monoid M the infinite free
group F in (2.1) may be replaced by some finite (A-generated) group H
serving the same purpose. An affirmative answer to this question will be
established in Theorem 2.4.

2.3. Graphs. In this paper, we consider the Serre definition [28] of graph
structures, admitting multiple directed edges between pairs of vertices and
including directed loops at individual vertices. In the literature, such struc-
tures are often called multidigraphs, directed multigraphs or quivers. The
following formalisation is convenient for our purposes. A graph E is a two-
sorted structure (V,K;α, ω,−1) with V its set of vertices, K its set of edges
(disjoint from V ), with incidence functions α : K → V and ω : K → V ,
selecting, for each edge e the initial vertex αe and the terminal vertex
ωe, and involution −1 : K → K satisfying αe = ωe−1, ωe = αe−1 and
e 6= e−1 for every edge e ∈ K. Instead of initial/terminal vertex the terms
source/target are also used in the literature. One should think of an edge

e with αe = u and ωe = v in “geometric” terms as e : •
u
−−−−→•

v
and its

inverse e−1 : •
u
←−−−−•

v
as “the same edge but traversed in the opposite di-

rection”. A graph (V,K;α, ω,−1) is oriented if the edge set K is partitioned
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as K = E ∪E−1 = Ẽ such that every −1-orbit contains exactly one element
of E and one of E−1; the edges in E are the positive or positively oriented
edges, those in E−1 the negative or negatively oriented ones. An oriented

graph E with set of positive edges E will be denoted as E = (V, Ẽ;α, ω,−1).
A subgraph of the graph E is a substructure that is induced over a pair

(V ′,K ′) of subsets V ′ ⊆ V and K ′ ⊆ K both of which are closed under the
operations α and −1 (and therefore also under ω). In particular, every pair
(S, T ) of subsets S ⊆ V and T ⊆ K generates a unique minimal subgraph
〈(S, T )〉 of E containing (S, T ), which is the subgraph of E spanned by (S, T ).
An automorphism of a graph E = (V,K;α, ω,−1) is a pair of maps ϕ =
(ϕV , ϕK) with ϕV : V → V , ϕK : K → K being bijections satisfying for all
e ∈ K:

αϕK(e) = ϕV (αe), ωϕK(e) = ϕV (ωe), ϕK(e−1) = (ϕK(e))−1.

We note that the second equality is a consequence of the first and third. In
the oriented case we require in addition that ϕ

Ẽ
(E) = E and (therefore also)

ϕ
Ẽ

(E−1) = E−1. A benefit from our definition of a graph as a two-sorted
functional rather than a relational structure is that there is no distinction
between weak and induced subgraphs and that concepts like homomorphism,
congruence and quotient are easier to handle.

Let A be a finite set; a labelling of the graph E = (V,K;α, ω,−1) by the

alphabet A (an A-labelling, for short) is a mapping ` : K → Ã respecting the

involution: `(e−1) = `(e)−1 for all e ∈ K. The labelling ` : K → Ã gives rise
to an orientation of E: setting E := {e ∈ K : `(e) ∈ A} (positive edges) and
E−1 := {e ∈ K : `(e) ∈ A−1} (negative edges), it follows that E ∩ E−1 = ∅
and we get K = Ẽ.

We consider A-labelled graphs as structures (V,K;α, ω,−1, `, A) in their
own right. By a subgraph of an A-labelled graph we mean just a subgraph
with the induced labelling. Morphisms of A-labelled graphs are naturally de-
fined as follows. Let K = (V,K;α, ω,−1, `, A) and L = (W,L;α, ω,−1, `, A)
be A-labelled graphs. A morphism ϕ : K→ L of A-labelled graphs is a pair
of mappings ϕ = (ϕ1, ϕ2), ϕ1 : V → W , ϕ2 : K → L, both compatible with
the operations α and −1 (and therefore also ω) as well as with the labelling.
Throughout the paper, in the situation of a morphism ϕ = (ϕ1, ϕ2) : K→ L

we shall write, for every vertex v [every edge e] of K, ϕ(v) instead of ϕ1(v)
[ϕ(e) instead of ϕ2(e)].

A congruence Θ on the A-labelled graph K = (V,K;α, ω,−1, `, A) is a
pair (ΘV ,ΘK) with ΘV an equivalence relation on V , ΘK an equivalence
relation on K, compatible with the operations α and −1 (therefore also ω)
and respecting `, that is:

e ΘK f =⇒ αe ΘV αf, ωe ΘV ωf, e−1 ΘK f−1 for all e, f ∈ K

and

e ΘK f =⇒ `(e) = `(f) for all e, f ∈ K.
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The definition of the quotient graph K/Θ for a congruence Θ is obvious,
and we have the usual Homomorphism Theorem. As for images under mor-
phisms, the congruence class vΘV of a vertex v [the congruence class eΘK

of an edge e] will be denoted by vΘ [by eΘ].
A non-empty path π in E is a sequence π = e1e2 · · · en (n ≥ 1) of con-

secutive edges (that is ωei = αei+1 for all 1 ≤ i < n); we set απ := αe1

and ωπ = ωen (denoting the initial and terminal vertices of the path π);
the inverse path π−1 is the path π−1 := e−1

n · · · e−1
1 ; it has initial vertex

απ−1 = ωπ and terminal vertex ωπ−1 = απ. A path π is closed or a cycle if
απ = ωπ. We also consider, for each vertex v, the empty path at v, denoted
εv for which we set αεv = v = ωεv and ε−1

v = εv (it is convenient to iden-
tify εv with the vertex v itself). We say that π is a path from u = απ to
v = ωπ, and we will also say that u and v are connected by π (and likewise
by π−1). A graph is connected if any two vertices can be connected by some
path. The subgraph 〈π〉 spanned by the non-empty path π = e1 · · · en is the
graph spanned by the edges of π, that is, by the pair (∅, {e1, . . . , en}); it
coincides with 〈π−1〉; the graph spanned by an empty path εv simply is {v}
(one vertex, no edge). For a path e1 · · · ek in an A-labelled graph E, its label

is `(e1 · · · ek) := `(e1) · · · `(ek) which is a word in Ã∗.

2.4. Cayley graphs of A-generated groups. Given anA-generated group
Q we define the Cayley graph Q of Q by the following data; as an A-labelled
graph, this graph Q depends on the underlying assignment function iQ:

– the set of vertices of Q is Q,

– the set of edges of Q is Q× Ã, and, for g ∈ Q, a ∈ Ã, the incidence
functions, involution and labelling are defined according to

α(g, a) := g,

ω(g, a) := g[a]Q,

(g, a)−1 := (g[a]Q, a
−1),

`(g, a) := a.

The edge (g, a) should be thought of as •
g

a
−−−−→•

ga
, its inverse as •

g

a−1

←−−−−•
ga

,

where ga stands for g[a]Q. We note that Q acts on Q by left multiplication
as a group of automorphisms via

g 7−→ hg := hg and (g, a) 7−→ h(g, a) := (hg, a)

for all g, h ∈ Q and (g, a) ∈ Q×Ã, where h is an element of the acting group
Q, g a vertex of Q and (g, a) an edge of Q.

2.5. F -inverse covers. For a given finite A-generated inverse monoidM we
intend to construct a finite A-generated group H for which the A-generated
subdirect product

S := {([w]H , [w]M ) : w ∈ Ã∗} ⊆ H ×M (2.2)
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is an F -inverse cover of M . We start with a finite A-generated group Q such

that, for all w ∈ Ã∗, [w]Q = 1Q implies that [w]M is an idempotent of M .
Such a group Q can be found by representing M as an inverse monoid of
partial bijections on a finite set X and extending the partial mappings [a]M
(a ∈ A) to total permutations â on X or on some finite superset Y ⊇ X
and taking Q := 〈â : a ∈ A〉, the group generated by the permutations â
(a ∈ A). In semigroup theoretic terms this just means that the A-generated
subdirect product

{([w]Q, [w]M ) : w ∈ Ã∗} ⊆ Q×M

is an E-unitary cover of M .
The following lemma will be crucial. It is well known and readers familiar

with the Margolis–Meakin-expansion M(Q) of a group Q [21] will recognise
that this lemma essentially proves the universal property of M(Q). We
present a proof in order to keep the paper more self-contained; it is a modified
version of the proof of Lemma 4.6 in [9]. We fix some notation: for an A-

generated group Q with Cayley graph Q, q ∈ Q and a word w ∈ Ã∗ let πQq (w)

[resp. πQ1 (w)] denote the path in Q labelled w that starts at q [resp. 1Q].

Lemma 2.1. Let M be an A-generated inverse monoid and Q be an A-

generated group such that, for all w ∈ Ã∗, [w]Q = 1Q implies that [w]M is

an idempotent of M . Then, for any words u, v ∈ Ã∗ for which [u]Q = [v]Q
and 〈πQ1 (u)〉 ⊆ 〈πQ1 (v)〉 the inequality [u]M ≥ [v]M holds in M .

Proof. The proof is by induction on the length |u| of the word u. If |u| = 0,
that is, if u = 1 is the empty word, then [u]Q = [v]Q implies that [v]Q =
[u]Q = 1Q, whence [v]M is an idempotent so that [v]M ≤ 1M = [u]M . Let

|u| = 1, that is, u = a is a letter in Ã. The assumptions 〈πQ1 (a)〉 ⊆ 〈πQ1 (v)〉
and [a]Q = [v]Q imply that either (i) v = v1av2 with [v1]Q = [v2]Q = 1Q, or
(ii) v = v1a

−1v2 and [v1]Q = [a]Q = [v2]Q. In case (i), [v1]M , [v2]M ≤ 1M ,
whence [v]M = [v1av2]M = [v1]M [a]M [v2]M ≤ [a]M . In case (ii), [v1a

−1]Q =
1Q = [a−1v2]Q, whence [v1a

−1]M , [a
−1v2]M ≤ 1M so that

[v]M = [v1a
−1aa−1v2]M = [v1a

−1]M [a]M [a−1v2]M ≤ [a]M .

So let |u| > 1 and let [v]Q = [u]Q and 〈πQ1 (u)〉 ⊆ 〈πQ1 (v)〉, and assume that
the statement of the lemma is true for all words u′ with |u′| < |u| and
arbitrary v. Choose some factorisation u = u1u2 with |u1|, |u2| < |u|. Let
q := [u1]Q; the assumption 〈πQ1 (u)〉 ⊆ 〈πQ1 (v)〉 implies that q is a vertex

of 〈πQ1 (v)〉, i.e. the path πQ1 (v) meets the vertex q. Let v = v1v2 be a
corresponding factorisation. That is, the terminal vertex of πQ1 (v1) is q. Then
[vv−1v1]Q = [v1]Q = [u1]Q = q and clearly 〈πQ1 (u1)〉 ⊆ 〈πQ1 (vv−1v1)〉, whence
[vv−1v1]M ≤ [u1]M by the inductive hypothesis. Similarly, [v2v

−1v]Q =
[v2]Q = [u2]Q and

〈πQq (u2)〉 ⊆ 〈πQ1 (u)〉 ⊆ 〈πQ1 (v)〉 = 〈πQq (v2v
−1v)〉,
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whence also 〈πQ1 (u2)〉 ⊆ 〈πQ1 (v2v
−1v)〉 (here we apply the automorphism

x 7→ q−1
x of Q). The inductive assumption implies [v2v

−1v]M ≤ [u2]M .
Altogether,

[v]M = [vv−1v1]M [v2v
−1v]M ≤ [u1]M [u2]M = [u]M .

�

For a given finite A-generated inverse monoid M and a finite A-generated
group Q as above, we now seek to provide a finite expansion H of Q, for
which the subdirect product (2.2) is a finite F -inverse cover of M . First we
isolate an important property of groups generated by an alphabet.

Definition 2.2 (X-generated group with content function). Let X be any
alphabet; an X-generated group R has a content function C if for every
element g ∈ R there is a unique ⊆-minimal subset C(g) of X such that g is
represented as a product of elements of C(g) and their inverses.

We need to define one further property, which will be crucial towards the
construction of the desired group H.

Definition 2.3 (group reflecting the structure of a Cayley graph). Let Q
be an A-generated group with Cayley graph Q, where E := Q×A is the set
of positive edges of Q. An E-generated group G reflects the structure of Q

if the following hold.

(1) The action of Q on E by left multiplication extends to an action of
Q on G by automorphisms on the left (denoted (g, ξ) 7→ gξ for g ∈ Q
and ξ ∈ G).

(2) G has a content function C such that, for any word p ∈ Ẽ∗ which
forms a path g −→ h in Q, the following hold:
(a) if C([p]G) = ∅, that is if [p]G = 1, then g = h,
(b) if C([p]G) 6= ∅, that is if [p]G 6= 1, then there exists a word

q ∈ Ẽ∗ which also forms a path g −→ h in Q and such that
[p]G = [q]G and q uses only edges of the content C([p]G) of [p]G
(and their inverses). In particular, the content C([p]G) spans a
connected subgraph of Q containing g and h.

Next let Q be an A-generated group and, for E = Q×A, let G be a finite
E-generated group reflecting the structure of the Cayley graph Q of Q. The
existence of such a group G is guaranteed by Lemma 2.5, whose proof will
be completed in Section 5. Since Q acts on G by automorphisms on the left,
we can form the semidirect product GoQ, which consists of the set G×Q
endowed with the binary operation

(γ, g)(η, h) := (γ · gη, gh),

inversion

(γ, g)−1 := (g
−1
γ−1, g−1)
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and identity element (1G, 1Q). Consider the following A-generated subgroup
H of GoQ:

H := 〈([(1Q, a)]G, [a]Q) : a ∈ A〉 ⊆ GoQ. (2.3)

Readers familiar with the Margolis–Meakin-expansion M(Q) [21] will notice
that the group H, in a sense, approximates M(Q). The type of construction
used for the group H occurs frequently in (semi)group theory, see e.g. El-
ston [15] or Almeida [1, Section 10]; that it can be useful for the construction

of F -inverse covers is discussed in [7]. For a word p ∈ Ã∗, the value of p in
H is

[p]H = ([πQ1 (p)]G, [p]Q) (2.4)

where, again, πQ1 (p) is the unique path in Q starting at 1Q and being labelled

p, interpreted as a word over Ẽ. This is easily seen by induction on
the length |p| of p. In particular, H is an expansion of Q with canonical
morphism ([πQ1 (p)]G, [p]Q) 7→ [p]Q. We can now formulate the main theorem
of this section, and derive it essentially based on Lemma 2.5.

Theorem 2.4. Let M be a finite A-generated inverse monoid, Q a finite

A-generated group such that, for all w ∈ Ã∗, [w]Q = 1Q implies that [w]M
is an idempotent of M . For E = Q×A, let G be a finite E-generated group
(with content function C) which reflects the structure of the Cayley graph
Q of Q (Definition 2.3), and let H be the group defined by (2.3). Then the
subdirect product

S := {([w]H , [w]M ) : w ∈ Ã∗}
is a finite F -inverse cover of M .

Proof. It is clear that S is finite. The natural order ≤ on S is given by
(g,m) ≤ (h, n) if and only if g = h and m ≤ n. The canonical morphism
S � M , (g,m) 7→ m is idempotent separating. We need to show that
every σ-class (g,m)σ has a greatest element. Note that (g,m)σ = {(h, n) ∈
S : h = g}. Let w ∈ Ã∗ be a word such that [w]H = g. Then [w]H =
([πQ1 (w)]G, [w]Q). Since G reflects the Cayley graph Q of Q there exists a

word π ∈ Ẽ∗ such that [π]G = [πQ1 (w)]G, π contains only edges from the
content C([πQ1 (w)]G) (and their inverses) and π forms a path 1Q −→ [w]Q
in Q. The path π is induced by some word u ∈ Ã∗, that is, π = πQ1 (u).
As the terminal vertex of πQ1 (u) is [u]Q we have [w]Q = [u]Q, together with

[πQ1 (w)]G = [πQ1 (u)]G therefore also g = [w]H = [u]H . While π and u are
not necessarily uniquely determined by g, we note that 〈πQ1 (u)〉 is the graph
spanned by C([πQ1 (w)]G) and therefore 〈πQ1 (u)〉 is uniquely determined by

g = ([πQ1 (w)]G, [w]Q). In addition, for every v ∈ Ã∗ for which [v]H = g we
have

〈πQ1 (u)〉 = 〈C([πQ1 (w)]G)〉 = 〈C([πQ1 (v)]G)〉,
which implies 〈πQ1 (u)〉 ⊆ 〈πQ1 (v)〉 for every such v. It follows from Lemma 2.1
that [v]M ≤ [u]M and therefore also (g, [v]M ) ≤ (g, [u]M ) for every such v.
This just says that (g, [u]M ) is indeed the greatest element of (g,m)σ. �
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The F -inverse cover S of M in Theorem 2.4 is A-generated as an inverse
monoid. In a sense, this is a strong form of F -inverse cover, as the original
definition does not require the cover to be A-generated as an inverse monoid.
For any finite A-generated inverse monoid M and any finite A-generated
group K expanding an A-generated group H as in Theorem 2.4, there exists
an F -inverse cover U ⊆ K ×M of M with maximum group quotient K,
albeit not necessarily one that is A-generated as an inverse monoid.

