
An Interpolation TheoremMartin Ottorevised, September 2000AbstratLyndon's Interpolation Theorem asserts that for any valid impliation betweentwo purely relational sentenes of �rst-order logi, there is an interpolant in whiheah relation symbol appears positively (negatively) only if it appears positively(negatively) in both the anteedent and the suedent of the given impliation. Weprove a similar, more general interpolation result with the additional requirementthat, for some �xed tuple U of unary prediates U , all formulae under onsiderationhave all quanti�ers expliitly relativised to one of the U . Under this stipulation,existential (universal) quanti�ation over U ontributes a positive (negative) our-rene of U .It is shown how this single new interpolation theorem, obtained by a anonialand rather elementary model theoreti proof, uni�es a number of related results: thelassial haraterisation theorems onerning extensions (substrutures) with thoseonerning monotoniity, as well as a many-sorted interpolation theorem fousingon positive vs. negative ourrenes of prediates and on existentially vs. universallyquanti�ed sorts.Keywords: lassial model theory, �rst-order logi, many-sorted strutures,interpolation, preservation and haraterisation theoremsIntrodution Given a valid impliation ' j=  , an interpolant for that impliation isan intermediate formula � for whih ' j= � and � j=  . Looking for interpolants � fromsome restrited syntati lass of formulae one an disern in how far the informationtransferred in the impliation ' j=  is expressible under those syntati restritions.Natural syntati requirements on the interpolant entre on syntati properties sharedby ' and  . Interpolation properties, whih guarantee the existene of ertain inter-polants, therefore measure syntax against semantis and may be regarded as riteria forhow losely syntax reets semantis. In a sense, the interpolant syntatially reets abottlenek between anteedent and suedent. In the model theoreti perspetive, thisphenomenon beomes most apparent in the way in whih interpolation results often giverise to de�nability or expressibility results, espeially in the ontext of model theoretiharaterisation theorems.Consider the most fundamental interpolation property for �rst-order logi. Craig'sInterpolation Theorem [4℄ says that any valid �rst-order impliation ' j=  has aninterpolant � whose voabulary is restrited to the ommon voabulary in ' and  . The1



assoiated haraterisation result, whih follows immediately from Craig interpolation,is the following. For voabularies �0 � � , those � -formulae whose truth in � -struturesis fully determined by the �0-redut are preisely those equivalent to �0-formulae. Thestraightforward redution of this expressibility laim to interpolation is typial of thistype of appliation. From the given ' one passes to a variant '0 in whih all symbols from� n �0 have new names. Then ' j= '0 is a valid impliation. A Craig interpolant for thisimpliation is a �0-formula equivalent to '. For another and better known onsequeneof Craig's Interpolation Theorem, Beth's De�nability Theorem may atually be provedin a very similar vein, see for instane [9℄.Many variations and generalisations of Craig's Interpolation Theorem have beenfound for other logis, but also for �rst-order itself. Among the most notable ones withinteresting appliations in lassial �rst-order model theory are Lyndon's interpolation[10℄ and Feferman's many-sorted interpolation [5, 6℄.Lyndon's Interpolation Theorem takes into aount the polarities in whih prediatesour, i.e. distinguishes between positive and negative ourrenes. Prediates mayour positively (negatively) in the interpolant only if they our positively (negatively)in both the anteedent ' and the suedent  . The orresponding haraterisation resultassoiates monotoniity with positivity.Feferman's Interpolation Theorem onerns interpolation in a many-sorted frame-work, rather than the standard one-sorted strutures. For this framework, however, itgoes beyond Craig's ondition in taking into aount whih sorts our existentially (uni-versally) quanti�ed in the interpolant. This analysis has wide ranging model-theoretiappliations, one of the most natural ones being the haraterisation theorem whihassoiates preservation under extensions with existential formulae.The starting point for the present onsiderations is the observation that super�iallythese last two interpolation properties would seem to be related via the natural transla-tion from many-sorted strutures into one-sorted strutures in whih the di�erent sortsget modelled as di�erent sub-domains, eah marked by a new unary prediate. In thistranslation an existential or universal quanti�ation over sort U beomes a U -relativisedquanti�ation of the form 9x(Ux ^ : : : ) or 8x(Ux ! : : : ), respetively. Thus existen-tial quanti�ation ontributes a positive ourrene, universal quanti�ation a negativeourrene of the orresponding sort prediate. Lyndon's Interpolation Theorem wouldseem to tell us something about that, and translating bak one might hope to aount forexistentially and universally quanti�ed sorts in an interpolant. But of ourse, a Lyndoninterpolant obtained for the translation of a valid many-sorted impliation need not itselfbe (equivalent to) a translation of a many-sorted formula. What is more, Feferman'sInterpolation Theorem shows a harateristi asymmetry with respet to anteedentand suedent onerning the restritions on existentially (universally) quanti�ed sorts,whereas Lyndon's Interpolation Theorem is quite symmetri.We here propose an interpolation result in a framework of relativised �rst-orderformulae, whih does indeed form a ommon ground for Lyndon's interpolation andFeferman's many-sorted interpolation. Besides giving a ommon model-theoreti basisto these two important interpolation results, it also gives rise to a uni�ed perspetive2



