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INTRODUCTION

Model theory is about semantics; it studies the interplay between a logical language
(logic) and the models (structures) for that language. Key issues therefore are expres-
siveness and definability. At the basic level these concern the questions which structural
properties are expressible and which classes of structures are definable in the logic. These
basic questions immediately lead to the study of model constructions; to the analysis of
models and of model classes for given formulae or theories; to notions of equivalence be-
tween structures with respect to the truth of formulae; and to the study of preservation
phenomena.

Modal logics1 come as members of a loosely knit family and have various links to other
logics – classical first- and second-order logic as well as, for instance, temporal and process
logics stemming from particular applications. Correspondingly, the key issues mentioned
above may also be studied comparatively, both within the family and in relation to other
relevant logics. Such a comparative view can support an understanding of the internal
coherence of the rich family of modal logics. It also offers a perspective to place modal
logics in the wider logical and model theoretic context.

In regard to the coherence of the family of modal logics, it is important to understand
in model theoretic terms what it is that makes a logic ‘modal’. For that aim we devote
a major part of this chapter to the discussion of bisimulation. Many other features of
the ‘modal character’ can be understood in terms of bisimulation invariance; this is true
most notably of the local and restricted nature of quantification. Due to these features
modal logic enjoys very specific features, and in many respects its model theory can be
developed along lines that have no direct counterparts in classical model theory.

In regard to the wider logical context, there is a rich body of classical work in modal
model theory that measures modal logic against the backdrop of classical first- and
second-order logic into which it can be naturally embedded. But, beside this ‘classical
picture’, there are also many links with other logics, partly designed for other purposes
or studied with a different perspective from that of classical model theory.

In the classical picture, both first- and second-order logic have their role to play. This is
because modal logic actually offers several distinct semantic levels, as will be reviewed in
the following section which provides an introduction to the model theoretic semantics of
modal logic. So, a modal formula is traditionally viewed in four different ways, subject
to two orthogonal dichotomies – Kripke structures (also called Kripke models) versus
Kripke frames and local versus global.

The fundamental semantic notion in basic modal logic is truth of a formula at a state
in a Kripke structure; this notion is local and of a first-order nature. Semantics in
Kripke frames is obtained, if instead one looks at all possible propositional valuations

1In this chapter we use the term modal logic (despite the established tradition in the literature on
modal logic) in a typical model-theoretic sense, as a (propositional) modal language equipped with
suitable relational (Kripke) semantics, rather than proof systems over such languages, determined by a
set of axioms and inference rules, such as K, S4, etc. We refer to the latter as ‘axiomatic extensions’.



Model Theory of Modal Logic 3

over the given frame (in effect an abstraction through implicit universal second-order
quantification over all valuations); this semantics, accordingly, is of essentially second-
order nature. On the other hand, the passage from local to global semantics is achieved
if one looks at truth in all states (an abstraction through implicit universal first-order
quantification over all states).

While all these semantic levels are ultimately based on the local semantics in Kripke
structures, the two independent directions of generalisation, and in particular the divide
between the (first-order) Kripke structure semantics and the (second-order) frame se-
mantics, give rise to very distinct model theoretic flavours, each with their own tradition
in the model theory of modal logic. Still, these two semantics meet through the notion
of a general frame (closely related to a modal algebra).

History. The origins of model theory of modal logic go back to the fundamental papers
of Jónsson and Tarski [78, 79], and Kripke [86, 87] laying the foundations of the relational
(Kripke) semantics, followed by the classical work of Lemmon and Scott [91].

Some of the most influential themes and directions of the classical development of
the model theory of modal logic in the 1970/80s have been: the completeness theory of
modal axiomatic systems with respect to the frame-based semantics of modal logic, and
the closely related correspondence theory between that semantics and first-order logic
[117, 28, 123, 124, 113, 42, 51, 125, 127, 128]; and the duality theory between Kripke
frames and modal algebras, via general frames [42, 43, 44, 45, 114]. Also at that time,
the theory of bisimulations and bisimulation invariance emerged in the semantic analysis
of modal languages in [125, 128]. For detailed historical and bibliographical notes see [5],
and the survey [49] for a recent and comprehensive historical account of the development
of modal logic, and in particular its model theory.

Overview. The sections of this chapter are roughly arranged in three parts or main tracks,
reflecting the semantic distinctions outlined above.

The first part provides a common basic introduction to some of the key notions, in
particular the different levels of semantics in section 1, followed by the concept of bisim-
ulation and bisimulation respecting model constructions in section 2. This more general
thread is taken up again in section 6 with some more advanced model constructions, and
also in the final section 9 devoted to some ideas in the finite model theory of modal logic.

A second track, comprising sections 3 to 5, is primarily devoted to modal logic as a logic
of Kripke structures (first-order semantics): section 3 continues the bisimulation theme;
section 4 is specifically devoted to the role of modal logic as a fragment of first-order
logic; section 5 illustrates some of the richness of modal logics over Kripke structures in
terms of variations and extensions.

The third track is devoted to a study of modal logic as a logic of frames (the second-
order semantics). This comprises more advanced constructions such as ultrafilter exten-
sions and ultraproducts in section 6, basic model theory of general frames in section 7,
and a survey of classical results on frame definability and relations with second-order
logic in section 8.

Most of the other chapters in this handbook supplement this chapter with important
model-theoretic topics and results. In particular, we refer the reader to Chapters 1, 3, 6,
7 and 8.
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1 SEMANTICS OF MODAL LOGIC

1.1 Modal languages

A (unary, poly-)modal similarity type is a set τ of modalities α ∈ τ . Beside τ , we fix
a (countable) set Φ of propositional variables or atomic propositions. With τ and Φ we
associate the modal language ML(τ, Φ), in which every α ∈ τ labels a modal diamond
operator 〈α〉. The formulae of ML(τ, Φ) are recursively defined as follows:

ϕ := ⊥ | p | (ϕ1 → ϕ2) | 〈α〉ϕ,

where p ∈ Φ and α ∈ τ , and unnecessary outer parentheses are dropped. The logical
constant > and connectives ¬,∧,∨,↔ may be introduced on an equal footing or are
regarded as standard abbreviations. The operator [α], defined by [α] ϕ := ¬〈α〉¬ϕ, is
the box operator dual to 〈α〉. A formula not containing atomic propositions is called a
constant formula.

To keep the notation simple, we regard the set Φ as fixed, and will usually not mention
it explicitly. So we write ML(τ), or also just ML when τ is clear from the context or
irrelevant. We use the same notation for the set of all formulae of ML(τ, Φ), and in
general identify notationally logical languages with their sets of formulae. In the mono-
modal case of a modal similarity type consisting of a single unary modality, the only
diamond and box are denoted by just 3 and ¤, respectively.

DEFINITION 1. The nesting depth δ of a formula is defined recursively as follows:
δ(⊥) = δ(p) = 0;
δ(ϕ1 → ϕ2) = max(δ(ϕ1), δ(ϕ2));
δ(〈α〉ϕ) = δ(ϕ) + 1.
The fragment MLn(τ) comprises all formulae of ML(τ) with nesting depth ≤ n.

1.2 Kripke frames and structures

With the modal similarity type τ we associate a relational similarity type consisting of
binary relations Rα for α ∈ τ . For simplicity we also denote this derived relational type
by τ .

DEFINITION 2. A (Kripke) τ -frame is a relational τ -structure F = 〈W, {Rα}α∈τ 〉
where W 6= ∅ and Rα ⊆ W × W for each α ∈ τ . The domain W of F is denoted by
dom(F). The relations (Rα)α∈τ are the accessibility or transition relations in F. The
elements of W , traditionally called possible worlds, will also be referred to, depending
on the context, as states, points, or nodes. A pointed τ -frame is a pair (F, w) where
w ∈ dom(F).

We also write wRαu rather than Rαwu or (w, u) ∈ Rα. Given a τ -frame F =
〈W, {Rα}α∈τ 〉, every Rα defines two unary operators, 〈Rα〉 and its dual [Rα], on P(W )
as follows:

〈Rα〉 (X) := {w ∈ W | wRαu for some u ∈ X} and [Rα](X) := 〈Rα〉(X)

where X := W \X denotes the complement of X in W .
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DEFINITION 3. A Kripke structure (Kripke model) over a τ -frame F = 〈W, {Rα}α∈τ 〉 is
a pair M = 〈F, V 〉 where V : Φ → P(W ) is a valuation, assigning to every atomic propo-
sition p the set of states in W where p is declared true. The set W is the domain of M,
denoted dom(M). We often specify Kripke structures directly: M = 〈W, {Rα}α∈τ , V 〉.
A pointed Kripke structure is a pair (M, w) where w ∈ dom(M).

In any Kripke structure M = 〈F, V 〉 the valuation V can be extended to a valuation
of all formulae, which is again denoted by V . That extension is defined recursively as
follows:2

V (⊥) := ∅;
V (ϕ1 → ϕ2) := V (ϕ1) ∪ V (ϕ2);
V (〈α〉ϕ) := 〈Rα〉 (V (ϕ)) (and V ([α] ϕ) = [Rα] (V (ϕ)).

While first-order sentences express properties of a structure as a whole, modal formulae
always make implicit reference to a distinguished (current) state in a Kripke structure.
So the basic semantic notion in modal logic is truth of a formula at a state of a Kripke
structure, with derived notions of validity also in Kripke structures and frames.

DEFINITION 4. A τ -formula ϕ is:
(i) true at the state w of the τ -structure M = 〈F, V 〉, denoted M, w |= ϕ, if w ∈ V (ϕ).

This is the same as saying that ϕ is true in the pointed structure (M, w).
A formula that is true at a state of some τ -structure is satisfiable.

(ii) valid in M, denoted M |= ϕ, if M, w |= ϕ for every w ∈ dom(F), i.e., if V (ϕ) =
dom(F).

(iii) (locally) valid at the state w of F, denoted F, w |= ϕ, if M, w |= ϕ for every
τ -structure M over F.
This is the same as saying that ϕ is valid in the pointed frame (F, w).

(iv) valid in F, denoted F |= ϕ, if F, w |= ϕ for every w ∈ dom(F).
Equivalently: M |= ϕ for every τ -structure M over F.

(v) valid, denoted |= ϕ, if F |= ϕ for every τ -frame F.

1.3 The standard translations into first- and second-order logic

With the modal language ML(τ, Φ), we associate the following purely relational vocab-
ularies:

– the relational version of τ itself, consisting of Rα for α ∈ τ , and again denoted by
just τ .

– the expansion τΦ of the relational vocabulary τ by unary predicates {P0, P1, . . .}
associated with the atomic propositions p0, p1, . . . ∈ Φ.

Correspondingly, FO(τ) and FO(τΦ) are the first-order languages with vocabularies
τ and τΦ, respectively. We regard a τ -frame as a τ -structure in the usual sense, and a
Kripke structure over a τ -frame as a τΦ-structure, with Pi interpreted as V (pi). We use
the same notation for Kripke structures and for the associated first-order structures, as
this causes no confusion. Wherever necessary, we will highlight the distinction by writing
|=FO to explicitly appeal to first-order semantics.

2In algebraic terms (see Chapter 6), the extended valuation is the unique homomorphism from the
free τ -algebra of formulae to the modal algebra associated with the model M, extending V .
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Truth and validity of a modal formula in a Kripke structure are first-order notions in
the following sense. Let VAR = {x0, x1, . . .} be the set of first-order variables of FO(τΦ).
The formulae of ML(τ) are translated into FO(τΦ) by means of the following standard
translation [124, 127], parameterised with the variables from VAR:

• ST(pi; xj) := Pixj for every pi ∈ Φ;

• ST(⊥; xj) := ⊥;

• ST(ϕ1 → ϕ2; xj) := ST(ϕ1; xj) → ST(ϕ2;xj);

• ST(〈α〉ϕ; xj) := ∃y(xjRαy ∧ ST(ϕ; y)), where y is the first variable in VAR \ {xj}.
Note that only xj is free in ST(ϕ; xj). Furthermore, for the standard translation

it suffices to use only the variables x0 and x1 (free or bound) in an alternating fashion.
This yields a translation into the two-variable fragment FO2 of first-order logic. Also, the
standard translation of any modal formula falls into the guarded fragment of first-order
logic. These observations are taken up in section 4.

The standard translation is semantically faithful in the following sense.

PROPOSITION 5. For every pointed Kripke structure (M, w) and ϕ ∈ ML(τ),

M, w |= ϕ iff M, w |=FO ST(ϕ; x0).

While the semantics and validity for modal formulae over Kripke structures is thus
essentially first-order, validity of a modal formula in a frame goes beyond first-order
logic. Indeed, paraphrasing the definition in terms of the standard translation, a modal
formula ϕ is valid in a frame iff its standard translation is true in that frame under every
interpretation of the unary predicates occurring in it.

PROPOSITION 6. For every pointed Kripke frame (F, w) and ϕ ∈ ML(τ) with atomic
propositions among p0, . . . , pn:

F, w |= ϕ iff F, w |= ∀P0 . . . ∀PnST(ϕ; x0).

Consequently, F |= ϕ iff F |= ∀P0 . . . ∀Pn∀x0ST(ϕ;x0).

1.4 Theories, equivalence and definability

With every logic L comes an associated notion of logical equivalence between structures.
Two structures of the appropriate type are equivalent with respect to L if no property
expressible in L distinguishes between them, i.e., if their L-theories are the same. In this
sense, first-order logic gives rise to the notion of elementary equivalence. Correspondingly,
modal equivalence is indistinguishability in modal logic. Each view of the semantics of
modal logic – in terms of (pointed or plain) structures or frames – corresponds to a notion
of modal theories and modal equivalence.

DEFINITION 7. The modal theory of a pointed Kripke τ -structure (M, w) is the set of
all formulae of ML(τ) satisfied in (M, w): ThML(M, w) := {ϕ ∈ ML(τ) | M, w |= ϕ}.

Correspondingly, the modal theory of M is ThML(M) := {ϕ ∈ ML(τ) | M |= ϕ}. The
modal theories of a frame and pointed frame, as well as of classes of (pointed) Kripke
structures or frames, are defined likewise.
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The basic notion of modal equivalence, corresponding to the notion of truth at a state
of a Kripke structure, is an equivalence relation on the class of pointed Kripke structures
(M, w). Natural variants cover the derived notions for plain Kripke structures, and for
pointed or plain frames.

DEFINITION 8. For two pointed Kripke τ -structures (M, w) and (M′, w′): (M, w) and
(M′, w′) are ML-equivalent, denoted (M, w) ≡ML (M′, w′), iff they satisfy exactly the
same formulae of ML, i.e., iff ThML(M, w) = ThML(M′, w′). Modal equivalence between
Kripke structures, frames, and pointed frames are defined likewise.

Definability in modal logic means different things corresponding to the different levels
of the semantics. We distinguish local versus global definability (truth at a state versus
validity throughout a frame/structure), and definability at the level of structures versus
frames (truth/validity for a given valuation versus for all valuations).

Given a formula ϕ ∈ ML(τ), the classes of pointed Kripke structures, Kripke struc-
tures, pointed frames and frames defined by ϕ are denoted as KS(ϕ), PKS(ϕ), FR(ϕ),
and PFR(ϕ), respectively:

PKS(ϕ)=
{
(M, w)

∣∣ M, w |= ϕ
}

PFR(ϕ)=
{

(F, w)
∣∣∣ (F, V ), w |= ϕ
for all valuations V

}

KS(ϕ)=
{
M

∣∣ M |= ϕ for all w ∈ dom(M)
}

FR(ϕ)=
{

F
∣∣∣ (F, V ), w |= ϕ for all w
and for all valuations V

}

DEFINITION 9. A class P of pointed Kripke τ -structures is (modally) definable in the
language ML(τ) if P = PKS(ϕ) for some formula ϕ ∈ ML(τ). Definable classes of Kripke
structures, frames, and pointed frames are defined likewise.

EXAMPLE 10. Here are some examples of modally definable classes of Kripke frames
and structures.

The class of pointed Kripke structures (M, w), where M = 〈W,R, V 〉, such that w has
at least one successor not satisfying p for which every successor satisfies q, is defined by
the formula 3(¬p ∧2q).

The formula p → 2p defines the class of Kripke structures in which the valuation of p
is closed under the accessibility relation.

The class of frames in which every state has a successor is defined by the formula 3>;
the same formula defines the class of pointed frames (F, w) in which w has a successor.

The formula 3p → 2p defines the class of frames K in which every state has at most
one successor. It is straightforward to show that the formula is valid in every such frame.
For the converse: if the formula fails at some state w of a Kripke structure over a frame
F, then p is true at some successor of w. But since 2p is false at w, there must be another
successor of w where p fails. Hence F does not satisfy the defining property of K.

Other standard examples of modally definable classes of frames include the classes of:
reflexive frames, defined by 2p → p; transitive frames, defined by 2p → 22p; symmetric
frames, defined by 32p → p, etc. For more examples see [117, 75, 127, 128].

Proposition 5 implies that the definability of classes of (pointed) Kripke structures
by modal formulae is a special case of first-order definability. Consequently, modal logic
shares many basic model-theoretic results with first-order logic, such as compactness and
Löwenheim–Skolem theorems (see [12, 68]). We will discuss the model theoretic aspects
of modal logic as a fragment of first-order logic on Kripke structures in section 4.
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On the other hand, Proposition 6 indicates that modal definability of (pointed) frames
is a form of Π1

1-definability, and the model-theoretic consequences of that fact will be
discussed in section 8. In particular, we will see that it is indeed essentially second-order.

1.5 Polyadic modalities

In polyadic modal logics one considers modalities α of arbitrary arities r(α) ∈ N,
which give rise to formulae 〈α〉(ϕ1, . . . , ϕn) if n = r(α). The interpretation of an n-
ary modal operator α is given in terms of (n + 1)-ary relations Rα in corresponding
frames, and an n-ary operator on subsets of these frames, in such a way that the se-
mantics is faithfully captured in the standard translation ST(〈α〉 (ϕ1, . . . , ϕn; xj)) :=
∃y1 . . . ∃yn(xjRαy1 . . . yn ∧

∧n
i=1 ST(ϕi; yi)), where y1 . . . yn are the first n variables in

VAR \ {xj} (and xjRαy1 . . . yn is just a notational variant for Rαxjy1 . . . yn).
Polyadic modalities were first studied from an algebraic perspective, as normal and

additive operators in Boolean algebras, by Jónsson and Tarski [78, 79]. All the es-
sential model theoretic features of modal logic can be generalised to this more liberal
setting, albeit with some care and sometimes unavoidable notational complications. In
[41] Goguadze et al define and develop systematically an interpretation of polyadic lan-
guages into monadic ones, and simulations of polyadic by monadic logics, which transfer
a number of important properties, such as frame completeness, finite model property,
canonicity and first-order definability. On the other hand, so called purely modal polyadic
languages are defined in [55], where all logical connectives except negation are treated as
binary modalities, and modalities can be composed. Thus, all polyadic modal formulae
are built from (composite) boxes and diamonds applied to literals, making their syntactic
structure much simpler.

Throughout this chapter we will only treat monadic modalities explicitly.

2 BISIMULATION AND BASIC MODEL CONSTRUCTIONS

A major concern in model theory is the analysis of logical equivalence of structures in
comparison with other natural notions of structural equivalence, in particular equiva-
lences of a more combinatorial or algebraic nature. Bisimulation equivalences as studied
below prove to be the algebraic/combinatorial counterparts to modal equivalence.

For first-order logic this combinatorial approach leads to the well-known characteri-
sation of elementary equivalence via Ehrenfeucht–Fräıssé games (see [68, 108, 26, 25]).
Variations of the basic Ehrenfeucht–Fräıssé idea apply to many other logics including
modal logic. Modal equivalence can thus be put into the general Ehrenfeucht–Fräıssé
framework. We shall sketch this connection in section 4. The very natural game associ-
ated with modal equivalence has, however, also been invented and studied independently
and in its own right, with the notions of zig-zag relation (van Benthem) and bisimulation
equivalence (Hennessy, Milner, Park). We therefore put an autonomous, modal treatment
before the discussion of relationships with the general framework of Ehrenfeucht–Fräıssé
and pebble games.
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2.1 Bisimulation and invariance

While the notion of logical equivalence is static, it can often be characterised in more
dynamic, game-theoretic terms. The concept of bisimulation equivalence, which is closely
related to corresponding games, is one of the most productive ideas in the model theory
of modal logics, temporal logics, logics for concurrency, etc. Just as it has multiple roots
in these various branches of logic, many variants have been employed to capture specific
notions of “behavioural equivalence” between all kinds of transition systems that are
interesting in their own right for various application areas – and not necessarily with any
‘logic’ in mind.

DEFINITION 11. Let M = 〈W, {Rα}α∈τ , V 〉 and M′ = 〈W ′, {R′α}α∈τ , V ′〉 be two
Kripke τ -structures. A bisimulation between M and M′ is a non-empty relation ρ ⊆
W ×W ′ satisfying the following conditions for any wρw′:

Atom equivalence: w and w′ satisfy the same atomic propositions, hereafter denoted
by w ' w′.

Forth: For any α ∈ τ , if wRαu for some u ∈ W , then there is some u′ ∈ W ′ such that
w′R′αu′ and uρu′. (Any α-transition at w in M can be matched at w′ in M′.)

Back: Similarly, in the opposite direction: for any α ∈ τ , and w′R′αu′ there is some
u ∈ W such that wRαu and uρu′. (Any α-transition at w′ in M′ can be matched
at w in M.)

•

•

•

•

w

u

w′

u′

M M′

back & forth
²²
²²
²²

¨¨
α

<<
<<

<<
<

ÀÀ
α

_______
ρ

___________
ρ

That ρ is a bisimulation between M and M′ is denoted as ρ : M À M′. If, moreover,
ρ is such that every element in M is linked to some element of M′ and vice versa, we say
that ρ is a global bisimulation and that M and M′ are globally bisimilar.

DEFINITION 12. Two pointed Kripke structures (M, w) and (M′, w′) are bisimilar or
bisimulation equivalent, denoted (M, w) À (M′, w′), if there is a bisimulation ρ between
M and M′ such that wρw′.

Bisimulations between (pointed) frames can be defined likewise, by omitting atom
equivalence. Thus, a relation ρ is a bisimulation between two frames F and F′, iff it
is a bisimulation between the respective Kripke structures 〈F, V⊥〉 and 〈F′, V ′

⊥〉 where
the valuations V⊥ and V ′

⊥ render every atomic proposition false at every state of the
respective frame.

DEFINITION 13. Let C be a class of structures appropriate for the logical language L
(e.g., pointed Kripke structures for ML). Let ≈ be an equivalence relation on C. Then
L is preserved under ≈ over C, or L is ≈-invariant over C, iff for any A ≈ A′ in C and
any ϕ ∈ L: A |= ϕ ⇔ A′ |= ϕ, i.e., A and A′ are L-equivalent. In other words: ≈ is a
refinement of ≡L, or ≈ ⊆ ≡L.
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Invariance phenomena give insights into the semantics of the logic involved, and also
often provide key tools for the model theoretic study of the logic (e.g., model construc-
tions guided by ≈ equivalence). The relationship between modal logics and bisimulation
equivalences provides an excellent example of such a fruitful companionship.

It would be straightforward to prove the following by induction on the structure of
modal formulae, straight from the definition of bisimulations. However, this will also fall
out as a corollary of the more instructive analysis of the associated bisimulation games.
We therefore meanwhile only state the fact.

THEOREM 14 (bisimulation invariance).
ML(τ) is bisimulation invariant: if (M, w) À (M′, w′), then (M, w) ≡ML (M′, w′).

Consequently, for every constant formula θ ∈ ML(τ) and pointed τ -frames (F, w) and
(F′, w′): if (F, w) À (F′, w′), then (F, w) |= θ iff (F′, w′) |= θ.

2.2 Classical truth-preserving constructions

Bisimulations induced by maps from one frame to another have classically been studied
as bounded morphisms or p-morphisms. We state the corresponding back-and-forth con-
ditions, which are slightly simpler in the case of such a functional relationship, and treat
some particularly important special cases. The use of generated and rooted substructures,
bounded morphic images, tree unfoldings and disjoint unions in connection with classical
model constructions for modal logic is based on truth preservation for modal formulae.
These constructions were introduced for basic modal logic [117, 7] before the notion of
bisimulation was developed and its importance for modal logic realised. Via duality the-
ory, which connects the relational semantics for modal logic with an algebraic semantics,
bounded morphisms, generated subframes and disjoint unions correspond respectively to
the fundamental universal algebraic notions of subalgebras, homomorphic images, and
direct products. For details see Chapter 6 of this handbook, as well as [78, 43, 44, 114]
and [5, Ch. 5].

The preservation results encountered in these special cases of a passage to bisimilar
structures highlight to various degrees one of the key characteristic features of the se-
mantics of modal logic: its explicit locality and restricted nature of quantification. Unlike
first-order logic, whose global quantification over the entire universe makes truth gener-
ally dependent on the entire structure, the truth of a modal formula in a Kripke structure
is evaluated relative to a ‘current’ state and admits access to the rest of the structure
only along the edges of the accessibility relations.

Passage from a given structures to a bisimilar tree structure, obtained via a simple
bounded morphism, shows for instance that any satisfiable formula of basic modal logic
is satisfied at the root of a tree structure (tree model property, see Corollary 24; this
can be further strengthened to a finite tree model property, see Lemma 35). Conversely,
preservation results can be used to show that certain properties are not modally definable.
We shall see some classical examples of this in section 2.3.

Bounded morphisms

DEFINITION 15. Let M = 〈W, {Rα}α∈τ , V 〉 and M′ = 〈W ′, {R′α}α∈τ , V ′〉 be Kripke
structures. A function ρ : W → W ′ is a bounded morphism from M to M′ if its graph is
a bisimulation between M and M′. We denote a bounded morphism as in ρ : M

�−→ M′.
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Bounded morphisms between frames are similarly defined.
If ρ is onto, then M′ is a bounded morphic image of M (and similarly for frames).

Thus, for each u ∈ W , a bounded morphism ρ uniquely singles out a bisimilar state
ρ(w) in W ′. The bisimulation conditions for a bounded morphism between two Kripke
structures correspondingly become:

Atom equivalence: w ' ρ(w) for every w ∈ W .

Forth: For any w ∈ W and α ∈ τ , if wRαu for some u ∈ W , then ρ(w)R′αρ(u).

Back: For any w ∈ W and α ∈ τ , if ρ(w)R′αu′ for some u′ ∈ W ′, then u′ = ρ(u) for
some u ∈ W such that wRαu.

Bisimulation invariance yields the following preservation results.

COROLLARY 16. Bounded morphisms preserve truth and validity of modal formulae.
More specifically, if ρ : M

�−→ M′ is a bounded morphism and ϕ ∈ ML(τ), then:
(i) for all u ∈ dom(F): M, u |= ϕ iff M′, ρ(u) |= ϕ.
(ii) If ρ is onto, then M |= ϕ iff M′ |= ϕ, i.e., ThML(M) =ThML(M′).
(iii) If F, u |= ϕ, then F′, ρ(u) |= ϕ.
(iv) If ρ is onto, then F |= ϕ implies F′ |= ϕ.

For the latter two claims one just has to note that each model M′ = 〈F′, V ′〉 over
the frame F′ can be pulled back to give a model M = 〈F, V 〉 over the frame F via
V (p) := ρ−1[V ′(p)] = {w ∈ dom(F) | ρ(w) ∈ V ′(p)}. This turns ρ into a bounded
morphism from M to M′. Note, however, that not every model over F is obtained in this
manner.

We turn to several basic model constructions involving bounded morphisms: generated
substructures, rooted substructures, tree unfoldings and disjoint unions.

Generated and rooted substructures

If R ⊆ W 2 is any binary relation over W , and W ′ ⊆ W , we write R¹W ′ for the restriction
of R to W ′, R ¹W ′ = R ∩ (W ′ ×W ′). Similarly for a valuation V on W , V ¹W ′ stands
for its restriction to W ′.

DEFINITION 17. Let F = 〈W, {Rα}α∈τ 〉 be a frame, or M = 〈F, V 〉 a Kripke structure
over F, respectively, and W ′ ⊆ W .

(i) The induced subframe of F over W ′ is the frame F′ := F¹W ′ = 〈W ′, {Rα ¹W ′}α∈τ 〉.
The subframe relationship is denoted F′ ≤ F.

(ii) F′ = F¹W ′ is a generated subframe of F, denoted F′ E F, if W ′ is closed under all
accessibility relations in the sense that wRαu for w ∈ W ′ implies u ∈ W ′.

(iii) The induced substructure of M over W ′ is the Kripke structure M′ = M ¹ W ′ =
〈F¹W ′, V ¹W ′〉, denoted M′ ≤ M. If F¹W ′ E F, then M′ is a generated substruc-
ture of M, denoted M′ E M.

