
An Interpolation TheoremMartin Ottorevised, September 2000Abstra
tLyndon's Interpolation Theorem asserts that for any valid impli
ation betweentwo purely relational senten
es of �rst-order logi
, there is an interpolant in whi
hea
h relation symbol appears positively (negatively) only if it appears positively(negatively) in both the ante
edent and the su

edent of the given impli
ation. Weprove a similar, more general interpolation result with the additional requirementthat, for some �xed tuple U of unary predi
ates U , all formulae under 
onsiderationhave all quanti�ers expli
itly relativised to one of the U . Under this stipulation,existential (universal) quanti�
ation over U 
ontributes a positive (negative) o

ur-ren
e of U .It is shown how this single new interpolation theorem, obtained by a 
anoni
aland rather elementary model theoreti
 proof, uni�es a number of related results: the
lassi
al 
hara
terisation theorems 
on
erning extensions (substru
tures) with those
on
erning monotoni
ity, as well as a many-sorted interpolation theorem fo
usingon positive vs. negative o

urren
es of predi
ates and on existentially vs. universallyquanti�ed sorts.Keywords: 
lassi
al model theory, �rst-order logi
, many-sorted stru
tures,interpolation, preservation and 
hara
terisation theoremsIntrodu
tion Given a valid impli
ation ' j=  , an interpolant for that impli
ation isan intermediate formula � for whi
h ' j= � and � j=  . Looking for interpolants � fromsome restri
ted synta
ti
 
lass of formulae one 
an dis
ern in how far the informationtransferred in the impli
ation ' j=  is expressible under those synta
ti
 restri
tions.Natural synta
ti
 requirements on the interpolant 
entre on synta
ti
 properties sharedby ' and  . Interpolation properties, whi
h guarantee the existen
e of 
ertain inter-polants, therefore measure syntax against semanti
s and may be regarded as 
riteria forhow 
losely syntax re
e
ts semanti
s. In a sense, the interpolant synta
ti
ally re
e
ts abottlene
k between ante
edent and su

edent. In the model theoreti
 perspe
tive, thisphenomenon be
omes most apparent in the way in whi
h interpolation results often giverise to de�nability or expressibility results, espe
ially in the 
ontext of model theoreti

hara
terisation theorems.Consider the most fundamental interpolation property for �rst-order logi
. Craig'sInterpolation Theorem [4℄ says that any valid �rst-order impli
ation ' j=  has aninterpolant � whose vo
abulary is restri
ted to the 
ommon vo
abulary in ' and  . The1



asso
iated 
hara
terisation result, whi
h follows immediately from Craig interpolation,is the following. For vo
abularies �0 � � , those � -formulae whose truth in � -stru
turesis fully determined by the �0-redu
t are pre
isely those equivalent to �0-formulae. Thestraightforward redu
tion of this expressibility 
laim to interpolation is typi
al of thistype of appli
ation. From the given ' one passes to a variant '0 in whi
h all symbols from� n �0 have new names. Then ' j= '0 is a valid impli
ation. A Craig interpolant for thisimpli
ation is a �0-formula equivalent to '. For another and better known 
onsequen
eof Craig's Interpolation Theorem, Beth's De�nability Theorem may a
tually be provedin a very similar vein, see for instan
e [9℄.Many variations and generalisations of Craig's Interpolation Theorem have beenfound for other logi
s, but also for �rst-order itself. Among the most notable ones withinteresting appli
ations in 
lassi
al �rst-order model theory are Lyndon's interpolation[10℄ and Feferman's many-sorted interpolation [5, 6℄.Lyndon's Interpolation Theorem takes into a

ount the polarities in whi
h predi
ateso

ur, i.e. distinguishes between positive and negative o

urren
es. Predi
ates mayo

ur positively (negatively) in the interpolant only if they o

ur positively (negatively)in both the ante
edent ' and the su

edent  . The 
orresponding 
hara
terisation resultasso
iates monotoni
ity with positivity.Feferman's Interpolation Theorem 
on
erns interpolation in a many-sorted frame-work, rather than the standard one-sorted stru
tures. For this framework, however, itgoes beyond Craig's 
ondition in taking into a

ount whi
h sorts o

ur existentially (uni-versally) quanti�ed in the interpolant. This analysis has wide ranging model-theoreti
appli
ations, one of the most natural ones being the 
hara
terisation theorem whi
hasso
iates preservation under extensions with existential formulae.The starting point for the present 
onsiderations is the observation that super�
iallythese last two interpolation properties would seem to be related via the natural transla-tion from many-sorted stru
tures into one-sorted stru
tures in whi
h the di�erent sortsget modelled as di�erent sub-domains, ea
h marked by a new unary predi
ate. In thistranslation an existential or universal quanti�
ation over sort U be
omes a U -relativisedquanti�
ation of the form 9x(Ux ^ : : : ) or 8x(Ux ! : : : ), respe
tively. Thus existen-tial quanti�
ation 
ontributes a positive o

urren
e, universal quanti�
ation a negativeo

urren
e of the 
orresponding sort predi
ate. Lyndon's Interpolation Theorem wouldseem to tell us something about that, and translating ba
k one might hope to a

