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Abstract

Lyndon’s Interpolation Theorem asserts that for any valid implication between
two purely relational sentences of first-order logic, there is an interpolant in which
each relation symbol appears positively (negatively) only if it appears positively
(negatively) in both the antecedent and the succedent of the given implication. We
prove a similar, more general interpolation result with the additional requirement
that, for some fixed tuple U of unary predicates U, all formulae under consideration
have all quantifiers explicitly relativised to one of the U. Under this stipulation,
existential (universal) quantification over U contributes a positive (negative) occur-
rence of U.

It is shown how this single new interpolation theorem, obtained by a canonical
and rather elementary model theoretic proof, unifies a number of related results: the
classical characterisation theorems concerning extensions (substructures) with those
concerning monotonicity, as well as a many-sorted interpolation theorem focusing
on positive vs. negative occurrences of predicates and on existentially vs. universally
quantified sorts.

Keywords: classical model theory, first-order logic, many-sorted structures,
interpolation, preservation and characterisation theorems

Introduction Given a valid implication ¢ = 1, an interpolant for that implication is
an intermediate formula y for which ¢ = x and x = 4. Looking for interpolants x from
some restricted syntactic class of formulae one can discern in how far the information
transferred in the implication ¢ |= 9 is expressible under those syntactic restrictions.
Natural syntactic requirements on the interpolant centre on syntactic properties shared
by ¢ and . Interpolation properties, which guarantee the existence of certain inter-
polants, therefore measure syntax against semantics and may be regarded as criteria for
how closely syntax reflects semantics. In a sense, the interpolant syntactically reflects a
bottleneck between antecedent and succedent. In the model theoretic perspective, this
phenomenon becomes most apparent in the way in which interpolation results often give
rise to definability or expressibility results, especially in the context of model theoretic
characterisation theorems.

Consider the most fundamental interpolation property for first-order logic. Craig’s
Interpolation Theorem [4] says that any valid first-order implication ¢ |= v has an
interpolant y whose vocabulary is restricted to the common vocabulary in ¢ and ). The



associated characterisation result, which follows immediately from Craig interpolation,
is the following. For vocabularies 1y C 7, those 7-formulae whose truth in 7-structures
is fully determined by the 7p-reduct are precisely those equivalent to 1p-formulae. The
straightforward reduction of this expressibility claim to interpolation is typical of this
type of application. From the given ¢ one passes to a variant ¢’ in which all symbols from
7\ 7o have new names. Then ¢ |= ¢’ is a valid implication. A Craig interpolant for this
implication is a 1p-formula equivalent to ¢. For another and better known consequence
of Craig’s Interpolation Theorem, Beth’s Definability Theorem may actually be proved
in a very similar vein, see for instance [9].

Many variations and generalisations of Craig’s Interpolation Theorem have been
found for other logics, but also for first-order itself. Among the most notable ones with
interesting applications in classical first-order model theory are Lyndon’s interpolation
[10] and Feferman’s many-sorted interpolation [5, 6].

Lyndon’s Interpolation Theorem takes into account the polarities in which predicates
occur, i.e. distinguishes between positive and negative occurrences. Predicates may
occur positively (negatively) in the interpolant only if they occur positively (negatively)
in both the antecedent ¢ and the succedent 1. The corresponding characterisation result
associates monotonicity with positivity.

Feferman’s Interpolation Theorem concerns interpolation in a many-sorted frame-
work, rather than the standard one-sorted structures. For this framework, however, it
goes beyond Craig’s condition in taking into account which sorts occur existentially (uni-
versally) quantified in the interpolant. This analysis has wide ranging model-theoretic
applications, one of the most natural ones being the characterisation theorem which
associates preservation under extensions with existential formulae.

The starting point for the present considerations is the observation that superficially
these last two interpolation properties would seem to be related via the natural transla-
tion from many-sorted structures into one-sorted structures in which the different sorts
get modelled as different sub-domains, each marked by a new unary predicate. In this
translation an existential or universal quantification over sort U becomes a U-relativised
quantification of the form Jz(Uz A ...) or Vz(Uz — ...), respectively. Thus existen-
tial quantification contributes a positive occurrence, universal quantification a negative
occurrence of the corresponding sort predicate. Lyndon’s Interpolation Theorem would
seem to tell us something about that, and translating back one might hope to account for
existentially and universally quantified sorts in an interpolant. But of course, a Lyndon
interpolant obtained for the translation of a valid many-sorted implication need not itself
be (equivalent to) a translation of a many-sorted formula. What is more, Feferman’s
Interpolation Theorem shows a characteristic asymmetry with respect to antecedent
and succedent concerning the restrictions on existentially (universally) quantified sorts,
whereas Lyndon’s Interpolation Theorem is quite symmetric.