on some of their known appliations as well as a new one, namely a haraterisationtheorem due to van Benthem.Aknowledgement This investigation arose out of the ontext of a Stanford LogiSeminar disussion with Johan van Benthem and Solomon Feferman, revolving arounddi�erent aounts of a haraterisation result onerning preservation under Chu trans-forms and its relation to many-sorted interpolation. I am deeply indebted to both,Professor Feferman and Professor van Benthem, for their aademi hospitality and per-sonal kindness during my stay at Stanford as a visiting sholar in 1997/98.The new interpolation result Consider �rst-order logi with or without equality ina �nite, purely relational voabulary � . Boolean onstants > and ? are taken to beatomi �rst-order formulae. We use the set O = � � f+;�g to ode polarities ofprediate ourrenes in formulae, through a mappingo : ' 7�! o(') � O;where (R;+) 2 o(') if R ours positively in ', (R;�) 2 o(') if R ours negatively.As usual free(') stands for the set of free variables in '.Let U be a tuple of designated unary prediates U in � . We say that a formula 'is U-relativised , if eah quanti�er in ' is expliitly relativised to some U , i.e. is of theform 9x(Ux ^ : : : ) or 8x(Ux ! : : : ) for some U in U. Up to logial equivalene, theU-relativised formulae orrespond exatly to the relativisations of �rst-order formulae toSU2UU . This is atually even true up to a restrited form of logial equivalenes whihpreserve polarities of prediate ourrenes. We want to prove the following Lyndonstyle interpolation theorem.Theorem 1 Let ' and  be U-relativised formulae suh that ' j=  . Then there is aU-relativised Lyndon interpolant � for ' j=  , i.e. a U-relativised formula � suh that(i) free(�) � free(') \ free( ).(ii) o(�) � o(') \ o( ).(iii) ' j= � and � j=  .The statement of the theorem has two readings, one for �rst-order with equality, andone for �rst-order without equality.This strengthens Lyndon's Interpolation Theorem [10℄ (with or without =), whihmay be reovered from the theorem by trivialising the relativisation.Theorem 2 (Lyndon's Interpolation Theorem) Let ' and  be formulae suh that' j=  . Then there is a Lyndon interpolant � for ' j=  :(i) free(�) � free(') \ free( ). 3



(ii) o(�) � o(') \ o( ).(iii) ' j= � and � j=  .This follows from Theorem 1 if we put �̂ = � _[fUg for a new unary U , U = fUgand pass from ' and  to their relativisations to U , '̂ and  ̂. By the theorem, thereis a U -relativised Lyndon interpolant �̂ for VUx^ '̂ j=  ̂. Here VUx is shorthand forVni=1 Uxi, where x = (x1; : : : ; xn) ontains all variables free in ' or  . One obtains thedesired Lyndon interpolant � for ' j=  by replaing every atom of the form Uy in �̂by >.We turn to the proof of Theorem 1, and �rst introdue some terminology and no-tation. The ases with and without equality an be treated together. Atually, thease with equality requires only one minor systemati modi�ation, as will be indiatedimmediately. Let A and B be � -strutures with universes A and B respetively. Weonsider ertain subsets p � A�B whih are to be viewed as weak partial isomorphisms.This notion alls for the one ruial modi�ation if we want to deal with equality: in thatase, and in that ase only, all the p under onsideration are required to be the graphs ofpartial 1{1 funtions; in the ase without equality, we onsider a priori arbitrary subsetsof A�B.If p � A � B, we regard dm(p) = fa 2 A j (9b 2 B)((a; b) 2 p)g as the domain ofp, and im(p) = fb 2 B j (9a 2 A)((a; b) 2 p)g as the image of p. If a = (a1; : : : ; an),b = (b1; : : : ; bn), and if (ai; bi) 2 p for i = 1; : : : ; n, we indiate this situation by writingsimply ab 2 p.Let O � O. We say that p preserves O if for all R 2 � , if R is n-ary and ifa 2 An,b 2 Bn are suh that ab 2 p, then{ if (R;+) 2 O: A j= Ra) B j= Rb,{ if (R;�) 2 O: B j= Rb) A j= Ra.If O � O and A = (A; (UA)U2U; : : : ) we let A+=O and A�=O denote those partsof the universe A that lie within some UA whih is positive or negative, respetively,aording to O: A+=O = [(U;+)2OUA and A�=O = [(U;�)2OUA:De�nition 3 A set P � �p � A � B �� p preserves O 	 1 is a bak-and-forth-systemwith respet to O and U, if P 6= ; is suh that for all p 2 P , and all ab 2 p:{ if a 2 A+=O, then there are p0 2 P and b 2 B suh that aabb 2 p0.{ if b 2 B�=O, then there are p0 2 P and a 2 A suh that aabb 2 p0.1Reall that, for the reading with equality, these p are restrited to be 1{1 partial funtions.4