ount forexistentially and universally quanti�ed sorts in an interpolant. But of 
ourse, a Lyndoninterpolant obtained for the translation of a valid many-sorted impli
ation need not itselfbe (equivalent to) a translation of a many-sorted formula. What is more, Feferman'sInterpolation Theorem shows a 
hara
teristi
 asymmetry with respe
t to ante
edentand su

edent 
on
erning the restri
tions on existentially (universally) quanti�ed sorts,whereas Lyndon's Interpolation Theorem is quite symmetri
.We here propose an interpolation result in a framework of relativised �rst-orderformulae, whi
h does indeed form a 
ommon ground for Lyndon's interpolation andFeferman's many-sorted interpolation. Besides giving a 
ommon model-theoreti
 basisto these two important interpolation results, it also gives rise to a uni�ed perspe
tive2



on some of their known appli
ations as well as a new one, namely a 
hara
terisationtheorem due to van Benthem.A
knowledgement This investigation arose out of the 
ontext of a Stanford Logi
Seminar dis
ussion with Johan van Benthem and Solomon Feferman, revolving arounddi�erent a

ounts of a 
hara
terisation result 
on
erning preservation under Chu trans-forms and its relation to many-sorted interpolation. I am deeply indebted to both,Professor Feferman and Professor van Benthem, for their a
ademi
 hospitality and per-sonal kindness during my stay at Stanford as a visiting s
holar in 1997/98.The new interpolation result Consider �rst-order logi
 with or without equality ina �nite, purely relational vo
abulary � . Boolean 
onstants > and ? are taken to beatomi
 �rst-order formulae. We use the set O

 = � � f+;�g to 
ode polarities ofpredi
ate o

urren
es in formulae, through a mappingo

 : ' 7�! o

(') � O

;where (R;+) 2 o

(') if R o

urs positively in ', (R;�) 2 o

(') if R o

urs negatively.As usual free(') stands for the set of free variables in '.Let U be a tuple of designated unary predi
ates U in � . We say that a formula 'is U-relativised , if ea
h quanti�er in ' is expli
itly relativised to some U , i.e. is of theform 9x(Ux ^ : : : ) or 8x(Ux ! : : : ) for some U in U. Up to logi
al equivalen
e, theU-relativised formulae 
orrespond exa
tly to the relativisations of �rst-order formulae toSU2UU . This is a
tually even true up to a restri
ted form of logi
al equivalen
es whi
hpreserve polarities of predi
ate o

urren
es. We want to prove the following Lyndonstyle interpolation theorem.Theorem 1 Let ' and  be U-relativised formulae su
h that ' j=  . Then there is aU-relativised Lyndon interpolant � for ' j=  , i.e. a U-relativised formula � su
h that(i) free(�) � free(') \ free( ).(ii) o

(�) � o

(') \ o

( ).(iii) ' j= � and � j=  .The statement of the theorem has two readings, one for �rst-order with equality, andone for �rst-order without equality.This strengthens Lyndon's Interpolation Theorem [10℄ (with or without =), whi
hmay be re
overed from the theorem by trivialising the relativisation.Theorem 2 (Lyndon's Interpolation Theorem) Let ' and  be formulae su
h that' j=  . Then there is a Lyndon interpolant � for ' j=  :(i) free(�) � free(') \ free( ). 3



(ii) o

(�) � o

(') \ o

( ).(iii) ' j= � and � j=  .This follows from Theorem 1 if we put �̂ = � _[fUg for a new unary U , U = fUgand pass from ' and  to their relativisations to U , '̂ and  ̂. By the theorem, thereis a U -relativised Lyndon interpolant �̂ for VUx^ '̂ j=  ̂. Here VUx is shorthand forVni=1 Uxi, where x = (x1; : : : ; xn) 
ontains all variables free in ' or  . One obtains thedesired Lyndon interpolant � for ' j=  by repla
ing every atom of the form Uy in �̂by >.We turn to the proof of Theorem 1, and �rst introdu
e some terminology and no-tation. The 
ases with and without equality 
an be treated together. A
tually, the
ase with equality requires only one minor systemati
 modi�
ation, as will be indi
atedimmediately. Let A and B be � -stru
tures with universes A and B respe
tively. We
onsider 
ertain subsets p � A�B whi
h are to be viewed as weak partial isomorphisms.This notion 
alls for the one 
ru
ial modi�
ation if we want to deal with equality: in that
ase, and in that 
ase only, all the p under 
onsideration are required to be the graphs ofpartial 1{1 fun
tions; in the 
ase without equality, we 
onsider a priori arbitrary subsetsof A�B.If p � A � B, we regard dm(p) = fa 2 A j (9b 2 B)((a; b) 2 p)g as the domain ofp, and im(p) = fb 2 B j (9a 2 A)((a; b) 2 p)g as the image of p. If a = (a1; : : : ; an),b = (b1; : : : ; bn), and if (ai; bi) 2 p for i = 1; : : : ; n, we indi
ate this situation by writingsimply ab 2 p.Let O � O