This can be seen as follows. Let M and H be as in Theorem 2.4 and let
the A-generated group K be an expansion of H. Then the subdirect product

U := {([u]K , [v]M ) ∈ K ×M : u, v ∈ Ã∗, [u]H = [v]H} (2.5)

is an F -inverse cover of M with maximum group quotient K. Indeed, let
([u]K , [v]M ) ∈ U , then [u]H = [v]H . By the proof of Theorem 2.4 there exists

w ∈ Ã∗ with [w]H = [u]H and such that [w]M ≥ [x]M for every x ∈ Ã∗ for
which [x]H = [w]H = [u]H . Since [w]H = [u]H we have ([u]K , [w]M ) ∈ U ; in

addition, ([u]K , [w]M ) ≥ ([u]K , [x]M ) for all x ∈ Ã∗ for which [x]H = [u]H . It
follows that ([u]K , [w]M ) is the greatest element of the σ-class ([u]K , [v]M )σ.
It should be emphasised that the F -inverse cover U of M cannot be guaran-
teed to be A-generated as an inverse monoid, and the A-generated subdirect
product of M and K contained in U cannot be guaranteed to be an F -inverse
monoid.

2.6. Excursion: symmetries. An alternative perspective on A-generated
inverse monoids, maybe broader in a model-theoretic sense, would view them
as two-sorted structures in which the A-labelling of the generators is inte-
grated in an explicit fashion. This leads to the two-sorted structure

M := (M,A; ι, ·,−1 , 1),

where the set A of labels forms a second sort along with first sort M , and
ι : A → M encodes the explicit A-labelling as a function, so that ι(A)
becomes a subset of M . The A-generated inverse monoid as a structure
(M ; ·,−1 , 1, A) — with the algebraic signature {·,−1 , 1} enriched by the
set A of constant symbols interpreted as generators of the inverse monoid
(M ; ·,−1 , 1) — is clearly rigid since fixing the generators fixes everything.
The two-sorted structure M, on the other hand, allows us to analyse in-
ternal symmetries induced by permutations of A: these precisely are the
automorphisms of the two-sorted structure M, namely pairs of compatible
permutations of the sets M and A that commute with ι : A → M and the
algebraic operations on M . As ι(A) ⊆M is a generating set in (M ; ·,−1 , 1),
compatibility with the algebraic operations now implies that any such au-
tomorphism is uniquely determined by its action on A.

As our construction of the F -inverse cover S of M according to The-
orem 2.4 deals with A-generated inverse monoids, the question arises to
which extent this construction may also be symmetry-preserving – in the
sense of commuting with permutations of the generator set A that induce
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automorphisms of M. And indeed, our construction can be made fully
symmetry-preserving overall. Theorem 2.4 rests on the chain

M  Q  H  S := H ×A M,

where H×AM denotes the A-generated subdirect product of the A-generated
group H and the A-generated inverse monoid M . The step from the A-
generated group Q to the A-generated group H, which is the technically
challenging construction behind Lemma 2.5, is really based on the Cayley
graph Q of Q; from this Cayley graph Q we first obtain a (Q×A)-generated
group G, which reflects the structure of Q in the sense of Definition 2.3,
and finally H as the group defined in (2.3). The Cayley graph Q, as a
graph that is edge-labelled by A, lifts every symmetry of the A-generated
group Q in a canonical manner. The symmetry-preserving nature of the core
construction in the passage from this Cayley graph Q to G is captured in
Proposition 5.5 and to be further discussed in Section 5. That H as defined
in (2.3) then carries all shared symmetries of G and Q is straightforward,
and similarly for S = H ×A M in relation to H and M . In fact, all of
these steps between Q and S, including the core passage from Q to G, can
be seen to be symmetry-preserving (in terms of two-sorted presentations
with explicit domains for the generator or label sets), simply because they
can all be cast as explicit definitions (in more model-theoretic terms: as
interpretations, albeit of a higher-order nature) of the target structures over
the input structures, which cannot possibly violate isomorphism invariance.

Therefore the one step that curiously risks breaking symmetries, lies in
the passage from M to Q. The straightforward recipe indicated above is
to obtain a representation of M as an inverse monoid of partial bijections
over some set X, which can then be extended to permutations of X to
yield a permutation group Q that relates to M as required for Lemma 2.1.
But this method crucially involves free choices of a representation over a
suitable set X and of extensions from partial to global bijections over that
X; and these choices can break symmetries.1 This seeming obstacle can be
overcome though, if we use for instance the canonical representation of the
A-generated inverse monoidM by partial bijections over the setM itself, and
then consider all possible extensions of the partial mappings [a]M : M →M
in parallel: for every possible extension of the family ([a]M )a∈A by total
permutations [â]M ⊇ [a]M of M , we may use, for the set X, the disjoint
union of copies of M , one for each choice of extensions, and the bijection
induced by the instances of [â]M in each copy of M as the generator set for
Q in the symmetric group over X. This is but one of several variants for
the step from M to Q that are explicitly definable over M and therefore
symmetry-preserving.

1E.g. two partial bijections that are identical over X may be extended to permutations
of different orders.
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2.7. Excursion: pointlike conjecture for inverse monoids versus F -
inverse cover problem. What can we say about the gap between these
two problems? Recall that for an A-generated inverse monoid M , an A-
generated group H is a witness for the pointlike pairs of M if

∀ u1, u2 ∈ Ã∗ ∃ v ∈ Ã∗ : [u1]H 6= [u2]H or [u1]M , [u2]M ≤ [v]M . (2.6)

On the other hand, the A-generated subdirect product

{([w]H , [w]M ) : w ∈ Ã∗} ⊆ H ×M
is an F -inverse cover of M provided that

∀ u1, u2 ∈ Ã∗ ∃ v ∈ Ã∗ : [u1]H 6= [u2]H or

 [u1]M , [u2]M ≤ [v]M
and
[u1]H = [v]H = [u2]H .

(2.7)

As shown in [6], the expansion H = QAbp of an A-generated group Q
witnesses the pointlike sets of the inverse monoid M (Q in relation to M
as in Lemma 2.1) and therefore the pointlike conjecture for inverse monoids
is verified; in particular H = QAbp satisfies condition (2.6). For any prime
p, the so-called universal p-expansion QAbp of Q is the largest A-generated
expansion R � Q whose kernel is an elementary Abelian p-group. This
expansion can be obtained by the construction in (2.3), except that the E-
group G used there is replaced with the free E-generated Abelian group of
exponent p (which is the |E|-fold direct product of cyclic groups of order
p), in fact a very transparent group. Sufficient for the verification of the
pointlike conjecture is an E-group which reflects the structure of the Cayley
graph Q of Q in a very weak sense: the graph spanned by the content of a

word over Ẽ which forms a path u −→ v requires only a connected compo-
nent containing u and v. The enormous effort we require in the remainder
of the paper to construct an expansion H of Q that satisfies the seemingly
innocent, additional condition [u1]H = [v]H = [u2]H in (2.7), indicates that
the gap between the pointlike problem for inverse monoids and the F -inverse
cover problem may indeed be huge.

As already mentioned, Henckell and Rhodes considered Problem 1.1 as
a “stronger form” of the pointlike conjecture for inverse monoids. On the
other hand, in the last sentence of their paper they wrote: “We do not
necessarily believe [the F -inverse cover problem] has an affirmative answer.”
So, in contrast to what is often reported, Henckell and Rhodes did not really
conjecture that every finite inverse monoid does admit a finite F -inverse
cover, but rather seem to have been undecided about this question. In fact,
they seem to have had some feeling that the F -inverse cover problem might
be hard.

2.8. The main result. In order to prove Theorem 2.4 it is sufficient to
construct, for any finite A-generated group Q and E = Q × A a finite E-
generated group G which reflects the structure of the Cayley graph Q of Q
according to Definition 2.3. The existence of such a group G is guaranteed
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by the following more general lemma, which is the main result of the paper.
For item (1) recall that every automorphism of an oriented graph induces a
permutation of its set of positive edges.

Lemma 2.5 (main lemma). For every finite connected oriented graph E =

(V, Ẽ;α, ω,−1) there exists a finite E-generated group G which has the fol-
lowing properties:

(1) Every permutation of E induced by an automorphism of E extends
to an automorphism of G.

(2) The set of relations p = 1 satisfied by G (with p ∈ Ẽ∗) is closed
under the deletion of generators and thus G has a content function
C (Proposition 3.5).

(3) For any word p ∈ Ẽ∗ which forms a path u −→ v in E (with u and
v not necessarily distinct vertices of E) the following hold:
(a) if C([p]G) = ∅ then u = v,

(b) if C([p]G) 6= ∅ then there exists a word q ∈ Ẽ∗ with [p]G = [q]G
such that q also forms a path u −→ v in E and q only uses edges
from the content C([p]G) (and their inverses). In particular,
C([p]G) spans a connected subgraph of E containing u and v.

Remark 2.6. The free group generated by E obviously enjoys properties
(1)–(3) of Lemma 2.5. Hence, the main result of the paper is another in-
stance of when the behaviour of a free group can be “simulated” or “ap-
proximated” by a finite group [2, 3, 5, 17, 22], in contrast to [14] where such
an approximation is not possible.

The remainder of the paper is devoted to proving Lemma 2.5. This re-
quires quite a bit of work. It will be accomplished in Section 5. In order to
achieve this goal we introduce several graph-theoretic constructions which
will be presented in Sections 3 and 4. The results in those three sections
are of a more general nature, may be of independent interest and will be of
particular use in the follow-up paper [10].

3. Tools

In this section we introduce some graph-theoretic constructions, which
later will enable the construction of a group G as mentioned above. The
group itself will be realised as a permutation group defined by its action
graph. It is a well-established approach to construct finite A-generated
groups which avoid certain unwanted relations, to proceed as described in
the following. First encode the relations in a finite A-labelled directed graph
X — the set of unwanted relations will be infinite in most cases, but must in
some sense be regular (recognisable by a finite automaton). If necessary take
a quotient X/≡ of X which guarantees that the edge labels from A induce

partial permutations on the vertex set. Finally form some completion X/≡
of X/≡, through extending the partial permutations to total permutations
of the vertex set of X/≡ or of some finite superset. The letters a ∈ A then
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act as permutations on the finite set of vertices of X/≡ and one gets a finite
permutation group that avoids the unwanted relations.

The simplest example of this procedure is the construction of a finite A-
generated group which avoids a single relation p = 1 for a given reduced

word p ∈ Ã∗ — this provides a transparent and elegant proof that every free
group is residually finite. A slightly more general application is the Biggs
construction [4] providing a finite group that avoids all relations p = 1 for
all reduced words p of length up to a given bound n — this has been used
for the construction of finite regular graphs of large girth. A meanwhile
classical and more advanced application of this approach is Stallings’ proof
of Hall’s Theorem that every finitely generated subgroup of a free group F is
closed in the profinite topology of F [29]. Here a finite A-generated group is
constructed that avoids all the (infinitely many) relations of the form h = p
where h runs through all elements of a finitely generated subgroup H of the
free A-generated group F and p is a fixed element of F \H. Many more ex-
amples can be found in [18, 8] and elsewhere. In his paper [5] Ash definitely
developed some mastership of arguments of this kind. Independently, the
third author has suggested a considerable refinement of this approach [22].
He proposed a construction which is inductive on the subsets of the gener-
ating set A in the sense that the kth group Gk satisfies/avoids all relations
p = 1 in at most k letters that should be satisfied/avoided by the final group
G. In the step Gk  Gk+1 not only new relations p = 1 in more than k let-
ters are added which are to be avoided (by adding components to the graph
which defines Gk) but, at the same time, the relations in at most k letters
must be preserved. The motivation for this approach has come from some
relevant applications to hypergraph coverings and finite model theory [22].
The constructions in this section and the results of the next section are of
this flavour and are taken from the third author’s [25].

3.1. E-graphs and E-groups. We slightly change perspective: since the
edges of the graph E of Lemma 2.5 are the letters of the labelling alphabet we
now denote the labelling alphabet by E. An E-labelled graph is an E-graph

if every vertex u has, for every label a ∈ Ẽ, at most one edge with initial
vertex u and label a. In the literature, such graphs occur under a variety
of different names, such as folded graph [18] or inverse automaton [6, 8], to

mention just two. In an E-graph K, for every word p ∈ Ẽ∗ and every vertex
u there is at most one path π = πKu (p) with initial vertex απ = u and label
`(π) = p. For a path π in K with initial vertex u, terminal vertex v and

label p ∈ Ã∗ (for A ⊆ E) we write u
p−→ v and call π an A-path u −→ v;

the vertices u and v are A-connected in K. The A-component of a vertex
v of the E-graph K, denoted vK[A], is the subgraph of K spanned by all

paths in K having initial vertex v and whose labels are in Ã∗. A labelled
graph K is called complete or a group action graph (also called permutation

automaton) if every vertex u has, for every label a ∈ Ẽ exactly one edge f
with initial vertex αf = u and label `(f) = a; in this case, for every word
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p ∈ Ẽ∗ and every vertex u there exists exactly one path π = πKu (p) starting
at u and having label p. We set u · p := ω(πKu (p)), the terminal vertex of

the path starting at u and being labelled p; then, for every p ∈ Ẽ∗, the
mapping [p] : V → V , u 7→ u · p is a permutation of the vertex set V of K.

Thus the involutory monoid Ẽ∗ acts on V by permutations on the right.
The permutation group

T (K) := {[p] : p ∈ Ẽ∗} (3.1)

obtained this way, is called the transition group T (K) of the graph K. This
transition group T (K) is an E-generated group (E-group for short) in a

natural way, the letter e ∈ Ẽ induces the permutation [e] which maps every
vertex u to the terminal vertex ωπu(e) of the edge πu(e) which is the unique
edge with initial vertex u and label e. Note that this edge may be a loop
edge for every vertex u (so [e] might be the identity element of T (K)).

Moreover, it may happen that distinct letters e 6= f ∈ Ẽ induce the same
permutation.

A crucial fact concerning the transition group G = T (K) is the following:
for every connected component C of K and every vertex u of C there is a
unique surjective graph morphism ϕu : G� C from the Cayley graph G of G
onto C for which ϕu(1) = u; we call ϕu the canonical morphism G� C with
respect to u; occasionally we shall leave the vertex u undetermined and shall
speak of some canonical morphism G� C. The existence of these canonical
morphisms will be frequently assumed without further mention. For easy
reference we give a name to this phenomenon.

Definition 3.1. The Cayley graph G of an E-group G covers a complete,
connected E-graph C if there is a canonical morphism ϕ : G� C.

An E-graph (V,K;α, ω,−1, `, E) is weakly complete if, for every letter

a ∈ Ẽ, the partial permutation on V induced by a is a permutation on
its domain; in other words, provided that the graph is finite, the subgraph
spanned by all edges with label a is a disjoint union of cycle graphs (a-cycles).
For every weakly complete graph K we denote by K its trivial completion,

that is, the complete graph obtained by adding, for every a ∈ Ẽ, a loop edge
with label a to every vertex not already contained in an a-cycle of K.

3.2. k-retractable groups, content function and k-stable expansions.

For a ∈ E and p ∈ Ẽ∗ let pa→1 be the word obtained from p by deletion of
all occurrences of a and a−1 in p. Let G be an E-group; for every A ⊆ E
let G[A] be the A-generated subgroup of G.

Definition 3.2. An E-group G is retractable if, for all words p, q ∈ Ẽ∗ and
every letter a ∈ E the following holds: 2

[p]G = [q]G =⇒ [pa→1]G = [qa→1]G.

2It suffices to restrict this postulate to the case q = 1.
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Moreover, G is A-retractable if G[A] is retractable (as an A-group), and,
for k ≤ |E|, G is k-retractable if G is A-retractable for every A ⊆ E with
|A| = k.