The following are two related, asymmetri notions of similarity between strutures,one algebrai in spirit, the other semanti. They have the same relationship betweenthem as do partial isomorphism and elementary equivalene.De�nition 4 We write (A;a) �!UO (B; b) if there is a bak-and-forth-system P withrespet to O and U with ab 2 p for some p 2 P . We also write P : (A;a) �!UO (B; b) inthis situation, and p : (A;a) �!UO (B; b) if P onsists of one single element p � A�B.De�nition 5 We write (A;a) =)UO (B; b), if for all U-relativised formulae '(x) witho(') � O: A j= '[a℄ ) B j= '[b℄. For p � A � B, we write p : A =)UO B, if(A;a) =)UO (B; b) for all ab 2 p.Lemma 6 If P : A �!UO B then p : A =)UO B for all p 2 P .In partiular, (A;a) �!UO (B; b) implies (A;a) =)UO (B; b).This is proved by a straightforward indution on U-relativised ' with o(') � O innegation normal form.Lemma 7 Let A and B be !-saturated. Then (A;a0) =)UO (B; b0) impliesP : (A;a0) �!UO (B; b0), where P = �p � A�B �� p �nite; p : A =)UO B	.Proof. P is nonempty: (p : a0 7! b0) 2 P as (A;a0) =)UO (B; b0). All p 2 P preserveO by de�nition. It remains to hek the bak-and-forth-property with respet to O andU. We do the `forth'-part. Let ab 2 p 2 P , and assume that a 2 UA, (U;+) 2 O. Weare seeking b 2 UB for whih (A;aa) =)UO (B; bb). Note that (A;a) =)UO (B; b) holds,sine ab 2 p. Put�(a; x) = �'(a; x) �� ' U-relativised; o(') � O;A j= '[a; a℄	;and let orrespondingly �(b; x) = �'(b; x) �� '(a; x) 2 �(a; x)	.Clearly any realization b of �(b; x) in B will be suh that (A;aa) =)UO (B; bb).It remains to show that �(b; x) is onsistent with Th(B; b). Assume to the ontrary,that it were inonsistent. As � is losed under onjuntions, there would have to bea single '(a; x) 2 �(a; x) suh that (B; b) j= :(9x 2 U)'(b; x). But this ontradits(A;a) =)UO (B; b), if we onsider the formula  (x) = (9x 2 U)'(x; x).The `bak'-part is dealt with analogously, only that the partial type under onsider-ation is �(b; x) = �:'(b; x) �� ' U-relativised; o(') � O;B j= :'[b; b℄	. 2Corollary 8 For (A;a0) =)UO (B; b0) there are ountable (A�;a0) and (B�; b0) suhthat (A�;a0) � (A;a0), (B�; b0) � (B; b0), and (A�;a0) �!UO (B�; b0).This follows from the previous lemma, if we �rst take arbitrary !-saturated ele-mentary extensions A 4 A0 and B 4 B0. By the lemma, (A0;a0) �!UO (B0; b0). Toobtain a ountable version of this situation, it suÆes to wrap up (A0;a0), (B0; b0), and5



the bak-and-forth-system P in one �rst-order struture, and to apply the L�owenheim-Skolem-Tarski Theorem. 2Lemma 9 If A andB are ountable, and (A;a0) �!UO (B; b0), then there is a p � A�Bfor whih p : A �!UO B and a0b0 2 p.Sketh of proof. Starting from a bak-and-forth-system P (without loss of generalityonsisting of �nite p, and losed under subsets) and enumerations of A+=O � A and ofB�=O � B one �nds (in the usual bak-and-forth fashion) �nite approximations to thedesired p within P . Their union p satis�es dm(p) � A+=O and im(p) � B�=O. 2The following is the main proposition towards the proof of the theorem; indeed, itmay be thought of as the strutural interpolation property behind the theorem. Thesituation is depited in the following sketh.A C B-����R �����pp1 p2OO1 O2
Proposition 10 (main proposition) Let O1; O2 � O, O = O1 \O2.If p : A �!UO B, then there are C, p1 � A � C, and p2 � C � B suh that p = p1 Æ p2and p1 : A �!UO1 C and p2 : C �!UO2 B. One may further require that dm(p1) = Aand im(p2) = B.Proof. Let � 62 A [B. We let the universe C of the desired struture C be a subset of(A _[f�g) � (B _[f�g). PutC = p _[ ��A n dm(p)�� f�g� _[ �f�g � �B n im(p)��;p1 = n(a; (a; b)) ��� (a; b) 2 po _[ n(a; (a; �)) ��� a 2 A n dm(p)o;p2 = n((a; b); b) ��� (a; b) 2 po _[ n((�; b); b) ��� b 2 B n im(p)o:Diretly from the de�nitions we see that p = p1 Æ p2, dm(p1) = A, and im(p2) = B.For the ase with equality also note that the pi are 1{1 partial funtions if p is. Wenow have to �x the interpretation of prediates R 2 � over C with a view to making p12Alternatively, one might want to work with enodings of pairs of strutures and bak-and-forth-systems from the start, and prove Corollary 8 diretly from a model theoreti games perspetive, viadiret appliations of ompatness and L�owenheim-Skolem. This alternative approah, whih avoids thedetour through !-saturated strutures, has been elaborated on and applied to a uniform treatment ofnumerous haraterisation results in [8℄. 6