. We say that p preserves O if for all R 2 � , if R is n-ary and ifa 2 An,b 2 Bn are su
h that ab 2 p, then{ if (R;+) 2 O: A j= Ra) B j= Rb,{ if (R;�) 2 O: B j= Rb) A j= Ra.If O � O

 and A = (A; (UA)U2U; : : : ) we let A+=O and A�=O denote those partsof the universe A that lie within some UA whi
h is positive or negative, respe
tively,a

ording to O: A+=O = [(U;+)2OUA and A�=O = [(U;�)2OUA:De�nition 3 A set P � �p � A � B �� p preserves O 	 1 is a ba
k-and-forth-systemwith respe
t to O and U, if P 6= ; is su
h that for all p 2 P , and all ab 2 p:{ if a 2 A+=O, then there are p0 2 P and b 2 B su
h that aabb 2 p0.{ if b 2 B�=O, then there are p0 2 P and a 2 A su
h that aabb 2 p0.1Re
all that, for the reading with equality, these p are restri
ted to be 1{1 partial fun
tions.4



The following are two related, asymmetri
 notions of similarity between stru
tures,one algebrai
 in spirit, the other semanti
. They have the same relationship betweenthem as do partial isomorphism and elementary equivalen
e.De�nition 4 We write (A;a) �!UO (B; b) if there is a ba
k-and-forth-system P withrespe
t to O and U with ab 2 p for some p 2 P . We also write P : (A;a) �!UO (B; b) inthis situation, and p : (A;a) �!UO (B; b) if P 
onsists of one single element p � A�B.De�nition 5 We write (A;a) =)UO (B; b), if for all U-relativised formulae '(x) witho

(') � O: A j= '[a℄ ) B j= '[b℄. For p � A � B, we write p : A =)UO B, if(A;a) =)UO (B; b) for all ab 2 p.Lemma 6 If P : A �!UO B then p : A =)UO B for all p 2 P .In parti
ular, (A;a) �!UO (B; b) implies (A;a) =)UO (B; b).This is proved by a straightforward indu
tion on U-relativised ' with o

(') � O innegation normal form.Lemma 7 Let A and B be !-saturated. Then (A;a0) =)UO (B; b0) impliesP : (A;a0) �!UO (B; b0), where P = �p � A�B �� p �nite; p : A =)UO B	.Proof. P is nonempty: (p : a0 7! b0) 2 P as (A;a0) =)UO (B; b0). All p 2 P preserveO by de�nition. It remains to 
he
k the ba
k-and-forth-property with respe
t to O andU. We do the `forth'-part. Let ab 2 p 2 P , and assume that a 2 UA, (U;+) 2 O. Weare seeking b 2 UB for whi
h (A;aa) =)UO (B; bb). Note that (A;a) =)UO (B; b) holds,sin
e ab 2 p. Put�(a; x) = �'(a; x) �� ' U-relativised; o

(') � O;A j= '[a; a℄	;and let 
orrespondingly �(b; x) = �'(b; x) �� '(a; x) 2 �(a; x)	.Clearly any realization b of �(b; x) in B will be su
h that (A;aa) =)UO (B; bb).It remains to show that �(b; x) is 
onsistent with Th(B; b). Assume to the 
ontrary,that it were in
onsistent. As � is 
losed under 
onjun
tions, there would have to bea single '(a; x) 2 �(a; x) su
h that (B; b) j= :(9x 2 U)'(b; x). But this 
ontradi
ts(A;a) =)UO (B; b), if we 
onsider the formula  (x) = (9x 2 U)'(x; x).The `ba
k'-part is dealt with analogously, only that the partial type under 
onsider-ation is �(b; x) = �:'(b; x) �� ' U-relativised; o

(') � O;B j= :'[b; b℄	. 2Corollary 8 For (A;a0) =)UO (B; b0) there are 
ountable (A�;a0) and (B�; b0) su
hthat (A�;a0) � (A;a0), (B�; b0) � (B; b0), and (A�;a0) �!UO (B�; b0).This follows from the previous lemma, if we �rst take arbitrary !-saturated ele-mentary extensions A 4 A0 and B 4 B0. By the lemma, (A0;a0) �!UO (B0; b0). Toobtain a 
ountable version of this situation, it suÆ
es to wrap up (A0;a0), (B0; b0), and5



the ba
k-and-forth-system P in one �rst-order stru
ture, and to apply the L�owenheim-Skolem-Tarski Theorem. 2Lemma 9 If A andB are 
ountable, and (A;a0) �!UO (B; b0), then there is a p � A�Bfor whi
h p : A �!UO B and a0b0 2 p.Sket
h of proof. Starting from a ba
k-and-forth-system P (without loss of generality
onsisting of �nite p, and 
losed under subsets) and enumerations of A+=O � A and ofB�=O � B one �nds (in the usual ba
k-and-forth fashion) �nite approximations to thedesired p within P . Their union p satis�es dm(p) � A+=O and im(p) � B�=O. 2The following is the main proposition towards the proof of the theorem; indeed, itmay be thought of as the stru
tural interpolation property behind the theorem. Thesituation is depi
ted in the following sket
h.A C B-����R �����pp1 p2OO1 O2
Proposition 10 (main proposition) Let O1; O2 � O