We here propose an interpolation result in a framework of relativised first-order
formulae, which does indeed form a common ground for Lyndon’s interpolation and
Feferman’s many-sorted interpolation. Besides giving a common model-theoretic basis
to these two important interpolation results, it also gives rise to a unified perspective



on some of their known applications as well as a new one, namely a characterisation
theorem due to van Benthem.
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The new interpolation result Consider first-order logic with or without equality in
a finite, purely relational vocabulary 7. Boolean constants T and 1 are taken to be
atomic first-order formulae. We use the set Occ = 7 x {+,—} to code polarities of
predicate occurrences in formulae, through a mapping

occ: o — oce(p) C Oce,

where (R, +) € occ(p) if R occurs positively in ¢, (R, —) € occ(p) if R occurs negatively.
As usual free(yp) stands for the set of free variables in .

Let U be a tuple of designated unary predicates U in 7. We say that a formula ¢
is U-relativised, if each quantifier in ¢ is explicitly relativised to some U, i.e. is of the
form Jx(Uz A ...) or Ve(Uz — ...) for some U in U. Up to logical equivalence, the
U-relativised formulae correspond exactly to the relativisations of first-order formulae to
Upey U. This is actually even true up to a restricted form of logical equivalences which
preserve polarities of predicate occurrences. We want to prove the following Lyndon
style interpolation theorem.

Theorem 1 Let ¢ and 9 be U-relativised formulae such that ¢ |= 1. Then there is a
U-relativised Lyndon interpolant x for ¢ =1, i.e. a U-relativised formula x such that

(i) free(x) € free(p) N free(y)).
(7i) occ(x) C oce(p) N oce(vh).
(iii) @ |= x and X |= 1.

The statement of the theorem has two readings, one for first-order with equality, and
one for first-order without equality.

This strengthens Lyndon’s Interpolation Theorem [10] (with or without =), which
may be recovered from the theorem by trivialising the relativisation.

Theorem 2 (Lyndon’s Interpolation Theorem) Let ¢ and 1 be formulae such that
@ = 1. Then there is a Lyndon interpolant x for ¢ |=1:

(1) free(x) € free(p) N free(y)).



(7i) occ(x) C oce(p) N oce(vh).
(iii) ¢ = x and x | 9.

This follows from Theorem 1 if we put 7 = 7U{U} for a new unary U, U = {U}
and pass from ¢ and % to their relativisations to U, ¢ and 1/3 By the theorem, there
is a U-relativised Lyndon interpolant x for AUz A ¢ = . Here A\ Uz is shorthand for
A, Uz;, where & = (z1,... ,z,) contains all variables free in ¢ or 7). One obtains the
desired Lyndon interpolant x for ¢ = 4 by replacing every atom of the form Uy in x
by T.

We turn to the proof of Theorem 1, and first introduce some terminology and no-
tation. The cases with and without equality can be treated together. Actually, the
case with equality requires only one minor systematic modification, as will be indicated
immediately. Let 2 and 8 be 7-structures with universes A and B respectively. We
consider certain subsets p C A x B which are to be viewed as weak partial isomorphisms.
This notion calls for the one crucial modification if we want to deal with equality: in that
case, and in that case only, all the p under consideration are required to be the graphs of
partial 1-1 functions; in the case without equality, we consider a priori arbitrary subsets

of Ax B.

If p C A x B, we regard dm(p) = {a € A|(3b € B)((a,b) € p)} as the domain of
p, and im(p) = {b € B|(Ja € A)((a,b) € p)} as the image of p. If @ = (ay,... ,ap),
b= (b,...,by), and if (a;,b;) € p for i = 1,... ,n, we indicate this situation by writing
simply a b € p.

Let O C Occ. We say that p preserves O if for all R € 7, if R is n-ary and if
a € A"b € B™ are such that ab € p, then

~if (R,+) € O: A = Ra = B |= Rb,
—if (R,—) € O: B = Rb= A = Ra.

If O C Occ and A = (A, (U¥)pey,...) we let A/© and A~/° denote those parts
of the universe A that lie within some U% which is positive or negative, respectively,
according to O:

A0 = U U and A/° = U U,

(U,+)e0O (U,-)eo

Definition 3 A set P C {p CAxB ‘ p preserves O } Lis a back-and-forth-system
with respect to O and U, if P # () is such that for all p € P, and all a b € p:

— if a € A*/9, then there are p’ € P and b € B such that aabb € p'.

— if b € B7/9, then there are p' € P and a € A such that aabb € p'.