Obviously, for M′ E M the inclusion map ρ : W ′ → W is a bounded morphism. By
bisimulation invariance, we therefore have the following.

PROPOSITION 18. For all Kripke structures M′ E M and for every formula ϕ of
ML(τ):
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(i) for every u ∈ dom(M′) : M, u |= ϕ iff M′, u |= ϕ.
(ii) M |= ϕ implies M′ |= ϕ.
Likewise, for frames F′ E F and u ∈ dom(F′): F, u |= ϕ iff F′, u |= ϕ, and F |= ϕ

implies F′ |= ϕ.

The latter claim holds since every Kripke structure over F′ is induced by a Kripke
structure on F.

A particularly important case of generated subframes deals with the set of all states
reachable from a fixed state. A path in a frame F = 〈W, {Rα}α∈τ 〉 is a sequence ~w =
(w0, α1, w1, . . . , αk, wk), where wi−1Rαiwi for i = 1, . . . , k (this path is rooted at w0 and
has length k). A path of length k = 0, ~w = (w0), is identified with its root w0. For
u ∈ W , we denote the set of all paths rooted at u by ~W [u]. For every path ~w as above
we define the ‘terminal state’ function f(~w) = wk where k is the length of ~w. Then

W [u] := {f(~w) | ~w ∈ ~W [u]}
is the set of all states in F reachable from u (including u itself).

DEFINITION 19. Let F = 〈W, {Rα}α∈τ 〉 be a frame, M = 〈F, V 〉 a Kripke structure
over F, and u ∈ W .

(i) The subframe of F rooted at u is the frame F[u] = F¹W [u].
(ii) The substructure of M rooted at u is the Kripke structure M[u] = M¹W [u].
(iii) F (respectively M) is rooted at u if W [u] = W .

Clearly, for any u ∈ W : F[u] E F and M[u] E M, respectively. Therefore, we obtain
the following.

COROLLARY 20. For every Kripke structure M′ E M and formula ϕ of ML(τ):
(i) for all u ∈ W : M, u |= ϕ iff M[u], u |= ϕ.
(ii) M |= ϕ implies M[u] |= ϕ.
(iii) Likewise for (pointed) frames.

Thus, any satisfiable formula is satisfiable at the root of a rooted Kripke structure.

Tree unfoldings

An important model construction based on a canonical bounded morphism is the unfold-
ing or tree unravelling of a Kripke structure M = 〈W, {Rα}α∈τ , V 〉 from some u ∈ W .
This construction was introduced in [113], where the tree model property (cf. Corollary 24
below) was proved, too.

Recall the map f : ~W [u] → W , which maps the path ~w = (u = w0, α1, w1, . . . , αk, wk)
to its terminal state f(~w) = wk. The unfolding of ~M[u] of M at u is based on the set
~W [u] of all paths rooted at u, with the natural definition of accessibility relations and a
valuation that turns f into a bounded morphism.

DEFINITION 21. The unfolding (or, unravelling) of M = 〈W, {Rα}α∈τ , V 〉 from some
u ∈ W is the rooted Kripke structure ~M[u] := 〈 ~W [u], {~Rα}α∈τ , ~V 〉 with root u = (u),
where

~Rα := {(~w, (~w, α,w′)) | ~w ∈ ~W [u], f(~w)Rαw′},
~V (p) := f−1[V (p)].
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Indeed, ~M[u] is a tree structure with root u = (u) in the sense of the following
definition.

DEFINITION 22. A pointed frame F = 〈W, {Rα}α∈τ 〉 with distinguished state u ∈ W
is a tree with root u if F is rooted at u and every state w ∈ W is reachable from u by a
unique path. Accordingly, every Kripke structure over (F, u) is a tree structure.

OBSERVATION 23. For every pointed Kripke structure (M, u) the terminal state map
f : ~W [u] → W [u] is a bounded morphism of the unfolding ~M[u] onto M[u].

As ~M[u] is a tree structure with root u = (u), we obtain the following. Also compare
Lemma 35 below.

COROLLARY 24 (tree-model property). Every satisfiable modal formula is satisfiable
at the root of a tree.

Disjoint unions

Disjoint unions are well known for relational structures: the component structures are
put side by side without any relational links between the components. Assuming that
the given family of Kripke structures or frames is based on universes that are pairwise
disjoint, we may just take the set-theoretic union of the universes, accessibility relations,
and valuations, respectively. If the given frames are not disjoint, they first need to be
replaced by isomorphic copies over universes that are pairwise disjoint.

To be specific, define the disjoint union of an arbitrary family
{
W i

}
i∈I

of (not neces-
sarily disjoint) sets as

⊎
i∈I W i :=

⋃
i∈I(W

i×{i}). With this formalisation, we have the
natural injection or embedding εj : W j → ⋃

i∈I(W
i × {i}) of each component set into

the disjoint union, which maps w ∈ W j to (w, j) ∈ ⋃
i∈I(W

i × {i}).
DEFINITION 25. Consider a family of τ -frames

{
Fi =

〈
W i, {Ri

α}α∈τ

〉}
i∈I

and a family
of Kripke structures

{
Mi =

〈
Fi, V i

〉}
i∈I

over these.

(i) The disjoint union of
{
Fi

}
i∈I

is the frame
⊎

i∈I Fi =
〈⊎

i∈I W i, {Rα}α∈τ

〉
, where

(w0, i0)Rα(w1, i1) iff i0 = i1 = i and w0R
i
αw1.

(ii) The disjoint union of
{
Mi

}
i∈I

is the Kripke τ -structure
⊎

i∈I Mi =
〈⊎

i∈I Fi, V
〉

where V (p) =
⊎

i∈I V i(p).

It is immediate that the natural injection εj : W j → ⊎
i∈I W i isomorphically embeds

Mj into
⊎

i∈I Mi and is indeed a bounded morphism with image εj [Mj ] ' Mj and
εj [Mj ] E

⊎
i∈I Mi. We therefore obtain the following, by bisimulation invariance and

based on previous observations.

PROPOSITION 26. Given a family of τ -frames
{
Fi =

〈
W i, {Ri

α}α∈τ

〉}
i∈I

, a family of
Kripke structures

{
Mi =

〈
Fi, V i

〉}
i∈I

over these frames, and ϕ ∈ ML(τ):

(i) For every j ∈ I and w ∈ dom(Mj): Mj , w |= ϕ iff
⊎

i∈I Mi, (w, j) |= ϕ.
(ii) For every j ∈ I and w ∈ dom(Fj): Fj , w |= ϕ iff

⊎
i∈I Fi, (w, j) |= ϕ.

(iii)
⊎

i∈I Mi |= ϕ iff Mi ² ϕ for every i ∈ I.
(iv)

⊎
i∈I Fi |= ϕ iff Fi |= ϕ for every i ∈ I.

The following structural observation [127] links some of the ideas explored in this
section.
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PROPOSITION 27. Any Kripke structure is the bounded morphic image of a disjoint
union of rooted Kripke structures, and indeed of tree structures.

For a proof of the proposition, consider the families of the {M[u]}u∈W or { ~M[u]}u∈W .
The desired bounded morphisms (from the disjoint unions of these families back onto
M) are the unions of the projection and inclusion or terminal state maps defined on the
components of these disjoint unions.

2.3 Proving non-definability

To show that a given property of structures is definable in a given logic, it suffices
simply to find a defining formula. Showing that a property is not definable, however,
is not so straightforward, and often requires elaborate arguments. A standard method
for establishing non-definability of a property P (i.e., of the class of structures satisfying
that property) in a logic L is to show that P is not closed under some construction
preserving truth (validity) of all formulae of L. Now that we have at hand constructions
that preserve truth and validity of modal formulae, we can use them to show that various
properties of frames and structures are not modally definable. Compare Definition 9 for
the relevant notions of definability.

At the level of pointed Kripke structures, modal formulae capture only properties that
are local in the sense that whether or not M, w |= ϕ only depends on (M[w], w). In other
words, modal formulae are incapable of expressing any property of (M, w) that involves
points beyond M[w]. For instance, there is no ϕ ∈ ML such that M, w |= ϕ iff M |= p.
Indeed, one can always add to M an extra point (as a disjoint union), not reachable
from w, where p is false. The resulting pointed structure (M′, w) is bisimilar to (M, w),
whence ϕ would have to be equally true or false at w in both.

Likewise, at the level of Kripke structures, there is no ϕ ∈ ML such that M |= ϕ iff
the accessibility relation of the underlying frame F is reflexive. This follows for instance
from the fact that the unfolding of any frame is irreflexive. If M is reflexive, then so is
the generated substructure M[u], which however is also a bounded morphic image of the
irreflexive ~M[u]. Reflexivity, however, is well-known to be definable in terms of frame
validity by the formula ¤p → p. In other words, the class of reflexive frames is definable
by the second-order sentence ∀P∀x(∀y(Rxy → Py) → Px). Intuitively, in terms of truth
in Kripke structures, modal formulae can make very little reference to the underlying
frame.

We turn to properties of frames and non-definability in terms of frame validity, which
is maybe the most interesting facet of modal expressiveness. One can show, for instance,
that (unlike reflexivity) irreflexivity is not a modally definable frame property. This
property is not preserved under surjective bounded morphisms, while surjective bounded
morphisms preserve frame validity. One may consider unfoldings as above, or also the
(irreflexive) frame F = 〈{w1, w2}, {(w1, w2), (w2, w1)}〉 and its bounded morphic image
F′ = 〈{w}, {(w,w)}〉, which is reflexive. Hence any ϕ valid in the former would also be
valid in the latter.

Similarly, the class of non-reflexive frames (i.e., ones having at least one irreflexive
point) is not definable in terms of validity of modal formulae, because it is not closed
under passage to generated subframes. Likewise, the classes of finite frames, connected
frames, or of frames with a universal accessibility relation (R = W 2), are not definable in
terms of frame validity of modal formulae, as they are not closed under disjoint unions.
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For another interesting example, consider the property of a frame to be a reflexive
partial ordering. It is not modally definable, because anti-symmetry is not preserved
under surjective bounded morphisms. Indeed, 〈Z,≤〉 is antisymmetric, but the mapping
of it onto the symmetric frame F above, sending all odd numbers to w1 and all even ones
to w2, is a surjective bounded morphism (and remains so, even when we add an inverse
or past modality, as in basic temporal logic).

However, the preservation results we have discussed so far are insufficient to capture
frame non-definability. A witness is the following more subtle example: the property of
continuity, or Dedekind completeness is not modally definable in modal logic, but to see
that using a non-preservation argument is not easy. Ultimately, this follows from the fact
that 〈R,≤〉 (which is continuous) and 〈Q,≤〉 (which is not) have the same modal theory
(i.e., the same formulae of basic modal logic are valid in these frames); see [46].3

Finally, note that preservation under generated subframes, surjective bounded mor-
phisms and disjoint unions is not sufficient to guarantee modal definability in terms of
frame validity, even for first-order definable properties. For instance, the class of frames
defined by the first-order sentence ∀x∃y(xRy ∧ yRy) (see [51, 128, 74]) is not modally
definable, despite being closed under these three constructions. We will come back to
this example in section 6.1.

For more examples of modal non-definability see [5, Section 3.3] and [128] where
syntactic characterisations of the first-order properties preserved by each one of the three
constructions mentioned above have been obtained.

3 BISIMULATION: A CLOSER LOOK

3.1 Bisimulation games

Bisimulation relations may be understood as descriptions of (non-deterministic) winning
strategies for one player in corresponding model comparison games. We illustrate the
concept in the case of bisimulations for basic modal logic – or Kripke structures with a
single binary transition relation R – writing 3 and 2 for the associated modalities. All
considerations admit canonical ramifications to the more general poly-modal setting (as
well as to polyadic modalities).

Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be Kripke structures of this basic type.
The bisimulation game over M and M is played by two players I and II with one pebble
in M and one in M′ to mark a single ‘current’ state in each structure. A configuration in
the game consists of a current placement of the two pebbles and is described by the pair
of pointed Kripke structures (M, w; M′, w′), with distinguished w and w′ for the current
states (pebble positions).

A single round in the game is played as follows. The first player, I, or challenger,
selects one of the two pebbles and moves it forward along an edge in the respective
structure to a successor state. The second player, II, or defender, has to respond by
similarly moving forward the pebble in the opposite structure.

3On the other hand, continuity is definable in temporal logic by the formula �([P ]p → 〈F 〉 [P ]p) →
([P ]p → [F ]p), where F and P are respectively the future and past modality, and �ϕ = [P ]ϕ∧ϕ∧ [F ]ϕ
is the always modality. See [46].
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During the game, II loses when no such response is possible or if the resulting new
configuration fails to have the two pebbles in atom equivalent states (i.e., the new posi-
tions are distinguished by at least one atomic proposition, cf. Definition 29 (ii) below).
I loses during the game if no further round can be played because both pebbles are
in states without successors. An infinite run of the game, which continues through an
infinite sequence of rounds played according to the above rules, is won by II.

We say that II has a winning strategy in the bisimulation game starting from config-
uration (M, w;M′, w′), if she has responses to any challenges from the first player that
guarantee her to win the game (either because I gets stuck, or because she can respond
with good moves indefinitely).

Intuitively, we think of I as challenging the claim of bisimilarity in the current config-
uration, while II defends that bisimilarity claim. This is borne out by the following.

PROPOSITION 28. Player II has a winning strategy in the bisimulation game starting
from the initial configuration (M, w; M′, w′) if, and only if, (M, w) À (M′, w′).

Indeed, an actual bisimulation ρ : (M, w) À (M′, w′) is a non-deterministic winning
strategy for II: she merely needs to select her responses so that the currently peb-
bled states remain linked by ρ. The atom equivalence condition on ρ guarantees that
atom equivalence between pebbled states is maintained; the forth condition guarantees a
matching response to challenges played by I in M; the back condition similarly guarantees
a matching response to challenges played in M′.

Conversely, the set of pairs (u, u′) in all configurations (M, u;M′, u′) from which II
has a winning strategy, if non-empty, is a bisimulation.

3.2 Finite bisimulations and characteristic formulae

The games view of a bisimulation suggest that we look at finite approximations corre-
sponding to the existence of winning strategies for a fixed finite number of rounds. These
approximations also hold the key to the connection between bisimulation equivalence and
modal equivalence. Natural approximations to ≡ML are induced by the stratification of
ML with respect to the nesting depth of modal formulae (cf. Definition 1), as follows.

DEFINITION 29. For two pointed Kripke τ -structures (M, w) and (M′, w′):
(i) For n ≥ 0, (M, w) and (M′, w′) are MLn-equivalent, denoted (M, w) ≡n

ML (M′, w′),
iff they satisfy exactly the same formulae of MLn.

(ii) At the level of ≡0
ML, we write w ' w′ instead of (M, w) ≡0

ML (M′, w′) and say that
w and w′ are atom equivalent (or, isomorphic when viewed as isolated states with
atomic propositions according to V, V ′).

The n-round bisimulation game is played like the (unbounded) bisimulation game but
terminates after n rounds (or beforehand if either player loses during one of these rounds).
Now II also wins if the n-th round is completed without violating atom equivalence. The
notion of a winning strategy is correspondingly adapted.

DEFINITION 30. Let n ≥ 0. Two pointed Kripke structures (M, w) and (M′, w′) are
(i) n-bisimilar, or n-bisimulation equivalent, denoted (M, w) Àn (M′, w′), if II has a

winning strategy in the n-round bisimulation game starting from (M, w; M′, w′).
(ii) finitely bisimilar, (M, w) Àω (M′, w′), if (M, w) Àn (M′, w′) for all n ∈ N.
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Note that 0-bisimulation equivalence is atom equivalence or modal equivalence ≡0
ML,

indistinguishability at the propositional level.
Clearly n-bisimulation equivalence implies m-bisimulation equivalence for any m ≤ n;

(full) bisimulation equivalence implies finite bisimulation equivalence; and finite bisim-
ulation equivalence implies n-bisimulation equivalence for any n. We shall return to
the interesting relationship between finite and full bisimulation equivalence below, in
connection with the Hennessy–Milner Theorem (theorem 38 below).

A first connection between Àn and n-equivalence is made in the following.

LEMMA 31. (M, w) Àn (M′, w′) ⇒ (M, w) ≡n
ML (M′, w′).

Indeed, if M, w |= ϕ and M′, w′ |= ¬ϕ for some ϕ ∈ MLn, then I has a winning
strategy in the n-round game from (M, w;M′, w′). This is shown by induction on the
nesting depth n of the distinguishing formula ϕ. At level n = 0, a distinction in ML0

means atomic inequivalence – corresponding to a configuration in which II has lost.
In the induction step, assume that (M, w) is distinguished from (M′, w′) by a formula

ϕ ∈ MLn+1. Propositional connectives in ϕ can be unravelled so that without loss of
generality ϕ is of the form 3ψ for some ψ ∈ MLn. Suppose then that for instance
M′, w′ |= ¬ϕ, while M, w |= ϕ. Let in that case I move the pebble in M from w to some
u, where M, u |= ψ. As M′, w′ |= ¬3ψ, any available response for II can only lead to a
configuration (M, u; M′, u′) in which (M, u) and (M′, u′) are distinguished by ψ ∈ MLn.
Therefore, by the inductive hypothesis, I has a winning strategy for the remaining n
rounds of the game.

Characteristic formulae

For the converse to the previous lemma, or for capturing the bounded bisimulation game
in terms of modal logic, it is essential that the underlying vocabulary is finite: both τ
and Φ need to be finite. We again stick with the case of a single binary accessibility
relation R, but that restriction is purely for expository simplicity.

The crucial step in the transition from the bisimulation game to modal logic is the
formalisation, as a formula χn

[M,w] ∈ MLn, of

“II has a winning strategy in the n-round game from (M, w;M′, w′)”

as a property of (M′, w′), for fixed reference structure (M, w) and depth n. In fact χn
[M,w]

may be constructed by induction on n, simultaneously for all (M, w). Along with the
induction one observes that Àn has finite index, and that, correspondingly, we generate
only finitely many non-equivalent formulae χn

[M,w] at level n (for finite τ and Φ!).
For n = 0, χ0

[M,w] is purely propositional and consists of the conjunction of all p ∈ Φ
that are true in w and all ¬p for those that are false at w. This fixes the atomic
equivalence type, as it should.

Inductively, let

χn+1
[M,w] := χ0

[M,w] ∧
∧

(w,u)∈R

3χn
[M,u]

︸ ︷︷ ︸
forth

∧ 2
∨

(w,u)∈R

χn
[M,u]

︸ ︷︷ ︸
back

.
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Even for infinitely branching M, the conjunctions and disjunctions in this formula
remain finite up to logical equivalence as there are only finitely many formulae of the
respective kind.

Clearly M, w |= χn+1
[M,w]. But for arbitrary (M′, w′), M′, w′ |= χn+1

[M,w] indeed guarantees
II a wining strategy in the (n+1)-round game from (M, w;M′, w′). The conjunct χ0

[M,w]

guarantees that the game is not lost already. The back -and-forth attributions in the two
main conjuncts suggest how these are used to guarantee suitable responses, in the first
round, to challenges from I played in either M (forth) or M′ (back), respectively.

The forth part says that for all moves from w to some u in M, M′, w′ |= 3χn
[M,u], and

any R′-successor u′ of w′ such that M′, u′ |= χn
[M,u] provides a response for II that will

allow her to succeed through another n rounds.
Similarly the back part says that for all moves from w′ to some u′ in M, M′, u′ |= χn

[M,u]

for some R-successor u of w in M – a response that is good for another n rounds for II.
That failure of M′, w′ to satisfy χn

[M,w] affords I a win within n rounds follows from
Lemma 31. Together, these observations yield the following tight connection between
the bisimulation game and modal equivalence.

THEOREM 32. Let (M, w) and (M′, w′) be pointed Kripke structures of the same finite
type with finitely many atomic propositions. Then the following are equivalent:

(i) (M, w) Àn (M′, w′).
(ii) II has a winning strategy in the n-round game from (M, w;M′, w′).
(iii) M′, w′ |= χn

[M,w].

(iv) (M, w) ≡n
ML (M′, w′).

As corollaries we obtain a corresponding characterisation of full modal equivalence,
and a normal form for ML formulae.

COROLLARY 33. Over Kripke structures of finite type and with finitely many atomic
propositions, finite bisimulation equivalence Àω coincides with modal equivalence.

COROLLARY 34. Any formula ϕ ∈ MLn is logically equivalent to the disjunction∨
M,w|=ϕ χn

[M,w], which is in fact finite as there are only finitely many such χn up to
logical equivalence (in the vocabulary of ϕ).

Similarly, for finite vocabularies, any class C of pointed Kripke structures that is closed
under n-bisimulation is definable in MLn by the disjunction

∨
(M,w)∈C χn

[M,w].

Bisimulation-invariance of ML, Theorem 14, also becomes a simple corollary of the
analysis of the game. Indeed, ϕ ∈ MLn is even invariant under n-bisimulation equivalence
Àn, which of course implies invariance under (full) bisimulation.

3.3 Finite model property

A logic L has the finite model property (FMP) iff every satisfiable formula of L is satis-
fiable in a finite model, i.e., if satisfiability and satisfiability in finite structures coincide
for L.

For specific modal logics (e.g., normal extensions of basic modal logic) the implicit
restriction to a prescribed class of admissible frames corresponds to a relativisation of
the above criterion to the respective classes of (infinite or finite) admissible models. So
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the finite model property for S5 say, states that any formula of ML that is satisfiable
over some equivalence frame is also satisfiable over some finite equivalence frame.

The finite model property is a characteristic feature of many modal logics. For any
modal logic with a recursive axiomatisation (such that it is recursively enumerable for
validity) whose class of admissible finite frames is also recursively enumerable, the finite
model property provides a standard method for proving decidability.4 Here we briefly
discuss the general filtration method for establishing the finite model property for modal
logics. For basic modal logic we illustrate in section 3.3 that it even has a finite tree
model property : every satisfiable formula has a finite tree model.5

Filtration

Filtration is the most widely used method for proving the finite model property in modal
logics, particularly those determined by classes of frames with specific properties of the
accessibility relation. This method is originally due to McKinsey who first applied an
algebraic version of it in modal logic. Filtration was introduced in its present form by
Lemmon and Scott [91] and further developed and applied by Segerberg [117]. Gabbay
[31] introduced a different version, called selective filtration. Later, Fisher and Ladner
[29] proved the finite model property of propositional dynamic logic PDL using filtration.

Given a formula ϕ of a modal logic L and a Kripke structure M (of type appropriate
for L) satisfying ϕ, we want to produce a finite Kripke structure M̃ (of appropriate
type) satisfying ϕ. The method of filtration provides a transformation from models M
to finite models M̃ in a uniform manner with respect to ϕ and M. Before outlining the
construction let us note that the satisfiability of a modal formula ϕ in a Kripke structure
only depends on the truth of the (finitely many) subformulae of ϕ across that structure.
Therefore, two states in a Kripke structure that satisfy the same subformulae of ϕ are
indistinguishable from the viewpoint of ϕ. Sometimes it is necessary to extend the set of
subformulae of ϕ to a wider but still finite set of formulae, called the closure of ϕ and
denoted by cl(ϕ). Thus, cl(ϕ) partitions the model into finitely many equivalence classes
of states, all states in each class satisfying the same subset of cl(ϕ). The underlying idea
of the filtration method is to collapse the infinite model to its finite quotient with respect
to the equivalence relation generated by that partition, in a way that preserves the truth
of all formulae in cl(ϕ), and hence of ϕ itself.

The equivalence relation itself can be thought of as coarse-grained approximation to
bisimulation equivalence that is specific to the given formula ϕ. It is meant to preserve
ϕ but needs to do so at a coarser level than bisimulation to be of finite index. Note
that n-bisimulation Àn can also serve as a finite index approximation but, because of
its graded nature, does not lend itself to taking quotients in the desired global manner.
This is because M, u Àn M, u′ (i.e., that u and u′ are of the same n-bisimulation type)
does not imply that the same n-bisimulation types are accessible from u and u′.

Here are the formal details. Take any Kripke structure M = 〈W,R, V 〉 and a set

4However, not every modal logic with the finite model property is decidable; see for instance K×K×K
in [35].

5In general, the finite model property and the tree model property are independent. While the tree
model property can account for the decidability of the basic systems of modal logic and many of its
extensions and variations (see section 5), it does not apply to axiomatic extensions which impose specific
restrictions on the frames that are incompatible with tree-like structures like symmetry or confluence of
the accessibility relation.
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of formulae Γ, which is assumed to be closed under subformulae, single negation (i.e.,
if ϕ ∈ Γ is not a negation itself, then ¬ϕ ∈ Γ) and under ¤/3 duality. Define an
equivalence relation ∼Γ on W as follows:

u ∼Γ w iff for every ψ ∈ Γ : M, u ² ψ ⇔ M, w ² ψ.

Let [w]Γ be the equivalence class of w with respect to ∼Γ and WΓ = {[w]Γ | w ∈ W} .
Note that if Γ is finite, then WΓ is finite, too. Further, the valuation V is collapsed to
a valuation VΓ in WΓ for all p ∈ Γ canonically: VΓ(p) = {[w]Γ | w ∈ V (p)} ; for all other
variables q, VΓ is defined arbitrarily, e.g., VΓ(q) = ∅.

Now, we say that a Kripke structure M̃ = 〈WΓ, R̃, VΓ〉 is a filtration of M with respect
to Γ if for every ψ ∈ Γ and w ∈ W : M, w ² ψ iff M̃, [w]Γ ² ψ. With a slight abuse of
terminology, we also say that R̃ is a filtration of R with respect to Γ.

There are two simple conditions on the relation R̃ which guarantee that it is a filtration
of R with respect to Γ. They give lower and upper bounds for that relation, respectively:

MIN. For every u, w ∈ W, if uRw, then [u]ΓR̃[w]Γ.

MAX. For every [u]Γ, [w]Γ ∈ WΓ, if [u]ΓR̃[w]Γ, then for every ¤ψ ∈ Γ:
if M, u ² ¤ψ, then M, w ² ψ.6

By induction on ψ one can prove that for every R̃ satisfying these conditions, the
structure M̃ = 〈WΓ, R̃, VΓ〉 is indeed a filtration of M with respect to Γ, and this claim
is known as the filtration lemma. Often, the conditions MIN and MAX are adopted as
the definition of a filtration of R, and the filtration lemma then claims that they imply
that MΓ has the desired property.

Does every Kripke structure have a filtration with respect to any set of formulae Γ?
Yes: converting the implication to equivalence in either of the conditions MIN and MAX
defines a relation that satisfies the other condition, too, and hence renders a filtration:

• the minimal filtration Mmin
Γ =

〈
WΓ, Rmin

Γ , VΓ

〉
, Rmin

Γ =
{
([u]Γ, [w]Γ) | (u,w) ∈ R

}
;

• the maximal filtration Mmax
Γ = 〈WΓ, Rmax

Γ , VΓ〉, where [u]ΓRmax
Γ [w]Γ holds iff for

every ¤ψ ∈ Γ, M, u ² ¤ψ implies M, w ² ψ.

Clearly, every relation R̃ such that Rmin
Γ ⊆ R̃ ⊆ Rmax

Γ is a filtration, too.
Now, given a formula ϕ and a pointed Kripke structure (M, u) such that M, u ²

ϕ, applying the filtration construction to Γ = cl(ϕ) produces a finite pointed Kripke
structure (M̃, [u]Γ) that satisfies ϕ, whence basic modal logic (modal logic K) has the
finite model property.

This method can be refined to establish the finite model property for axiomatic ex-
tensions L of K, too, by adjusting the definition of R̃ so as to preserve the desired
properties of the original structure M, such as transitivity, linearity etc., or to impose
such properties on the resulting structure M̃ and thus to eventually guarantee that it is a
model appropriate for the desired modal logic L. Examples of filtrations for a number of
important modal and temporal logics, such as T,K4, S4, and the logics of various linear
orderings can be found in [91, 117, 46]. A more general result, extending a theorem of
Lewis [92], is [122, Theorem 2.6.8] stating that every modal logic axiomatised by a finite
set of shallow formulae (see Section 8.2) admits filtration.

6This condition does not depend on the choice of representatives u and w, as ψ, 2ψ ∈ Γ.
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Finite tree model property

Before returning to the relationship between bisimulation and finite bisimulation in the
next section, we apply the preservation result of Lemma 31 to an alternative, simple
proof of the finite model property for basic modal logic, by establishing a stronger finite
tree model property.

LEMMA 35 (finite tree model property). For every n ∈ N, every pointed Kripke struc-
ture of finite relational type is n-bisimilar to a finite tree structure. Consequently, any
satisfiable formula of ML is satisfied at the root of a finite tree.