respet O1, to making p2 respet O2, and to guaranteeing the respetive bak-and-forthproperties. Sine dm(p1) = A and im(p2) = B, the remaining bak-and-forth onditionsredue to im(p1) � C�=O1 and dm(p2) � C+=O2.Let R be n-ary,  2 Cn. We write  = ab, where in general a 2 (A _[f�g)n andb 2 (B _[f�g)n. We distinguish several ases.(a) If a 2 An and b 2 Bn and A j= Ra, B j= Rb,put: C j= R, A j= Ra.(b) If a 2 An and b 2 Bn and A j= Ra but B j= :Rb (whene (R;+) 62 O):(i) if (R;+) 2 O1 n O2, put: C j= R.(ii) if (R;+) 2 O2 n O1, put: C j= :R.(iii) if (R;+) 62 O1 [O2, deide R arbitrarily.() If a 2 An and b 2 Bn and A j= :Ra butB j= Rb (whih implies that (R;�) 62 O),proeed as in (b), based on a orresponding ase distintion for (R;�).(d) If a 2 An and b 62 Bn (i.e. a 62 dm(p), and  62 dm(p2)),put: C j= R, (A j= Ra and (R;+) 2 O1).(e) If a 62 An and b 2 Bn (i.e. b 62 im(p), and  62 im(p1)),put: C j= R, (B j= Rb and (R;�) 2 O2).(f) If a 62 An and b 62 Bn, deide R arbitrarily.It remains to argue that pi preserves Oi, that im(p1) � C�=O1 , and that dm(p2) �C+=O2. Note for the following that if e.g. a 2 p1 then a 2 An and  = ab for someb 2 (B _[f�g)n, where a0b0 2 p if the primed tuples are the projetions of a and b tothose positions in whih b has entries from B.� p1 preserves O1. Consider a 2 p1 and (R;+) 2 O1; the relevant ases are those inwhih A j= Ra, and are dealt with in (a),(b), or (d). If (R;�) 2 O1, then we look atA j= :Ra, and �nd that the relevant ases are treated in (a),(), or (d).� im(p1) � C�=O1 . Note that all elements of C exept those of the form  = (�; b) aretrivially in im(p1). For (�; b) 2 C it follows that b 62 im(p). If (�; b) 2 UC, then by(e), (U;�) 2 O2 and b 2 UB. Therefore, (U;�) annot be in O1, as that would imply(U;�) 2 O and b 2 im(p). So no element of the form (�; b) is in C�=O1 .That p2 preserves O2 and that dm(p2) � C+=O2 are shown analogously. This �nishesthe proof of the proposition. 2Proof of theorem 1. Let ' and  be U-relativised formulae, ' j=  . Let x0 stand forthe tuple of variables that are free in both ' and  , so that for appropriate tuples x1and x2, we have pairwise disjoint tuples xi suh that ' = '(x0;x1) and  =  (x0;x2)with all free variables displayed. Put O1 = o('), O2 = o( ), O = O1 \O2. Supposethere were no U-relativised formula �(x0) with o(�) � O suh that ' j= � and � j=  .Put �(x0) = ��(x0) �� � U-relativised; o(�) � O;' j= �	:7



By assumption (and ompatness), � 6j=  . Let (B; b0; b2) j= � [ f: g. Put�(x0) = �:�(x0) �� � U-relativised; o(�) � O; (B; b0) j= :�	:It follows that � [ f'g is onsistent, too. Otherwise, by ompatness and as � islosed under onjuntions, there would have to be a single :� 2 � suh that ' j= �.But then � 2 �, whene B j= �, a ontradition.So we �nd some (A;a0;a1) j= � [ f'g. It follows that (A;a0) =)UO (B; b0). ByCorollary 8 the situation an be upgraded to obtain ountable (A;a0;a1) and (B; b0; b2)suh that (A;a0) �!UO (B; b0), A j= '[a0;a1℄, and B j= : [b0; b2℄.Applying Lemma 9, we obtain p : A �!UO B for a single p � A� B with a0b0 2 p.But now the proposition yields a struture C and relations p1 and p2 suh that p =p1 Æ p2, a0a1 2 dm(p1), b0b2 2 im(p2), and p1 : A �!UO1 C, p2 : C �!UO2 B. Let 0be suh that a00 2 p1 and 0b0 2 p2 (reall that a0b0 2 p and p = p1 Æ p2). Letfurther 1 and 2 be suh that a0a1 01 2 p1 and 02 b0b2 2 p2 (these exist, sinea1 2 dom(p1) and b2 2 im(p2), respetively). It follows that (A;a0;a1) =)UO1 (C; 0; 1)and (C; 0; 2) =)UO2 (B; b0; b2). We �nd that by preservation C j= '[0; 1℄, therefore,and as ' j=  , we have C j=  [0; 2℄, whene by preservation also B j=  [b0; b2℄, aontradition.Appliations We show how Theorem 1 atually ombines several interpolation andpreservation results in one. Namely, it diretly implies not only Lyndon's interpola-tion theorem [10℄ (see Theorem 2 above), but also a number of related interpolationand preservation results. Among them are the lassial haraterisation theorems on-erning preservation under extensions and substrutures [3℄, a variant of Feferman'smany-sorted interpolation theorem [5, 6℄, as well as a very reent haraterisation resultof van Benthem's [2℄ onerning preservation under Chu transforms.Classial preservation theorems Consider a relational �rst-order formula '(x) ='(x1; : : : ; xk) that is preserved under extensions: A � B and A j= '[a℄ together implythat B j= '[a℄. Let U1; U2 be two new unary prediates, not in the voabulary of ',and put U = fU1; U2g. Let 'Ui be the result of relativising ' to Ui. Then preservationunder extensions for ' is expressed by the following validity:8x(U1x! U2x) ^^U1x ^ 'U1(x) j= 'U2(x):Note that all formulae ourring here are U-relativised. Theorem 1 provides a U-relativised interpolant �(x), with no ourrene of U1 and only positive ourrenes ofU2. It follows that � is purely existential. Considering the speial ase that U1 = U2 inthe anteedent, we �nd that VU2x ^ 'U2 j= � j= 'U2 . Further restriting attention tothe ase that 8xU2x in these impliations, we replae in � all atoms U2y by > to obtaina formula �0, whih is in the voabulary of ', purely existential, and equivalent to ',sine in this speial ase both VU2x ^ 'U2 and 'U2 are equivalent to '.8