'Recall that, for the reading with equality, these p are restricted to be 1-1 partial functions.



The following are two related, asymmetric notions of similarity between structures,
one algebraic in spirit, the other semantic. They have the same relationship between
them as do partial isomorphism and elementary equivalence.

Definition 4 We write (2, a) — ¢ (%B,b) if there is a back-and-forth-system P with
respect to O and U with a b € p for some p € P. We also write P: (2, a) —)Ig (%8, b) in
this situation, and p: (2, a) —3 (B, b) if P consists of one single element p C A x B.

Definition 5 We write (2, a) =3 (%B,b), if for all U-relativised formulae ¢(z) with
occ(p) CO: AEpla] = B p[b]. For p C A x B, we write p: 2 =3 B, if
(A,a) =7 (B,b) for all ab € p.

Lemma 6 If P: 2 —)Ig B then p: A :>g B for all p € P.
In particular, (A, a) —g (B, b) implies (A, a) =3 (B, b).

This is proved by a straightforward induction on U-relativised ¢ with occ(¢) C O in
negation normal form.

Lemma 7 Let 2 and B be w-saturated. Then (A, ap) =9 (B,bg) implies
P: (A, ap) _% (%8, by), where P = {p CAxB ‘ p finite,p: A :>g ‘B}.

Proof. P is nonempty: (p: ag — by) € P as (U, ag) :>g (%B,by). All p € P preserve
O by definition. It remains to check the back-and-forth-property with respect to O and
U. We do the ‘forth’-part. Let ab € p € P, and assume that a € U%, (U, +) € O. We
are seeking b € U for which (2, aa) =7, (%, bb). Note that (2, a) =9 (%8, b) holds,
since a b € p. Put

®(a,z) = {¢(a,z) ‘ ¢ U-relativised, occ(p) C 0,2 |= ¢la, al},

and let correspondingly ®(b, ) = {¢(b,z) | ¢(a,z) € ®(a,z)}.

Clearly any realization b of ®(b,z) in % will be such that (A, aa) =9 (B,bb).
It remains to show that ®(b,z) is consistent with Th(B,b). Assume to the contrary,
that it were inconsistent. As ® is closed under conjunctions, there would have to be
a single ¢(a,z) € ®(a,z) such that (B,b) = —(3z € U)p(b,z). But this contradicts
(A, a) =7 (B, b), if we consider the formula ¢(z) = 3z € U)p(z, z).

The ‘back’-part is dealt with analogously, only that the partial type under consider-
ation is ®(b,z) = {=p(b,z) | ¢ Urelativised, occ(p) C O,B = —¢[b, b]}. O

Corollary 8 For (A,a¢) =5 (B,by) there are countable (A*,ag) and (B*,by) such
that (Q[*,ag) = (Q[, ao), (%*,bg) = (%,bg), and (QL*,aO) —)g (%*,bg)

This follows from the previous lemma, if we first take arbitrary w-saturated ele-
mentary extensions A < ' and B < B’. By the lemma, (A',a¢) —5 (B',by). To
obtain a countable version of this situation, it suffices to wrap up (2, ap), (B', by), and



the back-and-forth-system P in one first-order structure, and to apply the Lowenheim-
Skolem-Tarski Theorem. 2

Lemma 9 If2 and B are countable, and (A, aq) —2 (B, by), then thereis ap C AxB
for which p: A —>g B and agbg € p.

Sketch of proof. Starting from a back-and-forth-system P (without loss of generality
consisting of finite p, and closed under subsets) and enumerations of A*/©® C A and of
B~/° C B one finds (in the usual back-and-forth fashion) finite approximations to the
desired p within P. Their union p satisfies dm(p) D A*/? and im(p) D B~/°. O

The following is the main proposition towards the proof of the theorem; indeed, it
may be thought of as the structural interpolation property behind the theorem. The
situation is depicted in the following sketch.

p

2
0>

pr D2
01 ¢

Proposition 10 (main proposition) Let O1,0 C Occ, O = O1 N Os.

If p: A _% B, then there are &, p1 C A X C, and ps C C x B such that p = p1 o po
and pi: A —>g1 ¢ and py: € —>g2 B. One may further require that dm(p;) = A
and im(p2) = B.