, O = O1 \O2.If p : A �!UO B, then there are C, p1 � A � C, and p2 � C � B su
h that p = p1 Æ p2and p1 : A �!UO1 C and p2 : C �!UO2 B. One may further require that dm(p1) = Aand im(p2) = B.Proof. Let � 62 A [B. We let the universe C of the desired stru
ture C be a subset of(A _[f�g) � (B _[f�g). PutC = p _[ ��A n dm(p)�� f�g� _[ �f�g � �B n im(p)��;p1 = n(a; (a; b)) ��� (a; b) 2 po _[ n(a; (a; �)) ��� a 2 A n dm(p)o;p2 = n((a; b); b) ��� (a; b) 2 po _[ n((�; b); b) ��� b 2 B n im(p)o:Dire
tly from the de�nitions we see that p = p1 Æ p2, dm(p1) = A, and im(p2) = B.For the 
ase with equality also note that the pi are 1{1 partial fun
tions if p is. Wenow have to �x the interpretation of predi
ates R 2 � over C with a view to making p12Alternatively, one might want to work with en
odings of pairs of stru
tures and ba
k-and-forth-systems from the start, and prove Corollary 8 dire
tly from a model theoreti
 games perspe
tive, viadire
t appli
ations of 
ompa
tness and L�owenheim-Skolem. This alternative approa
h, whi
h avoids thedetour through !-saturated stru
tures, has been elaborated on and applied to a uniform treatment ofnumerous 
hara
terisation results in [8℄. 6



respe
t O1, to making p2 respe
t O2, and to guaranteeing the respe
tive ba
k-and-forthproperties. Sin
e dm(p1) = A and im(p2) = B, the remaining ba
k-and-forth 
onditionsredu
e to im(p1) � C�=O1 and dm(p2) � C+=O2.Let R be n-ary, 
 2 Cn. We write 
 = ab, where in general a 2 (A _[f�g)n andb 2 (B _[f�g)n. We distinguish several 
ases.(a) If a 2 An and b 2 Bn and A j= Ra, B j= Rb,put: C j= R
, A j= Ra.(b) If a 2 An and b 2 Bn and A j= Ra but B j= :Rb (when
e (R;+) 62 O):(i) if (R;+) 2 O1 n O2, put: C j= R
.(ii) if (R;+) 2 O2 n O1, put: C j= :R
.(iii) if (R;+) 62 O1 [O2, de
ide R
 arbitrarily.(
) If a 2 An and b 2 Bn and A j= :Ra butB j= Rb (whi
h implies that (R;�) 62 O),pro
eed as in (b), based on a 
orresponding 
ase distin
tion for (R;�).(d) If a 2 An and b 62 Bn (i.e. a 62 dm(p), and 
 62 dm(p2)),put: C j= R
, (A j= Ra and (R;+) 2 O1).(e) If a 62 An and b 2 Bn (i.e. b 62 im(p), and 
 62 im(p1)),put: C j= R
, (B j= Rb and (R;�) 2 O2).(f) If a 62 An and b 62 Bn, de
ide R
 arbitrarily.It remains to argue that pi preserves Oi, that im(p1) � C�=O1 , and that dm(p2) �C+=O2. Note for the following that if e.g. a
 2 p1 then a 2 An and 
 = ab for someb 2 (B _[f�g)n, where a0b0 2 p if the primed tuples are the proje
tions of a and b tothose positions in whi
h b has entries from B.� p1 preserves O1. Consider a
 2 p1 and (R;+) 2 O1; the relevant 
ases are those inwhi
h A j= Ra, and are dealt with in (a),(b), or (d). If (R;�) 2 O1, then we look atA j= :Ra, and �nd that the relevant 
ases are treated in (a),(
), or (d).� im(p1) � C�=O1 . Note that all elements of C ex
ept those of the form 
 = (�; b) aretrivially in im(p1). For (�; b) 2 C it follows that b 62 im(p). If (�; b) 2 UC, then by(e), (U;�) 2 O2 and b 2 UB. Therefore, (U;�) 
annot be in O1, as that would imply(U;�) 2 O and b 2 im(p). So no element of the form (�; b) is in C�=O1 .That p2 preserves O2 and that dm(p2) � C+=O2 are shown analogously. This �nishesthe proof of the proposition. 2Proof of theorem 1. Let ' and  be U-relativised formulae, ' j=  . Let x0 stand forthe tuple of variables that are free in both ' and  , so that for appropriate tuples x1and x2, we have pairwise disjoint tuples xi su
h that ' = '(x0;x1) and  =  (x0;x2)with all free variables displayed. Put O1 = o

('), O2 = o

( ), O = O1 \O2. Supposethere were no U-relativised formula �(x0) with o

(�) � O su
h that ' j= � and � j=  .Put �(x0) = ��(x0) �� � U-relativised; o

(�) � O;' j= �	:7



By assumption (and 
ompa
tness), � 6j=  . Let (B; b0; b2) j= � [ f: g. Put�(x0) = �:�(x0) �� � U-relativised; o