We note that a similar onnetion between existential preservation and amany-sortedinterpolation property (to be dealt with in the next setion) is prominently disussed asan appliation for many-sorted interpolation by Feferman in [6℄.As usual, a similar argument gives the lassial preservation theorem onerningmonotoniity and positivity (whih of ourse diretly follows from Lyndon's Interpo-lation Theorem). The point in the above is rather that the extension/existential andthe monotone/positive preservation phenomena are attributed to the same soure, as itwere, in the present relativised piture.Amany-sorted interpolation theorem Consider many-sorted �rst-order logi withn sorts in a relational voabulary. We here assume that all prediates and variablesare typed with respet to the sorts and that the sorts are disjoint. 3 The standardtranslation into a one-sorted framework transforms a many-sorted relational struture(A1; : : : ; An; R; : : : ) with disjoint sorts Ai into a struture whose universe A is (an arbi-trary superset of) SAi having new unary prediates U1, : : : , Un to indiate the di�erentsub-domains orresponding to the di�erent sorts. If we put U = (U1; : : : ; Un), the many-sorted �rst-order formulae naturally translate into U-relativised formulae. Care has tobe taken if free variables are around: while the many-sorted framework restrits eahfree variable to its partiular sort impliitly, the orresponding semanti restrition hasto be made expliitly in the translation. Care has also to be taken with respet to thetranslation of impliations. A priori the validity of a many-sorted impliation impliesthe validity of the U-relativised one-sorted translated impliation only in restrition tothose one-sorted strutures that arise as enodings of the original many-sorted stru-tures. Those are the strutures for whih the Us are disjoint, eah relation R is restritedto a produt of sub-domains Us aording to its spei�ed type, and eah free variable xiis interpreted as an element of that Us(i) that orresponds to its sort. For well-formedmany-sorted formulae, however, the restrition onerning the interpretation of relationsR is irrelevant beause R-atoms in what would be inappropriate sorts do not a�et thesemantis of the translated formula (as long as the free variables are restrited to theappropriate sorts). The restrition of the free variables to their respetive sorts will bemade expliit below. So what remains is the apparent problem about disjoint versusoverlapping sub-domains Us, whih is resolved in the light of the following reverse trans-formation. Let A = (A;U1; : : : ; Un; R; : : : ) be an arbitrary struture of the indiatedtype, a = (a1; : : : ; ak) 2 Ak suh that ai 2 UAs(i) for i = 1; : : : ; k. Let �Us = UAs � fsg,and �R = �a = ((a1; s1); : : : ; (ar; sr)) �� (a1; : : : ; ar) 2 RA	 for an r-ary relation R oftype (s1; : : : ; sr). If '(x1; : : : ; xk) is a well-formed many-sorted formula with xi of sortSs(i), and 'U the result of relativising every quanti�er in ' to the appropriate Us, thenA j= 'U[a℄ i� � �U1; : : : ; �Un; �R; : : : � j= '[(a1; s1); : : : ; (ak; sk)℄:3However, we do not a priori require all sorts to be non-empty; orresponding stipulations wouldhave to be made expliitly by means of existential statements. If typed-ness of prediates or disjointnessof sorts seem too restritive, there are straightforward modi�ations whih an deal with those othersettings; in fat, some preautions that have to be taken here an be avoided in those more liberalsettings. 9