Proof. Let x ¢ AU B. We let the universe C of the desired structure € be a subset of
(AU{x}) x (BU{x}). Put

¢ =p U ((A\dm(p) x {<}) U ({} x (B\im(p))),
p = {(@v) | @b ep} U {@(a)
p2 = {((@h).0) | (@,b) €} U {((5,0),0) [ b e B\ im(p)}.

a€A\dm(p)},

Directly from the definitions we see that p = p; o po, dm(p;) = A, and im(py) = B.
For the case with equality also note that the p; are 1-1 partial functions if p is. We
now have to fix the interpretation of predicates R € T over C with a view to making p;

% Alternatively, one might want to work with encodings of pairs of structures and back-and-forth-
systems from the start, and prove Corollary 8 directly from a model theoretic games perspective, via
direct applications of compactness and Lowenheim-Skolem. This alternative approach, which avoids the
detour through w-saturated structures, has been elaborated on and applied to a uniform treatment of
numerous characterisation results in [8].



respect O1, to making ps respect Oz, and to guaranteeing the respective back-and-forth
properties. Since dm(p;) = A and im(p,) = B, the remaining back-and-forth conditions
reduce to im(p;) O C/°1 and dm(pg) D C*/2.

Let R be n-ary, ¢ € C". We write ¢ = ab, where in general a € (AU {*})" and
b € (BU{x})". We distinguish several cases.

(a) Ifa € A" and b € B" and 2 = Ra < B = Rb,
put: ¢ Re < A = Ra.

(b) If @ € A" and b € B" and 2 }= Ra but B = ~Rb (whence (R, +) ¢ O):

(i) if (R,+) € O1 \ O9, put: € = Re.
(ii) if (R,+) € Oz \ Oy, put: € |==Re.
(iii) if (R,+) ¢ O1 U Oy, decide Re arbitrarily.

(c) Ifa € A" and b € B" and 2 = —Ra but B = Rb (which implies that (R, —) &€ O),
proceed as in (b), based on a corresponding case distinction for (R, —).

(d) If a € A" and b € B™ (i.e. @ ¢ dm(p), and ¢ & dm(p2)),
put: € = Re < (A Ra and (R, +) € Oy).

(e) If a ¢ A" and b € B" (i.e. b ¢ im(p), and ¢ & im(p1)),
put: €= Re< (B = Rband (R,—) € O2).

(f) If a ¢ A™ and b € B™, decide Re arbitrarily.

It remains to argue that p; preserves O;, that im(p;) O C~/°1, and that dm(py) D
C*/%2. Note for the following that if e.g. ac € p; then @ € A™ and ¢ = a b for some
b € (BU{x})", where a'b’ € p if the primed tuples are the projections of @ and b to
those positions in which b has entries from B.

e p; preserves Op. Consider ac € p; and (R,+) € Oq; the relevant cases are those in
which 2 E Ra, and are dealt with in (a),(b), or (d). If (R,—) € O1, then we look at
2 = —Ra, and find that the relevant cases are treated in (a),(c), or (d).

e im(p;) D C/91. Note that all elements of C' except those of the form ¢ = (x,b) are
trivially in im(py). For (*,b) € C it follows that b ¢ im(p). If (x,b) € U®, then by
(e), (U,—) € Oy and b € UB. Therefore, (U, —) cannot be in Oy, as that would imply
(U,—) € O and b € im(p). So no element of the form (*,b) is in C'~/°1.

That ps preserves Oz and that dm(ps) D C*+/92 are shown analogously. This finishes
the proof of the proposition. |

Proof of theorem 1. Let ¢ and ¢ be U-relativised formulae, ¢ |= 1. Let @y stand for
the tuple of variables that are free in both ¢ and 1, so that for appropriate tuples a;
and @9, we have pairwise disjoint tuples x; such that ¢ = p(x¢, 1) and ¢ = (xy, z2)
with all free variables displayed. Put O; = occ(p), Oy = oce(p), O = O1 N Oy. Suppose
there were no U-relativised formula x(zg) with occ(x) C O such that ¢ = x and x | 9.
Put

P(zg) = {X(:Do) ‘ x U-relativised, occ(x) C O, ¢ E X}-

7



By assumption (and compactness), ® [~ 1. Let (98, bg,b2) = ® U {-1}. Put
O(xo) = {~x(mo) | x U-relativised, occ(x) C O, (B, bo) = —x}-

It follows that ©® U {¢} is consistent, too. Otherwise, by compactness and as © is
closed under conjunctions, there would have to be a single —=x € © such that ¢ = x.
But then x € ®, whence B |= x, a contradiction.

So we find some (2, ap,a1) = © U {p}. It follows that (A, ag) = (B,by). By
Corollary 8 the situation can be upgraded to obtain countable (2, ag, a1) and (B, by, bs)
such that (2, ap) —9 (8B, bo), A |= plag, a1], and B = —1p[by, ba].