Of course, k-retractability implies l-retractability for all l ≤ k, and every
group is 1-retractable. Retractability of an E-group G means that for every
subset A ⊆ E the mapping

E → E ∪ {1}, a 7→

{
a if a ∈ A
1 if a /∈ A

extends to an endomorphism ψA of G, which in fact is a retract endomor-
phism onto G[A] (the image of ψA is G[A] and its restriction to G[A] is the
identity mapping). For an E-group G and A ⊆ E we denote the Cayley
graph of G[A], considered as an A-graph, by G[A]; this graph is weakly com-

plete as an E-graph and, as above, we denote its trivial completion by G[A].
In light of the connection with retract endomorphisms we see the following.

Proposition 3.3. An E-group G is retractable if and only if its Cayley
graph G covers G[A] for every A ⊆ E.

Proof. Suppose that G is retractable and A ⊆ E. The retract endomorphism
ψA is a canonical morphism ψA : G � G[A] if G[A] is considered as an E-
group with all e ∈ E \ A being identity generators. Its Cayley graph with

respect to E coincides with G[A]. It follows that there is a canonical graph

morphism G� G[A], that is, G covers G[A].
Suppose conversely that for every A ⊆ E there is a canonical graph mor-

phism G � G[A]. We note that this morphism must be injective when

restricted to G[A] (considered as a subgraph of G). Let p ∈ Ẽ∗, a ∈ E and

suppose that [p]G = 1. Then p labels a closed path πG1 (p) at 1 in G. Let

B = E \ {a}. The canonical morphism G � G[B] maps the path πG1 (p) to

the path π
G[B]
1 (p) which is also closed. The paths π

G[B]
1 (p) and π

G[B]
1 (pa→1)

traverse the same edges except loop edges labelled a±1, and therefore visit

the same vertices. So π
G[B]
1 (pa→1) is also closed, and as it runs entirely in

G[B], it follows that [pa→1]G[B] = 1 and therefore [pa→1]G = 1. �

For a word p ∈ Ẽ∗ the content co(p) is the set of all letters a ∈ E for
which a or a−1 occurs in p. The importance of retractable E-groups for our
purpose comes from the fact that such E-groups admit a content function

(Definition 2.2). Indeed, assume that G is retractable. Then, for p, q ∈ Ẽ∗
and a ∈ E the equality [p]G = [q]G implies [pa→1]G = [qa→1]G. Suppose
now that a ∈ co(p) but a /∈ co(q). Then the words q and qa→1 are identical.
Hence [p]G = [q]G implies

[pa→1]G = [qa→1]G = [q]G = [p]G.
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In this way, we may delete (without changing its value [p]G) every letter in
a word p which does not occur in every other representation q of the group
element [p]G. This leads to the following definition.

Definition 3.4. Let G be a retractable E-group and g ∈ G. The content
C(g) of g is

C(g) :=
⋂{

co(q) : q ∈ Ẽ∗, [q]G = g
}
.

For a word p ∈ Ẽ∗ the G-content of p is the content C([p]G).

The terminology is justified as C: g 7→ C(g) clearly is a content function
in the sense of Definition 2.2. So we have shown the following.

Proposition 3.5. Every retractable group has a content function.

In case G is retractable, for any two subsets A,B ⊆ E we have

G[A] ∩G[B] = G[A ∩B]. (3.2)

Groups satisfying this condition for all A,B ⊆ E have been called 2-acyclic
by the third author in [22, 25]: condition (3.2) rules out patterns as on the
left-hand side of Figure 1 where g would belong to G[A] ∩G[B] but not to
G[A∩B], and the cosets G[A] and G[B] form a non-trivial 2-cycle. In other
words, condition (3.2) implies that the intersection of two cosets gG[A] and
hG[B] in G is either empty or is a coset of the form kG[A ∩ B]. In terms
of connectivity in the Cayley graph G of G this means that, if two vertices
u and v are connected by an A-path as well as by a B-path, then there is
even an (A ∩B)-path u −→ v; this point of view will be frequently used in
the paper.

But indeed, retractable groups also avoid patterns as on the right-hand
side of Figure 1. In the terminology of [22, 25], they are even 3-acyclic. This
means that, for all A,B,C ⊆ E and all g, h, k ∈ G the following holds:

gG[A] = hG[A], hG[B] = kG[B] and kG[C] = gG[C]

=⇒ hG[A ∩B] ∩ kG[B ∩ C] ∩ gG[C ∩A] 6= ∅,
(3.3)

as we shall see in passing, in connection with the proof of Lemma 3.11 below.

1 g

G[B]

G[A]

g k

h

kG[C]

hG[B]gG[A]

Figure 1
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Remark 3.6. Retractable E-groups are 2- and 3-acyclic in the sense of
satisfying conditions 3.2 and 3.3, meaning that their Cayley graphs do not
admit connectivity patterns of cosets as in Figure 1.

Definition 3.7. For A ⊆ E, an expansion H � G of E-groups is A-stable
if the canonical morphism is injective when restricted to H[A]; it is k-stable
(for k < |E|) if it is A-stable for every k-element subset A of E.

We arrive at our first basic construction. Here and in the following we
use t and

⊔
to denote the disjoint union of graphs; recall the definition of

the transition group of a complete graph (3.1).

Theorem 3.8. Let X be a complete E-graph, 1 ≤ k < |E| and suppose that
the transition group G = T (X) is k-retractable. Then the transition group

H := T
(
X t

⊔{
G[C] : C ⊆ E, |C| = k

})
is (k + 1)-retractable and is a k-stable expansion of G. Moreover, every
k-stable expansion of H is also (k + 1)-retractable.

Proof. We first show that H is a k-stable expansion of G. So, let p ∈ Ẽ∗ be
a word with |co(p)| ≤ k and suppose that [p]G = 1. We need to show that
[p]H = 1. In order to do so it is sufficient to show that, for every vertex v in

X t
⊔
|C|=k G[C] the path πv(p) which starts at v and has label p is a cycle.

This is obvious for every v ∈ X and v ∈ G[A] when A is a set of k letters

for which p ∈ Ã∗. So, let B ⊆ E with |B| = k and suppose that p /∈ B̃∗,
which means that at least one element of the content of p does not belong
to B, and let v be a vertex of G[B]. Let p′ be the word obtained from p
by deletion of all letters from co(p) \ B. Since G is k-retractable, we have
[p′]G = 1 and hence also [p′]G[B] = 1 since p′ contains only letters from B.

It follows that the path π
G[B]
v (p′) is closed and hence so is π

G[B]
v (p′). Since

the paths π
G[B]
v (p) and π

G[B]
v (p′) meet exactly the same vertices — the two

paths differ only in loop edges labelled by letters from co(p)\B — it follows

that π
G[B]
v (p) is also closed. Altogether, [p]H = 1 and the expansion H � G

is k-stable.
Let K � H be a k-stable expansion; then the expansion K � G is also

k-stable. We show that K is (k + 1)-retractable, which then also applies to
K = H. So let A ⊆ E with |A| = k + 1; according to Proposition 3.3 it
suffices to show that for every subset B ( A there is a canonical morphism

K[A] � K[B]
A

, where K[B]
A

denotes the trivial completion of K[B] as
an A-graph, that is, loop edges labelled by letters form A \ B (and their
inverses) are added to all vertices of K[B]. From the definition of H and the

assumption on K it follows that there is a canonical morphism K � G[B].

Indeed, if |B| = k then by definition of K and H, K� H� G[B] since G[B]
is a component in the graph defining H as a transition group. If |B| < k
we may choose a set C with B ⊆ C ⊆ A and |C| = k. Again there is a
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canonical morphism K� G[C]. Since G[C] is retractable there is a canonical

morphism G[C] � G[B]
C

, where G[B]
C

is the trivial completion of G[B] as
a C-graph. By adding loop edges for all labels not in C to all vertices,

the morphism G[C]� G[B]
C

can be extended to a morphism G[C]� G[B].

Composition with the morphism K� G[C] then yields the desired morphism

K � G[B]. But K � G is k-stable, hence K[B] ∼= G[B] and therefore also

K[B] ∼= G[B]. It follows that the restriction of the morphism K � G[B] ∼=
K[B] to K[A] provides the required morphism. �

The principal idea of the paper is to construct a series of E-generated
permutation groups

G1 � G2 � · · ·� G|E| =: G (3.4)

defined by an ascending sequence X1 ⊆ X2 ⊆ · · · ⊆ X|E| of complete E-
graphs such that Gk = T (Xk) is k-retractable and Gk+1 � Gk is k-stable
for every k. The crucial property of this sequence in relation to the given
E-graph E is the following:

For every word p ∈ Ẽ∗ on k + 1 letters which forms a path u
p−→ v in

E and every letter a ∈ A := co(p) either there is a word q in the letters

A \ {a} such that [p]Gk+1
= [q]Gk+1

and q also forms a path u
q−→ v in E,

or otherwise (if no such q exists) there is a component in Xk+1 \Xk which
guarantees that Gk+1 avoids the relation p = pa→1, so that a belongs to
the content of [p]Gk+1[A] and therefore to the content of [p]G.

The graph-theoretic constructions to be introduced in the following are
designed to serve this purpose. In order to guarantee that Gk+1 � Gk
is k-stable, the new components of Xk+1 are constructed in a way so that
their B-components for k-element subsets B of E have already occurred as
subgraphs of Xk. This turns out to be a challenging task. It crucially involves
E-graphs whose A-components for (k+1)-element subsets A are designed so
that their transition groups avoid certain new relations over A but preserve
all relations over B for every B ( A. The latter is guaranteed, as already
mentioned, by the fact that all B-components of the new components in
Xk+1 have been encountered already as subgraphs at earlier stages of the
construction.

3.3. Two crucial constructions: clusters and coset extensions. We
introduce two crucial constructions involving Cayley graphs. Let G be an
E-group; for A ⊆ E and g ∈ G, gG[A] has the obvious meaning: it denotes
the A-component of the vertex g of G and is isomorphic (as an A-graph) with
G[A] — we shall call such graphs A-coset graphs or simply coset graphs if the
set of labels is understood. In the following subsections we shall construct
new (bigger) graphs by gluing together disjoint copies of various coset graphs
for different subsets A ⊆ E. In this context, the notation vG[A], where v is
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some vertex of a graph, means that the A-component of v in the graph in
question is isomorphic with the full A-coset graph G[A].

Proviso 3.9. For the remainder of the section (§ 3.3.1–3) all E-groups G
are assumed to be A-retractable, i.e. G[A] is retractable for the (arbitrary
but fixed) subset A ⊆ E under consideration.

In Sections 3.3.1 and 3.3.2 we discuss families of clusters and coset exten-
sions whose A-components, as subgraphs of the E-graphs Xk, provide the
essential information for the setup of the expansions in the series (3.4); as
discussed above, we need to account for their B-components for B ( A ⊆ E.

3.3.1. Clusters. Let G be an E-group, A ⊆ E and assume that, as stated in
Proviso 3.9, G[A] is retractable. For every set P of proper subsets of A, the
graph

CL(G[A],P) :=
⋃
B∈P

G[B] ⊆ G[A]

is an A-cluster. Note that CL(G[A],P) is the subgraph of G[A] which is
spanned by all B-paths in G[A] starting at 1, for B ∈ P. The core of
the cluster is the subgraph formed by the intersection

⋂
B∈P G[B], and by

retractability of G[A],
⋂
B∈P G[B] = G[

⋂
B∈PB]. This core is always non-

empty but may consist of the vertex 1 only; the subgraphs G[B], for B ∈
P, are the constituent cosets of the cluster CL(G[A],P). Included in the
definition of an A-cluster is, for P = {B}, every graph G[B] with B (
A. The structure of CL(G[A],P) as an A-graph actually only depends on
the collection of the “small” subgroups G[B], B ∈ P rather than on the
entire group G[A]: indeed the cluster can be assembled from the constituents
G[B] by forming their disjoint union and factoring by the congruence which
identifies an element (vertex or edge) of some G[B] and some G[C] if and
only if these elements coincide in G[B∩C] (recall that retractability of G[A]
implies that G[B∩C] = G[B]∩G[C]). More precisely, let ϕ :

⊔
B∈P G[B]→ G

be the morphism which maps every coset graph G[B] to itself, considered
as a subgraph of G. Let Θ be the mentioned congruence on

⊔
B∈P G[B].

Then the kernel kerϕ of ϕ (that is, the equivalence relation induced by ϕ
on its domain) contains Θ; retractability of G[A] even implies the equality
kerϕ = Θ. From the Homomorphism Theorem we get

CL(G[A],P) ∼= im(ϕ) ∼=
⊔
B∈P

G[B]
/

Θ. (3.5)

A consequence of this fact is the next lemma which will be of essential
use in the proof of Proposition 5.4.

Lemma 3.10. Let G� H be a (k−1)-stable expansion between k-retractable
E-groups G and H. Then for any A ⊆ E with |A| = k and any set P of
proper subsets of A, the labelled graphs CL(G[A],P) and CL(H[A],P) are
isomorphic.
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Proof. This follows from the above discussion since (k− 1)-stability implies
that G[C] ∼= H[C] for all C ∈ P as |C| < |A| = k. �

We next analyse the structure of B-components of A-clusters for B ( A.
Let P = {A1, . . . , Ak} be a set of proper subsets of A and let B ( A; let
v ∈ G[A] and vG[B] be the B-component of v in G[A]. For the intersection
of vG[B] with the cluster we have

CL(G[A],P) ∩ vG[B] =
k⋃
i=1

(G[Ai] ∩ vG[B]).

The intersection G[Ai]∩vG[B] is either empty or a (B∩Ai)-coset viG[B∩Ai]
for some (any) vi ∈ G[Ai] ∩ vG[B]. In order to describe the structure of the
intersection CL(G[A],P)∩ vG[B] of a cluster CL(G[A],P) with a coset graph
vG[B] we may ignore the constituent cosets G[Ai] of CL(G[A],P) having
empty intersection with vG[B]. Hence we may assume that G[Ai]∩vG[B] 6= ∅
for every i.

Lemma 3.11. If G[Ai] ∩ vG[B] 6= ∅ for i = 1, . . . , k then

G[A1] ∩ · · · ∩ G[Ak] ∩ vG[B] 6= ∅.

Proof. Let t ≤ k and assume that we have already proved that( t−1⋂
i=1

G[Ai]
)
∩ vG[B] 6= ∅.

In order to simplify the notation we set C := A1 ∩ · · · ∩ At−1 and D := At;
then

⋂t−1
i=1 G[Ai] = G[C]. The situation is depicted in Figure 2 and the reader

is invited to consult this illustration for the following argument. We need to
exhibit an element in G[C ∩D] ∩ vG[B]. So, let u ∈

(⋂t−1
i=1 G[Ai]

)
∩ vG[B] =

G[C] ∩ vG[B] and w ∈ G[D] ∩ vG[B]. Let p ∈ C̃∗ be such that [p]G = u−1

1

x

w

u

p p1

q

r

q1

G[D]

vG[B]

G[C]

Figure 2

and q ∈ D̃∗ be such that [q]G = w−1; moreover, let r ∈ B̃∗ be a word which
labels a path u −→ w running entirely in vG[B] (recall that all this happens
in G[A]). Let p1 and q1 be, respectively, the words obtained from p and q
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by deletion of all letters not in B. Since [pq−1]G = [r]G and r ∈ B̃∗, we
have [p1q

−1
1 ]G = [r]G, by retractability. Let x := u · p1 = w · q1. Then p−1p1

labels a path 1 −→ x and so does q−1q1. Since p−1p1 ∈ C̃∗ and q−1q1 ∈ D̃∗,
it follows that x ∈ G[C] ∩ G[D] = G[C ∩D]. From x = u · p1 and p1 ∈ B̃∗ it
follows that x ∈ uG[B] = vG[B], altogether x ∈ G[C ∩D] ∩ vG[B]. �

The proof of Lemma 3.11 implicitly shows that retractable groups are
3-acyclic in the sense of condition (3.3), as stated in Remark 3.6. (Compare
Figure 1 for coset patterns that are ruled out in the Cayley graph G of any
E-group G that is retractable; here now, the cosets in question, 1G[C], 1G[D]
and vG[B], have x in their intersection, as indicated in Figure 2.)