(�) � O; (B; b0) j= :�	:It follows that � [ f'g is 
onsistent, too. Otherwise, by 
ompa
tness and as � is
losed under 
onjun
tions, there would have to be a single :� 2 � su
h that ' j= �.But then � 2 �, when
e B j= �, a 
ontradi
tion.So we �nd some (A;a0;a1) j= � [ f'g. It follows that (A;a0) =)UO (B; b0). ByCorollary 8 the situation 
an be upgraded to obtain 
ountable (A;a0;a1) and (B; b0; b2)su
h that (A;a0) �!UO (B; b0), A j= '[a0;a1℄, and B j= : [b0; b2℄.Applying Lemma 9, we obtain p : A �!UO B for a single p � A� B with a0b0 2 p.But now the proposition yields a stru
ture C and relations p1 and p2 su
h that p =p1 Æ p2, a0a1 2 dm(p1), b0b2 2 im(p2), and p1 : A �!UO1 C, p2 : C �!UO2 B. Let 
0be su
h that a0
0 2 p1 and 
0b0 2 p2 (re
all that a0b0 2 p and p = p1 Æ p2). Letfurther 
1 and 
2 be su
h that a0a1 
0
1 2 p1 and 
0
2 b0b2 2 p2 (these exist, sin
ea1 2 dom(p1) and b2 2 im(p2), respe
tively). It follows that (A;a0;a1) =)UO1 (C; 
0; 
1)and (C; 
0; 
2) =)UO2 (B; b0; b2). We �nd that by preservation C j= '[
0; 
1℄, therefore,and as ' j=  , we have C j=  [
0; 
2℄, when
e by preservation also B j=  [b0; b2℄, a
ontradi
tion.Appli
ations We show how Theorem 1 a
tually 
ombines several interpolation andpreservation results in one. Namely, it dire
tly implies not only Lyndon's interpola-tion theorem [10℄ (see Theorem 2 above), but also a number of related interpolationand preservation results. Among them are the 
lassi
al 
hara
terisation theorems 
on-
erning preservation under extensions and substru
tures [3℄, a variant of Feferman'smany-sorted interpolation theorem [5, 6℄, as well as a very re
ent 
hara
terisation resultof van Benthem's [2℄ 
on
erning preservation under Chu transforms.Classi
al preservation theorems Consider a relational �rst-order formula '(x) ='(x1; : : : ; xk) that is preserved under extensions: A � B and A j= '[a℄ together implythat B j= '[a℄. Let U1; U2 be two new unary predi
ates, not in the vo
abulary of ',and put U = fU1; U2g. Let 'Ui be the result of relativising ' to Ui. Then preservationunder extensions for ' is expressed by the following validity:8x(U1x! U2x) ^^U1x ^ 'U1(x) j= 'U2(x):Note that all formulae o

urring here are U-relativised. Theorem 1 provides a U-relativised interpolant �(x), with no o

urren
e of U1 and only positive o

urren
es ofU2. It follows that � is purely existential. Considering the spe
ial 
ase that U1 = U2 inthe ante
edent, we �nd that VU2x ^ 'U2 j= � j= 'U2 . Further restri
ting attention tothe 
ase that 8xU2x in these impli
ations, we repla
e in � all atoms U2y by > to obtaina formula �0, whi
h is in the vo
abulary of ', purely existential, and equivalent to ',sin
e in this spe
ial 
ase both VU2x ^ 'U2 and 'U2 are equivalent to '.8



We note that a similar 
onne
tion between existential preservation and amany-sortedinterpolation property (to be dealt with in the next se
tion) is prominently dis
ussed asan appli
ation for many-sorted interpolation by Feferman in [6℄.As usual, a similar argument gives the 
lassi
al preservation theorem 
on
erningmonotoni
ity and positivity (whi
h of 
ourse dire
tly follows from Lyndon's Interpo-lation Theorem). The point in the above is rather that the extension/existential andthe monotone/positive preservation phenomena are attributed to the same sour
e, as itwere, in the present relativised pi
ture.Amany-sorted interpolation theorem Consider many-sorted �rst-order logi
 withn sorts in a relational vo
abulary. We here assume that all predi
ates and variablesare typed with respe
t to the sorts and that the sorts are disjoint. 3 The standardtranslation into a one-sorted framework transforms a many-sorted relational stru
ture(A1; : : : ; An; R; : : : ) with disjoint sorts Ai into a stru
ture whose universe A is (an arbi-trary superset of) SAi having new unary predi
ates U1, : : : , Un to indi
ate the di�erentsub-domains 
orresponding to the di�erent sorts. If we put U = (U1; : : : ; Un), the many-sorted �rst-order formulae naturally translate into U-relativised formulae. Care has tobe taken if free variables are around: while the many-sorted framework restri
ts ea
hfree variable to its parti
ular sort impli
itly, the 
orresponding semanti
 restri
tion hasto be made expli
itly in the translation. Care has also to be taken with respe
t to thetranslation of impli
ations. A priori the validity of a many-sorted impli
ation impliesthe validity of the U-relativised one-sorted translated impli
ation only in restri
tion tothose one-sorted stru
tures that arise as en
odings of the original many-sorted stru
-tures. Those are the stru
tures for whi
h the Us are disjoint, ea
h relation R is restri
tedto a produ
t of sub-domains Us a