Applying Lemma 9, we obtain p: —>g B for a single p C A x B with agby € p.
But now the proposition yields a structure € and relations p; and ps such that p =
p1 o p2, apay; € dm(py), boby € im(py), and p: A —>g1 ¢, pr: € —>g2 B. Let cg
be such that apey € p1 and epby € py (recall that agby € p and p = p; o pg). Let
further ¢; and ez be such that aga; cpe; € p1 and epea bobs € po (these exist, since
ay € dom(p1) and by € im(p2), respectively). It follows that (2, ag, a1) :gl (€, ep,c1)
and (€, ¢y, €2) :& (B, by, ba). We find that by preservation € = ¢|ey, ¢1], therefore,
and as ¢ |= 1, we have € = 1[¢cy, e2], whence by preservation also B = [bg, bs], a
contradiction.

Applications We show how Theorem 1 actually combines several interpolation and
preservation results in one. Namely, it directly implies not only Lyndon’s interpola-
tion theorem [10] (see Theorem 2 above), but also a number of related interpolation
and preservation results. Among them are the classical characterisation theorems con-
cerning preservation under extensions and substructures [3], a variant of Feferman’s
many-sorted interpolation theorem [5, 6], as well as a very recent characterisation result
of van Benthem’s [2] concerning preservation under Chu transforms.

Classical preservation theorems Consider a relational first-order formula (z) =
©(x1,...,zk) that is preserved under extensions: 2 C B and 2 = p[a] together imply
that B | pla]. Let Up,Us be two new unary predicates, not in the vocabulary of ¢,
and put U = {Uy,Us}. Let Ui be the result of relativising ¢ to U;. Then preservation
under extensions for ¢ is expressed by the following validity:

Ve (Uiz — Usx) A /\ Uiz A o (z) | P2 ().

Note that all formulae occurring here are U-relativised. Theorem 1 provides a U-
relativised interpolant x(z), with no occurrence of U; and only positive occurrences of
U,. Tt follows that x is purely existential. Considering the special case that U; = Us in
the antecedent, we find that A Usz A U2 |= x |= ©U2. Further restricting attention to
the case that VxUsx in these implications, we replace in x all atoms Usy by T to obtain
a formula x’, which is in the vocabulary of ¢, purely existential, and equivalent to ¢,
since in this special case both A Usz A 92 and @2 are equivalent to ¢.



We note that a similar connection between existential preservation and a many-sorted
interpolation property (to be dealt with in the next section) is prominently discussed as
an application for many-sorted interpolation by Feferman in [6].

As usual, a similar argument gives the classical preservation theorem concerning
monotonicity and positivity (which of course directly follows from Lyndon’s Interpo-
lation Theorem). The point in the above is rather that the extension/existential and
the monotone/positive preservation phenomena are attributed to the same source, as it
were, in the present relativised picture.

A many-sorted interpolation theorem Consider many-sorted first-order logic with
n sorts in a relational vocabulary. We here assume that all predicates and variables
are typed with respect to the sorts and that the sorts are disjoint. > The standard
translation into a one-sorted framework transforms a many-sorted relational structure
(A1,...,Apn, R,...) with disjoint sorts A; into a structure whose universe A is (an arbi-
trary superset of) | J A; having new unary predicates Uy, ... , U, to indicate the different
sub-domains corresponding to the different sorts. If we put U = (Uy,... ,U,), the many-
sorted first-order formulae naturally translate into U-relativised formulae. Care has to
be taken if free variables are around: while the many-sorted framework restricts each
free variable to its particular sort implicitly, the corresponding semantic restriction has
to be made explicitly in the translation. Care has also to be taken with respect to the
translation of implications. A priori the validity of a many-sorted implication implies
the validity of the U-relativised one-sorted translated implication only in restriction to
those one-sorted structures that arise as encodings of the original many-sorted struc-
tures. Those are the structures for which the U are disjoint, each relation R is restricted
to a product of sub-domains Uy according to its specified type, and each free variable z;
is interpreted as an element of that U that corresponds to its sort. For well-formed
many-sorted formulae, however, the restriction concerning the interpretation of relations
R is irrelevant because R-atoms in what would be inappropriate sorts do not affect the
semantics of the translated formula (as long as the free variables are restricted to the
appropriate sorts). The restriction of the free variables to their respective sorts will be
made explicit below. So what remains is the apparent problem about disjoint versus
overlapping sub-domains Uy, which is resolved in the light of the following reverse trans-

formation. Let 2 = (A,Uy,...,U,, R,...) be an arbitrary structure of the indicated
type, @ = (a1,... ,a;) € A* such that a; € Uf([i) fori =1,... k. Let U, = U x {s},
and R = {a = ((a1,51),--. ,(ar,s,)) ‘ (a1,...,a,) € R*} for an r-ary relation R of
type (s1,...,8:). If p(z1,...,xk) is a well-formed many-sorted formula with z; of sort

Ss(i), and ©U the result of relativising every quantifier in ¢ to the appropriate Uy, then

A= @U[a] iff (Ul,... ,Un,R,...) = ol(a1,81)y- -, (ak, Sk)]-

3However, we do not a priori require all sorts to be non-empty; corresponding stipulations would
have to be made explicitly by means of existential statements. If typed-ness of predicates or disjointness
of sorts seem too restrictive, there are straightforward modifications which can deal with those other
settings; in fact, some precautions that have to be taken here can be avoided in those more liberal
settings.