In the situation of the proof of Lemma 3.11 we consider the automorphism
of G induced by left multiplication by x−1 for some x ∈ G[A1]∩· · ·∩G[Ak]∩
vG[B]. Then G[Ai] = x−1G[Ai] for all i, and x−1vG[B] = G[B], so that

x−1
(
CL(G[A],P) ∩ vG[B]

)
=
⋃k
i=1(G[Ai] ∩ G[B])

=
⋃k
i=1 G[Ai ∩B] = CL(G[B],O)

(3.6)

where O = {B∩Ai : Ai ∈ P} (some of the sets B∩Ai may be empty), which
perhaps degenerates to a full B-coset. This allows us to characterise the
B-components of A-clusters for B ( A.

Corollary 3.12. Let P be a set of proper subsets of A and B ( A. Then
every B-component of the cluster CL(G[A],P) is either a B-coset, that is,
isomorphic with G[B], or isomorphic with the B-cluster CL(G[B],O) where
O = {C ∩B : C ∈ P} (some C ∩B may be empty).

Proof. The intersection CL(G[A],P) ∩ vG[B] is either the B-coset vG[B] it-
self (if it is contained in some constituent G[C] with C ∈ P) or otherwise is
isomorphic with the B-cluster CL(G[B],O), as indicated in (3.6). Now let v
be a vertex of CL(G[A],P); then the B-component B of v in CL(G[A],P) is
certainly contained in CL(G[A],P)∩ vG[B]. Since the latter intersection is a
B-cluster, it is connected and therefore B must coincide with this intersec-
tion. �

Corollary 3.13. Let B,C ( A; then the intersection B∩C of a B-component
B with a C-component C of an A-cluster CL is either empty or a B∩C-coset
or a (B ∩ C)-cluster.

Proof. By Corollary 3.12, B = CL ∩ vG[B] and C = CL ∩ wG[C] for some
cosets vG[B] and wG[C]. The latter two have either empty intersection
or their intersection is a (B ∩ C)-coset uG[B ∩ C] from which the claim
follows. �

We will need a generalisation of clusters, which we are going to present
next. Let G[A] be again retractable (Proviso 3.9), P be a set of proper sub-
sets of A, v be a vertex of CL(G[A],P) and B ( A. Under these assumptions
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we define
CL(G[A],P)©v G[B] :=

⋃
C∈P

G[C] ∪ vG[B]

considered as a subgraph of G[A] and call the latter graph a B-augmented
A-cluster or, more specifically, the B-augmentation of CL(G[A],P) at v. We
have seen in Corollary 3.12 that the intersection CL(G[A],P) ∩ vG[B] is
a B-component of CL(G[A],P). It follows that the structure of the graph
CL(G[A],P)©v G[B] only depends on the collection {G[C] : C ∈ P}, the ver-
tex v and G[B] rather than on the entire group G[A]. Indeed, as can be
seen in (3.5), the structure of CL(G[A],P) depends only on the graphs
G[C] for C ∈ P; furthermore, by Corollary 3.12, the B-component of v
is a certain B-cluster B, which is isomorphic with a subgraph of G[B] via
the monomorphism ι : B → G[B] determined by v 7→ 1. (We may neglect
the trivial case in Corollary 3.12, namely that B = G[B]: in that case,
the augmented cluster would coincide with the original one.) The aug-
mented cluster CL(G[A],P)©v G[B] can then be obtained as the disjoint union
of CL(G[A],P) and G[B] factored by the congruence whose non-singleton
classes are {x, ι(x)} for all x ∈ B (x an edge or a vertex). As a consequence
we obtain the following lemma, whose proof is analogous to the proof of
Lemma 3.10; it will similarly be used in the proof of Proposition 5.4.

Lemma 3.14. Let G� H be a (k−1)-stable expansion between k-retractable
E-groups G and H, ϕ the associated canonical morphism. Then, for any
A ⊆ E with |A| = k, any set P of proper subsets of A, any B ( A and any
vertex u of CL(G[A],P) with v := ϕ(u) there is an isomorphism of labelled
graphs

CL(G[A],P)©u G[B] ∼= CL(H[A],P)©v H[B].

As the last result in this subsection we need to clarify, for B,C ( A,
the structure of C-components of B-augmented A-clusters. These turn out
to be (B ∩ C)-augmented C-clusters. As noticed in Corollary 3.12, every
C-component of an A-cluster is a C-cluster (or a C-coset).

Corollary 3.15. Let B,C ( A and let G[A] be retractable; then every C-
component of a B-augmented A-cluster is a (B ∩ C)-augmented C-cluster
(which includes C-clusters as a special case).

Proof. Let the group G and A,B,C ⊆ E be as in the statement of the
corollary. Let CL(G[A],P)©v G[B] be a B-augmentation of the A-cluster
CL(G[A],P) and let u be a vertex of this cluster. If the C-component C

of u in CL(G[A],P) has empty intersection with the B-component B of v in
CL(G[A],P) then C coincides with the C-component of u in the augmented
cluster and we are done as C is a C-cluster (or a C-coset). Now assume
that C ∩ B 6= ∅ with w a vertex in C ∩ B. We know that C ∩ B is a
(C ∩ B)-cluster (Corollary 3.13) or a (C ∩ B)-coset and the C-component
of w within vG[B] = wG[B] consists exactly of the coset wG[B ∩ C]. It
follows that the C-component of w in CL(G[A],P)©v G[B] coincides with
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C ∪ wG[B ∩ C] = C©wG[B ∩ C] which is a (B ∩ C)-augmentation of the
C-cluster C. �

3.3.2. Coset extensions. This second construction, coset extensions, can be
seen as a generalisation of clusters, but is more involved. It is a somewhat
complex concept but it is perhaps the essential construction of the paper. Its
definition will be developed over the next few pages and, in a sense, only cul-
minates in the defining equation 3.10; but readers should bear in mind that
its justification, including the non-trivial verification of its well-definedness,
crucially relies on preparations expounded in the following pages.

Let us fix an E-group G and a set A ⊆ E of size |A| ≥ 2. We assume
that G is A-retractable, according to Proviso 3.9. Let K be a connected A-
subgraph of the Cayley graph G of G. We recall that being an A-subgraph

means that all labels of edges of K belong to Ã (but not necessarily all
such letters actually need to occur in K). For some set B ( A let B =
vK[B] be some B-component of K; this graph is embedded in vG[B] ∼= G[B].
Moreover, for B1, B2 ( B any B1- and B2-components B1 and B2 of B are
also embedded in vG[B] via their embedding in B.

Definition 3.16 (admissibility for coset extension). Let G be an E-group,
A ⊆ E with |A| ≥ 2, and assume thatG is A-retractable (Proviso 3.9). Let K
be a connected A-subgraph of the Cayley graph G of G. Consider all possible
choices of subsets B1, B2 ( B ( A, of B-components B = vK[B] of K and
for each pair of vertices v1, v2 ∈ B all possible B1- and B2-components B1 =
v1B[B1] = v1K[B1] and B2 = v2B[B2] = v2K[B2]. Then K is admissible for
(A-coset extension (with respect to G) if

B1 ∩B2 = ∅ in B =⇒ v1G[B1] ∩ v2G[B2] = ∅ in vG[B] ⊆ G. (3.7)

In other words, the patterns depicted in Figure 3 are forbidden in the
context of a graph K that is admissible for (A-coset extension (the right-
hand side picture is for the case B1 = B2). The condition formulated in

K
B1 B2Bv1 v2

v1G[B1]
v2G[B2]

vG[B]

K
B1 B2Bv1 v2

v1G[B1] = v2G[B2]

vG[B]

Figure 3

Definition 3.16 corresponds to the notion of freeness in [25], here for the
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embedded graphs B = vK[B] in vG[B]. We note that, if K is admissible
for (A-coset extension, then, for every B ⊆ A, every B-component vK[B] is
admissible for (B-coset extension.

Now let K be a subgraph of G that is admissible for (A-coset extension and
fix a set B ( A. Let B1, . . . ,Bk be all the B-components of K. For every
i = 1, . . . , k select a vertex vi ∈ Bi. Then, in G, the coset viG[B] contains Bi

as a subgraph. Let now CE(G,K;B) be the graph obtained by extending
each component Bi in K to the entire coset viG[B]. So CE(G,K;B) is the
graph obtained by attaching in K to each vertex vi a copy viG[B] of G[B] and
then identifying all of Bi with its copy inside viG[B], but without performing
any further identification (of vertices and/or edges). The graph CE(G,K;B)
thus appears as a bunch of pairwise disjoint copies of G[B], connected by
edges labelled by letters from A \B. The union of the latter edges with all
the Bi then spans the graph K.

We give a more formal definition of CE(G,K;B). Let K be given with
B-components B1, . . . ,Bk and selected vertices vi ∈ Bi for i = 1, . . . , k. For
every i let ιi : Bi → G[B] be the unique graph monomorphism mapping vi
to 1. Then

CE(G,K;B) :=
(
K ∪

k⋃
i=1

G[B]× {i}
) /

Θ (3.8)

where Θ is the equivalence relation all of whose non-singleton equivalence
classes are exactly the two-element sets

{x, (ιi(x), i)} with x ∈ Bi, i = 1, . . . , k

where x denotes a vertex or an edge of Bi. The union on the right-hand
side of (3.8) is a union of pairwise disjoint connected graphs and Θ is cer-
tainly a congruence relation. The resulting graph CE(G,K;B) is the B-coset
extension of the A-graph K. The congruence Θ does not identify any two
elements (edges or vertices) of K with each other, hence CE(G,K;B) con-
tains K as a subgraph in a canonical way which, in this context, is called the
skeleton of CE(G,K;B). For vi ∈ Bi ⊆ K ⊆ CE(G,K;B) the B-component
of vi in CE(G,K;B) is isomorphic with the coset graph G[B]. Hence these
B-components of CE(G,K;B) will also be denoted by viG[B] and addressed
as constituent cosets of CE(G,K;B) in this rôle.

For C ( B ( A, condition (3.7) of Definition 3.16 (by taking B1 =
C = B2) implies that CE(G,K;C) is realised as a subgraph of CE(G,K;B).
Moreover, for C1, C2 ( B, C1 6= C2, once more condition (3.7) (this time
taking C1 = B1 6= B2 = C2) implies that

CE(G,K;C1) ∩ CE(G,K;C2) = CE(G,K;C1 ∩ C2) (3.9)

where the intersection takes place in CE(G,K;B). Now let P be a set of
proper subsets of A. Then the P-coset extension of K is defined as

CE(G,K;P) :=
(⋃{

CE(G,K;B)× {B} : B ∈ P
})/

Ψ (3.10)
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where Ψ is the congruence defined on the disjoint union of all B-coset ex-
tensions CE(G,K;B) with B ∈ P, by setting

(x1, B1) Ψ (x2, B2) :⇐⇒ x1 = x2 ∈ CE(G,K;B1 ∩B2).

In other words, an edge or a vertex of CE(G,K;B1) is identified with one
in CE(G,K;B2) if they represent the same element in CE(G,K;B1 ∩ B2).
Transitivity of Ψ follows from (3.9): indeed, for i = 1, 2, 3, let Bi ∈ P and
xi ∈ CE(G,K;Bi) be such that (x1, B1) Ψ (x2, B2) and (x2, B2) Ψ (x3, B3).
Then

x1 = x2 ∈ CE(G,K;B1 ∩B2) and x2 = x3 ∈ CE(G,K;B2 ∩B3)

so that

x1 = x3 ∈ CE(G,K;B1 ∩B2)∩CE(G,K;B2 ∩B3) = CE(G,K;B1 ∩B2 ∩B3)

by application of (3.9) for C1 = B1 ∩B2, C2 = B2 ∩B3 and B = B2, where
the intersection takes place in CE(G,K;B2). Provided that B ∈ P, the
coset extension CE(G,K;B) is embedded in CE(G,K;P) via x 7→ (x,B)Ψ
where (x,B)Ψ denotes the Ψ-class of (x,B). For v ∈ K and B ∈ P, the
subgraphs vG[B] of CE(G,K;P) are the constituent cosets of CE(G,K;P)
and the subgraph K is the skeleton of CE(G,K;P).

Geometrically, the coset extension CE(G,K;P) can be viewed as follows.
For every B ∈ P consider CE(G,K;B) and attach these graphs to each other
by identification of their skeleton K, then form the largest E-graph quotient
(that is, perform all identifications necessary to obtain an E-graph, but no
more). The graph CE(G,K;P) then is the union

CE(G,K;P) =
⋃
B∈P

CE(G,K;B)

of its subgraphs CE(G,K;B) with B ∈ P. For B1, B2 ∈ P then

CE(G,K;B1) ∩ CE(G,K;B2) = CE(G,K;B1 ∩B2). (3.11)

This is reminiscent of (3.9) but B1 and B2 are now arbitrary members of
P (rather than subsets of some B ( A) and the intersection takes place in
CE(G,K;P) (rather than in CE(G,K;B)). Moreover, condition (3.11) can
be reformulated as a condition analogous to (3.7): for any B1, B2 ∈ P and
vertices v1, v2 ∈ K:

v1K[B1] ∩ v2K[B2] = ∅ =⇒ v1G[B1] ∩ v2G[B2] = ∅ (3.12)

where the intersections take place in CE(G,K;P).
If every label of K appears in some member B of P, then CE(G,K;P)

is weakly complete since every edge of CE(G,K;P) occurs in some coset
subgraph vG[B]. Most relevant will be the case P = PA, the set of all proper
subsets of A: we call CE(G,K;PA) the full (A-coset extension of K. In case
K = {v} (one vertex, no edge) the P-coset extension CE(G,K;P) reduces to
the cluster CL(G[A],P).
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Remark 3.17. An A-graph K which is admissible for (A-coset extension
may actually only contain edges labelled by letters (and their inverses) from
some set B ( A. In this case CE(G,K;B) ∼= G[B]; however, this is not in
conflict with the definition of the full (A-coset extension. For sets C ( A
with C * B, the C-components of K coincide with the C ∩B-components,
but nevertheless every such C ∩B-component is extended to a full C-coset
vG[C] in order to get CE(G,K;C).

We continue with further investigations of (A-coset extensions.

Proposition 3.18. Let K ⊆ G[A] be admissible for (A-coset extension and P
be a set of proper subsets of A. Then the inclusion monomorphism ι : K ↪→
G[A] admits a unique extension to a graph morphism ιP : CE(G,K;P) →
G[A].

Proof. We first establish a unique extension ιB : CE(G,K;B) → G[A] for
each B ∈ P. Let B1, . . . ,Bk be all B-components of K with selected vertices
vi ∈ Bi for all i. Then for every i there is a unique graph monomorphism
κi : G[B] × {i} → G[A] such that κi(1, i) = vi. The image of κi coincides

with the coset subgraph viG[B] of G[A]. Then, the union κ := ι ∪
⋃k
i=1 κi is

a morphism

κ : K ∪
k⋃
i=1

G[B]× {i} → G[A]

for which, for all i and x ∈ Bi,

κ(x) = ι(x) = x = κi(ιi(x), i) = κ(ιi(x), i)

where ιi : Bi → G[B] is the unique graph monomorphism mapping vi to
1 that occurs in the definition of CE(G,K;B). It follows that the con-
gruence Θ in (3.8) is contained in the kernel of κ and hence κ factors
through CE(G,K;B) as κ = ιB ◦ πΘ (where πΘ is the canonical projection
πΘ(x) = xΘ).

Next consider the disjoint union⋃
B∈P

CE(G,K;B)× {B}

and let
κP :=

⋃
B∈P

ιB :
⋃
B∈P

CE(G,K;B)× {B} → G[A]

where ιB : CE(G,K;B)×{B} → G[A] is defined by ιB(x,B) = ιB(x). Similar
to Θ and κ, the congruence Ψ that occurs in (3.10) is contained in the
kernel of κP, whence κP factors through CE(G,K;P) as κP = ιP ◦ πΨ for
some unique morphism ιP : CE(G,K;P) → G[A] (with πΨ being again the
projection x 7→ xΨ). �

The morphism ιB : CE(G,K;B)→ G[A] is injective when restricted either
to the skeleton K or to any constituent coset vG[B]. However, in general
ιB is not injective on its entire domain CE(G,K;B). Within G[A] it may
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happen that for distinct vertices vi 6= vj (as selected in the above proof)
the corresponding cosets coincide: viG[B] = vjG[B] =: vG[B]. In this case,
ιB maps viG[B] as well as vjG[B] onto vG[B] ⊆ G[A], although ιB(viK[B])
and ιB(vjK[B]) are distinct (and hence disjoint) B-components of K within
vG[B] ⊆ G[A] (see Figure 4). The coset vG[B] then contains (at least) two
distinct B-components Bi 6= Bj of K. As a consequence, the vertices vi and
vj can be connected by a B-path in G[A], but there is no B-path connecting
these vertices in K. This alludes to one of the key ideas of the paper and
will eventually lead to the proof of the crucial Lemma 5.6.

