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Abstract

This note presents an elementary proof of the well-known characterisation theo-
rem that associates propositional modal logic with the bisimulation invariant frag-
ment of first-order logic. The classical version of this theorem is due to Johann van
Benthem [2], its finite model theory analogue to Eric Rosen [8].

1 Introduction

The present proof of the van Benthem/Rosen characterisation theorem is uniformly
applicable in both the classical and in the finite model theory scenario. While it is
broadly based on Rosen’s proof, it reduces the technical input from classical logic and
the model theory of modal logics strictly to the use of Ehrenfeucht-Fraissé games (for
first-order, and for the modal variant). Furthermore the proof is constructive and the
model constructions and accompanying analysis of games in the expressive completeness
argument yield an optimal bound on the modal nesting depth in terms of the first-
order quantifier rank. Despite this strengthening, the material becomes presentable in
a highly self-contained manner, and can be covered even at the level of an introductory
undergraduate course on logic and semantic games that covers the basic Ehrenfeucht-
Fraissé techniques.

Elsewhere this approach has been shown to extend and generalise to characterisations
involving stricter forms of bisimulation (global and two-way, and to guarded bisimulation
equivalence in transition systems) and corresponding extensions of basic modal logic in
[6, 7]. A brief discussion is provided in Section 4.
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2 Notation & Preliminaries

2.1 Kripke structures and basic modal logic
2.1.1 Kripke structures

Consider Kripke structures or transition systems over a finite relational vocabulary con-
sisting (w.l.o.g. for this note) of a single binary relation £ and finitely many unary
predicates P = (Py,...). We write A = (4, EA, PA) for a Kripke structure of this type,
and typically indicate a distinguished element as in A, a.

For a € A, let EA[a] = {d’ € A: (a,d') € EJA}

2.1.2 Basic modal logic

Denote as ML, or more specifically as ML[E; P] propositional modal logic over this
vocabulary. The formulae of ML[E; P] are generated from T, L and the P in P allowing
Boolean connectives and the modal quantifiers O and <. The semantics is the usual
one, with

Aal=0p iff A d = forall € EAa],
and (dually) A,a | Op iff A,d |= ¢ for some o' € E4[a).

We regard ML as a fragment of FO (or indeed FO?, first-order logic with just two distinct
variable symbols, z and y) via the standard translation based on

[Ogl*(z) = VYy(Bzy — [o]*(y)).
[Oel*(y) = Vz(Byz — [¢]*(z)).

We let ML, stand for the fragment of modal logic consisting of formulae whose
nesting depth w.r.t. 0/< is at most £. Note that the modal nesting depth coincides
with the FO quantifier rank in terms of the standard translation.

2.1.3 Tree structures and their local relatives

A Kripke structure with distinguished element, A, a, is called a tree structure if the
underlying graph (A, E4) is a directed tree with root a in the graph theoretic sense: E
is loop-free and every node is reachable from a on a unique E-path.

A tree structure is of depth £ if the lengths of paths is bounded by 4.

As an intermediary between arbitrary (finite) Kripke structures and tree structures,
we consider (finite) structures that look like trees up to a certain depth from the distin-
guished node.

Generally, in a Kripke structure A let the ¢-neighbourhood of a € A be the set U*(a)
of all nodes reachable from @ on (directed, forward) E-paths of length up to ¢; A|U*(a)
correspondingly denotes the substructure induced in restriction to U*(a).

We say that A, a is £-locally a tree structure iff A [Ué(a), a is a tree structure.



2.2 Bisimulation

Bisimulation equivalence between Kripke structures with distinguished nodes is denoted
as in A,a ~ B,b. The corresponding approximations to level ¢ (as induced by the
¢-round bisimulation game, see below) are denoted as in A, a ~y B, b.