ording to its spe
i�ed type, and ea
h free variable xiis interpreted as an element of that Us(i) that 
orresponds to its sort. For well-formedmany-sorted formulae, however, the restri
tion 
on
erning the interpretation of relationsR is irrelevant be
ause R-atoms in what would be inappropriate sorts do not a�e
t thesemanti
s of the translated formula (as long as the free variables are restri
ted to theappropriate sorts). The restri
tion of the free variables to their respe
tive sorts will bemade expli
it below. So what remains is the apparent problem about disjoint versusoverlapping sub-domains Us, whi
h is resolved in the light of the following reverse trans-formation. Let A = (A;U1; : : : ; Un; R; : : : ) be an arbitrary stru
ture of the indi
atedtype, a = (a1; : : : ; ak) 2 Ak su
h that ai 2 UAs(i) for i = 1; : : : ; k. Let �Us = UAs � fsg,and �R = �a = ((a1; s1); : : : ; (ar; sr)) �� (a1; : : : ; ar) 2 RA	 for an r-ary relation R oftype (s1; : : : ; sr). If '(x1; : : : ; xk) is a well-formed many-sorted formula with xi of sortSs(i), and 'U the result of relativising every quanti�er in ' to the appropriate Us, thenA j= 'U[a℄ i� � �U1; : : : ; �Un; �R; : : : � j= '[(a1; s1); : : : ; (ak; sk)℄:3However, we do not a priori require all sorts to be non-empty; 
orresponding stipulations wouldhave to be made expli
itly by means of existential statements. If typed-ness of predi
ates or disjointnessof sorts seem too restri
tive, there are straightforward modi�
ations whi
h 
an deal with those othersettings; in fa
t, some pre
autions that have to be taken here 
an be avoided in those more liberalsettings. 9



Note that this is even true if ' has equality, be
ause the typed-ness of ' implies thatequality atoms 
an only link variables from the same sort. With these 
onsiderations inmind, we �nd that a valid many-sorted impli
ation ' j=  , with 
ombined free variablesx1; : : : ; xk, xi of sort s(i), gives rise to the following valid one-sorted impli
ation betweenU-relativised formulae: ^xi2free(')Us(i)xi ^ 'U j= ^xi2free( )Us(i)xi �!  U; (1)where 'U and  U are the results of relativising every quanti�er in these formulae to theappropriate sort.We �rst spe
ialise to the 
ase in whi
h ' and  share the same free variablesx1; : : : ; xk. This assumption makes the analysis more straightforward, but the gen-eral 
ase essentially redu
es to it: if ' = '(x;y),  =  (x;z) with all free variablesmentioned and x, y, z pairwise disjoint, then ' j=  implies that 9y' j= 8z ; further-more, an interpolant for the latter impli
ation automati
ally is good for ' j=  , too.We shall return to this general 
ase below.Let free-sorts be the set of sorts of the free variables of ' and  . Identifying a sortwith its en
oding predi
ate U , we may think of free-sorts as a subset of U. A dire
tappli
ation of Theorem 1 to the valid impli
ation (1) yields an interpolant �(x1; : : : ; xk),whi
h is U-relativised and haso

(�) � �o

('U) [ free-sorts� f+g� \ �o

( U) [ free-sorts� f�g�: (2)Now � is not at �rst of the form that would immediately translate ba
k into amany-sorted formula. But note that, sin
e Vi Us(i)xi ^ 'U j= �(x1; : : : ; xk), all freevariables of � may be assumed to be appropriately typed. It remains to remove in� all wrongly typed o

urren
es of predi
ates R, and all o

urren
es of predi
ates Usapart from o

urren
es in expli
it relativisations. Without loss of generality ea
h boundvariable in � is quanti�ed exa
tly on
e, and therefore also has a unique sort attributedto it. Any R-atom in � that may in this fashion a
quire an inappropriate type is nowrepla
ed by ?, the same goes for atoms Usy, whenever y is a variable attributed to anysort di�erent from Us. Clearly, the resulting formula �0 is still good as an interpolant forthe impli
ation (1) in restri
tion to all stru
tures that arise as one-sorted en
odings ofmany-sorted stru
tures. Also observe that none of these manipulations introdu
es newo

urren
es. Thus �0 may be regarded as a well-formed many-sorted formula, for whi
h' j= �0 and �0 j=  are valid many-sorted impli
ations.Now for o

urren
es of predi
ates in � (or �0). With respe
t to predi
ates in theoriginal vo
abulary of ' and  , we 
learly have o

(�0) � o

(�) � o

(')\o

( ), by (2)| as is to be expe
ted for a many-sorted variant of Lyndon interpolation. Moreover, U-o

urren
es 
an be used to analyse whi
h sorts are existentially or universally quanti�ed.Let 9-sorts(') stand for the set of those sorts that are existentially quanti�ed in ',8-sorts(') the set of those that are universally quanti�ed (assuming negation normalform), and sorts(') for the set of sorts o

urring in '. Then (2) implies that sorts(�0) �10



sorts(') \ sorts( ) and that9-sorts(�0) � 9-sorts( ) \ (9-sorts(') [ free-sorts)8-sorts(�0) � 8-sorts(') \ (8-sorts( ) [ free-sorts):Considering now the general 
ase of formulae '(x;y) and  (x;z) not ne
essarilysharing the same free variables, the passage to 9y'(x;y) and 8z (x;z) also yieldsa 
orresponding interpolant for ' j=  , whose free variables are among the 
ommonfree variables of ' and  . With respe
t to the existentially (universally) quanti�edsorts in the above analysis, we have to repla
e 9-sorts(') by 9-sorts(') [ free-sorts(')and 8-sorts( ) by 8-sorts( ) [ free-sorts( ). Everything else remains un
hanged. Wethus obtain the following many-sorted interpolation theorem, whi
h is 
losely related toFeferman's many-sorted interpolation theorem [5, 6℄ and its generalisation by Stern [12℄.Proposition 11 Suppose ' and  are many-sorted relational formulae. If ' j=  is avalid impli
ation, then there is a many-sorted Lyndon interpolant � for ' j=  , i.e. amany-sorted formula � su
h that ' j= � and � j=  , and(i) free(�) � free(') \ free( ).(ii) sorts(�) � sorts(') \ sorts( ).(iii) o