Remark 3.19. Suppose that H � G is an expansion whose Cayley graph
H covers some completion of (some supergraph of) CE(G,K;B). Then the
group H avoids every relation p = q where p is any word labelling a path

in K that connects two distinct B-components of K and q is any B̃-word,
essentially because the graph CE(G,K;B) unfolds the subgraph K∪

⋃
viG[B]

of G[A] that arises as the image of CE(G,K;B) under ιB (see Figure 4).

viG[B] = vjG[B]

vi

vj

q p

K

viG[B] vjG[B]

vi

vj

q p

K

q

Figure 4. Part of K ∪
⋃k
t=1 vtG[B] ⊆ G[A] and of CE(G,K;B)

Let K be a connected A-graph admissible for (A-coset extension, let B (
A and let B = vK[B] ⊆ K be the B-component of some vertex v in K. By
construction of CE(G,K;PA),

v ∈ B ⊆ vG[B] ⊆ CE(G,K;B) ⊆ CE(G,K;PA).

We are able to refine this chain as follows: B is itself admissible for (B-coset
extension and hence CE(G,B;PB) is well defined. Admissibility of K (Defini-
tion 3.16) implies that in this case the morphism ιPB

: CE(G,B;PB)→ G[B]
of Proposition 3.18 is injective. Indeed, ιPB

is injective on the skeleton
B, and on every constituent coset vG[C] for any C ( B and any vertex
v. If there were vertices x 6= y such that ιPB

(x) = ιPB
(y), then x and y

would belong to two distinct constituent cosets x ∈ v1G[B1] and y ∈ v2G[B2]
(B1, B2 ( B, possibly B1 = B2) so that x and y would coincide as elements
of v1G[B] = v2G[B]. But this is excluded by Definition 3.16. Hence we get
the following.

Lemma 3.20. Let K be a subgraph of G[A] which is admissible for (A-
coset extension (in particular G[A] is retractable, cf. Definition 3.16 and
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also Proviso 3.9). Let B ( A with |B| ≥ 2; then every B-component B of K
is admissible for (B-coset extension and the morphism ιPB

: CE(G,B;PB)→
G[B] is injective. In particular, for any vertex v ∈ B,

v ∈ B ⊆ CE(G,B;PB) ⊆ vG[B] ⊆ CE(G,K;B) ⊆ CE(G,K;PA).

Another consequence concerns connectivity in the graph K; it will be of
significant use later. In terms of [25] this means that a graph K which is
admissible for (A-coset extension is 2-acyclic.

Lemma 3.21. Suppose that the graph K ⊆ G is admissible for (A-coset
extension. Then, for any B,C ( A, the intersection B ∩ C of any B-
component B and any C-component C of K is connected and hence is a
(B ∩ C)-component.

Proof. Suppose that B 6= C and let u, v be vertices of B∩C and assume that
they belong to distinct components of B∩ C. Admissibility of K (by taking
B1 = B∩C = B2) implies that the cosets uG[B∩C] and vG[B∩C] are disjoint
(that is, distinct), and both cosets are contained in uG[B] = vG[B] as well as
uG[C] = vG[C]. Consider the graph morphism ιPA

: CE(G,K;PA)→ G[A]. It
maps the cosets uG[B] as well as vG[C] injectively to the corresponding coset
subgraphs of G[A]. Since uG[B∩C] and vG[B∩C] are disjoint, it follows that
the intersection of the cosets uG[B] and vG[C] (in G[A]) is disconnected as
it has at least the two components uG[B ∩C] and vG[B ∩C]; this, however,
contradicts the assumption that G[A] is retractable. �

3.3.3. Augmented coset extensions. Similarly to augmented clusters we re-
quire augmented coset extensions. Again fix an E-group G, let A ⊆ E with
|A| ≥ 2 and assume that G[A] is retractable, according to Proviso 3.9. Let
K ⊆ G[A] be admissible for (A-coset extension. Recall that the full (A-coset
extension CE(G,K;PA) can be seen as the union

⋃
B(A CE(G,K, B) where

for B,C ( A,

CE(G,K;B) ∩ CE(G,K;C) = CE(G,K, B ∩ C).

Every vertex x of CE(G,K;PA) is sitting in some CE(G,K;B), and, inside
CE(G,K;B) in a unique constituent coset vG[B] with v ∈ K. The vertex v
is not unique, but unique is its B-component vK[B]. In this situation we
say that the pair (B, v) supports the vertex x or provides support for the
vertex x in CE(G,K;PA); the size of this support is |B|. This actually means
that the skeleton K may be accessed from the vertex x by a B-path whose
terminal vertex is v. We say that (B, v) provides unique minimal support if,
whenever (C,w) provides support for x then B ⊆ C and vK[B] ⊆ wK[C].
Now let J be a subgraph of CE(G,K;PA); for a set B ( A and a vertex
v ∈ K we say that (B, v) provides unique minimal support for J, or that J

has unique minimal support through (B, v), if (B, v) supports some vertex
x of J, and if some pair (C,w) supports any vertex y of J then B ⊆ C and
vK[B] ⊆ wK[C]. In this case we say that the unique minimal support of J is
attained at the vertex x. Notice that the condition vK[B] ⊆ wK[C] implies
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the inclusion vG[B] ⊆ wG[C] = vG[C] for the constituent cosets involved.
It follows from (3.11) that every one-vertex subgraph of CE(G,K;PA) has
unique minimal support.

We come to a crucial property, which the full (A-coset extension of a
graph K may or may not have.

Definition 3.22 (cluster property). The full coset extension CE(G,K;PA)
has the cluster property if, for every B ( A the following hold:

(1) every B-component B of CE(G,K;PA) which has empty intersection
with the skeleton K is a B-cluster or a full B-coset;

(2) every B of (1) has unique minimal support which is attained at some
vertex x of the core of B (if B is a cluster).

Note that minimal support will typically not be attained at all core ver-
tices. We first show that the cluster property implies that components of
the coset extension intersect nicely, that is, the coset extension is 2-acyclic
in terms of [25].

Proposition 3.23. Suppose that K ⊆ G[A] is admissible for (A-coset exten-
sion and that the full (A-coset extension CE(G,K;PA) has the cluster prop-
erty. Then, for all pairs B,C ( A the intersection B∩C of any B-component
B and any C-component C is connected and hence is a (B ∩ C)-component
of CE(G,K;PA).

Proof. We consider several cases and start with the most difficult one: sup-
pose that both B and C have empty intersection with the skeleton K. We
need to show that B∩C is connected. We know that B is aB-cluster, C is a C-
cluster, that is, B ∼= CL(G[B], {B1, . . . , Bk}) and C ∼= CL(G[C], {C1, . . . , Cl})
for Bi ( B and Cj ( C; it may also happen that k = 1 and/or l = 1 in
which case it may happen that B1 = B and/or C1 = C (that is, B and/or
C is a B-coset and/or C-coset) — the argument for this subcase is similar
but simpler. Let x be a vertex in the core of B, y a vertex in the core of C,
such that the unique minimal support (M,m) of B is attained at x, and the

unique minimal support (N,n) of C is attained at y. Then B =
⋃k
i=1 xG[Bi]

and C =
⋃l
j=1 yG[Cj ]. Let u1 6= u2 be vertices of B∩C; we may assume that

u1 ∈ xG[B1]∩ yG[C1] and u2 ∈ xG[B2]∩ yG[C2]. The vertices u1 and u2 also
have unique minimal support (F1, v1) and (F2, v2), say. Then M,N ⊆ F1, F2

and even more holds, namely

mG[M ], nG[N ] ⊆ mG[F1] = v1G[F1] = nG[F1]

and mG[M ], nG[N ] ⊆ mG[F2] = v2G[F2] = nG[F2].

The equality mG[F1] = v1G[F1] follows from the fact that (F1, v1) provides
some support for B, while (M,m) provides unique minimal support for B

hence M ⊆ F1 and m ∈ mG[M ] ⊆ v1G[F1]; likewise, (F1, v1) provides some
support for C while (N,n) provides unique minimal support for C, hence
N ⊆ F1 and n ∈ nG[N ] ⊆ v1G[F1] which implies v1G[F1] = nG[F1]. The
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remaining two equalities are proved in the same fashion. From

mG[M ] ∪ nG[N ] ⊆ v1G[F1] ∩ v2G[F2]

we get v1G[F1]∩v2G[F2] 6= ∅, which by (3.12) implies v1K[F1]∩v2K[F2] 6= ∅.
By Lemma 3.21, this intersection is an F -component of K for F = F1 ∩ F2,
that is,

v1K[F1] ∩ v2K[F2] = mK[F ] = nK[F ].

From the definition of the full coset extension CE(G,K;PA) and (3.11) it
follows that the intersection v1G[F1] ∩ v2G[F2] itself is connected (it is iso-
morphic with mG[F ] = nG[F ]). So the subgraph of CE(G,K;PA) formed by
the union v1G[F1]∪v2G[F2] is isomorphic with the cluster CL(G[A], {F1, F2}),
see Figure 5.

Moreover, the cosets xG[B1] and v1G[F1] both are contained in some
constituent coset wG[D]. Indeed, xG[B1] arises as the intersection of the
B-component B with some constituent coset, say wG[D], for some vertex
w ∈ K and D ( A. Then (D,w) supports u1, whence F1 ⊆ D and
v1G[F1] ⊆ v1G[D] = wG[D]. Since G[D] is retractable the intersection
xG[B1] ∩ v1G[F1] is connected. The same holds for the intersections

xG[B2] ∩ v2G[F2], yG[C1] ∩ v1G[F1] and yG[C2] ∩ v2G[F2].

Setting B′ := (B1 ∩ F1) ∪ (B2 ∩ F2) and C ′ := (C1 ∩ F1) ∪ (C2 ∩ F2) we
see that u1 and u2 belong to the same B′- as well as C ′-component of the
cluster v1G[F1]∪ v2G[F2], the intersection of which is a (B′ ∩C ′)-component
of that cluster, by Corollary 3.13. Consequently, u1 and u2 are in the same
(B′ ∩ C ′)-component of v1G[F1] ∪ v2G[F2] and hence in the same (B ∩ C)-
component of CE(G,K;PA); the configuration is depicted in Figure 5.

Next we consider the case when C has empty intersection with the skeleton
K (as in the previous case), but B has not. Then C ∼= CL(G[C], {C1, . . . , Cl})
and B = vG[B] for some vertex v ∈ K. We let u1 6= u2 be vertices in B ∩ C,
and we may assume that u1 ∈ C1 := yG[C1] and u2 ∈ C2 := yG[C2] (as in the
previous case), where y is a vertex in the core of C which attains minimal
support of C. In this case (B, v) supports u1 as well as u2 and therefore also
y, so that u1, y, u2 ∈ B = vG[B], see Figure 6. For the same reason as in the
previous case, the intersections yG[C1] ∩ vG[B] and yG[C2] ∩ vG[B] both are
connected. Hence there is a (B ∩C)-path u1 −→ y and also a (B ∩C)-path
y −→ u2, and altogether there is a (B ∩ C)-path u1 −→ u2.

Finally, the case when B as well as C have non-empty intersection with
the skeleton K is obvious, since in this case B ∩ C is a (B ∩ C)-coset. �

We are led to a further construction. Let K be admissible for (A-coset
extension and suppose that the full (A-coset extension CE(G,K;PA) has the
cluster property. For a vertex v ∈ CE(G,K;PA) and some B ( A the B-
component B of v is either a B-coset vG[B] (in this case, B may or may
not intersect with the skeleton K) or a proper B-cluster (in which case it
does not intersect with the skeleton K). In any case, B embeds into G[B] via
some graph monomorphism ι : B ↪→ G[B] (which is unique if one additionally
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xG[B1] xG[B2]

yG[C1] yG[C2]

mK[F ]
m

n

x

y
v1 u1 u2 v2

M

N

F1 F2
v1G[F1] v2G[F2]

Figure 5

y

u1 u2

v

C1 C2

vG[B]

Figure 6

assumes that ι(v) = 1). We define the B-augmentation at v of CE(G,K;PA)
by

CE(G,K;PA)©v G[B] := CE(G,K;PA) t G[B] / Ω

where Ω is the congruence whose non-singleton congruence classes are the
two-element sets {x, ι(x)} for x ∈ B. We note that CE(G,K;PA)©v G[B] can
be written as the union

CE(G,K;PA) ∪ vG[B]

of its two subgraphs CE(G,K;PA) and vG[B] whose intersection is just the
B-component B of v in CE(G,K;PA).

Proposition 3.24. Let B,C ( A and K be admissible for (A-coset ex-
tension and such that the full (A-coset extension CE(G,K;PA) enjoys the
cluster property. Then every C-component of any B-augmented full coset
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extension CE(G,K;PA)©v G[B] is either a C-coset, a B∩C-coset, a C-cluster
or a (B ∩ C)-augmented C-cluster.

Proof. Let C be a C-component of CE(G,K;PA)©v G[B]. If C ⊆ CE(G,K;PA)
or C ⊆ vG[B] we are done: C happens to be a C-coset or a B ∩C-coset or a
C-cluster. Let us assume that C is contained neither in CE(G,K;PA) nor in
vG[B]. We have

C = (CE(G,K;PA) ∩ C)︸ ︷︷ ︸
C1

∪ (vG[B] ∩ C)︸ ︷︷ ︸
C2

and C1 is a proper C-cluster (if it were a C-coset it would coincide with C,
which would be contained in CE(G,K;PA)). Let Bv be the B-component of v
in CE(G,K;PA). Our assumption implies that C∩Bv 6= ∅. Let w be a vertex
of C∩Bv. By Proposition 3.23, C∩Bv = C1∩Bv is the (B∩C)-component of
w in CE(G,K;PA), which is a (B ∩C)-cluster or a (B ∩C)-coset. Moreover,

C2 = C ∩ vG[B] = C ∩ wG[B] = wG[B ∩ C].

If C1 ∩Bv were a (B ∩C)-coset, then it would coincide with wG[B ∩C] and
again C ⊆ CE(G,K;PA). Hence, under our assumption, C1 ∩Bv is indeed a
proper (B ∩ C)-cluster. So we see that C = C1 ∪ wG[B ∩ C] and

C1 ∩ wG[B ∩ C] = CE(G,K;PA) ∩ wG[B ∩ C]

is the (B ∩C)-component of w in CE(G,K;PA). Altogether this just means
that C = C1©wG[B ∩ C], that is, C is the (B ∩ C)-augmentation of the C-
cluster C1 at w. �

4. Two crucial inductive procedures

In this section we formulate and prove two important technical results.
They will be essential to set up the inductive procedure to gain the series
(3.4). In order to do so, we need another crucial definition (Definition 4.2
below). Assume, as above, that |A| ≥ 2, that G[A] is retractable and that
K ⊆ G[A] is admissible for (A-coset extension.

Definition 4.1 (embedded coset extension). The full coset extension

CE(G,K;PA)

is embedded if the morphism ιPA
: CE(G,K;PA)→ G[A] (of Proposition 3.18)

is an embedding.

Definition 4.2 (bridge freeness). The embedded full coset extension

CE(G,K;PA)

is bridge free in G[A] if for every B ( A, if two vertices u, v ∈ CE(G,K;PA) ⊆
G[A] (as per Definition 4.1) are B-connected in G[A], then they are B-
connected even in CE(G,K;PA).
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The two above-mentioned technical results will, in fact, be two induc-
tive procedures — forward induction (Theorem 4.5) and upward induction
(Theorem 4.7). Roughly speaking, forward induction guarantees that bridge
freeness implies the cluster property — in the same group but with the
number of letters being increased by one; upward induction, on the other
hand, guarantees that the cluster property implies bridge freeness — with
respect to the same set of letters but for the next group. For the construc-
tion of the series (3.4), these two procedures are applied alternatingly; the
essence of the whole procedure is as follows (details will be worked out in
Section 5.2). Suppose we have already defined the k-retractable group Gk.
We apply Theorem 3.8 and produce a (k + 1)-retractable and k-stable ex-
pansion Hk of Gk. Then take any connected A-subgraph L of the Cayley
graph Hk of Hk for a subset A ⊆ E of size k + 1 and assume that L is
admissible for (A-coset extension (with respect to Hk). For B ( A, all
B-components vL[B] of L are subgraphs of Hk[B] and hence of Gk[B], by
k-stability. Assuming inductively that all corresponding coset extensions
CE(Gk, vL[B];PB) are bridge-free, the same is true for the corresponding
coset extensions CE(Hk, vL[B];PB) with respect to Hk. Forward induction
(Theorem 4.5) now implies that the coset extension CE(Hk,L;PA) of the A-
graph L has the cluster property. Finally, upward induction (Theorem 4.7)
implies that for a suitable k-stable expansion Gk+1 of Hk, any Gk+1-cover

L̂ of L is admissible for (A-coset extension (with respect to Gk+1) and that

the coset extension CE(Gk+1, L̂;PA) is bridge-free (for a precise definition of
cover see Definition 4.6 below).