Proof. According to section 2.2 the unfolding M[u] of (M, u) provides a bisimilar tree
structure. As we only need n-bisimulation equivalence, we may cut off M[u] at depth
n from its root u, to obtain a tree structure (M[u] ¹ Un(u), u) Àn (M, u) whose depth
is bounded by n, where Un(u) stands for the set of nodes at distance up to n from u.
This tree structure may still be infinite, due to infinite branching. In that case, however,
we may prune successors at every node to retain at most one representative of each Àn

equivalence class. As Àn has finite index (for finite vocabulary; see section 3.2), the
resulting tree structure is finite. ¥

Finite branching, as well as a finite bound on the number of bisimulation types, are
obvious for finite M, but a finite pointed Kripke structure (M, u) in which a directed
cycle is reachable from u cannot be bisimilar to a finite tree structure. Locally, however,
this can be achieved in partial unfoldings.

LEMMA 36. Let n ∈ N. Every finite pointed Kripke structure (M, u) is bisimilar to a
finite pointed structure (M̂, û) whose restriction to depth n from the distinguished node
û is a tree structure.

Proof. Let (M[u]¹Un(u), u) be as in the proof of the last lemma (now finite). For each
leaf node of this structure, take a new disjoint isomorphic copy of M itself and identify
the leaf node with its bisimilar partner node in that copy of M. The resulting structure
is finite, bisimilar to (M, u) and tree-like up to distance n from the distinguished node.

¥

Remarks. Results of this type can be carried much further. For instance, a more involved
construction yields finite two-way bisimilar companions which are acyclic in restriction
to the n-neighbourhood of any node [106, 107]. Such locally acyclic finite bisimilar covers
are available also in restriction to various other non-elementary classes of frames, e.g.,
within the classes of all (finite) rooted frames or finite equivalence frames [17].

It is also interesting to note that finite and bisimilar (M, u) and (M′, u′) admit finite
bisimilar companions (M̂, û) and (M̂′, û′), respectively, whose restrictions to depth n
from their distinguished nodes û and û′ are even isomorphic tree structures. For this, we
take (M̂, û) and (M̂′, û′) as from the proof above and modify them by merely attaching
extra isomorphic copies of substructures at nodes in the tree parts so as to achieve equal
multiplicities for all bisimulation types at each node in the tree parts. It then follows
that the tree parts are isomorphic.
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3.4 Finite versus full bisimulation

For the relationship between finite and full bisimulation equivalence, we note that finite
bisimulation equivalence can be strictly weaker in structures with infinite branching. A
typical example of tree structures with (M, w) Àω (M′, w′) but (M, w) 6À (M′, w′) is
the following.

EXAMPLE 37. Let (M, w) and (M′, w′) be tree Kripke structures with trivial valuations,
rooted at w and w′, respectively. Let the roots have countably many distinct successors
ui, i ≥ 1 in M and u′i, i ≥ 0 in M′. For i ≥ 1, we let each of ui and u′i be the starting
point of a simple finite path of length i. We let the extra node u′0 in M′ be the root of
a simple infinite path. Then (M, w) 6À (M′, w′): let I move in M′ from w′ to u′0; the
second player must move to one of the ui for i ≥ 1 in M; let then I lead the play in M′

along the infinite path: II gets stuck and loses in round i+2 when the end of the length i
path from ui has been reached. On the other hand, (M, w) Àn (M′, w′) for every n ∈ N,
since any two paths of lengths greater than or equal to n look exactly the same in an
n-round game.

However, infinite branching is essential to this phenomenon, as the following shows.

THEOREM 38 (Hennessy–Milner theorem). Let M and M′ both be finitely branching,
i.e., every state in either structure has only finitely many immediate successors.

Then (M, w) Àω (M′, w′) implies (M, w) À (M′, w′). Consequently, over finitely
branching Kripke structures, modal equivalence coincides with bisimulation equivalence.

Proof. The argument is best given via the games. We claim that II can maintain
(M, w) Àω (M′, w′) indefinitely – which gives her a winning strategy for the infinite
game. For instance, let I play in M and move the pebble from w to u. Suppose that
for all responses u′ available to II in M′, (M, u) 6Àω (M′, u′). As there are only finitely
many choices for u′ due to finite branching, we can find a sufficiently large n ∈ N such
that (M, u) 6Àn (M′, u′) for all u′ with (w′, u′) ∈ R′. But this would imply (M, w) 6Àn+1

(M′, w′), contradicting the assumption (M, w) Àω (M′, w′). ¥

Unlike the Hennessy–Milner theorem, which is rather specific for bisimulation, the
following observation rests on arguments from classical model theory, to do with satu-
ration properties, and highlights a more general principle that applies to any finitary
versus unbounded game equivalences of the Ehrenfeucht–Fräıssé variety; see for instance
[108]. Saturation properties refer to the realisation of types. We think of a type as the
formalisation of the properties of an element, through a set of formulae using constants
for parameters from a given structure.

With a first-order language L and a set of parameters A ⊆ W of the universe W of
some structure M, associate the expansion of LA of L with a constant name for each
element of A; the corresponding expansion of M is denoted MA.

DEFINITION 39. An element type with parameters in A (in the first-order language LA)
is a set Σ of LA-formulae in a single free element variable x. The type Σ is a type of MA

if it is (finitely) consistent with the theory of MA in the sense that MA |= ∃x∧
Σ0 for

every finite Σ0 ⊆ Σ. The type Σ is realised in MA if MA, w |= Σ for some element w.
A structure M is ω-saturated if for every finite subset A every type of MA is realised

in MA.
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Interesting properties are often expressible by types rather than by an individual
formula. For instance, an R-successor of w ∈ M from which there are arbitrarily long
R-paths is described by the type Σw := {Rwx} ∪ {ST(3n>;x) | n ∈ N} with parameter
w from M. Note that this is a type of M iff there are arbitrarily long R-paths from
w ∈ M. This does not imply that M itself has a realisation of the type – a successor u
of w that simultaneously satisfies all the requirements in Σw. By compactness, however,
every structure M has an ω-saturated elementary extension, cf. [12]. Let M∗ be such
an elementary extension of M. For w ∈ M, Σw is a type of M∗ if it is a type of M.
If Σw for w ∈ M∗ is a type of M∗, then there also is some R-successor u of w in M∗

such that M∗, u |= 3n> for all n; hence Σu will also be a type of M∗ and repeating
the argument inductively we find that M∗ has an infinite path from w. In ω-saturated
models, therefore, any element from which there are arbitrarily long paths, will also have
an infinite path. Similar reasoning extends to provide responses for II in the infinite
game over M∗ to meet any challenge from I, provided she has responses that are good
for n rounds, for each n. In other words, playing over ω-saturated structures, II has a
winning strategy in the infinite game whenever she has, for every n, a winning strategy
for the n-round game. The proof is analogous to that given for Proposition 87 below;
in the terminology to be introduced there, the class of ω-saturated structures has the
Hennessy–Milner property.

REMARK 40. As shown in section 6.3, Àω coincides with À in restriction to ω-
saturated structures.

In the bisimulation context weaker forms of saturation suffice, and in that sense the
Hennessy–Milner theorem may be regarded as a special case. See section 6.3 for more on
(modal) saturation.

Bisimulation and infinitary modal equivalence

Since, over infinitely branching structures, equivalence with respect to ordinary modal
logic only reaches up to the level of finite bisimulation equivalence, Àω, the question
of the actual logical counterpart to full bisimulation equivalence arises. The situation is
entirely similar to that in classical first-order logic, where it is clarified by Karp’s theorem
[82] (see also [68]). While the classical Ehrenfeucht–Fräıssé theorem associates finitary
game equivalence (the back-and-forth notion of finite isomorphism between structures)
with elementary equivalence, full infinitary game equivalence (the back-and-forth notion
of partial isomorphism between structures) corresponds to equivalence with respect to the
infinitary logic L∞ω whose syntax allows for disjunctions and conjunctions over arbitrary
sets of formulae, [68, 108]. In order to extend modal logic ML to its infinitary variant
ML∞, we put the following additional clause for formula formation. If Ψ is any set
of formulae of ML∞, then

∧
Ψ and

∨
Ψ are formulae of ML∞. These formulae have

an ordinal-valued nesting depth, based on the usual rules for the finitary constructors
of ML (see Definition 1) together with the extra stipulation that the nesting depth of
an infinitary conjunction or disjunction is the supremum of the nesting depths of the
constituent formulae. The semantics of the infinite conjunctions and disjunctions is the
natural one; with, e.g., M, w |= ∨

Ψ iff M, w |= ψ for some ψ ∈ Ψ.
Completely analogous to the treatment of the finitary game in relation to finitary

modal logic, we then get the following. (As a side effect of the availability of infinitary
conjunctions and disjunctions, we need not restrict the underlying vocabularies to be
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finite.) Comparison with the classical version of Karp’s theorem highlights the observa-
tion that bisimulation is for modal model theory what partial isomorphism is for classical
model theory.

THEOREM 41 (Karp’s theorem for modal logic). Let (M, w) and (M′, w′) be Kripke
structures of the same type. Then the following are equivalent:

(i) (M, w) À (M′, w′).
(ii) II has a winning strategy in the infinite bisimulation game from (M, w; M′, w′).
(iii) (M, w) ≡ML∞ (M′, w′).

Proof. (i) ⇔ (ii) is obvious. For (ii) ⇒ (iii) compare Lemma 31: similar to there, if
(M, w) is distinguished from (M′, w′) by a formula of nesting depth α, then one can
find a move for I which will force a successor configuration in which the positions are
distinguished at some nesting depth β < α. By well-foundedness this gives I a winning
strategy. For (iii) ⇒ (ii) one observes that II can maintain ML∞ equivalence indefinitely.

¥

Remark. Characteristic formulae χα
[M,u] with an ordinal parameter α for their nesting

depth, can still be defined inductively in a canonical way. (The analogous infinitary for-
mulae for the infinite first-order Ehrenfeucht–Fräıssé game are known as Scott formulae,
see for instance [68].) For the infinite game over infinitely branching M, a position in
which players may have infinitely many non-equivalent choices for a next move, is ad-
equately described by an infinite conjunction

∧
3ϕi in conjunction with 2

∨
ϕi, where

each ϕi describes the bisimulation type of one potential successor in the game over M,
at a nesting depth level that typically needs to be an infinite ordinal. A sufficiently high
nesting depth that can be used uniformly across a given M[u] is the least ordinal α such
that any two states in M[u] that are equivalent at nesting depth α in ML∞ are equivalent
at nesting depth α + 1. For this α, equivalence at nesting depth α implies equivalence
at any nesting depth, i.e., full ML∞ equivalence, and hence bisimilarity. (The minimal
such α is the closure ordinal of the co-inductive definition of the bisimulation relation
over M[u], also compare section 3.5.)

That a given α has this property for M[u] is itself expressible in ML∞. The defining
property of α is equivalent to the assertion that, for all v ∈ M[u], M[u] |= χα

[M,v] → χα+1
[M,v].

Let ψα be the conjunction of all formulae

2n
∧

v∈M[u]

(
χα

[M,v] → χα+1
[M,v]

)
.

Then M, u |= ψα iff within M[u], the ML∞ type at nesting depth α+1 is fully determined
by the type at nesting depth α. The conjunction χ[M,u] := ψα ∧ χα

[M,u] for suitable α,
characterises (M, u) up to bisimulation, thus providing a canonical characteristic formula
in ML∞.

Unlike the definability assertion of Corollary 34, however, bisimulation closure of a
class C of Kripke structures on its own does not guarantee definability in ML∞. In
the example of Observation 42 below, the relevant disjunction of characteristic formulae
would be class-sized, and hence not in ML∞. However, definability of C in ML∞ does
follow, for instance, if C comprises only set-many different bisimulation types (which
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is in particular the case for the setting of finite model theory, or in restriction to any
other class of bounded cardinality). This is sufficient to ensure that C is definable by a
disjunction over characteristic formulae analogous to Corollary 34.

OBSERVATION 42. Well-foundedness, or the class of all pointed Kripke structures
(M, u) in which there is no infinite path from u, is not definable in infinitary modal
logic ML∞.

This class is definable by the modal µ-calculus Lµ formula µX.2X (see section 5.2)
and hence in monadic second-order logic MSO.7 On the other hand, well-foundedness is
not even definable in infinitary first-order logic L∞ω, [95]. We sketch a direct proof of
non-definability in ML∞.

For an ordinal α consider the Kripke structure Mα = 〈{β | β ≤ α}, R〉 with R =
{(β, β′) | β′ < β ≤ α} the inverse of the order relation on these ordinals, and its
modification M′

α with R replaced by R′ = R ∪ {(α, α)}. We show by induction on the
ordinal γ that (M′

α, α) ≡γ (Mα, β) (equivalence in ML∞ up to nesting depth γ) for all
α ≥ β ≥ γ. It follows that no formula of ML∞ can separate the well-founded (Mα, α)
from the non-wellfounded (M′

α, α) for all α.
The claim is obvious for γ = 0; also the limit steps are trivial. For the successor

step, from γ to γ + 1, consider α ≥ β ≥ γ + 1; it suffices to show that then even
M′

α, α |= 3ψ ⇔ Mα, β |= 3ψ for ψ of nesting depth γ. The only non-trivial instance
of this assertion is when M′

α, α |= 3ψ because M′
α, α |= ψ. But then Mα, γ |= ψ by the

inductive hypothesis. It follows that Mα, β |= 3ψ as β ≥ γ + 1 implies that (β, γ) ∈ R.

3.5 Largest bisimulations as greatest fixed points

The union of all bisimulation relations between two given Kripke structures is again a
bisimulation relation, and hence a maximal bisimulation in the sense of set inclusion.
Such largest bisimulations can also be defined co-inductively, and be understood as the
greatest fixed-point of suitable monotone operators. Again, and purely for expository
purposes, we sketch this approach in the simple case of a single accessibility relation R.

Let X ⊆ W×W ′, and let w ∈ W and w′ ∈ W ′ be atom equivalent (w ' w′). Let us say
that the pair (w, w′) has the back-and-forth property w.r.t. X iff player II has a single
round strategy to lead the bisimulation game from (M, w; M′, w′) to a configuration
(M, u; M′, u′) such that (u, u′) ∈ X. (Note that the back -and-forth conditions for a
bisimulation relation say that each of its pairs has the back -and-forth property w.r.t. the
relation itself.)

Consider the following operator F on subsets X ⊆ W ×W ′:

F (X) :=
{
(w, w′) ∈ X | (w, w′) has the back -and-forth property w.r.t. X

}
.

The operator F is monotone in the sense that X ⊆ Y ⇒ F (X) ⊆ F (Y ). It therefore
has a unique greatest fixed point in restriction to any subset of W×W ′. We are interested
in the greatest fixed point of F that respects atom equivalence, and therefore consider the
restriction F0 of F to X0 := {(u, u′) ∈ W ×W ′ | u ' u′}. Let ρ := gfp(F0) ⊆ X0 be this
greatest fixed point. Being a fixed point of F within X0, ρ respects atom equivalence;

7Note that this is definability in the sense of (local) Kripke structure semantics, albeit in a logic which
is itself of a second-order nature, and should not be confused with the modal definability of the class of
transitive well-founded frames.
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being a fixed point of F , ρ has the back -and-forth property. So ρ is a bisimulation. As
any bisimulation between M and M′ must also be a fixed-point of F0, ρ is the largest
such.

REMARK 43. The stages of the evaluation of gfp(F0) produce a monotone decreasing
ordinal-indexed sequence of subsets Xα ⊆ W ×W ′ according to

X0 = {(u, u′) ∈ W ×W ′ | u ' u′}
Xα+1 = F0(Xα) (successor stage)

Xλ =
⋂

α<λ Xα (limit stage)

which is eventually constant with value gfp(F0). The least ordinal α such that Xα+1 =
Xα is called the closure ordinal of this greatest fixed point evaluation over M and M′.
This closure ordinal is bounded by the number of bisimulation types realised in M and
M′. For cardinality reasons it is in particular strictly less than the successor cardinal of
|W |+ |W ′|.

Over finite Kripke structures in particular, the limit gfp(F0) is reached within a number
of iterations bounded by |W |+ |W ′|, whence the largest bisimulation is polynomial time
computable.

One verifies by induction that, for n ∈ N, Xn is the subset

Xn =
{
(u, u′) ∈ W ×W ′ | (M, u) Àn (M′, u′)

}

and correspondingly that

Xω =
{
(u, u′) ∈ W ×W ′ | (M, u) Àω (M′, u′)

}
.

Closure within m := |W | + |W ′| steps for finite Kripke structures, implies that, in
restriction to M and M′, m-bisimulation equivalence Àm and hence equivalence in MLm

coincide with full bisimulation equivalence À and equivalence in ML. This quantitative
analysis provides a direct proof of the Hennessy–Milner theorem (with additional a priori
bounds) in the special case of finite (rather than just finitely branching) Kripke structures.

3.6 Bisimulation quotients and canonical representatives

Bisimulation quotients provide canonical minimal bisimilar companions, in which every
bisimulation type is realised only once. They thus form succinct representations of the
overall bisimulation type of a structure M. There is an analogy with filtrations (compare
section 3.3), but here the quotient is taken with respect to the largest bisimulation within
the given structure, rather than with respect to some coarser equivalence induced by some
set of modal formulae. Passage to bisimulation quotients is often desirable for complexity
reasons, for instance for model checking of bisimulation invariant properties. Bisimulation
quotients of finite structures are polynomial time computable, as the largest bisimulation
is polynomial time computable over finite structures as a greatest fixed point.

For a Kripke structure M = 〈W, {Rα}α∈τ , V 〉, consider the largest bisimulation within
M itself, ρM = {(u, u′) | (M, u) À (M, u′)} ⊆ W 2, as an equivalence relation on W .
Let us write [u]ρ for the equivalence class of u ∈ W . Note that ρM is a congruence
w.r.t. the valuation V (by atom equivalence). Therefore V induces a natural quotient
valuation V/ρM on the quotient W/ρM. While ρM is not in general a congruence w.r.t.
the Rα, clearly (w, u) ∈ Rα implies that for any w′ ∈ [w]ρ there is u′ ∈ [u]ρ such that
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(w′, u′) ∈ Rα (by the back and forth conditions). A natural quotient interpretation for
the Rα over W/ρM therefore is

Rα/ρM := {([w]ρ, [u]ρ) ∈ (W/ρM)2 | (w, u) ∈ RM
α }.

DEFINITION 44. The bisimulation quotient M/ρM is the Kripke structure with universe
W/ρM = {[u]ρ | u ∈ W}, accessibility relations Rα/ρM and valuation V/ρM.

LEMMA 45. The canonical projection π : W → W/ρM from M onto its bisimulation
quotient M/ρM is a surjective bounded morphism.

M/ρM is minimal among all globally bisimilar companion structures of M, as any
other such must also have at least one representative of each bisimulation type realised
in M. Moreover, any global bisimulation between two such quotient structures is uniquely
determined by bisimulation types and is necessarily an isomorphism. The analogue
for ordinary (rather than global) bisimulation equivalence of pointed Kripke structures
(M, u) needs to be based on quotients M[u]/ρM taken after restriction to the generated
substructure rooted at u. The bisimulation quotient associated with a (pointed) Kripke
structure thus provides a canonical representative of its bisimulation type, ‘canonical’ in
the sense of being uniquely determined up to isomorphism.

COROLLARY 46. Kripke structures M and M′ are globally bisimilar iff their bisim-
ulation quotients are isomorphic. Pointed Kripke structures (M, u) and (M′, u′) are
bisimilar iff the bisimulation quotients (M[u]/ρM, [u]Mρ ) and (M′[u′]/ρM′

, [u′]M
′

ρ ) are iso-
morphic.

For other kinds of canonical representatives of the bisimulation type of a pointed
Kripke structure we may look to trees. Via tree unfoldings any pointed Kripke struc-
ture is bisimilar to a tree structure. In order to associate a companion tree structure
which is uniquely determined up to isomorphism, though, one needs to impose condi-
tions on the multiplicities among bisimilar siblings in the tree. For countably branch-
ing Kripke structures, for instance, in which every state has at most countably many
immediate successors, ω-branching tree unfoldings

→ω

M [u] may be used. These are de-
fined in complete analogy with ordinary tree unfoldings, cf. Definition 21, but based
on the set of all ω-labelled paths rooted at u. An ω-labelled path in M is a sequence
~w = (w0, α1,m1, w1, . . . , αk, mk, wk), where ~w = (w0, α1, w1, . . . , αk, wk) is a path in M
in the usual sense, and with labels mi ∈ N. Two ω-labelled paths ~w, ~w′ are linked by
an Rα-edge in

→ω

M [u] if ~w′ is an α-extension of ~w: ~w′ = (~w, α, m,w′) for some m ∈ N.
Through the ω-labelling, the multiplicity of each bisimulation type in each successor set
w.r.t. Rα is countably infinite. It is then easy to see that any two bisimilar ω-branching
tree unfoldings of countably branching Kripke structures are isomorphic.

This observation may be extended in a straightforward manner to κ-tree unfoldings
→κ

M [u] based on κ-labelled paths, for any infinite cardinal κ.

COROLLARY 47. For any infinite cardinal κ, and pointed Kripke structures (M, u) and
(M′, u′) whose branching degree is bounded by κ: (M, u) À (M′, u′) if, and only if,
(
→κ

M [u], u) ' (
→κ

M ′[u′], u′).
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3.7 Robinson consistency, local interpolation, and Beth definability

We illustrate the usefulness of the canonicity property expressed in Corollary 47 with
a proof of the following analogue of the Robinson joint consistency property [12] for
poly-modal logic.

PROPOSITION 48 (Robinson consistency). For i = 1, 2 let τ (i) be modal similarity types;
Φ(i) sets of atomic propositions; and Γ(i) ⊆ ML[τ (i),Φ(i)]. If Γ(1)∩Γ(2) is a complete modal
theory (in the local sense), and if both Γ(1) and Γ(2) are consistent, then Γ = Γ(1) ∪Γ(2) is
also consistent.

Proof. Let τ (0) := τ (1) ∩ τ (2), Φ(0) := Φ(1) ∩ Φ(2), Γ(0) := Γ(1) ∩ Γ(2).
Let M, u |= Γ(1) and N, v |= Γ(2). Without loss of generality assume that both struc-

tures are ω-saturated, which implies that also their (τ (0), Φ(0)) reducts M(0) and N(0)

are ω-saturated. Then (M(0), u) ≡ML (N(0), v), as both satisfy the complete theory Γ(0).
By the Hennessy–Milner property for ω-saturated structures: (M(0), u) À (N(0), v) (cf.
Remark 40).

Let κ ≥ |M|, |N| and consider the κ-tree unfoldings M̂ :=
→κ

M [u] and N̂ :=
→κ

N [v]. The
generated (τ (0),Φ(0))-subtrees of (M̂, u) and (N̂, v) are themselves κ-tree unfoldings of
corresponding generated (τ (0),Φ(0))-substructures of M and N. So they are isomorphic
as (τ (0), Φ(0))-trees. We may assume that (M̂, u) and (N̂, v) intersect precisely in these
isomorphic subtrees. Let then K := M̂ ∪ N̂ be their union (note that u = v). The
component structures (M̂, u) and (N̂, v) are the generated (τ (i), Φ(i))-subtrees for i = 1
and i = 2, respectively. By bisimulation invariance, K, u |= Γ(i) for i = 1, 2. Therefore Γ
is satisfiable. ¥

Consistency properties can usually be directly related to interpolation [12]. Here we
obtain the local interpolation theorem for poly-modal logic as a corollary. For modal
similarity types and sets of atomic propositions as above: let |= ϕ → ψ be a valid (local)
consequence, ϕ ∈ ML[τ (1), Φ(1)], ψ ∈ ML[τ (2), Φ(2)]. We want to show that there is an
interpolant χ ∈ ML[τ (0), Φ(0)] (i.e., in the common language):

|= (ϕ → χ) ∧ (χ → ψ).

Assume there was no interpolant. One can then find a complete theory Γ(0) in the
common vocabulary for which both Γ(1) := Γ(0) ∪ {ϕ} and Γ(2) := Γ(0) ∪ {¬ψ} are consis-
tent (see below). With the consistency property established above, however, this would
show that ϕ ∧ ¬ψ is satisfiable, invalidating the implication ϕ → ψ. Assuming without
loss of generality that the common language ML[τ (0), Φ(0)] is countable, one generates Γ(0)

inductively as a union of an increasing chain of finite sets Γ(0)
n . The sets Γ(0)

n are induc-
tively augmented towards completion, by adding one formula or its negation at a time,
guided by the condition that there be no interpolant χ with Γ(0)

n |= (ϕ → χ) ∧ (χ → ψ).

COROLLARY 49. Poly-modal logic satisfies the interpolation theorem for local conse-
quence.

The interpolation property can be relativised to particular modal logics or classes of
frames. We mention one general result of this kind. Following [122], a subframe F of
the direct product

∏
i∈I Fi (see section 6.2) is said to be a bisimulation product of the

family of frames {Fi}i∈I if the canonical projection πi : F → Fi is a surjective bounded
morphism, for each i ∈ I. The following has been established in [122, Thm 2.5.3].
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PROPOSITION 50. Let K be an elementary class of frames closed under generated sub-
frames and bisimulation products. Then modal logic over K has interpolation.

The interpolation property is intimately related to the Beth definability property which
links implicit with explicit definability.

Consider a fixed (poly-)modal language ML[τ, Φ]. For any list of propositional vari-
ables q from Φ, we denote by ML[q] the sublanguage of ML[τ, Φ] restricted to the propo-
sitional variables listed in q. Let p ∈ Φ be a propositional variable not in q, and
Γ = Γ(p,q) ⊆ ML[p,q] a modal theory. Intuitively, Γ defines p implicitly if it uniquely
determines the valuation of p relative to the rest. Formally, let p′ be a propositional
variable not occurring in Γ(p,q) and Γ′ = Γ(p′,q) the result of substituting p′ for p
throughout Γ. Γ defines p implicitly if the following is valid (in the sense of local conse-
quence):

Γ ∪ Γ′ ² p ↔ p′.

On the other hand, p is said to be explicitly definable relative to Γ if for some ϕ(q) ∈
ML[q] (thus, not containing p):

Γ ² p ↔ ϕ(q).

Such ϕ is then called an explicit definition of p relative to Γ.
Clearly, explicit definability entails implicit definability. Beth’s definability theorem

(proved in the early 1950s for first-order logic) states the converse: implicit definability
entails explicit definability. A standard proof technique is by reduction to interpolation.

Let Γ(p,q) ∪ Γ(p′,q) ² p ↔ p′. By compactness, γ(p,q) ∧ γ(p′,q) ² p ↔ p′ for some
formula γ from Γ (assuming Γ closed under ∧). This implies the validity of

²
(
γ(p,q) ∧ p

) → (
γ(p′,q) → p′

)
.

Local interpolation yields an interpolant ϕ ∈ ML[q] in the common language and thus
not containing p or p′, such that both ² (γ(p,q) ∧ p) → ϕ and ² ϕ → (γ(p′,q) → p′).
Together these two establish that ϕ explicitly defines p relative to γ and hence relative
to Γ. We have thus obtained the following.

COROLLARY 51. Modal logic satisfies Beth’s definability theorem for local consequence.

The notions of interpolation, implicit and explicit definability, and the Beth definabil-
ity property admit global versions, with respect to the global consequence relation (i.e.,
with respect to validity in Kripke structures). Beth’s definability theorem for global con-
sequence can be proved just like the local one above, by noting that Γ implies ψ globally
iff 2∗Γ ² ψ, where 2∗Γ = {2nγ | n ∈ N, γ ∈ Γ}.

Semantically, global implicit definability means that, in any Kripke structure M for
ML(q), there is at most one valuation for p such that the resulting expansion Mp satisfies
Γ(p,q). Thus, in order to show that Γ does not define p implicitly it suffices to find two
models of Γ(p,q) that differ in the valuation of p but are otherwise identical. This is the
idea of Padoa’s method for disproving definability in classical logic.

As for global explicit definability in modal logic, Conradie [13] has shown that it can be
characterised semantically as follows. p is explicitly globally definable relative to Γ(p,q)
iff for every two Kripke structures M1 and M2 satisfying Γ(p,q): M1 ≡ML[q] M2 ⇒
M1 ≡ML[p,q] M2. Here ≡ML[q] denotes equivalence in ML[q]. In fact, ≡ML[q] may be
replaced for this condition by the corresponding bisimulation relation ÀML[q].
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For more on interpolation and Beth definability in modal logic, see Chapter 8 of
this handbook, [98, 10, 73], as well as [15] for uniform interpolation in the modal mu-
calculus, [122] for results on interpolation in extended modal languages, and [36] for a
comprehensive exposition of the state of the art on interpolation and definability.