The bisimulation game is played by players I and IT over two Kripke structures
A, a and B, b, which each carry a pebble, initially placed on the distinguished elements
a and b, respectively. In each round, the challenger, player I, moves the pebble in one
of the structures forward along an F-edge, and player II has to respond by moving the
other pebble along an F-edge in the opposite structure. It is player IT’s task to maintain
atomic equivalence throughout: II loses as soon as the currently pebbled nodes fail to
agree on all monadic predicates (atomic propositions). Apart from that, players lose
when they cannot move, for lack of F-edges. We say that IT has a winning strategy in
the (infinite) bisimulation game on A, a and B, b, if she has a strategy to respond to any
challenges from I without losing, indefinitely; IT has a winning strategy in the £-round
bisimulation game on A, a and B, b, if she has a strategy to respond to any challenges
from I without losing for £ rounds. Then

e A, aand B,b are bisimilar, A, a ~ B, b, iff IT has a winning strategy in the (infinite)
bisimulation game on A, a and B, b.

e A a and B,b are {-bisimilar, A,a ~p B,b, iff IT has a winning strategy in the
Z-round bisimulation game on A, a and B, b.

The standard Ehrenfeucht-Fraissé analysis of the bisimulation game yields the fol-
lowing.

Lemma 2.1. Quer the class of all Kripke structures of a fized finite relational type:
(i) ~¢ has finite index;
(ii)) A,a ~¢ B,biff a in A and b in B are indistinguishable in MLy;

(iii) each ~y¢ equivalence class is definable by an ML, formula.

A further few simple but useful properties of bisimulation equivalence are sum-
marised in the following. In the first lemma we refer to the operation of disjoint sums or
disjoint unions of relational structures: if A and C are structures of the same relational
type, we denote as A+ C their disjoint sum (union), whose universe is the disjoint union
of the universes and with all relations interpreted as in A and C, respectively. The
second lemma, captures the local nature of ~.

Lemma 2.2. Bisimulation equivalence is insensitive to disjoint sums. If A, B,C are of
the same relational type, then A,a ~ B, b iff A+ C,a ~ B,b.

Lemma 2.3. (i) A,a ~; B,b iff A[U(a),a ~; BIU%(b),b.
(ii) if A,a and B,b are both tree structures of depth £, then (-bisimulation coincides
with bisimulation: A,a ~y B,b iff A,a ~ B,b.



The familiar and intuitive process of unravelling always guarantees bisimilar com-
panions that are tree structures, albeit typically infinite ones. If only /-local tree likeness
is required, finite bisimilar companions are easily constructed for finite structures.

The tree unravelling A} of A from a, is obtained as follows. The universe of A is
the set of all (directed, forward) F-paths from a in A. F is interpreted in A} so that for
each m € N, each path of length m + 1 is an E-successor of its initial segment of length
m. The unary predicates are interpreted in accordance with the projection 7: A% — A
that maps each path to its last node.

Lemma 2.4. Let A, a be a Kripke structure with distinguished node a.
(i) The tree unravelling of A from a, A%, is a tree structure that is bisimilar to A via

the natural projection m: A% a ~ A, a.

(ii) For every £ € N, the restriction of the tree unravelling A% to depth £, is a tree
structure of depth € that is £-bisimilar to A,a: w: A% [U%(a),a ~¢ A, a.

(iii) For a finite Kripke structure A with distinguished node a, and ¢ € N: there is
a partial unravelling (to depth £) that yields a finite bisimilar companion that is

L-locally a tree structure.

Proof. (i) is obvious. For (ii) one may appeal to (i) of the previous lemma.

For (iii), take the tree unravelling A% in restriction to U*(a), and identify each node
b* in A* [U*(a) at distance £ from the root (a leaf in A* [ U¢(a)) with the node b = 7(b*)
in a fresh disjoint isomorphic copy of A. O

2.2.1 Bisimulation invariance

Definition 2.5. A formula ¢(z) € FO[E;P] is bisimulation invariant iff, whenever
A,a ~ B,bthen A a = ¢ iff B,b = .

All formulae of ML are bisimulation invariant; in fact, ¢ € MLy is invariant under
~yp. This is an immediate consequence of the modal Ehrenfeucht-Fraissé analysis, or
simply proved directly by syntactic induction on ¢.

2.3 Locality

Gaifman’s notion of locality [5] has been extensively studied in the first-order context,
and in particular has proved to be a useful tool in finite model theory [4]. We here only
need to make very limited use of the simple concept of Z-locality of a first-order formula
in one free variable.