The following lemma is the essential technical step to obtain the induc-
tive procedure forward induction (Theorem 4.5). For this lemma take into
account Lemma 3.20: if some subgraph L ⊆ H[A] of the Cayley graph of
the group H is admissible for (A-coset extension, then all its B-components
vL[B], for B ( A, are admissible for (B-coset extension and the morphisms
of Proposition 3.18 are embeddings CE(H, vL[B];PB) ↪→ vH[B].

Lemma 4.3. Let H be an E-group, A ⊆ E, |A| ≥ 3 and suppose that H[A]
is retractable. Let L ⊆ H[A] be a connected A-graph which is admissible for
(A-coset extension. Assume that for all B ( A and every vertex v ∈ L, the
full (B-coset extension CE(H, vL[B];PB)

(1) is embedded and bridge-free in H[B], and
(2) has the cluster property.

Then the full (A-coset extension CE(H,L;PA) has the cluster property.

Proof. Let B ( A, let B be a B-component of CE(H,L;PA) and suppose
that B has empty intersection with the skeleton L. We first show the follow-
ing: if B is not fully contained in any one constituent coset of CE(H,L;PA),
then the intersection of B with any constituent coset is either empty or
contains a vertex that is supported by fewer than |A| − 1 elements. Indeed,
let B ∩ v1H[A1] 6= ∅, w.l.o.g. |A1| = |A| − 1, and assume that B is not con-
tained in v1H[A1]. Then some vertex s1 ∈ B ∩ v1H[A1] must be connected
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by an edge e in B to some vertex s2 ∈ (B ∩ v2H[A2]) \ v1H[A1] in some
other constituent coset v2H[A2], for some A2 6= A1. Since s2 /∈ v1H[A1],
also e /∈ v1H[A1]. Then e belongs to a coset v3H[A3] (possibly coinciding
with v2H[A2]) with A3 6= A1. In any case, s1, s2 ∈ v3H[A3] (if a graph
contains an edge then also its initial and terminal vertices). It follows that
s1 is supported by (A3, v3), that is, s1 ∈ v1H[A1] ∩ v3H[A3] = vH[A1 ∩A3]
for some vertex v, and |A1 ∩A3| < |A| − 1.

Therefore, if no vertex of B has support of size smaller than |A| − 1, then
B is contained in some constituent coset v1H[A1] with |A1| = |A| − 1, and
therefore is a B ∩A1-coset with minimal support (A1, v1).

We are left with the case that B admits support of size strictly smaller
than |A| − 1. We collect some constituent cosets v1H[A1], . . . , vnH[An] of
CE(H,L;PA) for generator sets Ai ( A of size |Ai| = |A| − 1 such that
B ⊆

⋃n
i=1 viH[Ai] and we assume that the choice of the constituent cosets

viH[Ai] is minimal for B ⊆
⋃n
i=1 viH[Ai] in the sense that B is not contained

in any union of fewer than n constituent cosets. Then

B = B ∩

(
n⋃
i=1

viH[Ai]

)
=

n⋃
i=1

(B ∩ viH[Ai]) =
n⋃
i=1

Bi

for Bi = B∩viH[Ai]. Every Bi is a non-empty Bi-coset subgraph of viH[Ai]
where Bi = B∩Ai and all Bi have size at most |A|−2. (If for some i, |Bi| =
|A| − 1 then Bi = Ai and Bi = viH[Ai] would have non-empty intersection
with the skeleton L.) In addition, every Bi has a vertex supported by fewer
than |Ai| = |A| − 1 letters: if n = 1 this is immediate and if n > 1 then B is
not contained in a single constituent coset, and the situation is as discussed
at the start of the proof.

We need to verify items (1) and (2) of Definition 3.22. For i = 1, . . . , n de-
note by Ai theAi-component viL[Ai] of vi in L. By Lemma 3.20, Ai is admis-
sible for (Ai-coset extension and the full (Ai-coset extension CE(H,Ai;PAi)
embeds into viH[Ai] (via the mapping of Proposition 3.18). Since Bi ad-
mits vertices supported by fewer than |Ai| = |A| − 1 letters, we have that
Bi ∩ CE(H,Ai;PAi) 6= ∅ — once more we take into account that

CE(H,Ai;PAi) ⊆ viH[Ai] ⊆ CE(H,L;PA).

Bridge freeness of CE(H,Ai;PAi) (assumption (1)) implies that

Bi ∩ CE(H,Ai;PAi)

is connected. By assumption (2) therefore, Bi ∩ CE(H,Ai;PAi) has unique
minimal support in CE(H,Ai;PAi), say (Di, ui). But then the pair (Di, ui)
also provides unique minimal support of Bi in CE(H,L;PA). If n = 1 we are
already done; so let us assume that n ≥ 2. Minimality of (Di, ui) implies in
particular that any path connecting Bi to L in CE(H,L;PA) must use (at
least) all labels inDi and, in case it uses only labels fromDi, necessarily leads
to the Di-component uiAi[Di]. So, for every i, there exist vertices si ∈ Bi,
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ui ∈ Ai and a word mi ∈ D̃i
∗

labelling a path si −→ ui which runs entirely
inside the coset uiH[Di], which in turn is contained in viH[Ai] = uiH[Ai].

Since B =
⋃n
i=1 Bi is connected, there are i, j such that Bi ∩ Bj 6= ∅;

after some renumbering we may assume that B1 ∩ B2 6= ∅. Then also
v1H[A1]∩v2H[A2] 6= ∅; from (3.12) we get A1∩A2 6= ∅ and by Lemma 3.21,
A1 ∩ A2 is an (A1 ∩ A2)-component of L, say vL[A1 ∩ A2] for some v ∈
A1∩A2. From (3.11) it follows that v1H[A1]∩v2H[A2] = vH[A1∩A2]. The
intersection B1 ∩ B2 is a B ∩ A1 ∩ A2 coset in vH[A1 ∩ A2]. Similarly as
for B1 one argues that B1 ∩B2 has unique minimal support in CE(H,A1 ∩
A2;PA1∩A2), (D,u) say, which (as for B1) provides unique minimal support
of B1 ∩B2 in CE(H,L;PA). Let s ∈ B1 ∩B2 be a vertex which attains the
support (D,u). So far, the situation is depicted as in Figure 7. We note

L
u1

s1

u

s

v1H[A1] v2H[A2]

B1 B2

mm1

k

p

Figure 7

that D ⊆ A1 ∩A2 and so

uH[D] ⊆ uH[A1 ∩A2] = v1H[A1] ∩ v2H[A1].

Since (D,u) is some support of B1, we have D1 ⊆ D and u1H[D1] ⊆ uH[D].
Hence there is a D-path u1 −→ u labelled k, say, which runs inside A1, and
a D-path u −→ s labelled m. Altogether, there is a D-path s1 −→ s labelled
m1km (this path runs entirely in v1H[A1]). Since s1, s ∈ B1, there is also a
B1-path s1 −→ s where B1 = B ∩A1, labelled p, say. Again, this path runs
inside v1H[A1]. SinceH[A1] is retractable, we have [p]H[A1] = [p′]H[A1] where
p′ is the word obtained from p by deletion of all letters not in D. Hence there
is a D-path s1 −→ s which runs entirely in B1 ∩ uH[D] and, in particular,
s1 ∈ uH[D] ⊆ uH[A1∩A2] = v1H[A1]∩v2H[A2] so that s1 ∈ B1∩B2. Since
(D1, u1) supports s1 and therefore also B1 ∩B2, it follows that D ⊆ D1 and
therefore D = D1 as the converse inclusion has been already shown. In
particular, (D,u) provides unique minimal support of B1 which is attained
at s1 ∈ B1 ∩B2. So the configuration in Figure 7 really looks as depicted in
Figure 8. By the same reasoning we obtain that s2 ∈ B1 ∩B2 and D2 = D.
Altogether, s1, s2 ∈ B1 ∩B2 and (D,u) provides unique minimal support of
B1 as well as B2, attained at s1 as well as s2. Now we continue by induction.
Let 2 ≤ k < n and suppose, subject to some renumbering of the cosets Bi,
we have already shown that s1, . . . , sk ∈ B1 ∩ · · · ∩Bk and all these Bi have
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unique minimal support (D,u) attained at all these si. Again there are
j ∈ {1, . . . , k} and i ∈ {k + 1, . . . , n} such that Bj ∩Bi 6= ∅ and after some
renumbering we may assume that j = k and i = k+1. Then, as for the case
k = 1, sk, sk+1 ∈ Bk∩Bk+1 and the unique minimal support of Bk∩Bk+1 is
(D,u). Again, sk ∈ B1∩· · ·∩Bk ∩Bk+1 and so Bj ∩Bk+1 6= ∅ for all j ≤ k,
therefore sj , sk+1 ∈ Bj ∩ Bk+1 and hence s1, . . . , sk+1 ∈ B1 ∩ · · · ∩ Bk+1

and (D,u) provides unique minimal support for Bk+1 attained at sk+1. So
s1, . . . , sn ∈ B1 ∩ · · · ∩ Bn and

⋃n
i=1 Bi has unique minimal support (D,u)

attained at some vertices of
⋂n
i=1 Bi.

It remains to argue that B is indeed a B-cluster. From
⋂n
i=1 Bi 6= ∅ we

have in particular that
⋂n
i=1 viH[Ai] 6= ∅. By induction and using (3.12)

and Lemma 3.21 we can show that
⋂n
i=1 viH[Ai] = wH[C] for some vertex

w ∈ L and C =
⋂n
i=1Ai. From the definition of CE(H,L;PA) it follows that

the graph
⋃n
i=1 viH[Ai] =

⋃n
i=1wH[Ai] is isomorphic with the A-cluster

CL(H[A], {A1, . . . , An}). Corollary 3.12 now implies that B =
⋃n
i=1 Bi is

isomorphic with the B-cluster CL(H[B], {B ∩A1, . . . , B ∩An}). �

The case |A| = 2, which is not handled in Lemma 4.3, is actually trivial.

Proposition 4.4. Let H be an E-group, A ⊆ E with |A| = 2 and H[A]
be retractable. Then every connected A-subgraph L of H[A] is admissible
for (A-coset extension and the full (A-coset extension CE(H,L;PA) has the
cluster property.

Proof. Definition 3.22 is fulfilled for trivial reasons: only the empty set
C = ∅ satisfies C ( B ( A. Every constituent coset of CE(H,L;PA) is
of the form vH[a] for some letter a ∈ A. Hence, for B ( A, the only
B-components of CE(H,L;PA) which have empty intersection with L are
singleton vertices which clearly have unique minimal support. �

Combination of this with Lemma 4.3 implies the following result; it en-
capsulates the first of the two inductive procedures discussed above.

Theorem 4.5 (forward induction). Let H be an E-group, A ⊆ E, |A| ≥ 3
and suppose that H[A] is retractable. Let L ⊆ H[A] be a connected A-graph
which is admissible for (A-coset extension. Assume that for all B ( A and
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every vertex v ∈ L the full (B-coset extension CE(H, vL[B];PB) embeds into
vH[B] and is bridge-free; then the full (A-coset extension CE(H,L;PA) has
the cluster property.

Proof. In order to reduce the claim of the theorem to Lemma 4.3, we merely
need to argue that the graphs CE(H, vL[B];PB) for B ( A have the cluster
property. This is proved by induction on |A|. For |A| = 3 we only need
to consider |B| = 2, so that CE(H, vL[B];PB) has the cluster property by
Proposition 4.4. For |A| > 3 we can use the inductive claim for all |B| < |A|
(in the rôle of A) to find that CE(H, vL[B];PB) has the cluster property. �

For the following recall Definition 3.1 of when a Cayley graph G covers a
graph C (in terms of canonical morphisms), Definition 3.2 of a k-retractable
group and Definition 3.7 of a k-stable expansion.

Definition 4.6. Suppose that a Cayley graph G covers a complete con-
nected graph C via a canonical morphism ϕ : G � C and let L ⊆ C be a
connected subgraph. A cover of L in G (a G-cover for short) is any con-
nected component of the graph ϕ−1(L) ⊆ G.

Recall that a crucial feature of covers is the path lifting property : if L

admits a path u −→ v labelled p ∈ Ẽ∗ and u′ is any vertex of ϕ−1(L) such
that ϕ(u′) = u, then ϕ−1(L) admits a path labelled p with initial vertex u′

that maps onto the original path in L under ϕ.

Theorem 4.7 (upward induction). Let 1 ≤ k < |E| and let H be an E-
group which is (k + 1)-retractable. Let A ⊆ E with |A| = k + 1 and let LH
be a connected A-subgraph of H[A] such that

(1) LH is admissible for (A-coset extension (with respect to H),
(2) the full (A-coset extension CE(H,LH ;PA) has the cluster property.

Let G� H be a k-stable expansion of E-groups such that the Cayley graph
G of G covers all graphs of the form CE(H,LH ;PA)©v H[B] for B ( A
and v a vertex of CE(H,LH ;PA) (thus, in particular, G covers the graph

CE(H,LH ;PA) itself). Let LG be any cover of LH in G. Then the following
hold:

(i) LG is admissible for (A-coset extension (with respect to G),
(ii) the full (A-coset extension CE(G,LG;PA) embeds into G[A],
(iii) the embedded full (A-coset extension CE(G,LG;PA) is bridge-free in

G[A].

Proof. As for (i), that LG is admissible for (A-coset extension follows from
the fact that LH is admissible for (A-coset extension and that the canonical
morphism G� H is k-stable. In this case, the canonical morphism ϕ : G�
H is injective on B-components for B ( A so that condition (3.7) is satisfied
for LG if it is satisfied for LH = ϕ(LG).

Towards injectivity as required for (ii), let ψ : CE(G,LG;PA) → G[A] be
the canonical graph morphism of Proposition 3.18. We first show that for
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every B ( A the restriction of ψ to CE(G,LG;B) is injective. Suppose
this were not the case. Since the restriction to LG is an embedding, that
could only happen if two vertices of two distinct constituent cosets uG[B] and
vG[B] of CE(G,LG;B) were mapped to the same vertex of G[A] and therefore
the cosets uG[B] and vG[B] coincide as cosets of G[A] (see the discussion
leading to Remark 3.19). The result in G[A] is depicted in Figure 9 (left-

hand side). By assumption, G covers the graph CE(H,LH ;PA); so there is

LG

u v

uG[B] = vG[B]

u v

z

LG

uG[B] vG[C]

Figure 9

a canonical graph morphism ϕ : G� CE(H,LH ;PA) mapping LG onto LH .
Since the expansion G� H is k-stable and |B| ≤ k, the morphism ϕ maps
uG[B] = vG[B] isomorphically onto ϕ(u)H[B] and likewise onto ϕ(v)H[B].
Hence ϕ(u)H[B] = ϕ(v)H[B] in CE(H,LH ;PA), so that ϕ(u) and ϕ(v) are
in the same B-component of LH . It follows that ϕ(u) and ϕ(v) can be
connected by a B-path which runs in LH . Under ϕ that path lifts to a path
u −→ v′ which runs in LG ∩ uG[B]. In particular, v′ ∈ uG[B] = vG[B] and
ϕ(v′) = ϕ(v). Since ϕ is injective on B-cosets, v′ = v and therefore u and
v belong to the same B-component of LG. It follows that the constituent
cosets uG[B] and vG[B] of CE(G,LG;B) coincide.