3.8 Bisimulation-safe modal operators

It is easy to find examples of bisimilar pointed Kripke structures (M, w) À (M′, w′), over
the modal similarity type with a single modality associated with an accessibility relation
R say, such that the corresponding expansions with new accessibility relations interpreted
by the converse relations R−1 := {(u, v) | (v, u) ∈ R} are not bisimilar. On the other
hand, ρ : (M, w) À (M′, w′) for pointed (poly-modal) Kripke structures (M, w) and
(M′, w′) implies that the same ρ also is a bisimulation for the expansions by accessibility
relations generated from the Rα by the constructors provided in propositional dynamic
logic PDL: union, composition, star, as well as test (compare Lemma 70). Thus, the
question arises: which operations on relations are ‘safe for bisimulations’, i.e., preserve
bisimulations which hold for their arguments? This question was raised and analysed
by van Benthem. In particular, he answered that question completely for the case of
first-order definable operations on binary relations (see [130, Section 5.3], also [5, Section
2.7]). The operation ∼ of domain-complementation is defined as an operation on binary
relations according to ∼R := {(x, x) | ¬∃zRxz}.
THEOREM 52. A first-order definable operation O(R1, . . . , Rn) on binary relations is
safe for bisimulation iff it can be constructed from R1, . . . , Rn using atomic tests p?,
unions, compositions and the operation of domain-complementation.

This characterisation was extended in [131] to operations definable in infinitary lan-
guages, by allowing infinite unions, too. Since the star operation or iteration, ∗, is
definable as an infinite union of compositions, this accounts for the bisimulation safety
of PDL as stated above. The notion of bisimulation-safety and the results above were
further extended by Hollenberg [72].

4 MODAL LOGIC AS A FRAGMENT OF FIRST-ORDER LOGIC

The embedding of modal logics into a fragment of first-order logic via the standard trans-
lation makes results and techniques for that fragment directly available to the analysis
of the modal logic. In this section we discuss further aspects of the relationship between
modal and first-order logic.

4.1 Finite variable fragments of first-order logic

DEFINITION 53. Over a purely relational vocabulary and for k ≥ 1 let k-variable first-
order logic be the syntactic fragment FOk ⊆ FO consisting of those FO formulae that
only use k distinct variable symbols, say x0, . . . , xk−1, free or bound.

Gabbay [32] first observed that the standard translation, with thrifty re-use of variables
as presented in section 1.3, embeds basic modal logic ML into FO2, the two-variable
fragment of first-order logic. (For polyadic modalities of arities up to m, one similarly
gets an embedding into the (m + 1)-variable fragment.)
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LEMMA 54. The standard translation based on ST( ;x0) and ST( ; x1) embeds ML
into FO2.

For instance, for ML with a single unary modality 3 associated with the binary ac-
cessibility relation R, the standard translation operates with an alternate use of two
variables, x0 and x1, as in

ST
(
323p;x0

)
= ∃x1

(
Rx0x1 ∧ ∀x0

(
Rx1x0 → ∃x1

(
Rx0x1 ∧ Px1

)))
.

It should be noted that this re-use of variable symbols is at odds for instance with
a prenex formalisation in first-order logic. It has several other benefits, however, to be
discussed below. And even though the embedding into the guarded fragment of first-
order logic which has emerged more recently (see section 4.3 below) may have greater
explanatory power for some characteristic features of modal logics, the straightforward
embedding into finite variable fragments has also been put to good use.

Consider the embedding of basic modal logic into FO2. By results of Scott [116]
(valid for FO2 without equality) and Mortimer [102] (with equality), FO2 has the finite
model property. In fact FO2 has an exponential bound on small models [59]. Therefore,
the finite model property for basic modal logic and decidability for satisfiability may be
inferred via the translation into FO2. The complexity and small model bounds obtained
in this way, however, are not optimal.

The fact that ML embeds into a finite-variable fragment also provides upper bounds on
its model checking complexity. Consider the so-called combined complexity of checking
whether M, w |= ϕ, with both the finite structure M and the formula ϕ as input. The
standard translation of modal logic into FO is itself linear time computable. While the
combined model checking complexity for FO over finite relational structures is complete
for Pspace, it becomes Ptime for FOk. Moreover, even for FO2 and basic modal logic
the problem is Ptime-hard. For FO2 one also obtains a bound of O(|ϕ||M|), linear in
both input components.8 FO2 thus constitutes a natural syntactic fragment of classical
first-order logic which matches the finite model property, the decidability and model
checking complexity of basic modal logic. These parallels and their limitations are further
discussed in [60, 135, 57].

Remark. At the level of FO3 and higher, which becomes relevant for instance for polyadic
modalities, the target logic FOk fails to have the finite model property and is just as
undecidable for satisfiability as full first-order logic, and also does not have linear time
model checking. For many purposes, including satisfiability and model checking, however,
natural reductions from polyadic into unary modal logics are available that still make
the special status of the two-variable fragment available for polyadic modal logics. See
for instance [41].

The k-variable fragments of FO play an interesting role in finite model theory and
for algorithmic issues, primarily because they give rise to natural and algorithmically
manageable pebble games. The k-pebble game is precisely the variant of the classical
(first-order) Ehrenfeucht–Fräıssé game associated with the restriction to k variable sym-
bols. Bisimulation games in their turn may be regarded as restrictions of these k-pebble
games.

8This bound refers to a random access model of computation and a succinct representations of the
binary accessibility relations Rα through adjacency lists. The input size for the structure is then linear
in the number of states plus the number of accessibility edges.
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Just as the ordinary n-round Ehrenfeucht–Fräıssé game captures elementary equiva-
lence up to quantifier rank n [26, 68, 108], and just as the n-round bisimulation game
captures modal equivalence in MLn, so the n-round k-pebble game captures equivalence
in FOk up to quantifier rank n.

In the classical (variable-unconstrained) Ehrenfeucht–Fräıssé game for FO over two
relational structures A versus A′, the players, I and II, mark finite configurations of
elements in these structures with matching pebbles. A configuration in the game is
specified by two tuples of marked elements a in A and a′ in A′, denoted (A,a;A′,a′).
In each round, I chooses one of the structures, and places another marker on one of
the elements of that structure; II has to respond by marking an element in the opposite
structure. In one round the game thus proceeds from a configuration (A,a; A′,a′) to some
configuration (A,a, a; A′,a′, a′) with newly pebbled elements a and a′. II loses as soon
as the partial map induced by the correspondence between pebbled elements f : a 7→ a′

is not a local isomorphism. The existence of a winning strategy for II in the n-round
game then precisely captures elementary equivalence up to quantifier rank n.

The variant for FOk is obtained by changing the rules in such a manner that no more
than k elements of each structure are ever pebbled simultaneously; the game is restricted
to configurations A,a;A′,a′ with tuples a and a′ of lengths up to k. In any round
starting from a configuration of full length k, I first removes one of the pebbles and then
repositions that same pebble in its structure, and II has to do likewise with the matching
pebble in the opposite structure. This game then captures levels of equivalence in FOk,
[25].

It is an obvious consequence of Lemma 54 that equivalence in FO2 implies equivalence
with respect to basic modal logic with unary modalities. However, this may also be
inferred directly at the level of the games. One observes that the relevant bisimulation
game can be emulated by the 2-pebble game in the sense that

– any challenge available to player I in the modal game is also available in the 2-
pebble game.

– any responses for II that are good for the 2-pebble game are good in the modal
game, too.

A move along an R-edge in the bisimulation game is emulated in the two-pebble game
by means of a placement of the second pebble in the target node. The formerly active
pebble now only plays the auxiliary role to guarantee that the right kind of edge is used
in an admissible manner also in the response by II. But, clearly a strategy in the two-
pebble game guarantees more than just bisimulation equivalence, illustrating the gap in
expressive power between modal logic and the two-variable fragment of first-order logic
into which it can be embedded.

Consider the expressive power of basic (poly-modal) ML over corresponding Kripke
structures M = 〈W, {Rα}α∈τ , {Pi}〉. Unlike ML, FO2 formulae generally define binary
predicates over Kripke structures. However, the expressive power of FO is also very
limited in this respect. As can be inferred from the 2-pebble game, any FO2-formula
ϕ(x0, x1) is logically equivalent to a Boolean combination of quantifier free formulae of
FO2 (atomic formulae, including equality) and FO2 formulae in a single free variable
ψ(xi), i = 0, 1. In other words, the expressive power of FO2, too, is essentially governed
by its expressive power in terms of unary relations (properties of single elements in
Kripke structures, state properties in process logics). Comparing the expressive power



Model Theory of Modal Logic 33

of basic modal logic ML with that of FO2 for defining properties of elements and the
discriminating powers of bisimulation versus two-pebble game equivalence, basic modal
logic is lacking

(i) relativised quantification along backward Rα-edges.
(ii) quantification relativised by (positive or arbitrary) boolean combinations of acces-

sibility relations (including equality).
(iii) unrelativised, global first-order quantification in one variable.

Corresponding features can be added to basic modal logic, as for instance through exten-
sions via inverse modalities (in temporal settings: past modalities) interpreted w.r.t. to
the converses R−α = {(v, u) | (u, v) ∈ Rα}; a global modality interpreted w.r.t. to the full
binary relation U = W ×W over universe W ; or other constructors for derived accessi-
bilities.9 An extension of basic modal logic that provides a minimal set of constructs in
the above vein so as to precisely capture the expressive power of FO2, is provided in [96].
A comparison of the satisfiability problems of these two logics shows that there is no
polynomial time translation from FO2 into its modal counterpart, under suitable com-
plexity assumptions. Furthermore, on certain classes of frames extended modal logics can
reach the full expressiveness of first-order logic. The most prominent example is Kamp’s
result in [80] that the temporal language with Since and Until is expressively complete
for all first-order definable connectives on the class of Dedekind complete linear orders.
This line of work was further developed by others, including Stavi, Gabbay, Venema,
Reynolds. For further details see [32, 34], as well as Chapter 11 of this handbook.

4.2 The van Benthem–Rosen characterisation theorem

The fundamental observation that modal logics are embedded into (fragments of) first-
order logic via the standard translation immediately calls for the following question.
Given an arbitrary first-order formula (in an appropriate vocabulary of Kripke struc-
tures), under which conditions is it equivalently expressible in modal logic? In other
words, precisely which first-order properties of pointed Kripke structures are expressible
in modal logic? Bisimulation invariance is obviously a necessary condition; van Ben-
them’s Theorem says that it is sufficient as well.

Another point of view is also illuminating. Take bisimulation invariance as the funda-
mentally important semantic notion. It deserves this status for many non-logical reasons,
since it is the natural notion of process equivalence (thinking of Kripke structures as tran-
sition systems), game equivalence (transition systems for games), knowledge equivalence
(Kripke structures for knowledge representation), et cetera. From the perspective of first-
order logic, then, one would want to isolate the bisimulation invariant properties because
just these conform with the underlying semantic intuition. For instance, a first-order
property of transition systems captures a property of processes if, and only if, it does not
distinguish between bisimulation equivalent transition systems.

Bisimulation invariance is not a decidable property of first-order formulae, as can
be seen through reduction of the satisfiability problem. For ϕ ∈ FO(τΦ \ {R}), the
formula ϕ̂(x) := ϕ ∧ Rxx is bisimulation invariant iff ϕ is unsatisfiable. The syntactic
subset consisting of those first-order formulae that happen to be bisimulation invariant is

9An example of that is the union (or) on program formulae in PDL, which, however, is reducible to
plain ML in this context, since, for instance [α ∪ β]ϕ ≡ [α]ϕ ∧ [β]ϕ and 〈α ∪ β〉ϕ ≡ 〈α〉ϕ ∨ 〈β〉ϕ.
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therefore not the syntax of a reasonable logic. But the characterisation theorem says that
modal logic precisely fills this gap. ML, or its translation into FO, provides decidable
syntax for just the bisimulation invariant first-order properties; ML is the first-order logic
for bisimulation respecting properties.

THEOREM 55 (van Benthem). Let ϕ(x) ∈ FO be in a vocabulary of Kripke structures.
Then the following are equivalent:

(i) ϕ is bisimulation invariant: (M, w) À (M′, w′) implies M, w |= ϕ ⇔ M′, w′ |= ϕ.
(ii) ϕ(x) is logically equivalent to a formula ϕ̃ ∈ ML.

Note that (ii) ⇒ (i) is just Theorem 14 again. The crucial point here is expressive
completeness of ML for all bisimulation invariant first-order properties. The core idea
for that is to establish the following – which is reminiscent of a compactness property.

LEMMA 56. If ϕ(x) ∈ FO is bisimulation invariant, then it is invariant under n-
bisimulation for some n ∈ N.

The lemma implies (i) ⇒ (ii) in the theorem, as any n-bisimulation invariant property
is clearly definable in MLn. Indeed, by Corollary 34, ϕ is then equivalent to a disjunction
of characteristic formulae for n-bisimulation equivalence classes. For the lemma, we
sketch a version of the classical proof and an alternative argument more closely based on
the games.

Via classical model theory. Assume to the contrary that ϕ was not invariant under n-
bisimulation for any n ∈ N, and hence not equivalent to any modal formula. Enumerate
all modal formulae of the appropriate type as (ψi)i∈N. Successively choose one of ψi or
¬ψi to obtain a maximally consistent set T of modal formulae consistent with both ϕ and
¬ϕ. By compactness one obtains pointed Kripke structures (M, w) and (M′, w′) such that
both satisfy T , while M, w |= ϕ and M′, w′ |= ¬ϕ. As (M, w) and (M′, w′) satisfy the
same complete modal theory, (M, w) ≡ML (M′, w′) and therefore (M, w) Àω (M′, w′).
Passage to ω-saturated (or modally saturated, see section 6.3) elementary extensions of
(M̃, w) and (M̃′, w′) would then give us structures (M̃, w) À (M̃′, w′) (cf. Remark 40),
which are still distinguished by ϕ, contradicting bisimulation invariance of ϕ.

Via games. This alternative proof of the crucial step towards the characterisation the-
orem admits ramifications that persist where the classical argument fails, in particular
in finite model theory. In its present form this argument is based on [105, 107] building
on ideas from Rosen’s finite model theory version of the characterisation theorem [112],
as further discussed below (Theorem 61) and in section 9. The n-neighbourhood of an
element u in a Kripke structure M consists of all elements whose Gaifman distance from
u is at most n. Here Gaifman distance is graph theoretic distance in the undirected graph
induced by the symmetrised accessibility relation. We write M ¹ Un(u) for the induced
substructure on the n-neighbourhood of u in M.

DEFINITION 57. A formula ϕ(x) is n-local if for any two pointed tree Kripke structures
(M, w) and (M′, w′) that are isomorphic in restriction to the n-neighbourhoods of their
distinguished nodes, M, w |= ϕ ⇔ M′, w′ |= ϕ.

It is easy to see that, if ϕ(x) is bisimulation invariant and n-local, then it is n-
bisimulation invariant. In fact, this is obvious for trees and then extends to arbitrary
pointed Kripke structures through their unfoldings into trees (see section 2.2). See
[105, 106] for the following.
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LEMMA 58. Let ϕ(x) ∈ FO have quantifier rank q. If ϕ is bisimulation invariant, then
it is n-local, and hence invariant under n-bisimulation, for n = 2q − 1.

The first-order locality argument is in fact a ramification of the much more general
Gaifman locality property of first-order logic [38], which is a useful tool in classical as well
as finite model theory [25]. In the context of bisimulation invariant properties, locality
together with the exponential bound may however also be derived from a straightforward
and self-contained analysis based on first-order Ehrenfeucht–Fräıssé games. In fact, the
lemma holds for any ϕ(x) that is invariant under disjoint unions, which itself is an easy
consequence of bisimulation invariance (see section 2.2). Let ϕ(x) ∈ FO have quantifier
rank q. Consider a pointed Kripke structure (M, w) or, because it may be conceptually
easier though not necessary for the argument, without loss of generality a pointed tree
structure (M, w) with root w. Let M′ = M ¹Un(w) be the substructure induced on the
n-neighbourhood of w. It suffices to show that M, w |= ϕ iff M′, w |= ϕ.

Let N be the disjoint union of q copies of M and M′ each. Using invariance under
disjoint unions, it suffices to show that N ]M, w |= ϕ iff N ]M′, w |= ϕ.
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It is not hard to exhibit a winning strategy for II in the ordinary q-round Ehrenfeucht–
Fräıssé game on these structures. II merely needs to respect, in round m of the game,
the critical distance dm = 2q−m: if I’s move in round m goes to within distance dm

of an already pebbled element, II plays according to a local isomorphism in the dm-
neighbourhoods of previously pebbled elements; if I’s move goes to an element further
away from all previously pebbled elements, II responds in a fresh isomorphic copy of
type M or M′, correspondingly.

The exponential bound expressed in the lemma is actually optimal. For a bisimulation
invariant property expressible in FOq but not in MLn for any n < 2q − 1 consider
the property that a state in which p holds is reachable on a path of length less than
2q. It should be noted that the classical proof of van Benthem’s theorem provides no
corresponding quantitative information.

COROLLARY 59. For ϕ(x) ∈ FO of quantifier rank q, the following are equivalent for
n = 2q − 1:

(i) ϕ is bisimulation invariant.
(ii) ϕ is invariant under n-bisimulation and equivalently expressible in MLn.

The exponential bound on the modal nesting depth is sharp: FO is exponentially more
succinct than ML for expressing bisimulation invariant properties.

Some of the underlying ideas of these results are very robust and extend to various
ramified settings, some of which are to be discussed in section 5. The classical proof of
the characterisation theorem, in particular, carries through for many natural extensions
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of basic modal logic associated with refined notions of basic bisimulation equivalence;
we mention in particular the corresponding characterisation theorem for the guarded
fragment of first-order logic [1] (see Theorem 65 here). But also the game based approach
extends to a wide range of settings. One of its main strengths is that it goes through
in the setting of finite model theory, as explained below. Another variation that comes
naturally from the game based proof is its relativisation to arbitrary bisimulation closed
classes [105]. The classical proof, on the other hand, clearly relativises to elementary
classes of structures.

COROLLARY 60. Let C be a class of Kripke structures that is closed under bisimulation.
Then ϕ(x) ∈ FO is bisimulation invariant in restriction to C iff it is equivalent to a
formula ϕ̃ ∈ ML in restriction to C. Similarly for any elementary class C.

Theorem 55 characterises the elementary properties of pointed Kripke structures which
are definable by single modal formulae. In section 6.4 we will obtain more general preser-
vation results, characterising properties and classes of Kripke structures which are defin-
able by finite or infinite sets of modal formulae, by employing constructions and results
from classical model theory.

Ramifications of the characterisation theorem

We sketch a version of the game and locality based proof of van Benthem’s character-
isation theorem given above, which applies in finite model theory as well as classically.
We thus get the finite model theory version due to Rosen [112], even with the same tight
exponential bound on succinctness as in Corollary 59.

THEOREM 61. For ϕ(x) ∈ FO of quantifier rank q, the following are equivalent:
(i) ϕ is bisimulation invariant over finite Kripke structures.
(ii) ϕ is equivalent to a formula of MLn over finite Kripke structures, for n = 2q − 1.

Proof. We merely need to adapt the proof outlined above in minor ways to avoid
passage through infinite structures. For that we may replace bisimilar companion tree
structures by the finite, local versions provided by Lemma 36 rather than full unfoldings.
For the proof of n-locality of ϕ (cf. Lemma 58) no modifications are necessary in the
game argument, as it applies to arbitrary relational structures exactly as for trees. In
fact we only need to use partial tree unfoldings to argue that n-locality and bisimulation
invariance together imply n-bisimulation invariance also in restriction to finite structures,
as follows.

Let ϕ(x) be bisimulation invariant and n-local over finite structures. Consider finite
structures (M, w) Àn (M′, w′). We need to show that M, w |= ϕ iff M′, w′ |= ϕ.
As ϕ is bisimulation invariant, we may replace (M, w) and (M′, w′) by bisimilar finite
companion structures whose restrictions to Un(w) and Un(w′) are trees, by Lemma 36.
As ϕ is n-local, these structures may further be replaced by their restrictions to the
n-neighbourhoods of w and w′, which are n-bisimilar tree structures of depth n, hence
bisimilar. So ϕ is true in w iff it is true in w′. ¥

Compare section 9 for further discussion of the finite model theory context; for fur-
ther ramifications concerning modal logics based on refined notions of bisimulation also
compare section 5; for relativisations to other non-elementary classes of frames, see in
particular [17].
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4.3 Guarded fragments of first-order logic

The standard translation (see section 1.3) immediately suggested finite variable fragments
as an appropriate framework for the study of modal logic within first-order logic. In some
ways, however, the finite variables feature fails to give satisfactory insights into the model
theoretic behaviour of modal logics. The comparatively smooth finite model theory (see
section 9) of modal logics and most notably also their decidability properties (considering
robustness under extensions [135]; see section 5.2) are not reflected by the finite variable
fragments or even FO2 in particular [61, 60].

Guarded fragments of first-order logic were introduced by Andréka, van Benthem and
Németi in [1]. Compared to the finite variable fragments, the guarded fragment GF of
first-order logic is much closer to the qualitative characteristics of modal logics. It has
greater explanatory power as a framework for the study of modal logics within first-
order. For instance, GF and some of its further extensions mirror the decidability as
well as finite and tree model properties of modal logics. Crucially, there is a natural
notion of guarded bisimulation at the root of some of these features. On the other hand
guarded logics considerably extend the expressive power of standard modal logics, and
in particular still encompass many of their important extensions. Guarded logics have
thus come to play an important role in the quest for more expressive fragments of first-
order logic that share many of the model theoretic and algorithmic properties that make
modal logics so useful for various applications. GF and its relatives extend the scope of
essentially modal model theory, including algorithmic and finite model theory aspects,
in the direction of first-order.

The guarded fragment GF of FO generalises the relativised nature of modal quan-
tification. Let α(x,y) be an atomic first-order formula in variable tuples as displayed,
and consider existential and universal quantification over variables y where the range of
quantification is restricted to those y that satisfy α(x,y) in relation to x (α is called
the guard of the quantification). The following shorthand syntax is useful for this α-
relativised quantification:

(∃y.α)ϕ := ∃y(
α(x,y) ∧ ϕ(x,y)

)
, and its dual (∀y.α)ϕ := ∀y(

α(x,y) → ϕ(x,y)
)
.

Modal quantification (or its standard translation into first-order) displays just this
kind of relativisation, where the guards are the atoms Rαxy for accessibility relations
Rα.10 GF admits relativised quantification of this kind, for any atom α, provided that
the variables that occur in α comprise all the free variables in the formula ϕ that is
being quantified. The standard translation of modal logics (section 1.3) clearly obeys
these restrictions.

DEFINITION 62. For an arbitrary relational vocabulary τ , the formulae of GF(τ) ⊂
FO(τ), the guarded fragment, are generated from the atomic formulae by closure under
boolean connectives and guarded quantification; i.e., if ϕ(x,y) ∈ GF(τ) and if α(x,y)
is a τ -atom (also allowing equality) such that free(ϕ) ⊆ var(α), then

(∀y.α
)
ϕ(x,y) and(∃y.α

)
ϕ(x,y) are also in GF(τ).

The atom α in these last formulae is called the guard of the (universal or existential)
quantification. The nesting depth is declared for formulae of GF similar to the first-order

10This is good also in the polyadic case, where an n-ary modality α associated with an (n + 1)-ary
relation Rα gives rise to quantification with guard Rα(x,y).
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quantifier rank, with the only exception that it increases by just 1 with every guarded
quantification (rather than by the number of quantified variables in y). The semantics
of GF is just that of first-order logic. It makes sense, however, to look at the crucial
restriction with a view to a semantic understanding.

DEFINITION 63. Let A be a τ -structure. A subset s ⊆ A is guarded if s is a singleton
set or if s = {a1, . . . , ak} for some tuple (a1, . . . , ak) ∈ RA for some relation R ∈ τ . A
tuple a over A is guarded if its components are elements of some common guarded subset.

Guarded quantification essentially is quantification over guarded tuples. Intuitively,
only the elements of guarded subsets are simultaneously visible in the guarded perspec-
tive; this intuition is borne out in the concept of guarded bisimulation (see Definition 64
below).

Clearly the standard translation embeds ML into GF, and actually into the two-
variable fragment of GF, GF∩FO2, which is strictly between ML and FO2 in expressive
power, comprising some but not all the features that separate ML from FO2 as discussed
at the end of section 4.1 above. GF naturally comprises

(i) inverse (or past) modalities, as guardedness is non-directional.
(ii) positive Boolean operations on accessibilities (including equality), as for instance

in [α ∩ β]ϕ ≡ (∀y.(Rαxy ∧Rβxy)
)
ϕ(y) ≡ (∀y.Rαxy)(Rβxy → ϕ(y)).

(iii) a global modality, or universal/existential quantification over a single free variable,
as any singleton set is guarded.

Moreover, it should be noted that GF is genuinely polyadic in the sense of representing
no restriction on the arities of definable predicates, whereas even polyadic modal logics
are still monadic in that sense. But GF indirectly also has a finite variable nature to it.
Note that guarded sets are bounded in size by the width (maximal arity) of the available
relation symbols. It is not hard to show that any formula in GF(τ), for τ of width
k, is equivalent to a boolean combination of atomic formulae and formulae that are in
GF ∩ FOk (up to a possible renaming of variables).

Guarded bisimulations form the backbone of the model theory of GF, playing the same
role for GF that ordinary bisimulations play for modal logics. In essence a guarded bisim-
ulation is a back-and-forth equivalence based on local isomorphisms between guarded
subsets.

DEFINITION 64. A guarded bisimulation between τ -structures A and B is a non-empty
set Z of local (partial) isomorphisms between A and B such that

(i) for every ρ ∈ Z, the domain and image of ρ are guarded subsets of A and B,
respectively.

(ii) Z satisfies the following back-and-forth conditions w.r.t. guarded subsets:
forth: for every ρ ∈ Z with domain s and every guarded subset s′ of A, there is
some ρ′ ∈ Z with domain s′ such that ρ and ρ′ agree on s ∩ s′.
back : analogously, w.r.t. to the inverse maps ρ−1 and for guarded subsets of B.

Guarded bisimulations preserve the semantics of GF just as bisimulations preserve
the semantics of ML. Moreover, bounded guarded bisimulations – best defined in terms
of the restriction of corresponding guarded bisimulation games to a fixed finite number
of rounds – precisely capture the levels of equivalence w.r.t. guarded formulae of cor-
responding nesting depth. Finally, GF is semantically characterised as a fragment of
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FO precisely through guarded bisimulation invariance. This analogue of van Benthem’s
characterisation of modal logic is due to Andréka, van Benthem and Németi [1].

THEOREM 65. For any first-order formula ϕ ∈ FO(τ) the following are equivalent:
(i) ϕ is invariant under guarded bisimulation.
(ii) ϕ is logically equivalent to a formula ϕ̃ ∈ GF(τ).

It is interesting to note that the full analogue of this characterisation theorem in finite
model theory is currently still open. For relational vocabularies of width up to two
(essentially coloured directed graphs), the analogue is proved in [106].

Perhaps the most important model theoretic consequence of an analysis of GF w.r.t.
guarded bisimulations is a corresponding generalisation of the tree model property.
For arbitrary relational structures one obtains guarded bisimilar companion structures
through a process of guarded unravelling or unfolding. These relational structures are
close to trees in being tree-decomposable by means of guarded subsets. Tree decomposi-
tions provide a representation of the underlying relational structure by a tree. This notion
from graph and hypergraph theory (see for instance [4]) has been fruitfully employed in
relational structures also in applications to relational databases [3]. Tree representations
based on guarded subsets work with tree structures whose nodes describe all the guarded
substructures of the given structure. Guarded unravellings [56, 58] provide tree decom-
positions by guarded subsets. As the size of guarded subsets in τ -structures is bounded
by the width of τ (the maximal arity of relations in τ), one automatically obtains a
bound on the tree width. The resulting generalised tree model property from [56] is the
following.

THEOREM 66. Any satisfiable formula ϕ ∈ GF(τ) has a model which is tree decompos-
able in terms of its guarded subsets and consequently of tree width m− 1, where m is the
width of τ .

Such a generalised tree model property can be of eminent model theoretic importance,
especially with a view to algorithmic questions, because properties of tree decomposed
models may be determined in terms of their tree representations. Using classical model
theoretic tools for trees, and in particular automata theoretic methods, the generalised
tree model property has strong consequences for decidability and complexity issues. For
instance, GF and some of its extensions beyond first-order logic that are invariant un-
der guarded bisimulation and hence satisfy the generalised tree model property, can be
decided for satisfiability via reductions to the monadic second-order theory of trees (Ra-
bin’s theorem). A direct reduction to emptiness problems for suitable tree automata
moreover typically yields optimal complexity bounds. Even finite models for formulae of
GF can be built from infinite tree-like models, using finite saturation arguments based
on Herwig’s extension theorem for partial isomorphisms [67], thus providing an elegant
proof of the finite model property for GF [56].

THEOREM 67. Any satisfiable formula of GF has a finite model: GF has the finite
model property.