(�) � o

(') \ o

( ).(iv) 9-sorts(�) � 9-sorts( ) \ (9-sorts(') [ free-sorts(')),8-sorts(�) � 8-sorts(') \ (8-sorts( ) [ free-sorts( )).Note that in the 
ase of senten
es (i.e. without free variables) 
ondition (iv) simplysays that a sort is existentially (universally) quanti�ed in � only if it is existentially(universally) quanti�ed in both ' and  . We thus have in parti
ular the following,whi
h is just Stern's Theorem 2.2 in [12℄.Corollary 12 (Stern) For many-sorted relational senten
es ' and  without free vari-ables: if ' j=  is a valid impli
ation, then there is a many-sorted Lyndon interpolant� for ' j=  , i.e. a many-sorted senten
e � su
h that ' j= � and � j=  , and(i) sorts(�) � sorts(') \ sorts( ).(ii) o

(�) � o

(') \ o

( ).(iii) 9-sorts(�) � 9-sorts( ) \ 9-sorts('),8-sorts(�) � 8-sorts(') \ 8-sorts( ).But also for formulae with free variables, one may play with the impli
ation (1) anddistribute the sort 
onditions Us(i)xi in su
h a way as to minimise mat
hing o

urren
esof sort predi
ates between ante
edent and su

edent. In parti
ular, the 
onditions onthe 
ommon free variables obviously need not be repeated on both sides. In this wayone �nds, for instan
e in the 
ase that ' and  share the same free variables (of sortsfree-sorts), that for any sets F1 and F2 of sorts su
h that free-sorts � F1 [F2 
ondition(iv) may be repla
ed by 11



(iv') 9-sorts(�) � 9-sorts( ) \ (9-sorts(') [ F1),8-sorts(�) � 8-sorts(') \ (8-sorts( ) [ F2).Similar variations are expli
it in Stern's generalisations of Feferman's theorem, The-orem 2.1 in [12℄. The spe
ialisation of Feferman's original many-sorted interpolationtheorem [5, 6℄ 
orresponding to Proposition 11 is the following.Theorem 13 (Feferman) Suppose ' and  are many-sorted relational formulae. If' j=  is a valid impli
ation, then there is a many-sorted interpolant �, ' j= � and� j=  , su
h that(i) free(�) � free(') \ free( ).(ii) sorts(�) � sorts(') \ sorts( ).(iii) all predi
ates in � o

ur in both ' and  .(iv) 9-sorts(�) � 9-sorts( ), 8-sorts(�) � 8-sorts(').The strength of Feferman's many-sorted interpolation theorem has been demon-strated in several appli
ations in [5, 6℄ and also [1℄. In parti
ular, the 
lassi
al exten-sion/existential preservation theorem also follows dire
tly from it, as mentioned above.In 
omparison with the full version of Feferman's theorem, Proposition 11 
on
erns just�rst-order, rather than fragments of in�nitary logi
. On the other hand our variant (justlike Stern's strengthening) goes beyond Feferman's theorem in two other respe
ts, apartfrom being obtained along very di�erent lines: the Lyndon 
ondition on the polaritiesof predi
ate o

urren
es is absent from Theorem 13, and the 
ondition on existentiallyand universally quanti�ed sorts is more symmetri
 and in general stronger than the
orresponding 
ondition in Feferman's theorem. 4Van Benthem's preservation theorem This new 
hara
terisation result [2℄ arisesin the 
ontext of Chu spa
es (over f0; 1g), regarded as two-sorted relational stru
tures inone binary E of type (1; 2). The latter is to say that E is interpreted as a subset of the
artesian produ
t of the �rst and the se
ond sort. A Chu transform between two su
htwo-sorted E-stru
tures A = (A1; A2; EA) and B = (B1; B2; EB) is a pair of mappingsf : A1 ! B1 and g : B2 ! A2 su
h that for all a 2 A1 and � 2 B2:(a; g(�)) 2 EA , (f(a); �) 2 EB:Note that the �rst sort transforms as under a homomorphism, while the se
ondsort transforms as under an inverse homomorphism. Spe
ial Chu transforms are thefollowing:(a) extensions in the �rst sort: A1 � B1, A2 = B2, A � B, f; g = id.4It is worth noting that this is not only due to the fa
t that our sorts are not a priori required tobe non-empty; the use of expli
it 
onditions to this e�e
t in the 
onstituent formulae still yields a morerestri
tive and more symmetri
 