Note that this is even true if ' has equality, beause the typed-ness of ' implies thatequality atoms an only link variables from the same sort. With these onsiderations inmind, we �nd that a valid many-sorted impliation ' j=  , with ombined free variablesx1; : : : ; xk, xi of sort s(i), gives rise to the following valid one-sorted impliation betweenU-relativised formulae: ^xi2free(')Us(i)xi ^ 'U j= ^xi2free( )Us(i)xi �!  U; (1)where 'U and  U are the results of relativising every quanti�er in these formulae to theappropriate sort.We �rst speialise to the ase in whih ' and  share the same free variablesx1; : : : ; xk. This assumption makes the analysis more straightforward, but the gen-eral ase essentially redues to it: if ' = '(x;y),  =  (x;z) with all free variablesmentioned and x, y, z pairwise disjoint, then ' j=  implies that 9y' j= 8z ; further-more, an interpolant for the latter impliation automatially is good for ' j=  , too.We shall return to this general ase below.Let free-sorts be the set of sorts of the free variables of ' and  . Identifying a sortwith its enoding prediate U , we may think of free-sorts as a subset of U. A diretappliation of Theorem 1 to the valid impliation (1) yields an interpolant �(x1; : : : ; xk),whih is U-relativised and haso(�) � �o('U) [ free-sorts� f+g� \ �o( U) [ free-sorts� f�g�: (2)Now � is not at �rst of the form that would immediately translate bak into amany-sorted formula. But note that, sine Vi Us(i)xi ^ 'U j= �(x1; : : : ; xk), all freevariables of � may be assumed to be appropriately typed. It remains to remove in� all wrongly typed ourrenes of prediates R, and all ourrenes of prediates Usapart from ourrenes in expliit relativisations. Without loss of generality eah boundvariable in � is quanti�ed exatly one, and therefore also has a unique sort attributedto it. Any R-atom in � that may in this fashion aquire an inappropriate type is nowreplaed by ?, the same goes for atoms Usy, whenever y is a variable attributed to anysort di�erent from Us. Clearly, the resulting formula �0 is still good as an interpolant forthe impliation (1) in restrition to all strutures that arise as one-sorted enodings ofmany-sorted strutures. Also observe that none of these manipulations introdues newourrenes. Thus �0 may be regarded as a well-formed many-sorted formula, for whih' j= �0 and �0 j=  are valid many-sorted impliations.Now for ourrenes of prediates in � (or �0). With respet to prediates in theoriginal voabulary of ' and  , we learly have o(�0) � o(�) � o(')\o( ), by (2)| as is to be expeted for a many-sorted variant of Lyndon interpolation. Moreover, U-ourrenes an be used to analyse whih sorts are existentially or universally quanti�ed.Let 9-sorts(') stand for the set of those sorts that are existentially quanti�ed in ',8-sorts(') the set of those that are universally quanti�ed (assuming negation normalform), and sorts(') for the set of sorts ourring in '. Then (2) implies that sorts(�0) �10



sorts(') \ sorts( ) and that9-sorts(�0) � 9-sorts( ) \ (9-sorts(') [ free-sorts)8-sorts(�0) � 8-sorts(') \ (8-sorts( ) [ free-sorts):Considering now the general ase of formulae '(x;y) and  (x;z) not neessarilysharing the same free variables, the passage to 9y'(x;y) and 8z (x;z) also yieldsa orresponding interpolant for ' j=  , whose free variables are among the ommonfree variables of ' and  . With respet to the existentially (universally) quanti�edsorts in the above analysis, we have to replae 9-sorts(') by 9-sorts(') [ free-sorts(')and 8-sorts( ) by 8-sorts( ) [ free-sorts( ). Everything else remains unhanged. Wethus obtain the following many-sorted interpolation theorem, whih is losely related toFeferman's many-sorted interpolation theorem [5, 6℄ and its generalisation by Stern [12℄.Proposition 11 Suppose ' and  are many-sorted relational formulae. If ' j=  is avalid impliation, then there is a many-sorted Lyndon interpolant � for ' j=  , i.e. amany-sorted formula � suh that ' j= � and � j=  , and(i) free(�) � free(') \ free( ).(ii) sorts(�) � sorts(') \ sorts( ).(iii) o(�) � o(') \ o( ).(iv) 9-sorts(�) � 9-sorts( ) \ (9-sorts(') [ free-sorts(')),8-sorts(�) � 8-sorts(') \ (8-sorts( ) [ free-sorts( )).Note that in the ase of sentenes (i.e. without free variables) ondition (iv) simplysays that a sort is existentially (universally) quanti�ed in � only if it is existentially(universally) quanti�ed in both ' and  . We thus have in partiular the following,whih is just Stern's Theorem 2.2 in [12℄.Corollary 12 (Stern) For many-sorted relational sentenes ' and  without free vari-ables: if ' j=  is a valid impliation, then there is a many-sorted Lyndon interpolant� for ' j=  , i.e. a many-sorted sentene � suh that ' j= � and � j=  , and(i) sorts(�) � sorts(') \ sorts( ).(ii) o(�) � o(') \ o( ).(iii) 9-sorts(�) � 9-sorts( ) \ 9-sorts('),8-sorts(�) � 8-sorts(') \ 8-sorts( ).But also for formulae with free variables, one may play with the impliation (1) anddistribute the sort onditions Us(i)xi in suh a way as to minimise mathing ourrenesof sort prediates between anteedent and suedent. In partiular, the onditions onthe ommon free variables obviously need not be repeated on both sides. In this wayone �nds, for instane in the ase that ' and  share the same free variables (of sortsfree-sorts), that for any sets F1 and F2 of sorts suh that free-sorts � F1 [F2 ondition(iv) may be replaed by 11