The clique guarded fragment pushes the basic idea of guarded quantification a bit
further by relaxing the notion of guarded subsets. A subset s of a relational structure is
clique guarded if any pair of elements from the set is guarded (the subset forms a clique
in the Gaifman graph). In the clique guarded fragment, quantification is restricted to
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clique guarded rather than guarded subsets. The resulting logic naturally embeds the
first-order translation of the Until operator of temporal logic:

(ϕUntil ψ)(x) ≡ ∃y(
x ≤ y ∧ ψ(y) ∧ ∀z(

(x ≤ z ∧ z < y) → ϕ(z)
))

,

because the relevant x, y, z triples form cliques w.r.t. comparability under ≤. The clique
guarded fragment is no longer restricted to finite variables as clique guarded subsets can
have any size. (The Until operator, which crucially requires three variables, is expressible
in terms of clique guarded triples w.r.t. a binary relation.)

Despite the increase in expressiveness, the clique guarded fragment is still decidable
for satisfiability [56] and it also satisfies the finite model property [69, 70] (with links
between clique guardedness and extension theorems for partial isomorphisms).

5 VARIATIONS, EXTENSIONS, AND COMPARISONS OF MODAL LOGICS

There is a considerable body of work on ramifications of the familiar classical modal
logics. At the level of ordinary semantics in (pointed) Kripke structures or transition
systems, many variations and extensions have been proposed. These largely aim at
preserving some of the key model theoretic features of basic modal logics while adapting
or boosting the expressive power – either for the purposes of a systematic investigation or
for the modelling of situations that cannot be captured by the standard modal languages.
The many application areas of modal logics contribute to interesting ramifications and
continue to trigger new developments. We give but a few examples. Variants of basic
modal languages for the purposes of description logics, as treated in depth in Chapter 13
of this handbook, naturally use for instance inverse modalities (for inverse roles) or graded
modalities (for number constraints). Various constructors for new modalities based on
composite accessibility relations (e.g., relational composition or transitive closures) have
long been studied in temporal and process logics (see Chapters 11 and 12 among others).
More recently similar extensions have been employed in formalisms developed for the
navigation and retrieval of information in data formats like XML (see [100]).

While a more comprehensive concept of a generalised modal model theory may lead
to further consolidation of the big picture, we can here only attempt to exemplify some
simple model theoretic ideas in this direction. For a tentative framework, let us regard
the underlying notion of bisimulation invariance as the key feature of a specifically modal
model theory (at the level of Kripke semantics). We may then tentatively explore this
theme along two axes: variations in the sense of variations of the underlying notion of
bisimulation; and extensions of expressive power subject to the requirement of invariance
w.r.t. the given notion of bisimulation.

For two typical examples of these orthogonal directions consider, on the one hand, the
addition of past modalities (backward moves in the bisimulation game), and, on the other
hand, the extension by path quantification (as for reachability assertions or unbounded
iteration of 3).

For this largely informal sketch we limit ourselves to just a few logics that play a
prominent role in connection with transition systems and the behaviour of processes.
Some of these and many others are treated at much greater depth in other chapters
of this handbook, in particular Chapters 11, 12 and 17 of this handbook and several
others in Parts 3 and 4. As criteria for the model theoretic character of the logics
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under consideration, over and above their expressive power, we look in particular at the
corresponding bisimulation games and model theoretic characterisation theorems, at the
tree model property and the finite model property, and at satisfiability issues, which are
particularly relevant in many applications (compare Chapters 3 and 17 of this handbook).

5.1 Variations through refined notions of bisimulation

A refinement of bisimulation equivalence ought to be matched, on the logic side, by
a more expressive logic. We thus encounter extensions of basic modal logic to more
expressive fragments of first-order logic, like those considered in sections 4.1 and 4.3.

In terms of the bisimulation game (or the back-and-forth conditions) over Kripke
structures with binary accessibility relations one can introduce a variety of additional
moves, in order to capture the expressiveness of some natural extensions of basic modal
logic, for instance:

• unconstrained moves to arbitrary states (global bisimulation). This corresponds
to the addition of a universal modality (or ∀/∃ quantification) to basic ML, which
also allows for an explicit transition between global and local semantics (see, e.g.,
[54, 22]).

• backward moves along edges (two-way bisimulation). This corresponds to the ad-
dition of past or inverse modalities to basic ML.

• counting moves, in which the number of available responses is controlled (counting
or locally bijective bisimulation). This corresponds to the extension of basic ML
by graded or counting modalities (see [21]).

(Also compare [88] for bisimulations for a hierarchy of description logic languages).
In terms of further reaching variations that also involve the format of the underlying

structures and game positions, we discussed in section 4.3 guarded bisimulations for
arbitrary relational structures – corresponding to guarded rather than ordinary modal
quantification and guarded fragments of first-order logic as important intermediaries
between modal and first-order logics.

As indicated, these variations typically correspond to natural extensions of ML. These
correspondences manifest themselves in terms of

(i) Ehrenfeucht–Fräıssé relationships: equivalence in the extended logic is charac-
terised by the existence of winning strategies for player II in the corresponding,
refined bisimulation games.

(ii) characterisation theorems in the style of Theorems 55 or 65 that characterise the
respective logic as a fragment of first-order logic, in terms of invariance under the
refined notion of bisimulation.

For instance, the global bisimulation game gives player I the option to switch, for an
individual round, to moves in which both players are allowed to move the pebbles to
any element of the respective structure rather than just along accessibility edges. This
is the Ehrenfeucht–Fräıssé game for the extension ML[∀] of basic ML, in which a global
modality is available (corresponding to unrestricted universal first-order quantification
in the standard translations). Then II has a winning strategy for the n-round game on
(M, w) and (M′, w′) iff (M, w) and (M′, w′) satisfy exactly the same formulae in ML[∀] of
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quantifier rank up to n. Also the classical proof pattern for the characterisation theorem
(compare the classical proof argument for Lemma 56) goes through. This uses compact-
ness and ω-saturated or modally saturated extensions and the analogue of Remark 40,
which is good also for this refined bisimulation game. So we have obtained the following.

PROPOSITION 68. A first-order formula ϕ(x) is invariant under global bisimulation
iff it is equivalent to a formula of ML[∀].

This proposition may serve as a representative for a whole family of similar characteri-
sation results for many other variants of basic modal logic. In fact, these game techniques
are not at all even restricted to the modal setting. Analogous Ehrenfeucht–Fräıssé and
characterisation theorems hold for instance also for the finite variable fragments FOk

in relation to k-pebble game equivalence. Interestingly, as far as the characterisation
theorems are concerned, the picture becomes more varied when we shift attention to the
finite model theory versions (cf. section 9, in particular Theorem 130).

5.2 Extensions beyond first-order

Extensions induced by variations of the underlying notion of bisimulation in the first
instance all lead to modal logics of (pointed) Kripke structures that are still fragments of
first-order logic. There is the orthogonal direction of extension that adds expressiveness
through stronger constructors in the logic while still adhering to invariance under the
given notion of bisimulation. These extensions address some of the expressive deficiencies
inherent in first-order, in particular its restriction to essentially local properties (in the
sense of Gaifman’s locality theorem). Major process logics, aimed at formalising dynamic
properties of processes in terms of Kripke structures as transition systems, need to express
fundamental properties – like reachability or well-foundedness – that are non-local and
hence not expressible in FO.

The process logics discussed below specifically aim for the formalisation of proper-
ties of programs or processes, based on the modelling of states and state transitions in
Kripke structures as transition systems: atomic propositions model atomic state proper-
ties, and accessibility relations between states model atomic state transformers or atomic
programs. This setting calls for logics of a fundamentally modal nature – especially since
the intended processes are captured by transition systems only up to bisimulation equiv-
alence. Bisimilar transition systems describe exactly the same processes in the sense that
there is a complete correspondence of possible runs at the level of individual transitions
and in terms of mutual step-wise simulation (bi-simulation).

We fix a finite similarity type with modalities α corresponding to binary predicates
Rα (transition relations for atomic programs α) and a set of atomic propositions p cor-
responding to unary predicates P interpreted as the set of states satisfying p. The
framework of basic modal logic ML provides modalities for the atomic programs α for
assertions about the possible results of single-step state transformations. Various ad-
ditional constructors have been proposed for the formalisation of dynamic, non-local
properties, involving for instance unbounded iterations of transitions. We illustrate the
examples of PDL, CTL∗ and Lµ. For one simple concrete example of a dynamic, non-local
property, we consider the following (at a state):

(χ) in any possible future state of the system, there will be
a reachable state in that state’s future where p holds.
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Propositional dynamic logic

Propositional dynamic logic PDL [29] is based on a dual perspective involving both states
and transitions as primary objects of its semantics. Correspondingly, PDL distinguishes
two kinds of formulae, state formulae and program formulae. State formulae, like the
familiar modal formulae are evaluated at the states of a transition system and thus define
unary predicates on the universe; program formulae on the other hand are evaluated on
pairs of states and define binary predicates on the state space, i.e., derived transition
relations. Here we work with the following definition; for more on PDL see Chapter 12
of this handbook. We use ϕ,ψ, . . . for state formulae, η, ζ, . . . for program formulae.

DEFINITION 69. State and program formulae of PDL are generated by mutual induc-
tion.
State formulae: the Boolean closure of atomic propositions p, and modal quantification
of the form 〈η〉ϕ and [η]ϕ for program formulae η and state formulae ϕ.
Program formulae: the closure of the atomic program formulae α and of all formulae ϕ?
(“test” operator on state formulae ϕ) under union (η ∪ ζ), composition (η; ζ) and star or
iteration, (η∗).

The semantics of state formulae is the natural one based on the semantics of the
corresponding program formulae that define modalities η in terms of new transition
relations Rη. For those, the specific constructors are defined in relational terms: atomic
program formulae α refer to the given transition relations Rα; the union operator is
set union: Rη∪ζ = Rη ∪ Rζ ; composition is relational composition: Rη;ζ = Rη ◦ Rζ =
{(u,w) | (u, v) ∈ Rη, (v, w) ∈ Rζ for some v }; the star operation corresponds to the
reflexive transitive closure: Rη∗ =

⋃
n≥0(Rη)n; finally, the test operator defines a loop

relation according to Rϕ? = {(u, u) | M, u |= ϕ}.
The PDL state formula 〈η∗〉ϕ, for instance, expresses reachability on an η-path of a

state that satisfies ϕ. Note that this is not expressible in FO, even for atomic η and ϕ.
(χ) of the example above is expressible in PDL using η :=

⋃
α∈τ α, as χ = [η∗]〈η∗〉p.

We turn to bisimulation invariance. While the standard notion refers to state formulae,
the constructors for PDL program formulae also respect bisimulation equivalence, in the
sense of bisimulation safety (see section 3.8).

LEMMA 70. For Kripke structures M, let M
∗

denote the expansion with all the acces-
sibility relations defined by PDL program formulae. Then any bisimulation ρ : M À M′

is also a bisimulation between these expansions, ρ : M
∗ À M′∗.

Bisimulation invariance for state formulae is then straightforward. In fact it falls out
of the inductive proof of the claim of the lemma, which is best understood in terms
of the underlying games. Consider the operations of union, composition and star on
accessibility operations. For moves along Rη∪ζ = Rη ∪ Rζ , the responses of II merely
need no longer respect η/ζ individually; moves along Rη;ζ can be responded to as if
they came as individual moves in two consecutive rounds; similarly, a move along an
Rη∗-edge corresponds to a finite sequence of moves along Rη-edges, which is similarly
covered by II’s strategy. If, for some state formula ϕ, (u, u′) ∈ ρ implies that M, u |= ϕ
iff M′, u′ |= ϕ, then it follows that play according to ρ guarantees that (stationary)
Rϕ?-moves are available in M iff they are available in M′.

COROLLARY 71. Any state formula of PDL is invariant under bisimulation.
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Computation tree logic

For computation tree logic CTL∗, the emphasis is on branching time temporal behaviour
rather than process algebra. It is customary to study CTL∗ over transition systems with
a single binary transition relation R (corresponding to a single unary modality 3) which
moreover is required to have no terminal nodes, i.e., we assume M |= 3>.

The intuitive idea in CTL∗ is to associate the runs from a state u of a transitions
system M with the tree structure ~M[u] (the unfolding or tree unravelling, as defined
in section 2.2). The infinite branches of the tree ~M[u] are the computation paths of M
at u. Besides state formulae, which define properties of states as usual, CTL∗ has path
formulae that define properties of such computation paths. Here a path at u is an infinite
R-path rooted at u in the usual graph theoretic sense; we write σ = u0, u1, . . . for a path
at u = u0.

DEFINITION 72. State and path formulae of CTL∗ are generated by mutual induction.
State formulae: Boolean closure of atomic propositions p and formulae Eγ and Aγ for
path formulae γ (existential and universal path quantification).
Path formulae: Boolean closure of all state formulae ϕ and formulae Next γ (temporal
“next” operator) and γ Until δ (temporal until operator) for path formulae γ, δ.

The semantics of atomic propositions (as state formulae) and of the Boolean connec-
tives is the natural one. We just highlight the specific constructors for state and path
formulae. The semantics of a state formula ϕ is given in terms of a state u ∈ M, the
semantics of path formulae γ, δ in terms of a path σ = u0, u1, . . . in M, whose suffixes
we denote as in σj = uj , uj+1, . . . :

M, u |= Eγ iff there is a path σ at u such that M, σ |= γ, similarly for the dual A.
M, σ |= ϕ iff M, u0 |= ϕ.
M, σ |= Next γ iff M, σ1 |= ϕ.
M, σ |= γ Until δ iff for some j ≥ 0: M, σj |= δ and for 0 ≤ i < j, M, σi |= γ.
Reachability of a state satisfying ϕ, for instance, becomes expressible as E(>Until ϕ).

The formula >Until ϕ is also abbreviated F ϕ, “eventually ϕ”. Using this abbreviation,
our sample property (χ) is expressible as χ = ¬EF¬EF p.

PROPOSITION 73. Any state formula of CTL∗ is invariant under bisimulation.

This is a straightforward consequence of the fact that any bisimulation ρ : M À M′

preserves paths in the sense that for (u, u′) ∈ ρ, every path σ = u0, u1, . . . at u0 = u in
M has a bisimilar companion path σ′ = u′0, u

′
1, . . . at u′0 = u′ in M′, which is bisimilar

in the sense that (ui, u
′
i) ∈ ρ for all i.

Interestingly, CTL∗ admits a characterisation as the bisimulation invariant fragment
of monadic path logic, that fragment of monadic second-order logic (over trees) in which
second-order quantifiers range over paths. In the light of Theorem 76 below, this char-
acterisation also clarifies the relationship between CTL∗ and the much more expressive
modal µ-calculus. The following is due to [101] over arbitrary tree models and to [65]
over the binary tree.

THEOREM 74. State formulae of CTL∗ precisely define those state properties that are
bisimulation invariant and definable in monadic path logic.
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Modal µ-calculus

The modal µ-calculus Lµ is a particularly natural and powerful extension of basic modal
logic, which encompasses both PDL and CTL∗. In many ways it may be regarded as
the extension of modal logic for the purposes of temporal reasoning about processes
and corresponding model checking applications. Its theory is well developed, ranging
from more classical model theoretic issues to computational and in particular automata
theoretic analysis; see Chapter 12 of this handbook for a thorough treatment. Here, we
only very selectively comment on some aspects of Lµ and essentially restrict ourselves to
its role as an extension of ML in our bisimulation-oriented perspective on modal model
theory.

Lµ is the canonical fixed point extension of basic modal logic. Least (and dually,
greatest) fixed points of monotone operators capture natural forms of recursion closely
related to inductive (and dually, co-inductive) definitions. In Lµ basic modal logic is
augmented by the means to define, as fixed points, the results of recursions based on
definable monotone operators.

Consider basic modal logic with free monadic-second order variables X, Y, . . . (treated
like monadic predicate letters or variables for propositions). A formula ψ = ψ(X) is
positive in X if X only appears within the scope of an even number of negations in
ψ. Positivity in X ensures that, for each structure M that interprets all the remaining
variables, the following operation on the power set P(W ) of the universe W of M is
monotone (in the sense that X ⊆ X ′ implies ψ[X] ⊆ ψ[X ′]):

ψM : P(W ) −→ P(W )
X 7−→ ψM[X] := {w ∈ W | M, X, w |= ψ}.

This operation therefore has unique ⊆-minimal and -maximal fixed points, the least and
greatest fixed points of ψ(X), respectively.

DEFINITION 75. The syntax of Lµ is based on basic modal logic ML with free monadic
second-order variables, plus closure under the least and greatest fixed point constructors:
if ψ ∈ Lµ is positive in X, then µX.ψ and νX.ψ are also formulae of Lµ (in which X is
bound).

The semantics of formulae ϕ ∈ Lµ is inductively defined in terms of Kripke structures
M with interpretations for the free second-order variables; M, u |= µX.ψ (respectively
νX.ψ) if u is in the least (respectively greatest) fixed point of the operator associated
with ψ over M.

The least fixed point µX.ψ(X) in M is also definable as the limit of stages Xα gener-
ated by induction over the ordinal α, where X0 = ∅, Xα+1 = ψM[Xα] for successor steps,
and Xλ =

⋃
α<λ Xα for limits λ. By monotonicity, the sequence of the Xα is increasing.

Over each M it eventually must become constant for cardinality reasons. Then the least
fixed point of ψM is X∞ =

⋃
α Xα = Xγ for the minimal γ such that Xγ+1 = Xγ . (This

γ is the closure ordinal of the fixed point over M.)
The Lµ formula µX.ψ(X) for ψ(X) = ϕ ∨3X, for instance, expresses reachability of

a state satisfying ϕ. The monotone operator ψM maps X ⊆ W to the union of ϕM with
3(X). Stage Xn consists of those states from which a state satisfying ϕ is reachable on
an R-path of length less than n. The least fixed point is reached within ω stages over any
M, with X∞ = Xω being the set of states satisfying 〈R∗〉ϕ. Similarly, well-foundedness
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of the converse of R, i.e., non-existence of infinite R-paths from a state, is captured by
the least fixed point of the operator defined by the formula ψ(X) = 2X.

Our sample property (χ) is expressible as χ = νY.
(
2Y ∧ µX.(p ∨3X)

)
.

Least and greatest fixed points as provided in Lµ admit straightforward explicit defini-
tions in monadic second-order logic MSO, and Lµ may be regarded as a fragment of MSO
via a corresponding translation. The following theorem of Janin and Walukiewicz [77]
characterises Lµ as the bisimulation invariant fragment of MSO. This is entirely similar
in spirit to Theorem 55 for basic modal logic at the first-order level. Covering a far more
expressive setting, its proof is also entirely different and based on a sophisticated use of
tree automata that recognise corresponding classes of tree models.

THEOREM 76 (Janin–Walukiewicz). For any MSO formula ϕ = ϕ(x) the following are
equivalent:

(i) ϕ is bisimulation invariant.
(ii) ϕ is logically equivalent to a formula of Lµ.

We note that, in a similar modal spirit, fixed point extensions have been explored
under variations of the underlying notion of bisimulation. In particular, the so-called full
µ-calculus with inverse modalities, as related to two-way bisimulation, is studied in [136];
guarded fixed point logic µGF, [62], is the natural extension of the guarded fragment GF
by fixed points. For the latter, an analogue of the above characterisation theorem has
also been obtained, with a stronger fragment of second-order logic, guarded second-order
logic, in place of MSO, [58].

Infinitary modal logics

We encountered ML∞, the extension of basic modal logic ML by conjunctions and dis-
junctions over arbitrary sets of formulae, in section 3.4. Theorem 41 characterises bisim-
ulation equivalence as equivalence in ML∞. The restriction to set-size (rather than
class-size) disjunctions (or unions) is crucial. Remarkably, Lµ (and CTL∗) cannot be
embedded into ML∞: the well-foundedness property expressed by µX.2X ∈ Lµ, for
instance, is not globally definable in ML∞ (see Observation 42). In fact, Lµ (or CTL∗)
and ML∞ are incomparable in expressive power.

On the other hand, the individual stages in the generation of any modal least or
greatest fixed point are globally definable in ML∞. In the example of µX.2X, the
stages Xα are definable by formulae ϕα ∈ ML∞ according to ϕ0 = ⊥, ϕα+1 = 2ϕα and
ϕλ =

∨
α<λ ϕα. The reason that the fixed point X∞ is not ML∞ definable is that there is

no bound on the closure ordinal of this induction. For many natural (restricted) settings,
however, ML∞ is a maximal bisimulation-invariant logic. For the following compare the
remark on characteristic formulae below Theorem 41.

OBSERVATION 77. Over any class of structures that intersects only set-many bisimu-
lation equivalence classes, every bisimulation closed state property is definable in ML∞.

Several extended logics, including PDL as an important fragment of Lµ, also admit
direct translations into ML∞, though. For PDL this is a consequence of the fact that
the closure ordinal of the fixed points needed to capture PDL constructs is uniformly
bounded by ω. In fact, PDL therefore embeds into that fragment of ML∞ in which
disjunctions and conjunctions over countable, rather than arbitrary, sets of formulae are
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admitted, MLω1 ⊂ ML∞. The PDL reachability assertion 〈α∗〉ϕ, for instance, globally
translates into

∨
n∈ω〈α〉nϕ, where 〈α〉n is the n-fold iteration of the diamond operator.

MLω1 may be studied as a fragment of the corresponding infinitary extension of first-
order logic, Lω1ω, which itself has a well developed classical model theory [83]. Similar
to Lω1ω, MLω1 also admits a complete proof system (including infinitary rules) and even
satisfies (Craig and Lyndon type) interpolation theorems. Characterisation, complete-
ness, and preservation theorems for MLω1 and some of its fragments have been obtained
along such lines by Radev [110] and Sturm [119, 120].

5.3 Model theoretic criteria

We briefly discuss three particularly relevant model theoretic properties in the light of
some of the variations and extensions mentioned above. These may serve as examples that
among others could contribute to a framework for a more comprehensive comparative
model theory of modal logics.

Finite model property (FMP). As noted in section 3.3, the basic modal logic itself has
the finite model property, as do many of its variations and extensions. The variations
of ML discussed in section 5.1 above, by inverse and global modalities, as well as the
guarded fragment GF, have the FMP. For the extensions beyond FO the finite model
property for Lµ, due to Streett and Emerson [118], implies FMP for all of its sub-logics,
like CTL∗ and PDL.11 The full µ-calculus, Lµ with inverse modalities, on the other
hand lacks the FMP [136]. The following counterexample illustrates this. The formula
νX.(〈R〉X ∧ µY.

[
R−1

]
Y ) requires an infinite (forward) R-path along which every node

is well-founded w.r.t. R (does not admit an infinite backward R-path). This implies that
the infinite path cannot fold back onto itself; the formula therefore only admits infinite
models.

Tree model property. Recall that a logic has the tree model property if every satisfiable
formula is satisfied in a tree model. Basic modal logic has the (finite) tree model property
(cf. Lemma 35). In fact any bisimulation invariant logic has the tree model property,
based on the existence of bisimilar tree unfoldings (cf. section 2.2). In this sense the
tree model property, more than the finite model property, is a hallmark of modal model
theory. Moreover, many important variations, even though no longer invariant under
ordinary bisimulations, still retain (variant) tree model properties. This phenomenon
carries particularly far in the case of GF (see Theorem 66, which also generalises to any
guarded bisimulation invariant logic).

Decidability. Decidability and complexity of the satisfiability problem provides one
measure for the comparison of the variations and extensions discussed above. Basic
modal logic may be seen to be decidable for a number of distinct reasons, as it were.
Firstly, as FO is recursively enumerable for validity, ML is decidable as a fragment of
FO that is recursively enumerable for satisfiability due to its finite model property. More
specifically, however, the finite (tree) model property for basic modal logic (cf. Lemma 35)
may be strengthened by effective bounds on depth and branching degree of the candidate
tree models – indeed, a Pspace (or alternating Ptime) procedure for satisfiability can be

11The finite model property of many variations and extensions of modal logic, such as PDL and CTL,
can be obtained by filtration, see [46]. However, this method does not work for some of the more complex
systems such as CTL∗ and Lµ, where tableau-like and automata-based methods are applied instead.
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extracted (cf. Chapter 3 of this handbook). Alternatively, decidability of ML may be
attributed to just its tree model property and the fact that its tree models are recognised
by tree automata, for which emptiness is decidable (cf. Chapters 3 and 17). In view
of the extensions that go beyond FO this second line of reasoning carries much further.
Extensions that are ‘modal’ in the sense of being bisimulation invariant share the tree
model property. Allowing for the appropriate variations of bisimulation, this approach
covers not only Lµ, but even the full µ-calculus [136] or the fixed point extension of
the guarded fragment [62], which fail to have the FMP. See [57, 135] in this connection
for a discussion of the robustness of decidability of modal logics, with a focus on tree
models and the accompanying automata theoretic techniques; also see Chapter 17 of this
handbook. A comparison between FO2 and ML in relation to their extensions by natural
constructs (e.g., counting, path quantification, transitive closures, fixed points) has also
highlighted the special status of modal logic in regard to decidability of such extensions:
even comparatively weak extensions of FO2 along these lines are highly undecidable [61].

6 FURTHER MODEL-THEORETIC CONSTRUCTIONS

One of the traditional directions of development for model theory of a given logic is to
identify a sufficiently rich collection of constructions on models, preserving truth in the
logic, so that the fundamental concepts of logical definability and logical equivalence can
be characterised in terms of these constructions.

In section 2 we introduced the basic model-theoretic notions of generated substruc-
tures, bounded morphisms and disjoint unions of Kripke structures and frames, and
established corresponding preservation results. These constructions, however, are not
sufficient for a complete description of the modal definability of properties or modal
equivalence of structures. In this section we introduce and study two more advanced
constructions: ultrafilter extensions and ultraproducts. The former, stemming from the
Jónsson–Tarski representation theorem for Boolean algebras with operators in [78], was
introduced in modal logic by Goldblatt [43, 44] and used for model-theoretic characteri-
sations of modal definability in [51, 126, 28]. See also section 8. The latter comes from
first-order logic, as the most characteristic construction preserving first-order validity
(see [12]). Since modal logic on Kripke structures is a fragment of first-order logic, it
is a natural truth-preserving construction here, too, and features in the model-theoretic
characterisations of modal definability in Kripke structures in section 6.4. Later in this
section we indicate how ultrafilter extensions and ultraproducts are linked with each
other, and how they relate modal equivalence between Kripke structures with bisimula-
tions, through the notion of saturation.

6.1 Ultrafilter extensions

Let F = 〈W, {Rα}α∈τ 〉 be a τ -frame and let U(W ) be the set of all ultrafilters over W .
For every w ∈ W , u[w] = {X ⊆ W | w ∈ X} is the principal ultrafilter generated by w.
Further, for every X ⊆ W we define u(X) := {u ∈ U(W ) | X ∈ u}.

For each α ∈ τ we define a binary relation Rue
α on U(W ) as follows. For u,w ∈ U(W ):

uRue
α w iff 〈Rα〉 (X) ∈ u for every X ∈ w.

In particular, note that for every α ∈ τ , and x, y ∈ W , xRαy iff u[x]Rue
α u[y].
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DEFINITION 78. Given a τ -frame F = 〈W, {Rα}α∈τ 〉:
(i) The ultrafilter extension of F is the τ -frame ue(F) := 〈U(W ), {Rue

α }α∈τ 〉.
(ii) For every Kripke τ -structure M = 〈F, V 〉, the ultrafilter extension of M is the

Kripke τ -structure ue(M) := 〈ue(F), V ue〉 where V ue(p) = u(V (p)) for each p ∈ Φ.

Thus, the subframe of ue(F) consisting of the principal ultrafilters on F is isomorphic
to F but in general, it is not a generated subframe of ue(F) (see [5, Example 2.58]).
However, every finite frame is isomorphic to its ultrafilter extension. For a proof, see
e.g. [5, Proposition 2.59].

Here are two concrete examples of ultrafilter extensions from [129]; also compare [129]
for a detailed study of ultrafilter extensions and their use in characterising modal defin-
ability in some special classes of frames.

• ue(〈Z, <〉), where 〈Z, <〉 is the linearly ordered set of integers, comprises an iso-
morphic copy of 〈Z, <〉 represented by the principal ultrafilters, and two infinite
clusters of free ultrafilters, one consisting of elements less than all ‘standard’ inte-
gers, and the other of elements greater than all ‘standard’ integers. All ultrafilters
in each cluster are <ue-related.

• ue(〈Q, <〉), where 〈Q, <〉 is the linearly ordered set of rationals, looks similar. It
consists of a copy of the rationals, with infinite clusters on each end, but, since
every real number can be approximated from either side by a sequence of rationals,
it also has for every real number a pair of ‘infinitesimally’ close clusters, one on
either side.