Definition 2.6. A property of Kripke structures with distinguished nodes A, a—or a
formula ¢(z) defining such a property—is £-local iff whether or not it is satisfied in A, a
only depends on A[U*(a),a:

Aakye & AlUe),alk .
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The following is a simple consequence of /-bisimulation invariance, Lemma, 2.1, and
(i) in Lemma 2.3.

Observation 2.7. Any ¢ € MLy is ¢-local.

3 The characterisation theorem

The goal of this note is a simple proof of the following characterisation theorem which
goes through uniformly in the sense of finite model theory and classically. As an added
benefit we obtain an optimal quantitative bound on quantifier ranks involved.

Theorem 3.1 (van Benthem/Rosen). The following are equivalent for any p(z) €
FO of quantifier rank q:

(i) @(z) is invariant under bisimulation [in finite Kripke structures].

(ii) @(z) is logically equivalent [over finite Kripke structures| to a formula of MLy,
where £ =27 — 1.

Note that the two readings—one classical, one finite model theoretic— really are
two distinct theorems, a priori independent of each other. ! Note that bisimulation
invariance in finite structures does not imply bisimulation invariance over all structures:
trivial examples are provided by formulae without finite models that happen not to be
bisimulation invariant for infinite models.

Our proof proceeds in three stages. Note that even though we do not make this
implicit in the statements, each statement is considered in its two readings: classically
and in the sense of finite model theory.

Step 1 Any bisimulation invariant p(z) € FO is ¢-local for £ = 27 — 1 where ¢ =
qr(y). This is proved with FO Ehrenfeucht-Fraissé games, and as far as bisimulation is
concerned rests on Lemma 2.2.

Step 2 Any bisimulation invariant ¢(z) that is ¢-local, is even invariant under /-
bisimulation equivalence ~y. A simple bisimulation argument based on Lemmas 2.3
and 2.4 shows this.

Step 3 Any property invariant under /-bisimulation equivalence is definable in MLy.
This is a direct consequence of the Ehrenfeucht-Fraissé analysis of bisimulation, based
on Lemma 2.1 (iii).

!Two-variable first-order logic and two-pebble game equivalence illustrate this point. In that case,
the classical characterisation theorem does not hold as a theorem of finite model theory, finite model
property of FO? notwithstanding.



Proof sketch: step 1 Assume that ¢(z) € FO is bisimulation invariant, let ¢ = qr(y),
and put £ := 27 — 1. To show that ¢(z) is ¢-local, we consider any A, a and show that
A,a |= ¢ iff AJU%a),a = ¢. As ¢ is bisimulation invariant, we may w.l.o.g. assume
that A[U%(a),a |= ¢ is a tree of depth £. [We may pass to a (finite partial) unravelling of
A, which is a bisimilar companion of A, a and whose restriction to U¢(a) automatically
is a bisimilar companion to A [U*(a),a |= ¢.] Here and in the core argument we use the
fact that, due to bisimulation invariance, we may always replace a structure by some
bisimilar companion without affecting (the property expressed by) ¢

If for some A',a' ~ A,a and A", a" ~ A[U*(a),a, we can show A',a' =, A",a", we
are done. For then

Aal=p
iff Ad o (bisimulation invariance)
iff A" d"|=o (=4 equivalence)

iff A[U%a),a = ¢ (bisimulation invariance)

For suitable A" and A", the equivalence A',a’ =, A",a" can be established by
exhibiting a strategy for player II in the ¢-round Ehrenfeucht-Fraissé game.

As companions of A,a and A | U(a), a, respectively, we choose structures that are
disjoint copies of sufficiently many isomorphic copies of A,a and A | U’(a),a. Both
structures involved will have ¢ isomorphic copies of both A, a and A | U%(a), a, and only
distinguish themselves by the nature of the one extra component, in which live o’ and a”,
respectively. We indicate the two structures in the diagram below, with distinguished
elements a’ and a” marked e; the open cones stand for copies of A, the closed cones for
copies of A[U*(a). Clearly the structure on the left is bisimilar to A, a, the one on the
right bisimilar to A[U*(a),a, by Lemma 2.2.