(iv') 9-sorts(�) � 9-sorts( ) \ (9-sorts(') [ F1),8-sorts(�) � 8-sorts(') \ (8-sorts( ) [ F2).Similar variations are expliit in Stern's generalisations of Feferman's theorem, The-orem 2.1 in [12℄. The speialisation of Feferman's original many-sorted interpolationtheorem [5, 6℄ orresponding to Proposition 11 is the following.Theorem 13 (Feferman) Suppose ' and  are many-sorted relational formulae. If' j=  is a valid impliation, then there is a many-sorted interpolant �, ' j= � and� j=  , suh that(i) free(�) � free(') \ free( ).(ii) sorts(�) � sorts(') \ sorts( ).(iii) all prediates in � our in both ' and  .(iv) 9-sorts(�) � 9-sorts( ), 8-sorts(�) � 8-sorts(').The strength of Feferman's many-sorted interpolation theorem has been demon-strated in several appliations in [5, 6℄ and also [1℄. In partiular, the lassial exten-sion/existential preservation theorem also follows diretly from it, as mentioned above.In omparison with the full version of Feferman's theorem, Proposition 11 onerns just�rst-order, rather than fragments of in�nitary logi. On the other hand our variant (justlike Stern's strengthening) goes beyond Feferman's theorem in two other respets, apartfrom being obtained along very di�erent lines: the Lyndon ondition on the polaritiesof prediate ourrenes is absent from Theorem 13, and the ondition on existentiallyand universally quanti�ed sorts is more symmetri and in general stronger than theorresponding ondition in Feferman's theorem. 4Van Benthem's preservation theorem This new haraterisation result [2℄ arisesin the ontext of Chu spaes (over f0; 1g), regarded as two-sorted relational strutures inone binary E of type (1; 2). The latter is to say that E is interpreted as a subset of theartesian produt of the �rst and the seond sort. A Chu transform between two suhtwo-sorted E-strutures A = (A1; A2; EA) and B = (B1; B2; EB) is a pair of mappingsf : A1 ! B1 and g : B2 ! A2 suh that for all a 2 A1 and � 2 B2:(a; g(�)) 2 EA , (f(a); �) 2 EB:Note that the �rst sort transforms as under a homomorphism, while the seondsort transforms as under an inverse homomorphism. Speial Chu transforms are thefollowing:(a) extensions in the �rst sort: A1 � B1, A2 = B2, A � B, f; g = id.4It is worth noting that this is not only due to the fat that our sorts are not a priori required tobe non-empty; the use of expliit onditions to this e�et in the onstituent formulae still yields a morerestritive and more symmetri ondition on the interpolant than the one disussed in [5, 6℄.12



(b) restritions in the seond sort: A1 = B1, A2 � B2, A � B, f; g = id.Let the variables of the �rst sort be denoted x, those of the seond sort �. A two-sorted �rst-order formula '(x;�) is preserved under Chu transforms if, whenever f; gonstitute a Chu transform from A to B, and if a 2 (A1)n and � 2 (B2)m, thenA j= '[a; g(�)℄ ) B j= '[f(a);�℄:Following van Benthem [2℄, let us all a many-sorted formula '(x;�) in this two-sorted framework a ow-formula if it is equality-free and is purely existential in the �rstsort, and purely universal in the seond. The following theorem is presented with aself-ontained model theoreti proof in [2℄. Its onnetion with Feferman's and Stern'smany-sorted interpolation theorems has meanwhile also been expounded in [7℄.Theorem 14 (van Benthem) Formulae preserved under Chu transforms are preiselythose that are logially equivalent to ow-formulae.Suppose '(x;�) is an equality-free 5 two-sorted �rst-order formula that is preservedunder the speial Chu transforms of types (a) and (b). For a proof of van Benthem'stheorem we want to obtain a ow formula '� (existential with respet to the �rst sortand universal with respet to the seond) that is equivalent to '. We obtain '� as aninterpolant in an appliation of our main theorem (in the equality-free setting) for thenatural one-sorted enodings of Chu spaes. Let us use unary prediates U and V forthe sub-domains orresponding to the �rst and seond sort, respetively. Let 'U be theresult of relativising all quanti�ers in ' aordingly, to either U or V . In the light ofthe treatment of the many-sorted interpolation theorem outlined above, it will suÆe toshow that 'U is equivalent to a U-relativised formula in whih U ours only positivelyand V only negatively. This is ahieved in two separate steps, the �rst one using Chutransforms of type (a) to eliminate negative ourrenes of U , the seond one usingChu transforms of type (b) to eliminate positive ourrenes of V . For the �rst step let'1 = 'U, '2 the result of renaming U to U 0 in 'U. Then preservation of ' under Chutransforms of type (a) orresponds to the validity of'2(x;�) ^^U 0x ^^V � ^ 8x(U 0x! Ux) j= '1(x;�):This is an impliation between fU; V; U 0g-relativised formulae, and Theorem 1 yieldsa fU; V; U 0g-relativised formula �(x;�) with no ourrene of U 0 and only positive o-urrenes of U . Identifying U and U 0, we �nd that 'U and � are indeed equivalent ifx and � respet the sorts. For the seond step assume that 'U is positive in U , and5To reover the full ontent of van Benthem's theorem, one should not require the absene of equality,but obtain it in a preliminary step based on preservation under onto-homomorphisms in the �rst sort(whih goes to eliminate inequalities over the �rst sort) and inverse onto-homomorphisms in the seondsort (whih similarly allows us to eliminate inequalities over the seond sort); we leave that part out, asit has no diret relevane for our onerns. 13