So, for the injectivity claim of (ii), it remains to consider the case when
vertices of distinct coset extension CE(G,LG;B) and CE(G,LG;C) would
violate injectivity. Let B,C ( A, B 6= C and x ∈ CE(G,LG;B), y ∈
CE(G,LG;C) be vertices such that ψ(x) = ψ(y). We need to show that
x = y in CE(G,LG;PA) (that is, x and y both are in CE(G,LG;B ∩ C)
and coincide). From ψ(x) = ψ(y) we see that in G[A] the situation is as
depicted in Figure 9 (right-hand side) with ψ(x) = z = ψ(y). That is, u
and z are connected by a B-path while v and z are connected by a C-path,
so that z ∈ uG[B] ∩ vG[C]. Let us consider some canonical graph morphism

G � CE(H,LH ;PA) (according to the statement of the Theorem), which
maps LG onto LH . Let u′, v′, z′ be the image vertices of u, v, z, respectively,
under this morphism. Then u′, v′ ∈ LH and z′ ∈ u′H[B]∩v′H[C]. The latter
intersection is a (B ∩ C)-(constituent) coset of CE(H,LH ;PA), having non-
empty intersection with the skeleton LH , say u′H[B]∩ v′H[C] = cH[B ∩C]
for some c ∈ LH . Moreover, the intersections LH ∩u′H[B] and LH ∩v′H[C]
both are connected (namely B- respectively C-components of LH). This

situation is depicted in Figure 10. So there are paths u′
p−→ c in LH∩u′H[B],

v′
q−→ c in LH ∩ v′H[C] and c

r−→ z′ in u′H[B] ∩ v′H[C]. In particular,
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u′ v′

z′

cp q

r

LH

u′H[B] v′H[C]

Figure 10

pr labels a path u′ −→ z′, qr labels a path v′ −→ z′. From k-stability of
the expansion G � H it follows that the morphism G � CE(H,LH ;PA) is
injective on all cosets xG[D] for all D ( A. In particular, this morphism is
bijective between uG[B] and u′H[B] as well as between vG[C] and v′H[C].
From this it follows that the paths in u′H[B]∪v′H[C] just mentioned lift to
paths in uG[B] ∪ vG[C]: hence there is a path u −→ z labelled pr and one
v −→ z labelled qr. It follows that, in CE(G,LG;PA),

u · p = z · r−1 = v · q.
Since p : u′ −→ c runs in LH and so does q : v′ −→ c, the path p : u −→ z ·r−1

runs in LG, and so does the path q : v −→ z · r−1. It follows that

uG[B] = (z · r−1)G[B] and vG[C] = (z · r−1)G[C],

thus uG[B] ∩ vG[C] = (z · r−1)G[B ∩ C] so that, in CE(G,LG; {B,C}):

x = (z · r−1) · r = y,

that is, x and y represent the same vertex in CE(G,LG;B ∩C), as required.
Altogether, CE(G,LG;PA) embeds in G[A] via the morphism of Proposi-
tion 3.18.

It remains to argue for (iii), that CE(G,LG;PA) is bridge-free. So we
look at a pair of vertices v1, v2 ∈ LG, subsets A1, A2 ( A, and vertices
s1 ∈ v1G[A1], s2 ∈ v2G[A1], and assume that, for some B ( A, there is a

B-path s1
p−→ s2 running in G[A] (all the following takes place in G[A] as

depicted in Figure 11). In addition, there are an A-path v1
q−→ v2 running in

LG and Ai-paths vi
fi−→ si running in viG[Ai]. Consider the canonical graph

morphism ϕ : G � CE(H,LH ;PA), which maps LG onto LH . Let v′i be the

image of vi in LH under this morphism. The path v1
q−→ v2 is mapped to

the path v′1
q−→ v′2 in LH . Let us denote the image of si by s′i; then the path

vi
fi−→ si running in viG[Ai] is mapped to the path v′i

fi−→ s′i which runs in
v′iH[Ai]. So far, all these paths run in CE(H,LH ;PA). Further, the path

s1
p−→ s2 is mapped to the path s′1

p−→ s′2, which runs in CE(H,LH ;PA).
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Figure 11

It follows that there is a B-path s′1
p◦−→ s′2 which runs in CE(H,LH ;PA) (in

fact, p◦ is the word obtained from p by deletion of the letters which traverse
loop edges of CE(H,LH ;PA) \ CE(H,LH ;PA)).

So consider the B-component B of CE(H,LH ;PA) which contains the
two vertices s′1 and s′2. The cluster property of CE(H,LH ;PA) shows the
following: either B has non-empty intersection with the skeleton LH , or else
B is a B-cluster (the existence of unique minimal support is not needed in
this context). Assume the latter case first: as a B-cluster, B is the union
B = B1 ∪ · · · ∪ Bn of (B ∩ Ci)-cosets where Ci ( A, |Ci| = |A| − 1 and
assume first that n ≥ 2; the case n = 1 will be handled below. We may
assume that s′i ∈ Bi for i = 1, 2. The pairs (A1, v

′
1) and (A2, v

′
2) provide

support for s′1 and s′2, respectively. The cosets B1 = s′1H[C1∩B] ⊆ v′1H[C1]
and B2 = s′2H[C2 ∩ B] ⊆ v′2H[C2] have non-empty intersection (indeed,
B1 ∩ B2 contains the core of B). Hence v′1H[C1] ∩ v′2H[C2] 6= ∅ so that
v′1H[C1] ∩ v′2H[C2] = vH[C] for C = C1 ∩ C2 and some vertex v ∈ LH .
The situation is depicted in Figure 12. In particular, there is a vertex

LHv′1 v′2

s′1 s′2

v

s
p1

B1
p2

B2

v′1H[C1] v′2H[C2]

B ∩ C1 B ∩ C2

v′1H[A1] v′2H[A2]

Figure 12
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s ∈ s′1H[B ∩ C1] ∩ s′2H[B ∩ C2] and there are B ∩ Ci-paths

s′1
p1−→ s

p2−→ s′2

labelled pi (i = 1, 2). We now consider theB-augmentation of CE(H,LH ;PA)
at the vertex s and the canonical graph morphism

ψ : G� CE(H,LH ;PA)©s H[B]

which maps the covering graph LG onto LH . The graphs CE(H,LH ;PA)
and CE(H,LH ;PA)©s H[B] are almost the same except that the cluster B

in the coset extension CE(H,LH ;PA) is blown up to the full coset sH[B]

in the latter graph. The morphism ψ now maps the path s1
p−→ s2 to the

path s′1
p−→ s′2 which runs in sH[B]; but s′1

p1−→ s
p2−→ s′2 also run in sH[B]

which implies that [p]H = [p1p2]H . Since the expansion G � H is k-stable
and |B| ≤ k, it follows that [p]G = [p1p2]G. In addition, k-stability implies
that ψ provides isomorphisms v1G[C1] � v′1H[C1] and v2G[C2] � v′2H[C2]
and therefore also an isomorphism v1G[C1] ∪ v2G[C2] � v′1H[C1] ∪ v′2H[C2]

(see Lemma 3.10). It follows that the path s1
p1−→ s · p1 runs in v1G[C1]

while s1 · p1
p2−→ s1 · p1p2 = s2 runs in v2G[C2]. So the path s1

p1p2−→ s2 runs
entirely in v1G[C1] ∪ v2G[C2] ⊆ CE(G,LG;PA) and thus provides a B-path
between s1 and s2 in the coset extension CE(G,LG;PA). Finally, for the
same reason, we see that in case n = 1, that is, B = B1 ⊆ v′1H[C1] the path

s1
p1p2−→ s2 runs in v1G[C1] which is contained in CE(G,LG;PA).
The remaining case, where B has non-empty intersection with the skele-

ton LH , is easy: in this case B is a full B-coset B = vH[B] for some vertex

v ∈ LH . The canonical morphism ϕ : G� CE(H,LH ;PA) induces an isomor-
phism φ : s1G[B] = s2G[B]� vH[B] where φ = ϕ � s1G[B] is the restriction.
Then s1G[B] = s2G[B] = φ−1(vH[B]) = φ−1(v)G[B]. But φ−1(v) ∈ LG so
that s1G[B] = s2G[B] is contained in CE(G,LG;PA). �

5. Construction of the group G

The group G announced in Lemma 2.5 will be constructed via a series of
expansions

G1 � H1 � G2 � · · ·� G|E|−1 � H|E|−1 � G|E| = G (5.1)

where, for every k, the expansions Gk � Hk and Hk � Gk+1 are k-stable
and the groups Hk and Gk+1 are (k + 1)-retractable. Here the series (3.4)
is interleaved with the intermediate stages Hk in (5.1). The series (5.1) is
defined by an ascending series

X1 ⊆ Y1 ⊆ X2 ⊆ · · · ⊆ X|E|−1 ⊆ Y|E|−1 ⊆ X|E| (5.2)

of complete E-graphs such that each group in the series (5.1) is the transition
group of the corresponding graph in (5.2), that is,

Gk = T (Xk) and Hk = T (Yk)
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for all k in question. Every graph in the series (5.2) is obtained from its
predecessor by adding certain complete components. These components are
constructed by an inductive procedure, the idea of which is as follows. The
graph X1 is obtained as a suitable completion of the given oriented graph

E = (V, Ẽ;α, ω,−1), here considered as an E-labelled graph where every edge
gets its own label. This serves to initialise the series (5.1) with G1 := T (X1).

Suppose that for k ≥ 1 the graph Xk and therefore its transition group Gk
have already been constructed. Then the step Xk  Yk, and hence the step
Gk  Hk, raises the “degree of retractability” from k to k + 1 and thereby
lays the ground for the transition Hk  Gk+1. The latter step is intended
to ensure the following: suppose that p is a word over k + 1 letters which
forms a path u −→ v in E and a ∈ co(p) for some a ∈ E; if Hk satisfies the
relation p = pa→1, but there is no word q in the letters B := co(p) \ {a}
(and their inverses) forming a path u −→ v in E such that Hk satisfies the
relation p = q, then some component of Xk+1 \ Yk guarantees that Gk+1

avoids the relation p = pa→1 and therefore every relation p = q with q ∈ B̃∗.

5.1. Definition of G1 and the transition Gk  Hk. The idea of the
construction of the graph X1 is to extend the given oriented graph E =

(V, Ẽ, α, ω,−1) to a complete E-graph on the vertex set V in whose transition
group the permutation [e] corresponding to any non-loop edge e is the trans-

position in V that swaps the two vertices αe and ωe. Let E = (V, Ẽ;α, ω,−1)
be a finite connected oriented graph. We let the set of positive edges E be
our alphabet and label every edge e by itself. Thereby we get the E-labelled

graph (V, Ẽ;α, ω,−1, `, E) where ` is the identity function mapping every

e ∈ Ẽ, considered as an edge, to itself, considered as a label. The resulting
graph is an E-graph for trivial reasons, since every label appears exactly
once.

Next, for every non-loop edge e we add a new edge ē and set

αē := ωe, ωē := αe, `(ē) := `(e) = e.

We have thus completed every non-loop edge eu v to a 2-cycle
e

e
u v.

Let us denote the set of all positive edges so obtained (the original ones and

the added ones) by D; then the oriented E-graph D = (V, D̃;α, ω,−1, `, E)
is weakly complete. Let X1 := D be its trivial completion. The transition
group G1 := T (X1) is an E-group of permutations acting on the vertex set
V . For every e ∈ E, [e]G1 is either a transposition (if e is not a loop edge
then [e] swaps αe and ωe) or the identity permutation (if e is a loop edge).
Note that two distinct labels e, f ∈ E may represent the same permutation
of V (since we allow multiple edges in E).

Remark 5.1. Instead of completing all non-loop edges to 2-cycles we could
equally well complete every such edge e to an n-cycle for any fixed n ≥ 2,

by attaching to the edge u
e−→ v an e-path u

e←− · · · e←− v consisting of a
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sequence of n− 1 new edges labelled e and n− 2 new intermediate vertices.
In the resulting transition group, the permutation [e] assigned to e then is
a cyclic permutation of length n mapping αe to ωe. Distinct labels coming
from non-loop edges then automatically represent different permutations
provided that n ≥ 3.

The transition from Gk to Hk is easily described. Suppose we have already
defined the graph Xk and thus the group Gk = T (Xk). We set

Yk := Xk t
⊔{

Gk[A] : A ⊆ E, |A| = k
}
. (5.3)

Provided that Gk is k-retractable, the transition group Hk = T (Yk) is
(k + 1)-retractable and the expansion Gk � Hk is k-stable (Theorem 3.8).
In particular, H1 is 2-retractable.

5.2. The transition Hk  Gk+1. The expansion Hk � Gk+1 is more del-
icate. We assemble a complete E-graph Xk+1 = Yk t Zk to obtain Gk+1

as the transition group Gk+1 = T (Xk+1). The new, weakly complete com-
ponents of Zk will be constructed as augmentations of clusters and coset
extensions based on Hk. To this end we first collect, for k ≥ 2, properties
of the precursors Gk and Hk−1 of Hk, which then serve as conditions to be
maintained inductively also in the passage to Gk+1. At level k, we denote
these inductive conditions as Condk for the pair (Gk, Hk−1). So Condk will
serve as inductive hypothesis for the construction of Zk, and hence Gk+1,
which then needs to guarantee that the conditions Condk+1 are satisfied by
the pair (Gk+1, Hk). In the following, we identify subgraphs of E with their
labelled versions inside X1.

Condition 5.2. As conditions Condk, for k ≥ 2, we collect the following:

(i) Hk−1 and Gk are k-retractable and the expansion Hk−1 � Gk is
(k − 1)-stable,

and, for every B ⊆ E with |B| ≤ k, for any Gk-cover CGk
of any connected

component C of B = 〈B〉 in E ⊆ X1, the following hold:

(ii) CGk
is admissible for (B-coset extension,

(iii) the full (B-coset extension CE(Gk,CGk
;PB) embeds into Gk[B],

(iv) the embedded full (B-coset extension CE(Gk,CGk
;PB) is bridge-free.

By Theorem 3.8, (i) implies that Hk � Gk in particular is k-stable and Hk

is k+1-retractable by construction, as already mentioned in connection with
the definition of Hk. Let ψk : Gk � X1 be some canonical graph morphism,
χk : Hk � Gk the graph morphism induced by the canonical morphism
Hk � Gk, and let ϕk = ψk ◦χk. By k-stability, χk is injective on connected
B-subgraphs for |B| ≤ k.

Let A ⊆ E be a set of |A| = k+ 1 (positive) edges of E ⊆ X1 and A = 〈A〉
be the subgraph of E spanned by A. Let C be a connected component
of A and CHk

be an Hk-cover of C, that is, some connected component

of ϕ−1
k (C). We show that CHk

is admissible for (A-coset extension (with
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respect to Hk) and that the full (A-coset extension CE(Hk,CHk
;PA) has the

cluster property. From this it will follow that augmented coset extensions
of the form CE(Hk,CHk

;PA)©v Hk[B] are well defined; they will be essential
ingredients of the graph Zk to be defined below (Definition 5.3).

Let B ( A and let U ⊆ CHk
be some B-component of CHk

. Then ϕk(U) ⊆
C is a B-component of C and hence is a connected component of 〈B〉 ⊆ C.

U CHk
Hk

ϕk(U) C X1

⊆ ⊆

ϕk

⊆ ⊆

By the inductive hypothesis, any Gk-cover U′ of ϕk(U) is admissible for
(B-coset extension (with respect to Gk) and CE(Gk,U

′;PB) embeds into
Gk[B] and is bridge-free by (ii)–(iv). Since the morphism χk : Hk � Gk is
injective on B-components (that is, injective on B-cosets), it follows that
U′ ∼= U and hence also

CE(Gk,U
′;PB) ∼= CE(Hk,U;PB). (5.4)

Altogether, by (iii) we have

CE(Hk,U;PB) Hk[B]

CE(Gk,U
′;PB) Gk[B]

∼= ∼=

so that CE(Hk,U;PB) canonically embeds into Hk[B]. It follows that con-
dition (3.7) of Definition 3.16 is fulfilled. Since this is true for every B-
component U for every proper subset B of A this implies that CHk

is admis-
sible for (A-coset extension (with respect toHk). Once more by the inductive
hypothesis (iv), every graph in (5.4) is bridge-free. Then, by Theorem 4.5,
the full (A-coset extension CE(Hk,CHk

;PA) itself has the cluster property.
As already mentioned, this guarantees that the augmented coset extensions
CE(Hk,CHk

;PA)©v Hk[B] of Definition 5.3 (2) below are well defined. We
therefore can now define the components of the graph Zk.