LEMMA 79. For every Kripke τ -structure M = 〈F, V 〉 and any formula ϕ of ML(τ):
V ue(ϕ) = u(V (ϕ)), i.e., ue(M), u |= ϕ iff V (ϕ) ∈ u.

This lemma shows that the notion of ultrafilter extension is canonical : a state, being
an ultrafilter, contains precisely the valuations of those formulae which are true at that
state.

COROLLARY 80. For every Kripke τ -structure M = 〈F, V 〉, w ∈ dom(F), and any
formula ϕ of ML(τ):

(i) M, w |= ϕ iff ue(M), u[w] |= ϕ.
(ii) If ue(M) |= ϕ, then M |= ϕ.
(iii) If ue(F), u[w] |= ϕ, then F, w |= ϕ.
(iv) If ue(F) |= ϕ, then F |= ϕ.

We say that a class of τ -frames C reflects ultrafilter extensions if a τ -frame F belongs
to C whenever ue(F) ∈ C. Thus, FR(Γ) reflects ultrafilter extensions for every set of
modal formulae Γ.

That the converses of the latter 3 claims above do not hold can be seen from the follow-
ing example. The modal formulae preserved in ultrafilter extensions will be characterised
in Proposition 114.

EXAMPLE 81. By Proposition 114, the Gödel–Löb formula: ¤(¤p → p) → ¤p is not
preserved in ultrafilter extensions because it is not canonical (see [75]).

Non-reflection of ultrafilter extensions can be used to prove modal non-definability in
frames in cases where the other truth preserving constructions introduced earlier may not
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work. Going back to the example at the end of section 2.3: the sentence δ = ∀x∃y(xRy∧
yRy) is not captured by frame validity of any ML formula, despite being preserved under
generated subframes, surjective bounded morphisms and disjoint unions, because it does
not reflect ultrafilter extensions. Indeed, 〈N, <〉 6|=FO δ while ue(〈N, <〉) |=FO δ because
every free ultrafilter is a maximal element with respect to the quasi-order <ue (see [128]
or [5, Example 2.58] for details).

6.2 Ultraproducts

The constructions of direct products and ultraproducts of first-order structures can be
applied to frames, considered as FO(τ)-structures, and to Kripke structures, considered
as FO(τΦ)-structures.

DEFINITION 82. Let {W i}i∈I be a family of sets indexed by a set I.
(i) The direct product of {W i}i∈I is the set∏

i∈I W i =
{
g : I → ⋃

i∈I W i | g(i) ∈ W i for all i ∈ I
}
.

(ii) For any ultrafilter U on I, the ultraproduct of {W i}i∈I over U,
∏U

i∈I W i, is
the quotient of

∏
i∈I W i w.r.t. the equivalence relation ∼U defined by g ∼U g′ iff

{i ∈ I | g(i) = g′(i)} ∈ U. We write gU for the ∼U equivalence class of g.
(iii) For any family {Xi ⊆ W i}i∈I ,∏U

i∈I Xi =
{
gU ∈ ∏U

i∈I W i
∣∣ {i ∈ I | g(i) ∈ Xi} ∈ U

}
.

DEFINITION 83. Let
{
Fi =

〈
W i, {Ri

α}α∈τ

〉}
i∈I

be a family of τ -frames indexed by a
set I, and

{
Mi =

〈
Fi, V i

〉}
i∈I

be a family of Kripke τ -structures over these frames.

(i) The direct product of {Fi}i∈I is the τ -frame
∏

i∈I Fi :=
〈∏

i∈I W i, {Rα}α∈τ

〉
,

where for α ∈ τ : g0Rαg1 iff g0(i)Ri
αg1(i) for every i ∈ I.

(ii) The direct product of {Mi}i∈I is the Kripke τ -structure
∏

i∈I Mi :=
〈∏

i∈I Fi, V
〉
,

where V (p) :=
∏

i∈I V i(p) for each p ∈ Φ.
If, further, U is an ultrafilter on I:
(iii) The ultraproduct of {Fi}i∈I over U is the τ -frame

∏U
i∈I Fi := 〈∏U

i∈I W i, {RU
α }α∈τ 〉,

where for α ∈ τ : gU
0 RU

α gU
1 iff {i ∈ I | g0(i)Ri

αg1(i)} ∈ U.
(iv) The ultraproduct of

{
Mi

}
i∈I

over U is the Kripke τ -structure∏U
i∈I Mi := 〈∏U

i∈I Fi, V U〉 such that for each p ∈ Φ, V U(p) :=
∏U

i∈I V i(p).

If Fi = F for every i ∈ I, the ultraproduct is called an ultrapower of F, denoted
∏U

I F;
similarly for Kripke structures, where the ultrapower is denoted

∏U
I M.

By the fundamental theorem of ÃLoś (see, e.g., [12, 68]), every first-order definable
property holds in an ultraproduct iff it holds in a ‘large’ (i.e., in the ultrafilter) set of
component structures. Moreover, every Σ1

1-definable property is preserved by ultraprod-
ucts [12, Corollary 4.1.14]. Therefore, validity of modal formulae in (pointed) frames,
being a Π1

1-definable property in terms of the standard translation, is reflected (i.e., its
negation is preserved) by ultraproducts. Using these, we obtain the following preservation
results.

PROPOSITION 84. For every family of Kripke τ -structures
{
Mi =

〈
Fi, V i

〉}
i∈I

, ultra-

filter U on I, gU ∈ ∏U
i∈I Fi, and formula ϕ of ML(τ):
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(i)
∏U

i∈Mi, gU |= ϕ iff {j ∈ I | Mj , g(j) |= ϕ} ∈ U.

(ii)
∏U

i∈I Mi |= ϕ iff {j ∈ I | Mj |= ϕ} ∈ U.

(iii) If
∏U

i∈I Fi, gU |= ϕ, then {j ∈ I | Fj , g(j) |= ϕ} ∈ U.

(iv) If
∏U

i∈I Fi |= ϕ, then {j ∈ I | Fj |= ϕ} ∈ U.

Since, however, not every valuation in an ultraproduct of frames can be obtained as
an ultraproduct of valuations in the components, the converse of the latter two claims
above does not hold.

The following observation due to Goldblatt [44, 47] blends first-order and modal con-
structions.

PROPOSITION 85. For any family
{
Fi

}
i∈I

of τ -frames and any ultrafilter U on I,∏U
i∈I Fi is embeddable as a generated subframe into

∏U (⊎
i∈I Fi

)
.

The embedding is defined canonically as gU 7→ gU,+, where gU,+ := (w(i), i) for each
i ∈ I. Furthermore, as shown in [129], any ultraproduct of frames

∏U
i∈I Fi is embeddable

as a subframe of ue
(⊎

i∈I Fi
)
.

6.3 Modal saturation and bisimulations

A class of (pointed) Kripke structures C is said to have the Hennessy–Milner property if
modal equivalence between structures in C implies (and hence is equivalent to) bisimu-
lation equivalence. For instance, as noted in Theorem 38 the class of all finite structures
has the Hennessy–Milner property. Compare Definition 39 for first-order types and ω-
saturation. The following weaker notion of saturation is more specific to modal logic.

DEFINITION 86. A Kripke τ -structure M = 〈W, {Rα}α∈τ , V 〉 is modally saturated at a
state w ∈ W if for every α ∈ τ and set of modal formulae Γ, the following saturation
condition holds:
if M, w |= 〈α〉∧ Γ0 for all finite Γ0 ⊆ Γ, then there is some u ∈ W such that wRαu and
M, u |= Γ.
M is modally saturated if it is modally saturated at each of its states.

It is clear from Definition 39 that ω-saturated Kripke structures are modally saturated.

PROPOSITION 87. The class of modally saturated Kripke structures has the Hennessy–
Milner property.

Proof. If M and M′ are modally saturated, then ρ := {(w, w′) ∈ W ×W ′ | (M, w) ≡ML

(M′, w′)} is a bisimulation between M and M′. Atom equivalence is obvious. Consider
for instance the forth condition. Let (M, w) ≡ML (M′, w′) and let (w, u) ∈ Rα. Put
Γ := ThML(M, u). For finite Γ0 ⊆ Γ, M, w |= 〈α〉∧ Γ0 and hence also M′, w′ |= 〈α〉∧ Γ0.
By modal saturation of M′ at w′ therefore, there is some u′ such that (w′, u′) ∈ Rα and
M′, u′ |= Γ. But this means that (M, u) ≡ML (M′, u′), and u′ is as desired for the forth
requirement. ¥

COROLLARY 88. The class of ω-saturated Kripke structures has the Hennessy–Milner
property.

It is well-known from classical model theory [12, Corollary 4.3.14] that the ultrapower
of any (pointed) Kripke structure w.r.t. a regular ultrafilter is an ω-saturated elementary
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extension of that structure. Furthermore, two (pointed) Kripke structures are modally
equivalent iff any pair of their ω-saturated ultrapowers are modally equivalent, and hence,
by Corollary 88, bisimilar. Thus, we obtain the following characterisation of modal
equivalence between Kripke structures from [20], as a corollary of the above.

THEOREM 89. Two (pointed) Kripke structures are modally equivalent iff any pair of
their ω-saturated ultrapowers are bisimilar.

A parallel with first-order logic can be drawn here if we think of bisimulations as
the modal analogue of partial isomorphisms between Kripke structures, and note that
elementary equivalence on ω-saturated structures coincides with partial isomorphism
between them (see [108, 68, 23]). Then Theorem 91 below completes the match. Before
getting there, we need the following result, due to van Benthem [126], building on a
construction of Fine [28].

THEOREM 90. For every Kripke τ -structure M, ue(M) is a bounded morphic image of
an ω-saturated ultrapower of M.

Proof. Let M = 〈F, V 〉 where F = 〈W, {Rα}α∈τ 〉.
The structure F× = 〈W, {Rα}α∈τ , {X | X ⊆ W}〉 has in particular every V (ϕ) as a
distinguished predicate. Take an ω-saturated ultrapower F∗ =

∏U
I F× and for each

fU ∈ ∏U
I W define υ(fU) = {X ⊆ W | fU ∈ ∏U

I X}. It is immediate to check that
υ(fU) ∈ U(W ). Considering υ as a mapping from

∏U
I M onto ue(M) one can show that

it is a bounded morphism. The most difficult step (proved in [126] for the case of one
unary modality, see also the proof of [5, Proposition 2.61]) is to prove the back condition,
which uses the saturation of F×. ¥

Using this theorem we can now obtain a strengthening of the model-theoretic char-
acterisation of modal equivalence, first proved by Hollenberg [71]. See also [138] and [5,
Theorem 2.62].

THEOREM 91. For any pointed Kripke structures (M, w) and (M′, w′),

(M, w) ≡ML (M′, w′) iff (ue(M), u[w]) À (ue(M′), u[w′]).

Proof. The direction from right to left is immediate from Lemma 79 and bisimulation
invariance, Theorem 14. For the converse direction, suppose (M, w) ≡ML (M′, w′). Then,
by Theorem 89, (

∏U
I M, gU

w ) À (
∏U

I M′, gU
w′) for the ω-saturated ultrapowers defined in

the proof above, where gw(i) = w for each i ∈ I, and likewise for gw′ . Note that υ(gU
w ) =

u[w] and υ(gU
w′) = u[w′]. Composing this bisimulation with the surjective bounded

morphisms υ : (
∏U

I M, gU
w ) �−→ (ue(M), u[w]) and υ′ : (

∏U
I M′, gU

w′)
�−→ (ue(M′), u[w′]),

we obtain a bisimulation between the ultrafilter extensions. ¥

The following observation is immediate from the definitions.

LEMMA 92. Bisimulations preserve modal saturation at a state: if (M, w) À (M′, w′),
then M is modally saturated at w iff M′ is modally saturated at w′. Consequently, global
bisimulations preserve modal saturation of models.

From this lemma and Theorem 90, since surjective bounded morphisms are global
bisimulations, we obtain the following result from [48], (see also [5, Proposition 2.61])
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COROLLARY 93. The ultrafilter extension of every Kripke structure is modally satu-
rated.

As Venema argues quite aptly in [138], this result along with Theorem 91 indicates
that, for modal logics, ultrafilter extensions can play the role that ultrapowers play in
first-order logic for the construction of saturated extensions of structures.

6.4 Modal definability of properties of Kripke structures

Kripke structures serve to give model theoretic semantics to modal logic. Conversely,
focusing on Kripke structures in their own right, we regard modal logic as a language for
defining classes of Kripke structures. We may ask the natural model-theoretic questions
from this angle, like, for instance: what classes/properties of (pointed) Kripke structures
are definable by (sets of) modal formulae? A definitive answer to that question was
given in the case of elementary properties of pointed Kripke structures defined by single
modal formulae, by Theorem 55. Here we address the general question by using classical
model-theoretic tools and the constructions introduced earlier in this section.

Since modal formulae express first-order conditions on (pointed) Kripke structures,
these are special cases of first-order definable (by a single first-order sentence), respec-
tively elementary (definable by any set of first-order sentences) classes and properties.
Keisler’s theorem [12, Theorem 4.1.12] characterising elementary and first-order defin-
able classes is therefore relevant here: a class of first-order structures is elementary iff
it is closed under elementary equivalence and ultraproducts; it is first-order definable iff
both the class and its complement are elementary. Since modal formulae cover only a
fragment of the first-order language FO(τΦ), these results give necessary but not suf-
ficient conditions for modal definability of classes of (pointed) Kripke structures. But
‘elementary equivalence’ for modal logic is modal equivalence. Would that adjustment
of Keisler’s theorem suffice to guarantee modal definability? The answer is ‘yes’ in both
cases. The following is from [22].

THEOREM 94. A class K of (pointed) Kripke structures is definable by a set of modal
formulae iff it is closed under modal equivalence and ultraproducts; K is definable by
a single modal formula iff both K and its complement are definable by a set of modal
formulae.

Proof. These can be proved by adapting the proof of Keisler’s theorem. Alternatively,
we may invoke a corollary of the Keisler–Shelah theorem (cf. Corollary 6.1.16 and Theo-
rem 6.1.15 in [12]) which states that a class of first-order structures is elementary iff it is
closed under isomorphism and ultraproducts while its complement is closed under ultra-
powers. The latter condition here follows from closure under modal equivalence. Once
K has been shown to be elementary, a general argument can be applied that works not
only for modal formulae but for any other natural fragment ∆ of first-order logic (see [12,
Lemma 3.2.1]): if ∆ ⊆ FO is closed under negation and disjunction, then an elementary
class is axiomatisable with formulae from ∆ iff it is closed under ∆-equivalence.

For definability by a single formula, one may use compactness for ML just as for FO
to show that whenever both the given class and it complement are definable by a set of
formulae, then the class (and its complement) are definable by a single formula. Alterna-
tively, one may first establish first-order definability of K, and then use Theorem 55 and
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bisimulation invariance to see that the defining formula must be equivalent to a modal
formula. ¥

Note that, as an immediate consequence of (the classical proof of) Theorem 55, an
elementary class of (pointed) Kripke structures is closed under modal equivalence iff it
is closed under bisimulations. Therefore, we can strengthen somewhat the results above,
by replacing closure under modal equivalence by bisimulation closure, but at the expense
of demanding closure of the complement under ultrapowers. See [22] and [5, Theorems
2.75, 2.76] for the following.

THEOREM 95. For any class K of pointed Kripke structures:
(i) K is definable by a set of modal formulae iff it is closed under bisimulation and

ultraproducts, while its complement is closed under ultrapowers.
(ii) K is definable by a single modal formula iff it is closed under bisimulation, while

both it and its complement are closed under ultraproducts.

Proof. For the non-trivial part of (i): assuming the closure conditions for K and its
complement, we consider the modal theory ThML(K) and show that it defines K, i.e.,
every model of it is in K. For details see [22], [5, Theorem 2.75]. Alternatively, we can
take a shortcut: by Theorem 89 the closure conditions imply that K is closed under
modal equivalence, and hence Theorem 94 applies.

For the non-trivial part of (ii) we may use (i) and a standard compactness argument
as in the proof of Keisler’s theorem (see [22] and [5, Theorems 2.76]), or use Theorem 94
again. ¥

Similar results can be obtained for classes of Kripke structures; we leave these to the
reader.

Finally, we mention the following results of Venema [138] which characterise modal
definability of classes of (pointed) Kripke structures in purely modal terms, i.e., without
involving the typical constructions from classical logic. In what follows, a bisimulation
ρ : M À M′ is surjective if every state in M′ has a bisimilar one in M; an ultrafilter
union of a family of pointed Kripke structures

{
Mi, wi

}
i∈I

is a pointed Kripke structure(
ue

(⊎
i∈I Mi

)
, w

)
, where w is an ultrafilter containing every co-finite subset of {wi | i ∈

I}.
THEOREM 96. A class of Kripke structures is modally definable iff it is closed un-
der disjoint unions, surjective bisimulations, and ultrafilter extensions, while it reflects
ultrafilter extensions.

A class of pointed Kripke structures is modally definable iff it is closed under bisimu-
lations and ultrafilter unions, and reflects ultrafilter extensions.

To summarise: model theory of modal logic over Kripke structures essentially derives
from first-order model theory, with the crucial extra feature of bisimulation invariance.
The additional requirement of bisimulation invariance leads us from classical model the-
ory to modal model theory and allows us to develop the analogy between them further.

7 GENERAL FRAMES

Neither of the two kinds of semantic structures we have considered so far, viz. Kripke
frames and Kripke structures, provides a completely satisfactory framework for the se-
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mantics for modal logic. On the one hand, truth and validity in Kripke structures, with
its crucial dependency on given valuations, does not reflect the richer semantics in terms
of validity in frames. On the other hand, validity in frames, being an essentially second-
order notion, is in general deductively intractable. As a consequence, frame-incomplete
modal logics are the rule, rather than the exception (see Chapter 7 of this handbook).
It is therefore necessary to look for a new type of semantic structures, ‘hybrids’ between
Kripke structures and frames, combining the expressive richness of the frame-based se-
mantics with the flexibility and good deductive behaviour of the one based on Kripke
structures.

Such structures, called general frames, were introduced in modal logic by Thomason
in [124], with precursors in [97] and [28]. General frames are analogues to Henkin’s
‘general models’ for second-order logic, extending first-order structures with a family
of ‘admissible sets’, and restricting the second-order quantification to such sets only.
Independently, general frames essentially arose from the seminal study by Jónsson and
Tarski [78] of Boolean algebras with operators (see also Chapter 6 of this handbook),
since they appear as the ‘concrete’, set-theoretic counterparts of modal algebras, arising
in the Jónsson–Tarski representation theorem, and thus providing the link between the
algebraic and relational semantics.

In this section we introduce the modal semantics based on general frames, develop the
basic model theory of general frames and briefly mention the duality theory which relates
them to algebras. We then discuss the relevance and use of general frames to the model
theory of the frame-based modal semantics, in terms of persistence of modal formulae
with respect to various important classes of general frames.

7.1 General frames as semantic structures in modal logic

Note that the operators 〈R〉 and [R] defined in section 1.2 are monotone. Besides, the op-
erators 〈R〉 are normal (preserving falsum) and additive (distributive over disjunctions);
see Chapter 6 of this handbook. Hence every structure 〈P(W );∩,−,∅, {〈Rα〉}α∈τ 〉 is
a (complete and atomic) Boolean algebra with operators in the terms of [78] (see also
Chapter 6), called a modal τ -algebra.

DEFINITION 97. Given a τ -frame F = 〈W, {Rα}α∈τ 〉, a general τ -frame over F is a
structure 〈F,W〉 expanding F with a τ -algebra of admissible subsets of P(W ), closed
under boolean operations and the operators {〈Rα〉}α∈τ , i.e., W is a τ -subalgebra of
〈P(W );∩,−,∅, {〈Rα〉}α∈τ 〉.

Given a general τ -frame G = 〈F,W〉 we denote F by G# and the τ -algebra W by G+.

EXAMPLE 98. For every Kripke structure M = 〈F, V 〉, 〈F, {V (ϕ) | ϕ ∈ ML(τ)}〉 is a
general τ -frame over F, generated by M. In particular, the general τ -frame GL generated
by the canonical Kripke structure ML (see Chapter 7 of this handbook) of a normal
modal logic L is called the canonical general frame of L.

Among the general frames over F = 〈W, {Rα}α∈τ 〉 there is a least one, viz. Fmin =
〈F,Wmin〉 generated from the Kripke structure Mmin = 〈F, Vmin〉 where Vmin(p) = ∅ for
every p ∈ Φ, and a greatest one, viz. the full general τ -frame Fmax = 〈F,P(W )〉. Clearly,
local (as well as global) validity in F and Fmax coincide. So we can safely identify the
τ -frame F with Fmax. Furthermore, the family of all general frames over a τ -frame
F = 〈W, {Rα}α∈τ 〉 forms a complete lattice.
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DEFINITION 99. Given a general τ -frame G = 〈F,W〉, a valuation over G is any valu-
ation V : Φ → W. A Kripke structure 〈F, V 〉 where V is a valuation over G is a Kripke
structure over G, also denoted by 〈G, V 〉 or 〈F,W, V 〉.

It follows by a routine induction that if M = 〈F,W, V 〉, then V (ϕ) ∈ W for every
ϕ ∈ ML(τ).

DEFINITION 100. Given a formula ϕ ∈ ML(τ), a general τ -frame G, and w ∈ W , we
say that ϕ is (locally) valid at w in G, denoted G, w |= ϕ, if ϕ is true at w in every
Kripke structure over G. ϕ is valid in G, denoted G |= ϕ, if ϕ is valid in G at every
w ∈ W , i.e., ϕ is valid in every Kripke structure over G.

Note that local validity of modal formulae in a general τ -frame is preserved under
the rule Modus Ponens and under taking uniform substitutions, while validity is also
preserved under Necessitation.

All general frames generated from Kripke structures have an at most countable algebra
of admissible sets, so not every general frame is of that type. On the other hand, every
general frame can be generated from a Kripke structure in an extended language with
an appropriately large cardinality of the set of atomic propositions. This observation is
sufficient to transfer various results and constructions from Kripke structures to general
frames.

However, as semantic structures for modal logic, general frames match most closely
modal algebras. Indeed, as already noted, every general τ -frame G generates a ‘complex
τ -algebra’ G+. Conversely, every τ -algebra A determines a general frame A+ based on
the ultrafilter frame of that algebra (see section 7.2), and is moreover embedded in (A+)+

in a way extending the Stone representation for Boolean algebras. That embedding is the
subject of the celebrated Jónsson–Tarski representation theorem (see [78], [5, Section 5.3],
or Chapter 6 of this handbook). Furthermore, there exists an algebraic-categorial duality
between general frames and modal algebras, systematically developed by Goldblatt in
[43, 44, 47] and later, from a topological perspective by [114] (see also [5, Section 5.4]),
discussed in detail in Chapter 6 of this handbook.

7.2 Constructions and truth preservation results on general frames

Bisimulations and special cases

DEFINITION 101. Let G = 〈F,W〉 and G′ = 〈F′,W′〉 be two general τ -frames. A
bisimulation ρ between F and F′ is a bisimulation between G and G′ if for every valuation
V over G there is a valuation V ′ over G′ such that ρ : 〈G, V 〉 À 〈G′, V ′〉, and vice versa.

A bisimulation between pointed general frames is defined likewise.

Note that not every bisimulation between Kripke frames is a bisimulation between
them as full general frames, because not every valuation over one of them must have a
matching valuation satisfying atom equivalence.

COROLLARY 102. If ρ : (G, w) À (G′, w′) is a bisimulation between pointed general
τ -frames (G, w) and (G′, w′) then (G, w) ≡ML (G′, w′). Likewise, if ρ : G À G′, then
G ≡ML G′.

The definitions of generated subframes, bounded morphisms, and disjoint unions can
be extended to general frames.
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DEFINITION 103. Given a general τ -frame G = 〈F,W〉, a generated subframe of G is
any general τ -frame G′ = 〈F′,W′〉 where F′ E F and W′ = {X ∩ dom(F′) | X ∈W}.
DEFINITION 104. Let G = 〈F,W〉 and G′ = 〈F′,W′〉 be two general τ -frames and
ρ : F

�−→ F′ a bounded morphism. Then ρ is a bounded morphism from G to G′ if for
every Y ∈ W′, ρ−1[Y ] ∈ W; ρ is a bounded strong morphism from G to G′ if it is a
bounded morphism from G to G′ and for every X ∈W, ρ[X] ∈W′ and X = ρ−1[ρ[X]].

DEFINITION 105. The disjoint union of the family
{
Gi =

〈
Fi,Wi

〉}
i∈I

of general τ -
frames is

⊎i
i∈I Gi =

〈⊎
i∈I Fi,W

〉
, where W =

{⊎
i∈I Xi | Xi ∈Wi for each i ∈ I

}
.

We leave it to the reader to check that generated subframes and disjoint unions of
general frames produce general frames indeed, and to see that they, as well as bounded
strong morphisms, are particular cases of general frame bisimulations. The associated
preservation results are immediate, and are left to the reader, too. As for bounded
morphisms of general frames, in general they are not general frame bisimulations and
only preserve validity in the forward direction.

Ultrafilter extensions and ultraproducts

The construction of ultrafilter extensions of frames can be generalised to the Stone rep-
resentation of modal algebras (see Chapter 6 of this handbook), which in turn are es-
sentially general frames, thus defining ultrafilter extensions of general frames. More
precisely, given a general τ -frame G = 〈W, {Rα}α∈τ ,W〉 over a frame F, let U(W) be the
set of all ultrafilters over the algebra G+. For each α ∈ τ we define a binary relation RWα
on U(W) just like Rue

α in ue(F), i.e., for any u, w ∈ U(W) :

uRWα w iff 〈Rα〉 (X) ∈ u for every X ∈ w.

The frame (G+)+ =
〈
U(W), {RWα }α∈τ

〉
is called the ultrafilter frame of the τ -algebra

G+.
Finally, we put Wue := {uW(X) | X ∈W} where uW(X) = {u ∈ U(W) | X ∈ u}. It

is routine to check that
〈
RWα

〉
(uW(X)) = uW(〈Rα〉 (X)) and hence Wue is a modal τ -

algebra.

DEFINITION 106. Given a general τ -frame G = 〈W, {Rα}α∈τ ,W〉, the ultrafilter exten-
sion of G is the general τ -frame ue(G) :=

〈
U(W), {RWα }α∈τ ,Wue

〉
, also known as the

general ultrafilter frame of the τ -algebra G+.

From the basic properties of ultrafilters, and the closure ofWue under
〈
RWα

〉
, it follows

that G+ ∼= ue(G)+ for any general τ -frame G. Note, however, that ue(G) ∼= G does not
hold in general, and in section 7.3 we will characterise the general frames for which this
is the case. Still, since validity of modal formulae in G and in G+ coincide, we obtain
the following.

THEOREM 107. For any general τ -frame G, ue(G) ≡ML G.

DEFINITION 108. Let {Gi = 〈Fi,Wi〉}i∈I be a family of general τ -frames indexed by
a set I. For any ultrafilter U on I, the ultraproduct of {Gi}i∈I over U is the general
τ -frame

∏U
i∈I Gi := 〈∏U

i∈I Fi,WU〉, where WU = {∏U
i∈I Xi | Xi ∈Wi for each i ∈ I}.

Note that the ultraproduct of a family of Kripke frames regarded as full general frames
is not a full general frame itself, so it differs from the ultraproduct of frames, as defined
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earlier. To distinguish these, we call the former general ultraproduct of frames. Unlike the
latter, every valuation in it is an ultraproduct of respective valuations in the components,
whence the following preservation result (see [43, 44, 47]).

PROPOSITION 109. For every family of general τ -frames
{
Gi =

〈
Fi,Wi

〉}
i∈I

, ultrafil-

ter U on I, element wU ∈ ∏U
i∈I Fi, and formula ϕ of ML(τ) :

(i)
∏U

i∈I Gi,wU |= ϕ iff {j ∈ I | Gj ,w(j) |= ϕ} ∈ U.

(ii)
∏U

i∈I Gi |= ϕ iff {j ∈ I | Gj |= ϕ} ∈ U.

7.3 Special types of general frames and persistence of modal formulae

Let G be the class of all general τ -frames of a fixed modal type τ , and let C be any
subclass of G.

DEFINITION 110. A formula ϕ ∈ ML(τ) is locally C-persistent, if for every general
τ -frame G = 〈F,W〉 ∈ C, and w ∈ dom(F), G, w |= ϕ implies F, w |= ϕ; ϕ is C-persistent,
if for every general τ -frame G= 〈F,W〉 ∈ C, G |= ϕ implies F |= ϕ.

Clearly, local persistence implies persistence, but the converse does not always hold.
While often the practically important notion is the latter, the former is more natural.