let '1 = 'U, '2 the result of renaming V to V 0 in 'U. Preservation of ' under Chutransforms of type (b) means that'2(x;�) ^^Ux ^ 8x(V x! V 0x) j=^V � �! '1(x;�):Theorem 1 now yields a fU; V; V 0g-relativised formula �(x;�), still positive in U ,with no ourrene of V 0 and only negative ourrenes of V . Identifying V and V 0, we�nd that 'U and � are indeed equivalent if x and � respet the sorts. This new � thenan essentially serve as '�. Up to some neessary syntati lean-up as we saw in thetreatment of many-sorted interpolation, '� may be translated bak into a two-sortedformula in the original voabulary involving just E with only existential quanti�ationover the �rst and only universal quanti�ation over the seond sort.Note The approah to interpolation desribed above was developed independently andindeed without knowledge of two quite distint lines of investigation arried out in the1970s, whih however both turn out to be losely related to this approah: the strength-ening of Feferman's result by J. Stern [12℄, and work by N. Motohashi [11℄. Motohashiin [11℄ states without proof an interpolation theorem in a very similar formalism of rel-ativised formulae, although not of the Lyndon type, i.e. not aounting for prediatepolarities. A onnetion with Feferman's many-sorted interpolation theorem [5℄ is alsodisussed there. To the best of my knowledge, no proof of Motohashi's theorem an befound in the literature. Stern's result, obtained in the setting of model theoreti for-ing, does indeed over all the many-sorted onsequenes of our interpolation theorem,and with hindsight one might even �nd the proof patterns { model theoreti bak-and-forth tehniques vs. model theoreti foring { intimately related. On the other hand, oneadvantage of putting the main theorem and its proof into the standard one-sorted frame-work seems to be that it highlights a surprisingly diret relationship between the tradi-tionally rather orthogonal sales of existential-vs.-universal and of positive-vs.-negative.Moreover, this is ahieved at a truly elementary level with a anonial model theoretiproof. I would hope, therefore, that this note, even if it omes as an afterthought tolong established preursors, o�ers a new perspetive whih may be attrative for itssimpliity and omprehensiveness.Referenes1. J. Barwise, A preservation theorem for interpretations, in Pro. Cambridge Summer Shoolin Mathematial Logi 1971, A. Mathias et al. (ed.), LNM, vol. 337, Springer 1973, pp. 618{621.2. J. van Benthem, Information transfer aross Chu spaes, Logi Journal of the IGPL, vol. 8,2000, pp. 719{731.3. C.C. Chang and H.J. Keisler, Model Theory, 3rd ed., North-Holland 1990.4. W. Craig, Three uses of the Herbrand-Gentzen Theorem in relating model theory and prooftheory, Journal of Symboli Logi, 22, 1957, pp. 269{285.14



5. S. Feferman, Letures on proof theory, in Pro. Summer Shool in Logi, Leeds 67, M. L�ob(ed.), LNM, vol. 70, Springer 1968, pp. 1{107.6. S. Feferman, Appliations of many-sorted interpolation theorems, in Pro. Tarski Sympo-sium, L. Henkin et al. (ed.), AMS Pro. of Symposia in Pure Mathematis, vol. XXV, 1974,pp. 205{223.7. S. Feferman, Ah, Chu!, in: JFAK. Essays Dediated to Johan van Benthem on the O-asion of his 50th Birthday, J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema (ed.),Amsterdam University Press 1999, CD-ROM, see http://turing.wins.uva.nl/ j50/drom/8. J. Flum, First-order logi and its extensions, in Pro. Int. Summer Inst. and Logi Collo-quium, Kiel 1974, G. M�uller et al. (ed.), LNM, vol. 499, Springer 1975, pp. 248{310.9. W. Hodges, Model Theory, Cambridge University Press, 1993.10. R.C. Lyndon, An interpolation theorem in the prediate alulus, Pai� Journal of Math-ematis, 9, 1959, pp. 129{142.11. N. Motohashi, Two theorems on mix-relativization, Proeedings of the Japan Aademy,vol. 49, 3, 1973, pp. 161{163.12. J. Stern, A new look at the interpolation problem, Journal of Symboli Logi, 40, 1, 1975,pp. 1{13.

15