Note that this is even true if ¢ has equality, because the typed-ness of ¢ implies that
equality atoms can only link variables from the same sort. With these considerations in
mind, we find that a valid many-sorted implication ¢ |= v, with combined free variables
Z1,..., T, z; of sort s(7), gives rise to the following valid one-sorted implication between
U-relativised formulae:

A Upzine’ = N Uz — 97, (1)
Iinree((p) Iinree(’l/))

where ¢V and ¢V are the results of relativising every quantifier in these formulae to the
appropriate sort.

We first specialise to the case in which ¢ and 1 share the same free variables
Z1,...,Zk. This assumption makes the analysis more straightforward, but the gen-
eral case essentially reduces to it: if o = p(x,y), ¥ = 9¥(x, z) with all free variables
mentioned and @, y, z pairwise disjoint, then ¢ |= 1 implies that Jyp = Vz; further-
more, an interpolant for the latter implication automatically is good for ¢ = %, too.
We shall return to this general case below.

Let free-sorts be the set of sorts of the free variables of ¢ and 1. Identifying a sort
with its encoding predicate U, we may think of free-sorts as a subset of U. A direct
application of Theorem 1 to the valid implication (1) yields an interpolant x(z1,... ,z),
which is U-relativised and has

oce(x) C (occ(goU) U free-sorts x {+}) N (occ(qﬁU) U free-sorts x {—}). (2)

Now x is not at first of the form that would immediately translate back into a
many-sorted formula. But note that, since A; Usiywi A oV E x(z1,... ,x1), all free
variables of x may be assumed to be appropriately typed. It remains to remove in
x all wrongly typed occurrences of predicates R, and all occurrences of predicates Ug
apart from occurrences in explicit relativisations. Without loss of generality each bound
variable in x is quantified exactly once, and therefore also has a unique sort attributed
to it. Any R-atom in x that may in this fashion acquire an inappropriate type is now
replaced by L, the same goes for atoms Uy, whenever y is a variable attributed to any
sort different from U,. Clearly, the resulting formula y’ is still good as an interpolant for
the implication (1) in restriction to all structures that arise as one-sorted encodings of
many-sorted structures. Also observe that none of these manipulations introduces new
occurrences. Thus x’ may be regarded as a well-formed many-sorted formula, for which
¢ = x' and x' E 9 are valid many-sorted implications.

Now for occurrences of predicates in x (or x'). With respect to predicates in the
original vocabulary of ¢ and 1, we clearly have occ(x’) C oce(x) C oce(p)Noce()), by (2)
— as is to be expected for a many-sorted variant of Lyndon interpolation. Moreover, U-
occurrences can be used to analyse which sorts are existentially or universally quantified.

Let 3-sorts(p) stand for the set of those sorts that are existentially quantified in ¢,
V-sorts(p) the set of those that are universally quantified (assuming negation normal
form), and sorts(p) for the set of sorts occurring in ¢. Then (2) implies that sorts(x’) C

10



sorts(p) N sorts(¢p) and that

J-sorts(x’) C  F-sorts(yp) N (I-sorts(p) U free-sorts)
V-sorts(x') C V-sorts(p) N (V-sorts(yp) U free-sorts).

Considering now the general case of formulae ¢(xz,y) and i (x, z) not necessarily
sharing the same free variables, the passage to Jyp(x,y) and Vzi(x, z) also yields
a corresponding interpolant for ¢ |= 1, whose free variables are among the common
free variables of ¢ and 1. With respect to the existentially (universally) quantified
sorts in the above analysis, we have to replace 3-sorts(y) by 3-sorts(p) U free-sorts(p)
and V-sorts(y) by V-sorts(1) U free-sorts(). Everything else remains unchanged. We
thus obtain the following many-sorted interpolation theorem, which is closely related to
Feferman’s many-sorted interpolation theorem [5, 6] and its generalisation by Stern [12].