A general frame can be thought of as a frame in which a restriction on the valua-
tions is imposed by allowing only those valuations which assign admissible sets to the
propositional variables (and hence, to all formulae). Thus, the idea of persistence is that
it enables one to conclude (local) validity, i.e., truth under every valuation, of a modal
formula in a frame, based on its truth under some special valuations, viz. the admissible
ones. In other words, a formula is C-persistent if, whenever it is falsified in a Kripke
frame F, it is falsified by some admissible valuation in each general frame from C over F.
Thus, persistence gives a measure of the ‘semantic complexity’ of a formula, in terms of
its falsifying valuations. Note that a modal formula is locally G-persistent iff it is seman-
tically equivalent to a constant formula (i.e., a formula without propositional variables).
Indeed, every constant formula is G-persistent. Conversely, if ϕ is G-persistent, then for
every pointed frame (F, w), F, w |= ϕ iff 〈F, V⊥〉 , w |= ϕ, where V⊥ assigns ∅ to every
atomic proposition, iff F, w |= ϕ⊥ where ϕ⊥ is obtained from ϕ by replacing all atomic
propositions by ⊥.

We will introduce some important classes of general frames, persistence with respect
to which provides sufficient conditions for good expressive or axiomatic behaviour of the
formulae.

DEFINITION 111. Let G= 〈W, {Rα}α∈τ ,W〉 be a general τ -frame and α ∈ τ . The
relation Rα is tight in G if for every u,w ∈ W : uRαw iff for all X ∈ W, w ∈ X implies
u ∈ 〈Rα〉(X); equivalently, iff u ∈ ⋂{〈Rα〉(X) | X ∈W and w ∈ X}.

Recall, for the compactness property below, that a family of sets F has the finite
intersection property (FIP) if the intersection of every finite sub-family of F is non-
empty.

DEFINITION 112. A general τ -frame 〈W, {Rα}α∈τ ,W〉 is:

– differentiated, if for every u, u′ ∈ W , if u 6= u′ then there is X ∈W such that u ∈ X
and u′ /∈ X;

– tight, if Rα is tight for every α ∈ τ ;
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– discrete, if {u} ∈W for every u ∈ W ;
– elementary, if every subset of W that is FO(τ)-definable with parameters (in the

sense of Definition 39) is admissible;
– compact, if every family of admissible sets in G with FIP has a non-empty inter-

section;12

– refined, if it is differentiated and tight;
– descriptive, if it is refined and compact.

Amongst all discrete general frames over a Kripke frame F, there is a least one, viz.
D(F), generated from all singletons by closing under the Boolean and modal operators.
It contains all finite and co-finite sets in F. Likewise, amongst all elementary general
frames over a Kripke frame F, there is a least one, viz. E(F), in which the admissible sets
are precisely the subsets of the domain of F that are parametrically first-order definable
in FO(τ).

Assuming the type τ is fixed, the class of all differentiated (resp. tight, discrete, elemen-
tary, refined, descriptive) general τ -frames will be denoted by DF (resp. T ,DI, E ,R,D).

Here are some relationships between these classes.

• Every full general frame is discrete, and therefore, refined (see below). Every finite,
but no infinite, discrete general frame is descriptive, for otherwise the intersection
of all sets W \ {w} would have to be non-empty; on the other hand, every finite
differentiated frame is full.

• Every discrete frame is refined. Indeed, for tightness note that in every discrete
frame xRαw holds iff x ∈ 〈Rα〉({w}). The converse need not hold, e.g., canonical
general frames (see Chapter 7 of this handbook) are refined, even descriptive, but
not discrete, being infinite.

• Every elementary frame is discrete, while the converse does not hold, as we will see
further.

To summarise: E $ DI $ R = DF ∩ T ; D $ R; D * DI * D.
Below, we list some remarks on the various notions of persistence and relationships

between them. Analogous remarks apply to local persistence.

• First, note that if C1 ⊆ C2, then C2-persistence implies C1-persistence.

• A formula is DI-persistent iff it is valid in a frame F whenever it is valid in D(F).
Likewise, a formula is E-persistent iff it is valid in a frame F whenever it is valid in
E(F).

• While every (locally) R-persistent formula is DI-persistent, the converse does not
hold, a simple witness being e.g., the ‘density’ formula 3p → 33p (see [5, p.319]).

• Also, not every (even locally) D-persistent formula is DI-persistent (and hence,
even less R-persistent), a witness being Geach’s formula 3¤p → ¤3p, defining
the Church–Rosser confluence property of the accessibility relation (see [5, p.305]).

12This is equivalent to the requirement that every ultrafilter over G+ consists of all admissible sets
containing a fixed state in G.
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Moreover, not every D-persistent formula is E-persistent, as we will see in sec-
tion 8.2.

• Not every (even locally) E-persistent is DI -persistent, again witnessed by Geach’s
formula.

• Finally, not every (even locally) DI-persistent formula is D-persistent. The formula
vB = ¤3> → ¤(¤(¤p → p) → p), proposed by van Benthem in [127], is an
example. First, note that for every discrete general frame G = 〈F,W〉 and w ∈
dom(F), G, w |= vB implies G, w |= ¤3> → ¤⊥; hence G#, w |= ¤3> → ¤⊥.
Indeed, assuming G, w |= ¤3> ∧ ¬¤⊥, for any successor u of w the valuation
W\{u} for p falsifies vB at w. Furthermore, for every frame F and w ∈ dom(F),
F, w |= ¤3> → ¤⊥ implies F, w |= vB. Hence vB is locally DI-persistent. On
the other hand,vB is not D-persistent. Indeed, as shown in [127] (see also [5,
p.216]) vB is valid in a certain general frame J, the modal logic KvB of which is
incomplete. That is because ¤3> → ¤⊥, not being valid in J, is not a theorem of
KvB while, as seen above, it is valid in every frame for KvB. Thus, while vB is
valid in the (descriptive) canonical frame of KvB, it fails in the underlying Kripke
frame which falsifies ¤3> → ¤⊥.

Consequently, not every locally E-persistent formula is D-persistent.

To summarise again, if we denote by Cp the set of all C-persistent formulae, we have
the following: DFp ∩ T p = Rp $ DIp $ Ep; Rp $ Dp; DIp * Dp * Ep.

The same relationships hold for local persistence.
Now, we discuss some important results about refined and descriptive frames and the

related persistence properties, while elementary frames and elementary persistence will
be discussed in section 8.2.

First, note ([124]) that every general frame G = 〈F,W〉 can be ‘refined’ by constructing
a refined quotient of it over the set W∼ of all equivalence classes modulo the equivalence
relation ∼, defined as v ∼ w iff ∀X ∈ W(v ∈ X ⇐⇒ w ∈ X), and taking as admissible
all sets of the type X∼ = {w∼ | w ∈ X} for X ∈ W. It now remains to ‘tighten’ all
accessibility relations by closing under the definition of tightness: for every u∼, w∼ ∈ W∼,
u∼R∼α w∼ holds iff for all X∼ ∈ W∼ and u′ ∼ u,w′ ∼ w, if w′ ∈ X then u′ ∈ 〈Rα〉(X).
Note, however, that (see [10, p.263]) while for finite frames this construction produces a
bounded morphic image, this is not necessarily the case when applied to infinite general
frames.

Descriptive frames typically appear as the canonical general frames (see Chapter 7 of
this handbook) of every normal modal logic without any special inference rules. Thus,
all D-persistent formulae are valid in the underlying canonical Kripke frames, and hence
they axiomatise Kripke complete logics. For that reason the D-persistent formulae are
also called canonical.13 However, in hybrid logics with nominals (see Chapter 14 of this
handbook) or in logics with special additional rules of inference, e.g., the non-ξ rules in
[137], D-persistent formulae need not be canonical, because the canonical general frames

13Note that across the literature on modal logic the term ‘canonicity’ is used in somewhat different,
and not entirely equivalent, senses (see [126, 127]). For instance, Fine defines in [28] canonicity of a set
of formulae as validity of every formula of that set in any canonical frame built for a modal language
with any cardinality of propositional variables. Since all canonical models generate descriptive frames,
the notion of canonicity adopted here following [126] is at least as strong as Fine’s.
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for such logics are only discrete (for hybrid logics) or refined (in logics with additional
‘context’ rules, see [52]). In such cases, DI-persistence orR-persistence is the right notion
of canonicity. DI-persistent formulae have the important property to remain canonical
when added as axioms to hybrid logics with nominals, whileR-persistent formulae remain
canonical not only in the presence of other axioms, but even if additional rules of inference
of the type mentioned above are added to the axiomatic system.

Descriptive frames feature prominently in the duality theory between general frames
and modal algebras, as they turn out to be precisely the fixed points of ultrafilter exten-
sions of general frames, which are essentially the Stone representations of modal algebras
(see Chapter 6 of this handbook).

PROPOSITION 113. A general τ -frame G is descriptive iff G ∼= ue(G).

Indeed, the proof that every ultrafilter extension is descriptive is just a variation
of the proof that every canonical general frame is descriptive (see Chapter 7 of this
handbook). For the converse, the crucial observation is that, given a descriptive general
frame G = 〈F,W〉, for every w ∈ F, the set uW[w] = {X ∈ W | w ∈ X} is an ultrafilter
in W, and every ultrafilter in W, due to the compactness of G, is of this type. Thus, the
mapping λw.uW[w] is a bijection (since G is differentiated) between G and ue(G). This
bijection is in fact an isomorphism, due to the tightness of G.

Consequently, by Theorem 107, every general frame is modally equivalent to a de-
scriptive frame. Therefore, every D-persistent formula ϕ preserves its validity from a
frame F to the ultrafilter extension of the full general frame Fmax, which is based on
ue(F). Since ue(Fmax) is descriptive, by D-persistence, ϕ preserves validity from F to
ue(F). Conversely, if ϕ preserves validity in ultrafilter extensions of frames, then it is
D-persistent by Theorem 115. Thus, we obtain:

PROPOSITION 114. A modal formula is (locally) D-persistent iff its validity is (locally)
preserved in ultrafilter extensions of frames.

Every general τ -frame G = 〈W, {Rα}α∈τ ,W〉 determines a topological space T (G) with
a base of clopen sets W, and a set of closed sets denoted by C(W). For a detailed study
of this topology, its properties and applications in modal logic see [114]. Hereafter, a
closed set in the general τ -frame G will mean a subset of the domain closed with respect
to the topology T (G), i.e., an intersection of a family of admissible sets.

A number of important properties of general frames can be phrased in terms of their
topology. For instance, in every discrete frame G the topology T (G) is discrete. Indeed,
every non-empty set is a union of its singleton subsets, which are open in T (G); hence
every subset of G is open. Also, differentiatedness of a general frame is equivalent to
T2-separability (Hausdorffness) of its topology, while compactness, as defined above, is
equivalent to the standard topological notion of compactness. Thus, for any compact
and differentiated τ -frame G, T (G) is a compact Hausdorff space.

Finally, it is instructive to explore which constructions on general frames preserve each
of the classes discussed above. For instance, differentiatedness, tightness, and discrete-
ness are preserved in generated subframes and disjoint unions, while compactness is not.
Conversely, bounded morphisms preserve compactness, but not discreteness, differentiat-
edness and tightness. Besides, discreteness, differentiatedness, and tightness (and hence,
refinedness), being properties definable in a suitable first-order language for states and
admissible sets, and membership between them, are preserved in ultraproducts, while
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descriptiveness is preserved in finite disjoint unions, but never in infinite ones, nor nec-
essarily in ultraproducts [44, 47].

How does persistence determine the expressiveness of a formula? We will discuss this
issue in section 8.2 in connection with first-order definability of modal formulae.

Before closing this section, let us highlight again the role of general frames in the
modal theory of modal logic:

• general frames provide a natural link between the first-order semantics on Kripke
structures and the second-order semantics on frames, and are thus analogous to
Henkin’s general models for second-order logic.

• general frames are essentially equivalent to modal algebras, via the duality theory
outlined in Chapter 6 of this handbook, and thus provide algebraic semantics for
modal logic.

• the notion of persistence of (the truth/validity of) modal formulae with respect
to natural classes of general frames is instrumental in characterising their model-
theoretic behaviour.

8 MODAL LOGIC ON FRAMES

So far we have mainly studied modal logic as a fragment of first-order logic over Kripke
structures. In this section we discuss modal logic as a logic of frames, and thus as a
fragment of universal monadic second-order logic MSO.

This fragment, while generally not very expressive and missing many simple first-order
properties, nevertheless penetrates deeply into MSO. Perhaps its most interesting fea-
tures are the recursive axiomatisability of validity and its finite model property, together
implying decidability – a rare phenomenon in second-order logic when considered over
arbitrary structures rather than special ones.

In this section we present some classical results characterising modally definable classes
of frames, and discuss how persistence of modal formulae with respect to various classes
of general frames can be used to determine their model-theoretic properties.

8.1 Modal definability of frame properties

Here we address the question which classes of frames are definable by modal formulae. A
classical result from [51] answers this question in a traditional model-theoretic fashion,
albeit using a somewhat ad-hoc construction, called SA-construction (‘state-of-affairs
construction’). Algebraically, it corresponds to taking a subalgebra of a homomorphic
image, thus allowing a ‘translation’ of Birkhoff’s theorem in terms of frame constructions,
and so characterising equational classes of algebras as those closed under subalgebras,
homomorphic images and direct products (see Chapter 6 of this handbook). Theorem 117
gives a more natural characterisation of the modally definable elementary classes. Here
is another definability-by-preservation result, due to van Benthem (see [126, Theorem
3.5], [127, Theorem 16.5], [129]).

THEOREM 115. A class of frames K is modally definable by a set of D-persistent for-
mulae iff it is closed under generated subframes, bounded morphisms, disjoint unions and
ultrafilter extensions, and reflects ultrafilter extensions.
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Proof. We already know from sections 2 and 6, and Proposition 114 that every D-
persistent formula satisfies all preservation conditions of the theorem, whence the easier
direction. Conversely, let K satisfy the preservation conditions. We show that K =
FR(ThML(K)). Let F |= ThML(K). Recall that Fmax denotes the full general frame over
the frame F. Using the duality theory between general frames and modal algebras, and
Birkhoff’s theorem, one can show that ue(Fmax) is isomorphic to a generated general
subframe of a bounded morphic image of ue(Gmax) where G is a disjoint union of frames
from K. Now, G ∈ K; hence ue(G) ∈ K. So, tracing the underlying frames and using the
closure conditions, we eventually find that ue(F) ∈ K, whence F ∈K. ¥

We note that checking the conditions of the theorem above, even in the case when
the class of frames is first-order definable, may be a practically very difficult task. A
testimony for that is the fact that preservation of first-order formulae under ultrafilter
extensions is Π1

1-hard [122, Thm 2.3.17].
In the rest of this section we compare the expressiveness of modal logic over frames

with first-order logic and some of its extensions within monadic second-order logic.

8.2 Modal logic versus first-order logic on frames

We have already seen that modal languages are generally incomparable with first-order
languages in terms of definability of frame properties. Indeed, while simple elementary
properties, such as irreflexivity, escape the basic modal language, it can capture non-
elementary properties such as the one defining the class of all transitive frames in which
there are no infinite chains of successors. By a simple compactness argument, this class
is not elementary, while it is well-known to be defined by the Gödel–Löb formula GL
(see e.g. [75]). This example also shows that the compactness theorem with respect to
frame validity fails in modal logic. The downward Löwenheim–Skolem–Tarski theorem
fails here, too. E.g., McKinsey’s formula ¤3p → 3¤p (see [127], or [5, p.133]) is
valid in a certain uncountable frame, but not in any countable elementary subframe of
it. Another important example of a non-elementary modal formula (in the extended
setting with the star operation for transitive closures) is Segerberg’s induction axiom
[117] IND : [α∗](p → [α]p) → (p → [α∗]p).

The model-theoretic interplay

We compare modal formulae (respectively, modally definable properties of frames) and
first-order formulae (respectively, properties definable in FO(τ)) from two perspectives:

• Which modally definable frame properties are first-order definable?

• Which first-order properties of frames are modally definable?

As already mentioned, there are two natural notions of first-order definability: by
means of single sentences and by means of theories (possibly infinite sets of sentences).
Regarding modally definable classes, however, these turn out to be equivalent. Indeed,
if the class of frames FR(ϕ) is the class of models of an infinite set of FO(τ)-formulae
Γ, then Γ |= ϕ with respect to frame validity, which is a Π1

1-property. The compactness
theorem of first-order logic applies here, and Γ0 |= ϕ for some finite Γ0 ⊆ Γ. Hence
FR(ϕ) is defined by the conjunction over Γ0. We can therefore refer to modally definable
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classes which are first-order definable, and to modal formulae defining such classes, as
elementary without risk of confusion.

On the other hand, it seems to be still unknown whether there is any FO-sentence
equivalent to an infinite set of basic modal formulae but not to a single formula.14

The validity preservation results from sections 2 and 6 imply that every modally
definable class of frames FR(ϕ) is closed under generated subframes, bounded morphic
images (in particular, isomorphic copies), and disjoint unions, while it reflects ultrafilter
extensions and ultraproducts. If, moreover, the formula ϕ is elementary, then FR(ϕ)
is closed under ultraproducts, too. Conversely, if FR(ϕ) is closed under ultraproducts
then, by the Keisler–Shelah theorem, FR(ϕ) is elementary. Moreover, by Proposition
85, closure of FR(ϕ) under ultrapowers suffices, and therefore, closure under elementary
equivalence in FO(τ) suffices, too. The latter, in turn, characterises Σ∆-elementary
classes, i.e., unions of elementary classes. Thus, we have the following model-theoretic
characterisation of the elementary modal formulae (see [44, 47, 127]).

THEOREM 116. For any modal formula ϕ the following are equivalent:
(i) ϕ is elementary.
(ii) FR(ϕ) is closed under ultraproducts.
(iii) FR(ϕ) is closed under ultrapowers.
(iv) FR(ϕ) is closed under elementary equivalence, i.e., Σ∆-elementary.

The result above correspondingly characterises elementary classes of frames that are
known to be modally definable. This raises the natural question how to characterise,
in model theoretic terms, modal definability of an elementary class of frames. Again, a
classical result from [51] answers that question. Here is a somewhat strengthened version
(see [5, Theorem 5.54]).

THEOREM 117 (Goldblatt–Thomason). If a class of frames K is closed under ultra-
powers (in particular, if K is elementary), then K is modally definable iff it is closed
under generated subframes, bounded morphisms, and disjoint unions, and reflects ultra-
filter extensions.

Proof. One direction is a direct application of the preservation results from sections 2
and 6. For the other direction note that, by Theorem 90 reduced to underlying frames,
K is closed under ultrafilter extensions, too. Thus, Theorem 115 applies, so K is modally
definable, moreover by a set of D-persistent formulae. ¥

We end with an important related result, originally due to Fine [28], later strengthened
and proved by van Benthem [127, Theorem 16.7] as a corollary to Theorem 115.15

We call a modal formula ϕ complete if the modal logic axiomatised by ϕ is complete
for the class of frames defined by ϕ.

THEOREM 118 (Fine–van Benthem).
Every complete and elementary modal formula ϕ is D-persistent.

Proof. FR(ϕ) satisfies all closure conditions of Theorem 115, so FR(ϕ) = FR(Γ) for
some set of D-persistent formulae Γ. The modal logic Kτ + Γ, axiomatised with the set

14There are known cases, however, where a first-order definable property is infinitely, but not finitely,
axiomatisable in some extended modal languages. See, e.g., [54].

15For a stronger algebraic version of this theorem see [45], [5, Theorem 5.56], or Chapter 6 of this
handbook.
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of axioms Γ, is canonical and therefore complete. Hence Kτ + Γ ` ϕ. By compactness
of modal derivations, Kτ + Γ0 ` ϕ for some finite subset Γ0 of Γ. By completeness of ϕ,
all formulae from Γ0 are theorems of Kτ + ϕ. Hence ϕ is axiomatically equivalent, and
therefore frame-equivalent, too, to the conjunction of Γ0, which is itself a D-persistent
formula. ¥

It is known ([28], see also section 8.2) that the converse to the above theorem does
not hold, viz. not every D-persistent formula is elementary. An example is 3¤(p∨ q) →
3(¤p ∨ ¤q) (see [28]). Nor is every elementary modal formula D-persistent, as there
are incomplete elementary modal formulae (e.g., van Benthem’s formula vB discussed in
section 7.3, see [128, p.72], also in [5, p.216]).

It had been a longstanding open problem, posed by Fine, whether every modal logic
axiomatised by D-persistent formulae is complete with respect to some elementary class.
This question has recently been answered negatively in [50].

Persistence and first-order definability

Some persistence properties of modal formulae imply that they are elementary. Perhaps
the first interesting result in that vein is due to Lachlan [89] who proved that every R-
persistent formula is elementary. A strengthening of Lachlan’s result, using the argument
in Goldblatt’s proof of it in [44], is that every (locally) DI-persistent formula is (locally)
elementary. First, note that local non-validity of a modal formula, being a Σ1

1-property,
is preserved by ultraproducts [12, Corollary 4.1.14]. By the Keisler–Shelah theorem it
suffices to show that local validity of locally DI-persistent formulae is preserved under
ultraproducts. This follows from the fact that local validity of modal formulae is locally
preserved in ultraproducts of general frames (Proposition 109), and that any ultraproduct
of full general frames is a discrete general frame.

Let us now turn to E-persistent formulae. They were first studied by van Benthem
in [127] in connection with the substitution method which can be used to establish the
first-order definability of Sahlqvist formulae (see section 8.2). The idea of the substitu-
tion method is to identify finitely many ‘characteristic’ first-order definable valuations
of the variables occurring in a given formula, such that the formula is (locally) valid
in every frame in which it is (locally) valid for those characteristic valuations. For all
Sahlqvist formulae, just one such valuation, the minimal one amongst all those satisfying
the antecedent of the formula, suffices. Van Benthem provided an alternative character-
isation of locally and globally E-persistent formulae, which implies that they are locally
elementary.

Given a FO(τΦ)-formula β(x) with unary predicates P1, . . . , Pn, assuming that the
variables x do not occur bound in β and the variables z1, . . . , zk, y do not occur in
β at all, we define a universally parameterised FO(τ)-substitution instance of β to be
any FO(τ)-formula ∀z1 . . . ∀zkβ[σ1/P1, . . . , σn/Pn] obtained from β by selecting FO(τ)-
formulae σi = σi(x, z1, . . . , zk, y) for i = 1, . . . , n, uniformly substituting σi[x/y] for every
occurrence of Pix, and then universally quantifying over z1, . . . , zk. Let Θ(β) be the set
of all universally parameterised FO(τ)-substitution instances of β.

DEFINITION 119. A modal formula ϕ = ϕ(p1, . . . , pn) is a van Benthem formula if
Θ(ST(ϕ; x0)) |= ∀P1 . . . ∀PnST(ϕ;x0). We let VB denote the class of van Benthem
formulae (defined slightly differently in [127] as the class M1

sub).
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THEOREM 120. A modal formula is locally E-persistent iff it is a van Benthem formula.

Proof. Recall that E(F) is the minimal elementary general frame over the Kripke frame
F. Let ϕ(p1, . . . , pn) ∈ VB and suppose E(F), w |= ϕ for some frame F. Take any univer-
sally parametrised FO(τ)-substitution instance ∀z1 . . . ∀zkST(ϕ)[σ1/P1, . . . , σn/Pn]. Let
w1, . . . , wk ∈ dom(F) and Xi := {u ∈ dom(F) | F |= σi(w, w1, . . . , wk, u)} for i = 1, . . . , n.
Since X1, . . . , Xn are admissible in E(F), (F; X1, . . . , Xn; w) |= ST(ϕ)(P1, . . . , Pn;x0).
Therefore, F, w |= ∀z1 . . . ∀zkST(ϕ)[σ1/P1, . . . , σn/Pn]. Since ϕ ∈ VB, that implies
F, w |= ϕ.

Conversely, let ϕ be locally E-persistent and suppose F, w |= Θ(ST(ϕ; x0)). Then,
reversing the argument above, we find that E(F), w |= ϕ, and therefore F, w |= ϕ by local
E-persistence of ϕ. ¥

We can now strengthen the earlier persistence-implies-elementary results.

THEOREM 121. Every (locally) E-persistent formula is (locally) elementary.

Proof. Clearly, for every modal formula ϕ, ∀P1 . . . ∀PnST(ϕ;x0) |= Θ(ST(ϕ; x0)). By
compactness, every van Benthem formula is a logical consequence of a finite subset of
Θ(ST(ϕ;x0)), and hence is equivalent to the conjunction over that set. ¥

Consequently, not every D-persistent formula is E-persistent. Neither is every (locally)
elementary modal formula (locally) E-persistent. An example (see [127]) is the formula
Mk4 = (¤p → ¤¤p) ∧ (¤3p → 3¤p), which is elementary and valid in the general
frame 〈N, <,W〉 where W is the set of all finite and co-finite subsets of N, while if fails in
〈N, <〉. Since W contains precisely all parametrically first-order definable sets in 〈N, <〉,
it is E(〈N, <〉), so Mk4 is not E-persistent. Similarly, Mk4′ = (¤p → ¤¤p) ∧ ¤(¤p →
¤¤p) ∧ (¤3p → 3¤p) is locally elementary,16 but not locally E-persistent.

Sahlqvist formulae and inductive formulae

The model-theoretic results discussed above, however elegant, are usually not easy to
apply, and are of no use to find the actual first-order formula corresponding to the modal
formula. It is therefore natural to look for simpler and effective sufficient conditions
for first-order definability of modal formulae. There can be no completely satisfactory
outcome of that search, because that property is not decidable [11], and (at least) in a
modal language with more than one modality, not even analytical [122, Thm 2.6.5]. Still,
several increasingly general results to that aim were obtained during the 1970’s, culmi-
nating with the celebrated Sahlqvist theorem, which not only identifies a large syntactic
class of elementary modal formulae (see a simple definition of that class below), but also
proves their canonicity. A variety of expositions of Sahlqvist’s theorem can be found in
several sources, e.g. [113, 115, 5, 84, 10], Chapters 6 and 7 of this handbook. Here we out-
line a generalisation of the class of Sahlqvist formulae in monadic poly-modal languages,
sharing the same virtues as the original class, viz. the inductive formulae introduced and
studied for arbitrary polyadic languages in [55].

We fix a modal language ML(τ).

DEFINITION 122. Let # be a symbol not belonging to ML(τ). Then a box-form of #
in ML(τ) is defined recursively as follows:

16The fact that Mk4 and Mk4′ are elementary is far from trivial, as the proof requires a form of the
Axiom of Choice and cannot be formalised in ZF.
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(i) # is a box-form of #;
(ii) If B(#) is a box-form of # and ¤ is a box-modality in ML(τ), then ¤B(#) is a

box-form of #;
(iii) If B(#) is a box-form of # and A is a positive τ -formula, then A → B(#) is a

box-form of #.

Thus, box-forms of # are, up to semantic equivalence, of the type ¤1(A1 → ¤2(A2 →
. . . ¤n(An → #) . . .), where ¤1, . . . , ¤n are box-modalities and A1, . . . , An are positive
formulae in ML(τ).

DEFINITION 123. Given a propositional variable p, a box-formula of p is the result B(p)
of substitution of p for # in any box-form B(#). The last occurrence of the variable p
is the head of B(p) and every other occurrence of a variable in B(p) is inessential there.

DEFINITION 124. A (monadic) regular formula is any modal formula built from posi-
tive formulae and negations of box-formulae by applying conjunctions, disjunctions, and
boxes.

DEFINITION 125. The dependency digraph of a set B = {B1(p1), . . . ,Bn(pn)} of box-
formulae is the digraph G = 〈V, E〉 where V = {p1, . . . , pn} is the set of heads in A, and
piEpj iff pi occurs as an inessential variable in a box-formula from B with a head pj . A
digraph is called acyclic if it does not contain oriented cycles.

DEFINITION 126. An inductive formula is a regular formula with an acyclic dependency
digraph of the set of all box-formulae occurring as subformulae in it.

We note that Sahlqvist formulae, up to semantic equivalence, are precisely those regu-
lar formulae in which the box-formulae are just boxed atoms, i.e., propositional variables
prefixed by possibly empty strings of boxes. Thus, all Sahlqvist formulae fall into a sim-
ple particular case of inductive formulae, where the dependency digraph has no arcs at
all.

The following extension of Sahlqvist’s theorem was established in [55].

THEOREM 127. Each inductive formula is locally elementary and locally D-persistent.
Moreover, its local first-order equivalent can be computed effectively.

The inductive formulae are van Benthem formulae which, just like Sahlqvist formulae,
have first-order definable minimal valuations, but they can only be computed inductively,
in steps following the arcs of the dependency digraph, from sources to sinks.