Definition 5.3. The graph Zk is the disjoint union of

(1) all augmented A-clusters

CL(Hk[A],P)©v Hk[B]

for A ⊆ E with |A| = k+1, P a set of proper subsets of A, v a vertex
of CL(Hk[A],P) and B ( A;

(2) all augmented full (A-coset extensions

CE(Hk,CHk
;PA)©v Hk[B]

for A ⊆ E with |A| = k + 1, C a connected component of A = 〈A〉,
CHk

an Hk-cover of C, PA the set of all proper subsets of A, v a
vertex of CE(Hk,CHk

;PA) and B ( A.
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We note that the augmented clusters and augmented coset extensions
contain, for B = ∅, all “plain” clusters and coset extensions. Recall that
Hk = T (Yk) and Gk+1 = T (Xk+1) = T (Yk t Zk); see (5.3) for Yk.

Proposition 5.4. The expansion Hk � Gk+1 is k-stable and hence Gk+1

is (k + 1)-retractable.

Proof. We need to prove k-stability, the second assertion then follows from
Theorem 3.8 by inductive hypothesis (i) and the definition of Hk. Let C ⊆ E
with |C| = k, let p ∈ C̃∗ and assume that [p]Gk+1

6= 1; we need to show

that [p]Hk
6= 1. There exists a component L of Yk or of Zk witnessing the

inequality [p]Gk+1
6= 1. That is, in this component there is a vertex v such

that v · p 6= v. If the witnessing component L belongs to Yk, then we are
done since then [p]Hk

6= 1 immediately follows from Hk = T (Yk). If L

is a component of Zk, then L = M where M is of the form (1) or (2) in
Definition 5.3, and the path p : v −→ v · p runs in the C-component vM[C].
Recall that vM[C] denotes the C-component of v in the graph M while

vM[C] is the trivial completion of vM[C], that is, the trivial completion of
the C-component of v in M. Obviously

vM[C] ⊆ vM[C] ⊆ vM[C],

and the latter two graphs differ only in loop edges having labels not in C.
Hence C-paths in vM[C] and vM[C] traverse the same edges and meet the

same vertices. It is therefore sufficient to look at vM[C] instead of vM[C].
From Corollaries 3.12, 3.15 and Proposition 3.24, and since the (plain) coset
extensions in Definition 5.3 (2) have the cluster property, it follows that, for
the graph M in question, the C-component vM[C] must be isomorphic with
one of the following:

(i) a full C-coset Hk[C], or
(ii) a C-cluster CL(Hk[C],P) for some set P of proper subsets of C (this

includes, for P = {B}, also B-cosets Hk[B] for B ( C), or
(iii) a D-augmented C-cluster CL(Hk[C],P)©uHk[D] for some set P of

proper subsets of C, some vertex u of CL(Hk[C],P) and some proper
subset D of C.

In case (i), vM[C] ∼= Hk[C], so the claim [p]Hk
6= 1 again follows immedi-

ately. In case (ii) we get

vM[C] ∼= CL(Hk[C],P) ∼= CL(Gk[C],P) ∼= CL(Hk−1[C],P)

where the second isomorphism is obvious since Hk[C] ∼= Gk[C] by k-stability
of Hk � Gk while the third isomorphism follows from Lemma 3.10. In
case (iii) we get

vM[C] ∼= CL(Hk[C],P)©uHk[D]

∼= CL(Gk[C],P)©t Gk[D] ∼= CL(Hk−1[C],P)©s Hk−1[D]

where t and s are the images of u under the canonical morphisms Hk � Gk
and Hk � Hk−1, respectively, and, again, the second isomorphism is obvious
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since Hk[C] ∼= Gk[C] and Hk[D] ∼= Gk[D] by k-stability of Hk � Gk while
the third isomorphism follows from Lemma 3.14. Hence, in cases (ii) and

(iii), vM[C] is isomorphic with a component of Zk−1 so that [p]Gk
6= 1, from

which again [p]Hk
6= 1 follows. �

From Theorem 4.7 it follows that for every set A ⊆ E with |A| = k + 1
and every connected component C of A, every Gk+1-cover CGk+1

(that is,

every connected component of ψ−1
k+1(C) in Gk+1 where ψk+1 : Gk+1 � X1 is a

canonical graph morphism) is admissible for (A-coset extension, and the full
(A-coset extension CE(Gk+1,CGk+1

;PA) embeds into Gk+1[A] and is bridge-
free. If |A| = l < k + 1 we have by induction that, for every connected
component C of A, the full (A-coset extension CE(Gl,CGl

;PA) embeds into
Gl[A]. But the expansion Gl � Gk+1 is l-stable whence CE(Gl,CGl

;PA) ∼=
CE(Gk+1,CGk+1

;PA) and Gl[A] ∼= Gk+1[A]. We have thus maintained Condi-
tion 5.2 in the passage from k to k + 1 by having verified Condk+1:

(i) Hk and Gk+1 are (k+ 1)-retractable and the expansion Gk+1 � Hk

is k-stable (by Proposition 5.4)

and, for every A ⊆ E with |A| ≤ k + 1, for any Gk+1-cover CGk+1
of every

connected component C of A = 〈A〉 in E ⊆ X1, the following hold:

(ii) CGk+1
is admissible for (A-coset extension,

(iii) the full (A-coset extension CE(Gk+1,CGk+1
;PA) embeds into Gk+1[A],

(iv) the embedded full (A-coset extension CE(Gk+1,CGk+1
;PA) is bridge-

free.

We check that the base case for this inductive procedure, Cond2 for the pair
(G2, H1), goes through. The group H1 is 2-retractable and so is G2 since
G2 � H1 is 1-stable (cf. Theorem 3.8). By Proposition 4.4, for every set
A ⊆ E with |A| = 2, every H1-cover CH1 of every component C of A is ad-
missible for (A-coset extension (with respect to H1) and CE(H1,CH1 ;PA) has
the cluster property. Theorem 4.7 then implies that the G2-cover CG2 is ad-
missible for (A-coset extension (with respect toG2) and that CE(G2,CG2 ;PA)
embeds in G2[A] and is bridge-free (the assertions for G2 can also be checked
by direct inspection). In other words, we have shown that conditions Cond2

are satisfied by the pair (G2, H1). Altogether the series of expansions

G1 � H1 � G2 � · · ·� G|E|−1 � H|E|−1 � G|E|

is well defined and G = G|E| is retractable.

5.3. Properties of G = G|E|. We need to argue that G satisfies the require-
ments of Lemma 2.5. Requirement (2), that G is retractable, and therefore
has a content function by Proposition 3.5, has already been proved.

We are left with showing requirements (1) and (3):

(1) that every permutation of E induced by an automorphism of E ex-
tends to an automorphism of G, and
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(3) that for every word which forms a path u −→ v in E there is a G-
equivalent word which also forms a path u −→ v and uses only edges
of the (common) G-content, or u = v in case of empty content.

We start with item (1); (3) will then be dealt with in Lemma 5.6 and
Corollary 5.7. In the context of (1), “an automorphism of E” refers to any

automorphism of the unlabelled oriented graph E = (V, Ẽ;α, ω,−1). Recall
from the definition of an automorphism of an oriented graph that every
such automorphism of E is required to induce a permutation on the set E of
positive edges of E, hence induces a permutation on our labelling alphabet
E. Similarly, “an automorphism of G” means automorphism of the mere
group G (rather than of G as an E-group, which cannot have non-trivial
automorphisms).

Proposition 5.5. Every permutation E → E induced by an automorphism
of the oriented graph E extends to an automorphism of G.

Proof. Let γ be a permutation of E induced by an automorphism of E, also
denoted γ. We demonstrate the required property for all Gk and Hk, by
induction on k. First note that γ (uniquely) extends to an automorphism
γ̂ of X1 from which the claim follows for the group G1. Indeed, for every

pair of vertices u, v ∈ X1 and every word p ∈ Ẽ∗, we have p : u −→ v if and

only if γp : γ̂u −→ γ̂v. Consequently, for every word p ∈ Ẽ∗, G1 satisfies the
relation p = 1 if and only if it satisfies γp = 1.

So let k ≥ 1 and assume inductively that γ extends to an automorphism
γ̂ of Xk (this means that there is an automorphism γ̂ of the oriented graph
Xk such that for every edge e ∈ Xk we have `(γ̂e) = γ`(e)); by the same
reasoning as for k = 1 we see that in this case γ extends to an automorphism
of Gk. From the definition of the graph Yk it now follows that γ extends to
an automorphism γ̂ of Yk which again implies that γ extends to an automor-
phism of Hk. From this in turn it follows that γ extends to an automorphism
of Xk+1 and therefore again to an automorphism of Gk+1. �

The assertion of the last proposition is essentially a direct consequence
of the fact that the entire process behind our construction of G, on the
basis of the given oriented graph E, is symmetry-preserving. Indeed, none
of the intermediate steps involves any choices that could possibly break
symmetries in the input data, i.e. could be incompatible with isomorphisms
between oriented input graphs E. In particular, the inductive construction
steps reflected in Theorems 4.5 and 4.7 proceed by cardinality of subsets
of E and treat all subsets of the same size uniformly and in parallel.3 Any
isomorphism between oriented graphs E ∼= E′ would successively extend to
isomorphisms between the associated graphs Xi ∼= X′i and Yi ∼= Y′i and
induced isomorphisms between their transition groups Gi ∼= G′i and Hi

∼=
H ′i. In this sense, the entire inductive process underlying the expansion

3This should be contrasted e.g. with constructions based on some enumeration of the
subsets of E, which could well break symmetries.
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chain (5.1) is isomorphism-respecting, hence in particular compatible with
permutations of E stemming from automorphisms of E.

Finally, we have to deal with requirement (3) of Lemma 2.5. Recall that

for a word p ∈ Ẽ∗, co(p) is the set of all letters a ∈ E for which a or a−1

occurs in p. The following lemma is crucial for establishing (3). The reader
is invited to recall the group G defined in (5.1), the graphs Xk+1 := Yk tZk
(for Zk see Definition 5.3) and the coset extensions CE(G,K;P) defined in
(3.10); the full coset extension CE(G,K;PA) is defined immediately before
Remark 3.17. Also recall that the Cayley graph G of G covers, in the sense
of Definition 3.1, any connected component of any one of the graphs Xk.

Lemma 5.6. Let p ∈ Ẽ∗ be a word that forms a path u −→ v in E; let
A = co(p) and suppose that for some letter a ∈ A and B = A \ {a} there

exists a word r ∈ B̃∗ such that [p]G = [r]G. Then there exists a word q ∈ B̃∗
such that [p]G = [q]G and, in addition, q forms a path u −→ v in E.

Proof. First recall that every loop edge e of E induces the identity permuta-
tion on the set V of vertices of X1, whence [e]G1 = 1; then [e]G = 1 follows
from the fact that the expansion G � G1 is 1-stable. Hence, if p contains
only loop edges then u = v, the path meets only the vertex u and [p]G = 1
so that for q we may choose the empty word 1, which labels the empty path
u −→ u and [p]G = [1]G.

If e is not a loop edge, then no power en or e−n for n ≥ 2 forms a path;
therefore, if |A| = 1 the only possibilities for p are f(f−1f)n and (ff−1)n+1

for some n ≥ 0 and f ∈ {e, e−1}. In these cases the claim is obvious.
In the following we use the notation of the series (5.1) and denote the

Cayley graphs of Hk and G by Hk and G, respectively. So, let |A| = k + 1
for some k ≥ 1, and let A = 〈A〉 = 〈p〉 be the subgraph of E spanned by A,
which, by definition, is the same as the subgraph of E spanned by the path
p (which therefore is connected). Abusing notation, we denote the labelled
version of A inside X1 also by A and let ϕu : Hk � X1 be the canonical
morphism mapping 1 ∈ Hk to u; let Ak ⊆ Hk be the cover of A in Hk

with 1 ∈ Ak (that is, the connected component of ϕ−1
u (A) which contains

the vertex 1). The path p in E, or, more precisely, the path πX1
u (p) lifts to

the path πAk
1 (p). In particular, in Ak there is a p-labelled path starting at

1. We consider the full (A-coset extension CE(Hk,Ak;PA) and note that

CE(Hk,Ak;B) is a subgraph of it. We also have the path πG1 (p) in G starting

at 1 and being labelled p. The canonical morphism ψ : G� CE(Hk,Ak;PA)

(mapping 1 ∈ G to 1 ∈ Ak) maps πG1 (p) to π
CE(Hk,Ak;PA)
1 (p), but this path

runs entirely in Ak, hence coincides with the path πAk
1 (p) mentioned earlier.

By assumption, [p]G = [r]G for some word r ∈ B̃∗. The paths πG1 (p)

and πG1 (r) have the same terminal vertex, namely [p]G = [r]G. The path

πG1 (r) is mapped by ψ onto the path π
CE(Hk,Ak;PA)
1 (r). But the B-component

of 1 in CE(Hk,Ak;PA) is the full B-coset 1Hk[B], which is contained in
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CE(Hk,Ak;B). So the latter graph contains a path labelled r starting at 1,

and that path π
CE(Hk,Ak;B)
1 (r) actually runs inside 1Hk[B]. Since the paths

πG1 (r) and πG1 (p) have the same terminal vertex, so have the paths

π
1H[B]
1 (r) = π

CE(Hk,Ak;B)
1 (r) and πAk

1 (p).

It follows that the terminal vertex v′ of πAk
1 (p) is in Ak ∩ 1Hk[B]. But

Ak ∩ 1Hk[B] is just the B-component of 1 in Ak, which is a connected B-
graph. Altogether, there exists a path π : 1 −→ v′ running in Ak ∩ 1Hk[B];

let q ∈ B̃∗ be the label of that path. By construction, [q]Hk
= [r]Hk

, hence
[q]G = [r]G since the expansion Hk � G is k-stable, and therefore also
[q]G = [p]G. Finally, the canonical morphism ϕu : Hk � X1 (restricted

to 1Hk[B]) maps π = πAk∩1Hk
1 (q) to the path πX1

u (q) with initial vertex
u = ϕu(1) and terminal vertex v = ϕu(v′) and label q. If we ignore the
labelling then the latter path is the sequence q of edges in E which forms a
path u −→ v. Altogether, q forms a path u −→ v in E. �

This proof sheds some light on the rôles that the components of Zk play
in the transition Hk  Gk+1. If there is a word p with co(p) = A and
|A| = k + 1 such that p forms a path u −→ v in E, and some letter a ∈ A
does not belong to the Hk[A]-content of p then the subgraph CE(Hk,Ak;B)

of CE(Hk,Ak;PA) (for A = 〈A〉 and B = A \ {a}) guarantees that the

next group Gk+1 avoids every relation p = r for any r ∈ B̃∗ (compare Re-

mark 3.19) unless there exists a word q ∈ B̃∗ such that [p]Hk
= [q]Hk

and
q forms a path u −→ v in E. From this point of view, namely to avoid
all relations that would obstruct Lemma 5.6, it would be sufficient to let
Zk be comprised of all graphs CE(Hk,Ak;B) of the mentioned kind (af-
ter making them weakly complete by extending edges to 2-cycles whenever
needed).4 However, when attempting this approach, namely letting Zk be
comprised of just all graphs of the mentioned form, the authors failed to
prove k-stability of the expansion Hk � Gk+1, and it is not clear whether
or not k-stability can be achieved by this procedure. Hence, except for the
graphs CE(Hk,Ak;B), which appear as subgraphs of the full coset exten-
sions CE(Hk,Ak;PA), all the machinery used to set up the graph Zk —
(augmented) clusters, (augmented) full coset extensions, all of Section 4 —
serves to achieve k-stability of the transition Hk  Gk+1.

If, in Lemma 5.6, [p]G = 1 then necessarily u = v since in this case the

path πG1 (p) is closed and the canonical morphism ϕu : G � X1 maps this

path onto the closed path πX1
u (p). The path p in E obtained by ignoring the

labelling then clearly is also closed. Iterated application of Lemma 5.6 leads
to the following; for the definition of a content function C the reader should
recall Definition 3.4.

4This means that only “basic” B-coset extensions of type CE(G,K;B) as in (3.8) would
be sufficient for proving Lemma 5.6.
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Corollary 5.7. Let p ∈ Ẽ∗ be a word which forms a path u −→ v in E;

then there exists a word q ∈ Ẽ∗ which uses only letters (i.e. edges) from the
content C([p]G) (and/or their inverses) such that [p]G = [q]G and q forms a
path u −→ v in E. If C([p]G) = ∅, then u = v and q is the empty word. If
C([p]G) 6= ∅, then the graph 〈C([p]G)〉 = 〈co(q)〉 is connected and contains
the vertices u and v.
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