Proposition 11 Suppose ¢ and 1 are many-sorted relational formulae. If ¢ = 1) is a
valid implication, then there is a many-sorted Lyndon interpolant x for ¢ = 9, i.e. a
many-sorted formula x such that ¢ = x and x =, and

(i) free(x) C free(p) N free(y).
(i1) sorts(x) C sorts(e) N sorts(y)).

(113) occ(x) C oce(p) N oce(vh).

(iv) 3-sorts(x) C F-sorts(y) N (I-sorts(p) U free-sorts(p)),
V-sorts(x) C V-sorts(p) N (V-sorts(y) U free-sorts(1))).

Note that in the case of sentences (i.e. without free variables) condition (iv) simply
says that a sort is existentially (universally) quantified in x only if it is existentially
(universally) quantified in both ¢ and 1. We thus have in particular the following,
which is just Stern’s Theorem 2.2 in [12].

Corollary 12 (Stern) For many-sorted relational sentences ¢ and 1y without free vari-
ables: if ¢ = v is a valid implication, then there is a many-sorted Lyndon interpolant
X for ¢ E 1, i.e. a many-sorted sentence x such that ¢ = x and x E 9, and

(i) sorts(x) C sorts(e) N sorts(y)).
(7i) occ(x) C oce(p) N oce(vh).

(113) 3-sorts(x) C I-sorts(yp) N I-sorts(p),
V-sorts(x) C V-sorts(p) NV-sorts(1).

But also for formulae with free variables, one may play with the implication (1) and
distribute the sort conditions Uy(;)z; in such a way as to minimise matching occurrences
of sort predicates between antecedent and succedent. In particular, the conditions on
the common free variables obviously need not be repeated on both sides. In this way
one finds, for instance in the case that ¢ and 1 share the same free variables (of sorts
free-sorts), that for any sets Fy and Fy of sorts such that free-sorts C F; U Fy condition
(iv) may be replaced by
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(iv’) F-sorts(x) C I-sorts(yp) N (I-sorts(p) U Fy),
V-sorts(x) C V-sorts(p) N (V-sorts(¢) U Fy).

Similar variations are explicit in Stern’s generalisations of Feferman’s theorem, The-
orem 2.1 in [12]. The specialisation of Feferman’s original many-sorted interpolation
theorem [5, 6] corresponding to Proposition 11 is the following.

Theorem 13 (Feferman) Suppose ¢ and 1 are many-sorted relational formulae. If
¢ |= 1 is a valid implication, then there is a many-sorted interpolant x, ¢ = x and
X =, such that

(1) free(x) C free(p) N free(y).
(i1) sorts(x) C sorts(e) N sorts(y)).
(7ii) all predicates in x occur in both ¢ and 1.
(iv) F-sorts(x) C I-sorts(v), V-sorts(x) C V-sorts(yp).

The strength of Feferman’s many-sorted interpolation theorem has been demon-
strated in several applications in [5, 6] and also [1]. In particular, the classical exten-
sion/existential preservation theorem also follows directly from it, as mentioned above.
In comparison with the full version of Feferman’s theorem, Proposition 11 concerns just
first-order, rather than fragments of infinitary logic. On the other hand our variant (just
like Stern’s strengthening) goes beyond Feferman’s theorem in two other respects, apart
from being obtained along very different lines: the Lyndon condition on the polarities
of predicate occurrences is absent from Theorem 13, and the condition on existentially
and universally quantified sorts is more symmetric and in general stronger than the
corresponding condition in Feferman’s theorem.

Van Benthem’s preservation theorem This new characterisation result [2] arises
in the context of Chu spaces (over {0,1}), regarded as two-sorted relational structures in
one binary E of type (1,2). The latter is to say that E is interpreted as a subset of the
cartesian product of the first and the second sort. A Chu transform between two such
two-sorted E-structures A = (A, Ay, E¥) and B = (By, By, E®?) is a pair of mappings
f: A1 — By and g: By — As such that for all a € Ay and 8 € Bo:

(a,9(8)) € E* < (f(a),B) € E®.

Note that the first sort transforms as under a homomorphism, while the second
sort transforms as under an inverse homomorphism. Special Chu transforms are the
following;:

(a) extensions in the first sort: A; C By, Ay = By, A C B, f,g =id.

It is worth noting that this is not only due to the fact that our sorts are not a priori required to
be non-empty; the use of explicit conditions to this effect in the constituent formulae still yields a more
restrictive and more symmetric condition on the interpolant than the one discussed in [5, 6].
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(b) restrictions in the second sort: A; = By, Ay D By, AD B, f,g = id.