ondition on the interpolant than the one dis
ussed in [5, 6℄.12



(b) restri
tions in the se
ond sort: A1 = B1, A2 � B2, A � B, f; g = id.Let the variables of the �rst sort be denoted x, those of the se
ond sort �. A two-sorted �rst-order formula '(x;�) is preserved under Chu transforms if, whenever f; g
onstitute a Chu transform from A to B, and if a 2 (A1)n and � 2 (B2)m, thenA j= '[a; g(�)℄ ) B j= '[f(a);�℄:Following van Benthem [2℄, let us 
all a many-sorted formula '(x;�) in this two-sorted framework a 
ow-formula if it is equality-free and is purely existential in the �rstsort, and purely universal in the se
ond. The following theorem is presented with aself-
ontained model theoreti
 proof in [2℄. Its 
onne
tion with Feferman's and Stern'smany-sorted interpolation theorems has meanwhile also been expounded in [7℄.Theorem 14 (van Benthem) Formulae preserved under Chu transforms are pre
iselythose that are logi
ally equivalent to 
ow-formulae.Suppose '(x;�) is an equality-free 5 two-sorted �rst-order formula that is preservedunder the spe
ial Chu transforms of types (a) and (b). For a proof of van Benthem'stheorem we want to obtain a 
ow formula '� (existential with respe
t to the �rst sortand universal with respe
t to the se
ond) that is equivalent to '. We obtain '� as aninterpolant in an appli
ation of our main theorem (in the equality-free setting) for thenatural one-sorted en
odings of Chu spa
es. Let us use unary predi
ates U and V forthe sub-domains 
orresponding to the �rst and se
ond sort, respe
tively. Let 'U be theresult of relativising all quanti�ers in ' a

ordingly, to either U or V . In the light ofthe treatment of the many-sorted interpolation theorem outlined above, it will suÆ
e toshow that 'U is equivalent to a U-relativised formula in whi
h U o

urs only positivelyand V only negatively. This is a
hieved in two separate steps, the �rst one using Chutransforms of type (a) to eliminate negative o

urren
es of U , the se
ond one usingChu transforms of type (b) to eliminate positive o

urren
es of V . For the �rst step let'1 = 'U, '2 the result of renaming U to U 0 in 'U. Then preservation of ' under Chutransforms of type (a) 
orresponds to the validity of'2(x;�) ^^U 0x ^^V � ^ 8x(U 0x! Ux) j= '1(x;�):This is an impli
ation between fU; V; U 0g-relativised formulae, and Theorem 1 yieldsa fU; V; U 0g-relativised formula �(x;�) with no o

urren
e of U 0 and only positive o
-
urren
es of U . Identifying U and U 0, we �nd that 'U and � are indeed equivalent ifx and � respe
t the sorts. For the se
ond step assume that 'U is positive in U , and5To re
over the full 
ontent of van Benthem's theorem, one should not require the absen
e of equality,but obtain it in a preliminary step based on preservation under onto-homomorphisms in the �rst sort(whi
h goes to eliminate inequalities over the �rst sort) and inverse onto-homomorphisms in the se
ondsort (whi
h similarly allows us to eliminate inequalities over the se
ond sort); we leave that part out, asit has no dire
t relevan
e for our 
on
erns. 13



let '1 = 'U, '2 the result of renaming V to V 0 in 'U. Preservation of ' under Chutransforms of type (b) means that'2(x;�) ^^Ux ^ 8x(V x! V 0x) j=^V � �! '1(x;�):Theorem 1 now yields a fU; V; V 0g-relativised formula �(x;�), still positive in U ,with no o

urren
e of V 0 and only negative o

urren
es of V . Identifying V and V 0, we�nd that 'U and � are indeed equivalent if x and � respe
t the sorts. This new � then
an essentially serve as '�. Up to some ne
essary synta
ti
 
lean-up as we saw in thetreatment of many-sorted interpolation, '� may be translated ba
k into a two-sortedformula in the original vo
abulary involving just E with only existential quanti�
ationover the �rst and only universal quanti�
ation over the se
ond sort.Note The approa
h to interpolation des
ribed above was developed independently andindeed without knowledge of two quite distin
t lines of investigation 
arried out in the1970s, whi
h however both turn out to be 
losely related to this approa
h: the strength-ening of Feferman's result by J. Stern [12℄, and work by N. Motohashi [11℄. Motohashiin [11℄ states without proof an interpolation theorem in a very similar formalism of rel-ativised formulae, although not of the Lyndon type, i.e. not a

ounting for predi
atepolarities. A 
onne
tion with Feferman's many-sorted interpolation theorem [5℄ is alsodis
ussed there. To the best of my knowledge, no proof of Motohashi's theorem 
an befound in the literature. Stern's result, obtained in the setting of model theoreti
 for
-ing, does indeed 
over all the many-sorted 
onsequen
es of our interpolation theorem,and with hindsight one might even �nd the proof patterns { model theoreti
 ba
k-and-forth te
hniques vs. model theoreti
 for
ing { intimately related. On the other hand, oneadvantage of putting the main theorem and its proof into the standard one-sorted frame-work seems to be that it highlights a surprisingly dire
t relationship between the tradi-tionally rather orthogonal s
ales of existential-vs.-universal and of positive-vs.-negative.Moreover, this is a
hieved at a truly elementary level with a 
anoni
al model theoreti
proof. I would hope, therefore, that this note, even if it 
omes as an afterthought tolong established pre
ursors, o�ers a new perspe
tive whi
h may be attra
tive for itssimpli
ity and 
omprehensiveness.Referen
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