Sahlqvist formulae satisfy a certain persistence property which can be extracted from
the syntactic shape of the first-order formulae defining their minimal valuations. In the
basic modal language these valuations are either the empty set, or the whole domain,
or are finite unions of sets of the type Rn(y) (recall that Rn is the n-fold composition
of R with itself). Following [55], let us call a general frame ample if it contains all such
sets as admissible, and the modal formulae locally persistent with respect to all ample
general frames, locally A-persistent. Thus, all Sahlqvist formulae in ML(3) are locally
A-persistent, and this property enables us to show that a given formula is not (even
semantically equivalent to) a Sahlqvist formula.

EXAMPLE 128. As proved in [55], the formula D = p ∧ ¤(3p → ¤q) → 3¤¤q is not
A-persistent, and hence not equivalent to any Sahlqvist formula in ML(3). However, it is
an inductive formula, whose dependency digraph over the set of heads {p, q} has only one
edge, from p to q. It has a local first-order correspondent FO(D) = ∃y(Rxy∧∀z(R2yz →
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∃u(Rxu ∧ Rux ∧ Ruz))), which is not equivalent to a Kracht formula (i.e., a first-order
equivalent to a Sahlqvist formula, see [84]).

The class of inductive formulae does not exhaust the potential of the method of sub-
stitutions, (in particular, minimal valuations), since, being syntactically defined (like
Sahlqvist formulae), it is not closed even under tautological equivalence.

A more general and robust algorithmic approach to identifying elementary and D-
persistent modal formulae (covering all inductive formulae) is outlined in [14]. The
algorithm presented there is based on a modal version of Ackermann’s lemma (which
essentially formalises the idea of minimal valuations) and, when successful, computes
effectively a first-order equivalent of the input modal formula and at the same time
establishes its D-persistence.

Shallow formulae and R-persistence

The property of R-persistence is much stronger than D-persistence. Perhaps the largest
syntactic class of R-persistent formulae identified so far is the class of shallow formulae
[122, Thm 2.4.7]: those in which every occurrence of a propositional variable is in the
scope of at most one modal operator. Note that syntactically shallow formulae are not
subsumed by the class of Sahlqvist formulae, nor even by the class of inductive formulae.

8.3 Modal logic and first-order logic with least fixed points

With every first-order language FO(τ) we associate its extension LFP(τ) with least fixed
point operators. For background on LFP see e.g. [25] or [2]. LFP is a rather expressive
proper extension of FO which however still shares nice properties with with FO, e.g., the
downward Löwenheim–Skolem theorem [30] and the 0-1 law (see [64]).

Which modal formulae are (locally) definable in LFP(τ)? Which LFP(τ)-formulae are
modally definable on frames? No explicit model-theoretic criteria seem to be known as
yet and these questions are most likely undecidable.

A number of well-known non-elementary modal formulae, such as the Gödel-Löb for-
mula GL and Segerberg’s induction axiom IND have local equivalents in LFP(τ) while,
for instance, the McKinsey formula is outside that class. Indeed, take van Benthem’s
uncountable frame from [127] in which that formula is valid. Flum’s argument from [30],
proving the downward Löwenheim–Skolem–Tarski theorem for LFP, produces a count-
able elementary subframe of it which must satisfy that formula, too, which is not possible,
as shown in [127].

Still, a large, effectively defined class of LFP(τ)-expressible modal formulae can be
identified by noting that the idea of using minimal valuations to eliminate the universal
second-order quantifiers in the standard translation of frame validity of modal formulae
goes beyond first-order logic. Indeed, the same idea works perfectly for all (polyadic)
regular formulae, defined for monadic languages in section 8.2. In cases where the de-
pendency graph has loops and cycles, the minimal valuations are recursively defined and
eventually expressed in LFP(τ). In particular, this applies to Gödel–Löb and Segerberg
formulae, being regular formulae. The following was shown in [55].

THEOREM 129. Every regular formula has a local correspondent in LFP(τ), which can
be obtained effectively.
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We illustrate the idea of computing LFP(τ)-equivalents of regular formulae with GL.

ST(GL) = ∀x1(x0Rx1 → (∀x0(x1Rx0 → Px0) → Px1)) → ∀x1(x0Rx1 → Px1),

which can be rewritten as ∀x1(x0Rx1 → (R[x1] ⊆ P ) → Px1)) → R[x0] ⊆ P (where
R[x] := {y | xRy}). The antecedent can be expressed as

Φ(P ) ⊆ P, where Φ(P ) = {x1 | x0Rx1 ∧R[x1] ⊆ P} .

Note that, since Φ(P ) is positive in P , and hence monotone, there is a ⊆-minimal
valuation for P satisfying Φ(P ) ⊆ P , viz. Vm(p) = µX.Φ(X). Then, the local equivalent
of GL in LFP(τ) is obtained by substituting that minimal valuation in the consequent:
LFP(τ)(GL; x0) = ∀x1(x0Rx1 → µX.Φ(X)(x1)). By unfolding, based on the Knaster–
Tarski theorem, that equivalent is:
∀x1(x0Rx1 →
∃n ≥ 0 ∀y1 . . . ∀yn(x1Ry1 → x0Ry1 ∧ (. . . (yn−1Ryn → x0Ryn ∧R[yn] = ∅) . . .)),

i.e., ‘local’ transitivity and non-existence of infinite R-chains starting at x0.
While Theorem 129 may be regarded as an extension of the definability part of the

Sahlqvist theorem, it cannot match the canonicity part of it. Not only are there regular
formulae which are not D-persistent (e.g., GL and IND) but there are even ones which are
not complete, such as ¤(¤p ↔ p) → ¤p from [6], which can be easily pre-processed into
a semantically equivalent regular formula. It is weaker than GL but has the same class
of frames, and is therefore incomplete. On the other hand, it is a plausible conjecture
that every modal formula with a minimal valuation expressible in LFP(τ) is semantically
equivalent to a regular formula.

In order to apply the method of minimal valuations, one has to identify, en route,
those FO(τ)-formulae γ for which there is a minimal interpretation for each occurring
unary predicate P . In recent work van Benthem [132] has obtained syntactic and model
theoretic characterisations of these formulae, involving predicates of arbitrary arity (see
Chapter 1 of this handbook).

Finally, we note that an algorithm for computing LFP(τ)-equivalents of classical modal
formulae, based on Ackermann’s method for second-order quantifier elimination, and in
particular covering the example above, has been developed in [103].

8.4 Modal logic and second-order logic

The standard translation embeds ML(τ), with respect to frame validity, into the monadic
Π1

1-extension of the first-order language FO(τΦ). We already know that the embedding
is proper. Still, a natural question arises whether the preservation conditions of Theorem
117 are sufficient to guarantee modal definability of monadic Π1

1-formulae, as well. As van
Benthem has noted in [127, p.53], this is not the case in the basic modal language, wit-
nessed by the property ‘non-existence of infinite R-chains’ (i.e., well-foundedness of R−1),
which satisfies all those preservation conditions and moreover is bisimulation invariant.
Still, that property of frames is defined in the extension of the basic modal language with
the universal modality [U ], by the formula [U ](¤p → p) → p (see [54]). (Contrast this
with Observation 42, that as a property of Kripke structures, it is not definable even in
ML∞.) Thus, one may ask if the natural preservation conditions characterising modal
definability of elementary properties (closure under generated subframes, bounded mor-
phisms, and disjoint unions, and reflection of ultrafilter extensions) do not apply also to a
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wider class (if not the whole of Π1
1), but for a suitably extended modal language? Surely,

some of the results characterising modal definability of properties of Kripke structures
would still be useful and relevant here: if the first-order matrix of a Π1

1-formula, where
all second order quantifiers are in a prefix, meets the conditions for having a modal cor-
respondent on Kripke structures, then the whole formula is frame-definable by the same
modal correspondent. It is not currently known if this observation can be turned into a
general criterion for modal definability of monadic second-order formulae.

Modal logic penetrates quite deep into monadic second-order logic MSO(R) (with full
quantification over unary predicate variables, over the vocabulary with the single binary
relation R). As proved by Thomason [124], logical consequence in terms of frame validity
of the latter can be reduced to the former in the following sense. There exists an effective
translation t of MSO(R) into ML, and a special modal formula δ such that for every set Σ
of MSO(R)-sentences and any MSO(R)-sentence ϕ: Σ |=2 ϕ iff {δ}∪t[Σ] |=FR t(ϕ). Here
|=2 denotes second-order semantic consequence which, as a consequence from Tarski’s
non-definability theorem, is not arithmetically definable, and Γ ²FR ψ means that the
modal formula ψ is valid in every frame where all modal formulae from Γ are valid.
Consequently, ²FR is not recursively axiomatisable, unlike validity in modal logic.

Furthermore, as noted in [127, p.23], full second-order logic, and even the theory of
finite types, can be reduced to MSO(R), too.

For more on the relations between modal logic and second-order logic, see [127], [24],
and Chapter 10 of this handbook. Also, [122, 121, Chapter 12] considers the extension
of modal logic with propositional quantifiers, which goes much farther into second-order
logic.

9 FINITE MODEL THEORY OF MODAL LOGICS

9.1 Finite versus classical model theory

When only finite structures are admitted, the model theoretic basis changes dramati-
cally. For instance, unless the logic under consideration has the finite model property,
satisfiability does not imply finite satisfiability, and hence a semantic consequence ϕ |= ψ
may be true in the sense of finite models without being classically valid. Crucial tools
of classical model theory, most notably the completeness and compactness theorems for
FO, fail in restriction to just finite models. From a modelling point of view, on the other
hand, the restriction to just finite models is often natural. In applications, in which the
intended models ought to be finite, reasoning on the basis also of infinite models may be
inadequate and give misleading results. Applications in computer science like specifica-
tion and verification, or also database theory, for instance, often call for the restriction
to finite models, and have had a significant impact on the development of finite model
theory.

The methodological shift encountered is highlighted by the failure of classical theorems
and tools, most notably of the compactness theorem but also most other key theorems
from classical model theory in its wake, see [25]. Certainly results from classical model
theory cannot be expected to go through automatically; often they fail, and some still
obtain, albeit with new proofs. Modal model theory, in particular, has a number of exam-
ples of the latter kind, and sometimes the new proofs shed new light also on the classical
version. For some concrete examples, close to (classical) modal model theory, which
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illustrate the interesting relationship with finite model theory, consider the following.
Interpolation for ML goes through via the finite model property (FMP), treated in

section 3.3. If |= ϕ → ψ is valid in finite structures, it must also be valid generally, as a
counterexample M, w |= ϕ ∧ ¬ψ would also yield a counterexample in the sense of finite
model theory, by FMP. Clearly a classical interpolant χ with |= (ϕ → χ) ∧ (χ → ψ), is
an interpolant also in the sense of finite model theory.

The modal characterisation theorem. Note how both sides of the equivalence expressed
in Theorem 55 change their meaning when interpreted in the sense of finite model theory:
both bisimulation invariance and logical equivalence only refer to finite structures. In par-
ticular, bisimulation invariance in finite structures does not imply bisimulation invariance
over all structures. Trivial examples are provided by formulae without finite models that
happen not to be bisimulation invariant for infinite models. Also, while Ehrenfeucht–
Fräıssé techniques remain valid, compactness does not and the classical proof with its
necessary detour through infinite models is no longer available. As discussed in sec-
tion 4.2, however, the theorem itself persists in the form of Theorem 61 as a theorem
of finite model theory due to Rosen [112]. Interestingly the new proofs in [112, 105] are
valid classically as well as in finite model theory and have lead to additional insights into
the classical result. In contrast, the failure of the corresponding characterisation theorem
for FO2 in finite model theory shows that the finite model property does not guaran-
tee a smooth passage to finite model theory. While an FO sentence that is (classically)
invariant under 2-pebble game equivalence is logically equivalent to a sentence in FO2,
this characterisation breaks down for finite model theory. The FO sentence saying that
a binary relation is a linear ordering, which is 2-pebble invariant only in restriction to
finite structures, is not expressible in FO2 even over finite structures.

Similarly, Rosen [112] has a proof of the finite model theory version of the modal
existential preservation theorem: ϕ ∈ ML is preserved under extensions (holds inside the
whole Kripke structure if it holds in a substructure) iff it is equivalent to an existential
modal formula (built from positive and negated atoms by means of only ∧, ∨ and 3

– disallowing 2 or nesting of ¬ and 3). The corresponding preservation theorem for
first-order logic is known to become invalid in restriction to just finite structures.

Modal logic stands out in comparison with first-order logic or the FOk in having a
comparatively smooth finite model theory that preserves a number of classical theorems,
as is the case for the above examples.

The variations of basic modal logic mentioned in section 5.1 have partly also been
investigated with respect to their finite model theory, with several results that suggest
a similarly smooth behaviour. Their characterisations as fragments of FO, in terms
of invariance under correspondingly refined notions of bisimulation, have been studied
in finite model theory in [106] with further ramifications w.r.t. other restricted classes
of finite frames in [17]. Just as is the case with van Benthem–Rosen characterisation,
Theorems 55 and 61 surprisingly many of these characterisations go through in restriction
to finite Kripke structures just as classically, albeit with rather specific new proofs. The
following may serve as a typical representative for several related results from [106, 17].
Also compare Proposition 68; this should be contrasted with the failure of, for instance,
the corresponding characterisation of FO2 in finite model theory.

THEOREM 130. For any ϕ(x) ∈ FO, the following are equivalent:
(i) ϕ is invariant under global bisimulation over finite Kripke structures.
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(ii) ϕ is equivalent to a formula of ML[∀] over finite Kripke structures.
Similarly are equivalent:

(i) ϕ is bisimulation invariant over finite, rooted Kripke structures.
(ii) ϕ is equivalent to a formula of ML[∀] over finite, rooted Kripke structures.

Related open problems concern the status in finite model theory of Theorem 65, for the
guarded fragment GF in arbitrary relational similarity types, and particularly strikingly
of Theorem 76, for the modal µ-calculus.

But finite model theory also deals with new questions, which only arise in the context
of finite structures. We devote the rest of this section to two sketches dealing with two
very specific issues of this kind: one from descriptive complexity (section 9.2), the other
one 0-1 laws (section 9.3). Descriptive complexity deals with the relationship between the
algorithmic complexity and the logical definability of properties of finite structures; here
finite structures feature as input to algorithmic problems and logic becomes a measure of
complexity. In 0-1 laws, and more generally asymptotic probability, one deals with the
statistics of logically defined properties over the collection of all size n structures in the
limit as n goes to infinity; here finite structures form the sample space for probabilistic
analysis. Compare [25, 93] for general background on these topics in finite model theory.

9.2 Capturing bisimulation invariant Ptime

Descriptive complexity aims for the description and analysis of computational complexity
by means of logics. A key example is the long open problem of a logic for Ptime. One
seeks a logic (with effective syntax) whose formulae define precisely those classes of finite
relational structures, for which membership can be decided in polynomial time.17 By
a well-known result of Immerman [76] and Vardi [134], the least fixed point extension
of first-order logic, LFP, is the solution for classes of finite, linearly ordered relational
structures. The problem remains open to date for not necessarily ordered structures.
Interestingly, the corresponding problem for bisimulation closed classes of finite Kripke
structures does admit a natural solution [104] (cf. [94] for another, related capturing
result).

Consider the framework of basic modal logic with a single modality associated with the
binary relation R and with finitely many atomic propositions pi. Let Q be a class of finite
pointed Kripke structures (i.e., a property of finite pointed Kripke structures) of that
type. Q corresponds to a bisimulation invariant property if it is closed under bisimulation
in the sense that for any two (M, u) À (M′, u′): (M, u) ∈ Q iff (M′, u′) ∈ Q. Recall
the bisimulation quotients M[u]/ρM of pointed Kripke structures (M, u) as discussed in
section 3.6. Bisimulation closure of Q implies that

Q =
{
(M, u) | (M[u]/ρM, [u]ρM) ∈ Q}

.

Membership in Q can therefore be determined via passage to canonical quotient repre-
sentations, and in terms of the intersection of Q with the class C of all canonical quotient
representations. Note that C consists of all finite rooted Kripke structures of the appro-
priate type in which each bisimulation type is realised exactly once (in other words, with

17One also has to require an effective link from syntax to Ptime algorithms for its evaluation, in order
to avoid pathological solutions.
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identity as the largest bisimulation). As largest bisimulations and bisimulation quotients
are polynomial time computable, it follows that Q is in Ptime if, and only if, Q ∩ C is.
The following special property of C opens up a reduction to the case of linearly ordered
structures, which then leads to the desired capturing result. By a canonical linear order-
ing of a structure we mean an ordering that is determined by the isomorphism type of
that structure.

LEMMA 131. There is a polynomial time algorithm which for every (M, u) ∈ C computes
a canonical linear ordering of the domain.

In fact, a linear ordering w.r.t. bisimulation type can be generated in an inductive
refinement procedure which, in its n-th stage, produces a linear ordering of the Àn-
classes within any given finite Kripke structure. This is based on a lexicographic lift
of the ordering on Àn-classes to an ordering of the Àn+1-classes, similar to the colour
refinement technique in graph theory. Over any finite Kripke structure the common
refinement of this process is a linear ordering of À-classes; for structures in C one obtains
an actual linear ordering, as each À-class is inhabited by a single state.

Moreover, a representation of this linearly ordered version of the quotient structure
M[u]/ρM is uniformly LFP-definable over the given structures (M, u) themselves. This
means that in LFP over the (M, u) one can also uniformly define any LFP definable
property of their linearly ordered quotients M[u]/ρM. By the Immerman–Vardi result
this includes all Ptime properties of these quotient structures, since they are linearly
ordered. Together these observations yield an abstract capturing result: an effective syn-
tactic normal form for the definition of precisely those bisimulation invariant properties
that are in Ptime. As shown in [104] one can further isolate a natural extension of the
modal µ-calculus, a multi-dimensional µ-calculus Lω

µ , with the property that a class Q of
finite pointed Kripke structures is bisimulation closed and in Ptime if, and only if, Q is
the class of finite models of a formula ϕ ∈ Lω

µ . The logic Lω
µ is the natural bisimulation-

safe least fixed-point extension of basic modal logic over the n-th cartesian power of a
Kripke structure (intuitively: n-dimensional ML), for arbitrary n ∈ N.

PROPOSITION 132. Let Q be a class of finite pointed Kripke structures of fixed finite
type. Then the following are equivalent:

(i) Q is bisimulation closed and in Ptime.
(ii) Q is definable by a formula of the multi-dimensional µ-calculus Lω

µ .

9.3 0-1 laws in modal logic

Another of the major specific topics in finite model theory is the asymptotic behaviour of
the probability for a given property P to be true in a randomly chosen structure of size n
(taken up to isomorphism), in a suitably defined probabilistic space. If that probability
has a limit as n increases without bound, that limit is called the (unlabelled) asymptotic
probability of P.

A fundamental result in this area is the 0-1 law for first-order logic, stating that the
asymptotic probability for every first-order definable property of relational structures
exists and equals either 0 or 1, i.e., every such property is either almost surely true or
almost surely false. This result was first proved in [40] (using ‘almost sure’ quantifier
elimination), later established independently by Fagin [27] who moreover obtained a
purely logical characterisation of the set of first-order sentences that are almost surely
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true, as the first-order theory of the so-called countable random structure. Prior to
Fagin’s discovery, Gaifman had studied in [37] infinite random structures as probabilistic
models for arbitrary relational first-order languages and had proved that the first-order
theory of such structures is axiomatised by an infinite set of extension axioms: sentences
that require every n-tuple to be extendible to an (n + 1)-tuple in every possible (i.e.,
consistent) way. Furthermore, he showed that the first-order theory of all extension
axioms is complete and ω-categorical.18 Thus, Fagin established the following transfer
theorem, which immediately implies the 0-1 law: a first-order property of relational
structures is almost surely true iff it is true in the (unique, up to isomorphism) countable
random structure. Grandjean [63] proved that the complexity of checking if a given
first-order formula is almost surely true is decidable in Pspace, in sharp contrast to
Trachtenbrot’s theorem that validity of first-order formulae on all finite structures is not
even recursively axiomatisable.

The transfer theorem was subsequently extended and the 0-1 law proved for several
extensions of first-order logic: for first-order logic with fixed point operators by Blass,
Gurevich and Kozen, later subsumed by the 0-1 law for infinitary logic with finitely
many variables Lω

∞ω, proved by Kolaitis and Vardi; for some prefix-defined fragments of
monadic second-order logic, again by Kolaitis and Vardi, who also established curious
parallel between decidability and 0-1 laws for such fragments. On the other hand, the
0-1 law fails in monadic second-order logic, even in its Σ1

1-fragment. For references and
further details on these results, see, e.g., [64, 25, 93, 53].

In the framework of modal logic, there are two natural notions of (asymptotic) prob-
ability ‘in the finite’: with respect to Kripke structures and with respect to frames. The
0-1 law with respect to Kripke structures follows directly from Fagin’s theorem. More-
over, Halpern and Kapron [66] showed that the modal formulae almost surely valid in
finite Kripke structures are precisely the theorems of the non-normal Carnap’s logic [8].
As for almost sure frame validity, a complete axiomatisation of the modal logic MLr of
the countable random frame has been obtained in [53], where it has also been proved
that MLr has the finite model property and is decidable. It is also shown there that
not all modal formulae that are almost surely frame-valid are in MLr, thus refuting the
transfer theorem for frame validity in modal logic. Perhaps the simplest such formula,
which fails in the countable random frame, is ¬¤¤(p ↔ ¬3p), proven later in [90] to
be almost surely true. Note that no such formula is frame-definable in fixed point logic
LFP, or even in Lω

∞ω, because the transfer theorem does hold for these.
The failure of the transfer theorem for frame validity in modal logic cast a serious

doubt on the truth of the 0-1 law there (claimed in [66]) which was soon justified by
le Bars [90] who proved that the formula ¬p∧ q∧¤¤((p∨ q) → ¬3(p∨ q)) → 3¤¬p has
no asymptotic probability, by using involved combinatorial-probabilistic methods. Thus,
basic modal logic provides the smallest currently known natural fragment of monadic Π1

1

(resp. Σ1
1), in a vocabulary with just a single binary relation, where the 0-1 law fails.

As noted in [53] the modal formulae which are almost surely frame-valid form a nor-
mal modal logic MLas, which contains MLr. It is a currently open problem whether
MLas is decidable, and its complete axiomatisation has not been established yet. How-
ever, a conjecture raised in [53] claims that all axioms that have to be added to MLr

18The probabilistic aspect of this result is rather curious: it means that, assuming uniform distribution,
any randomly constructed countable relational structure is isomorphic with probability 1 to the countable
random structure! In the case of graphs, that structure was previously known as the Radó graph.
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in order to axiomatise MLas are of a uniform, semantic nature, namely: there is an
infinite collection F of special finite frames, and each F ∈ F determines an axiom ϕF

valid in ‘almost every’ finite frame19 iff that frame cannot be mapped by a bounded
morphism onto F. For instance, the formula ¬¤¤(p ↔ ¬3p) corresponds to the frame
〈{a, b}, {〈a, b〉 , 〈b, a〉 , 〈b, b〉}〉.

CONCLUDING REMARKS

In summary, the semantics of modal logic has (at least) two emblematic features which
have a crucial impact on its model theory and which we have attempted to reflect in the
composition of this chapter.

Modal logic is local. Truth of a formula is evaluated at a current state (possible
world); this localisation is preserved (and carried) along the edges of the accessibility
relations by the restricted, relativised quantification corresponding to the modal opera-
tors. This feature is reflected by the notion of bisimulation between states and between
Kripke structures, respectively. The notion of bisimulation invariance plays a key role
in characterising what is modally definable, as captured in the van Benthem–Rosen
theorem (Theorems 55 and 61 here). Moreover, bisimulation (and its game character-
isation) plays a role in modal model theory analogous to that of partial isomorphism
(and its Ehrenfeucht–Fräıssé characterisation) in classical model theory. From yet an-
other perspective, the characteristic power of preservation under bisimulations in modal
logic can be compared to the characteristic power of preservation under ultraproducts
in first-order logic. Quite naturally, therefore, bisimulation emerges as the central and
unifying truth-preserving model-theoretic construction in modal logic, and all other ba-
sic constructions on which the classical model theory of modal logic builds (generated
substructures, bounded morphisms, disjoint unions) are definable in terms of it or at
least closely related to it. By systematically developing the bisimulation-based approach
to modal model theory in this chapter, we hope to have given a modern treatment on
this classical theme. Furthermore, the central role of bisimulations and bisimulation in-
variance properties is so robustly preserved, mutatis mutandis, in the rich and diverse
variety of extensions of basic modal logic, that it can be adopted as a benchmark of what
constitutes a modal language.

Modal logic is multi-layered. On Kripke structures the modal language is a bounded
variable, guarded fragment of first-order logic, while on Kripke frames, due to universal
quantification over valuations, it becomes a fragment of universal monadic second-order
logic. Each of these semantic layers leads to its own model-theoretic agenda and devel-
opment, but the two interact closely through various model-theoretic constructions and
preservation results presented here, and blend together in the notion of general frames,
dually re-incarnated as modal algebras. General frames emerge as a third, intermediate
semantic layer of modal logic, casting a bridge between the other two. In particular, by
means of a hierarchy of persistency properties, general frames provide a yardstick to mea-
sure the ‘expressive complexity’ of modal formulae, and determine their model-theoretic

19More precisely, in every finite frame in which each state is reachable from any other state by a path
of length ≤ 2.



76 Valentin Goranko and Martin Otto

behaviour. This chapter presents the basics of the modal model theory in each of these
three layers and illustrates the use of the main tools and results arising in each one of
them.

While trying to give a comprehensive account of the main issues and results of both
classical and modern model theory of modal logic, we have not covered a number of
important and relevant topics and research developments, either for lack of space or
because they are adequately treated in other chapters of this handbook. A certainly
incomplete list of the more conspicuous omissions (in no particular order) includes:

• model theory of extended modal languages: see [18] and [122] for a recent treatise;

• model theory of combined modal logics: see Chapter 15 of this handbook and [35];

• Lindström-type theorems for modal logic: see [19, 133];

• reductions of polyadic to monadic modal languages and their model theoretic im-
plications, including transfer of properties: see [85, 41], and Chapter 8 of this
handbook;

• Kracht’s internal definability theory [84];

• Zakharyaschev’s canonical formulae, providing a uniform characterisation of normal
modal logics extending K4: see [10, 9], and Chapter 7 of this handbook;

• model-building techniques such as mosaics and networks used for more advanced
completeness and decidability proofs: see, e.g., [99] and [5, Ch. 6.4 and 7.4].

• model completions in modal logic [39];

• bisimulation quantifiers and their use for proving uniform interpolation of various
modal logics by Visser [139], Ghilardi and Zawadowski [39] (where bisimulation
quantifiers are related to model completions), and of the modal mu-calculus by
D’Agostino and Hollenberg [16].

It is natural to conclude a handbook chapter by attempting to identify main general
trends of the current and future development of the topic under consideration.

To begin with, let us recall and revisit van Benthem’s three ‘pillars of wisdom’ support-
ing the classical edifice of modal logic: the Definability (Correspondence), Completeness,
and Duality theories [128]. Each of these has played a crucial role in the development
of modal model theory, and will continue to play such a role, with an accordingly mod-
ernised and updated agenda.

In particular, analysing the expressive power of modal languages with respect to each
of its semantic layers remains one of the main directions of research in modal logic, of
growing importance and complexity, due to the active expansion and diversification of
modal logic. Accordingly, the classical correspondence theory between modal and first-
order logic, much of which has been reflected in the chapter, is gradually ramifying into a
hierarchy of correspondence theories, aiming at mapping the variety of modal logics into
the hierarchy of classical logical languages centered around first-order logic. An example
is the currently emerging correspondence theory between modal logic and LFP.
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Establishing completeness results of modal deductive systems designed to capture an
intended semantics also remains one of the core areas of modal logic (as of logic in general)
which requires increasingly sophisticated and powerful techniques to match the more and
more complex modal languages and their semantics. The involved completeness proofs
for the modal mu-calculus (see Chapter 12 of this handbook) and CTL∗ (see [111]), and
the still open completeness problem for Parikh’s (full) Game Logic (see Chapter 20 of
this handbook) are cases in point.

Likewise for decidability and complexity, where model-theoretic tools and techniques,
such as the model-building techniques mentioned above as well as game-theoretic meth-
ods, are gaining increasing recognition and variety of applications.

New directions and problem areas in modal model theory itself, or using model-
theoretic methods, are emerging, too. Many of them, such as finite model theory and
descriptive complexity, finite and infinite state model checking, arise from actual or po-
tential applications of modal logic to computer science and related fields and follow recent
trends in classical model theory. Let us note, however, that while the present day model
theory of modal logic is still using mainly results and techniques from the classical era of
first-order model theory, the enormous development and sophistication of that field over
the past decades is yet to make its full impact on modal model theory.

In closing, being aware that we cannot possibly offer a definitive treatment of such a
rich and dynamic subject as the model theory of modal logic, we hope to have whetted
readers’ appetites and their desire to explore it further and to add to it new discoveries
of their own.
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