Let the variables of the first sort be denoted x, those of the second sort v. A two-
sorted first-order formula ¢(x,v) is preserved under Chu transforms if, whenever f,g
constitute a Chu transform from A to B, and if @ € (A4;)" and B € (B2)™, then

AEpla,g(B)] = BE=[fla),Bl

Following van Benthem [2], let us call a many-sorted formula ¢(2,v) in this two-
sorted framework a flow-formula if it is equality-free and is purely existential in the first
sort, and purely universal in the second. The following theorem is presented with a
self-contained model theoretic proof in [2]. Its connection with Feferman’s and Stern’s
many-sorted interpolation theorems has meanwhile also been expounded in [7].

Theorem 14 (van Benthem) Formulae preserved under Chu transforms are precisely
those that are logically equivalent to flow-formulae.

Suppose p(x,v) is an equality-free 3 two-sorted first-order formula that is preserved
under the special Chu transforms of types (a) and (b). For a proof of van Benthem’s
theorem we want to obtain a flow formula ¢* (existential with respect to the first sort
and universal with respect to the second) that is equivalent to . We obtain ¢* as an
interpolant in an application of our main theorem (in the equality-free setting) for the
natural one-sorted encodings of Chu spaces. Let us use unary predicates U and V for
the sub-domains corresponding to the first and second sort, respectively. Let ¢U be the
result of relativising all quantifiers in ¢ accordingly, to either U or V. In the light of
the treatment of the many-sorted interpolation theorem outlined above, it will suffice to
show that ¢V is equivalent to a U-relativised formula in which U occurs only positively
and V only negatively. This is achieved in two separate steps, the first one using Chu
transforms of type (a) to eliminate negative occurrences of U, the second one using
Chu transforms of type (b) to eliminate positive occurrences of V. For the first step let
01 = ¢V, @y the result of renaming U to U’ in @Y. Then preservation of ¢ under Chu
transforms of type (a) corresponds to the validity of

w2z, v) A /\ Uz A /\Vu ANVz(U'z — Uz) E ¢1(z,v).

This is an implication between {U, V, U’}-relativised formulae, and Theorem 1 yields
a {U,V,U'}-relativised formula y(z,r) with no occurrence of U’ and only positive oc-
currences of U. Identifying U and U’, we find that ¢V and x are indeed equivalent if
@ and v respect the sorts. For the second step assume that ¢V is positive in U, and

5To recover the full content of van Benthem’s theorem, one should not require the absence of equality,
but obtain it in a preliminary step based on preservation under onto-homomorphisms in the first sort
(which goes to eliminate inequalities over the first sort) and inverse onto-homomorphisms in the second
sort (which similarly allows us to eliminate inequalities over the second sort); we leave that part out, as
it has no direct relevance for our concerns.
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let o1 = @Y, @y the result of renaming V to V' in @Y. Preservation of ¢ under Chu
transforms of type (b) means that

pa(z,v) A /\ Uz AVz(Vz — V'z) | /\Vu — p1(z,v).

Theorem 1 now yields a {U,V,V'}-relativised formula x(z,v), still positive in U,
with no occurrence of V' and only negative occurrences of V. Identifying V and V', we
find that ¢V and x are indeed equivalent if  and v respect the sorts. This new y then
can essentially serve as ¢*. Up to some necessary syntactic clean-up as we saw in the
treatment of many-sorted interpolation, ¢* may be translated back into a two-sorted
formula in the original vocabulary involving just F with only existential quantification
over the first and only universal quantification over the second sort.

Note The approach to interpolation described above was developed independently and
indeed without knowledge of two quite distinct lines of investigation carried out in the
1970s, which however both turn out to be closely related to this approach: the strength-
ening of Feferman’s result by J. Stern [12], and work by N. Motohashi [11]. Motohashi
in [11] states without proof an interpolation theorem in a very similar formalism of rel-
ativised formulae, although not of the Lyndon type, i.e. not accounting for predicate
polarities. A connection with Feferman’s many-sorted interpolation theorem [5] is also
discussed there. To the best of my knowledge, no proof of Motohashi’s theorem can be
found in the literature. Stern’s result, obtained in the setting of model theoretic forc-
ing, does indeed cover all the many-sorted consequences of our interpolation theorem,
and with hindsight one might even find the proof patterns — model theoretic back-and-
forth techniques vs. model theoretic forcing — intimately related. On the other hand, one
advantage of putting the main theorem and its proof into the standard one-sorted frame-
work seems to be that it highlights a surprisingly direct relationship between the tradi-
tionally rather orthogonal scales of existential-vs.-universal and of positive-vs.-negative.
Moreover, this is achieved at a truly elementary level with a canonical model theoretic
proof. I would hope, therefore, that this note, even if it comes as an afterthought to
long established precursors, offers a new perspective which may be attractive for its
simplicity and comprehensiveness.
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