VV Vyy V Vyyy

g copies g copies g copies g copies

It suffices now to exhibit a strategy for player IT in ¢ rounds of the game on these
structures. The game is started in the configuration with a single pebble in positions
marked e in each of the two structures. The description of the strategy makes reference
to a critical distance d,,, whose value for round m is

dyy = 207

Starting with value d; = 29~ = [£/2] in the first round, this critical distance decreases
by a factor 1/2 in each round. Under the proposed strategy, IT will always play according



to local context if I's move goes to an element within the critical distance from any
already marked element; if I’s move is further than the critical distance away from all
previously marked elements, we let IT respond by marking the same element in one of
the isomorphic copies of A or A [/ that has not yet been touched by the game. (There
are ¢ many copies of each on each side, hence fresh ones are always available.)

The idea of local context works as follows. We think of the pebbles as belonging to
disjoint clusters; initially we have just one single cluster consisting of the single elements
with pebbles e on each side.

A pebble that is newly placed in round m joins an existing cluster if it is at most
distance d,, away from one of the members of that cluster. Note that because of the
shrinking d,,,, no two clusters can ever be joined. Any elements of different clusters after
round m are more than d,,, apart.

Our strategy for IT will have her maintain the condition that after completion of
round m

any two corresponding clusters are linked by an isomorphism that extends
to all points within distance d,,, of the members of the clusters.

If in round m, I places a new pebble further than d,,, away from all previously marked
elements, it forms a new cluster on its own, and II’s response into a new component
makes sure that the same happens on the other side. If I places a new pebble to join
one of the existing clusters, then IT uses the isomorphism that comes with that cluster
to respond with a matching element to join the corresponding cluster on the other side.

One checks that the above invariant is satisfied initially, and that the prescriptions
for IT’s moves are such that it is maintained in round m through allm =1...,q.

After ¢ rounds, the local isomorphisms between clusters still guarantee that IT wins.

Proof sketch: step 2 Let p(z) be £-local and bisimulation invariant. Suppose A, a ~y
B,band A, a = ¢. We need to show that then also B,b = ¢. Without loss of generality,
we may assume that A4 and B are {-locally tree structures. [If they are not, pass to
(finite partial) unravellings, Lemma 2.4]

By (-locality, A,a | ¢ iff A U%a),a = ¢. Now A,a ~; B,b iff A[U’(a),a ~;
B [ U*(b),b iff (as both structures are now trees of depth £) A [ U%a),a ~ B[ U*(a);
Lemma 2.3.

Hence A[U*(a),a |= ¢ iff B[U*(b),b |= ¢. Therefore B,b |= ¢, by ¢-locality again.

Proof sketch: step 8 If ¢ is invariant under ~y, we may use the ML, formulae that define
~¢ equivalence classes, according to Lemma 2.1 (iii). Let x4, € ML; be the formula
that defines the ~; equivalence class of A, a. Then ¢ is equivalent to the disjunction

p= \/ XA, a5
Aaa‘:Lp

which is equivalent to a finite disjunction as ~, has finite index.
This finishes the proof of the characterisation theorem.



Exercise 3.1. The exponential gap between the first-order quantifier rank ¢ and modal
quantifier rank ¢ = 29 — 1 cannot be avoided in general, as the example of formulae
expressing that “there is an element satisfying p within distance 2¢ — 17 shows. Show
that this is expressible in FO,, but not by any formula in ML, for m <27 — 1. [It can
be expressed in modal quantifier rank 29 — 1.]

Observation 3.2. There is an exponential succinctness gap between FO and ML, in
expressing bisimulation invariant properties.

4 Ramifications

In essence the technique outlined for basic modal logic above extends to other settings.
We mention three distinct lines of variations and extensions.

Firstly, the classical statement of the theorem relativises to FO-definable classes of
structures (as is clear also from the classical proof); but both the classical and the finite
model theoretic versions also relativise to arbitrary bisimulation-closed classes.

Secondly, one can treat stronger variants of bisimulation equivalence, and in particu-
lar global forms of bisimulation, with a corresponding shift to technically more demand-
ing locality arguments that need to apply uniformly across the entire structure rather
than in a neighbourhood of the distinguished node.

Thirdly, one may want to consider other natural, more restricted classes of structures,
rather than the class of all (or all finite) Kripke structures. Natural cases of interest
include in particular classes of frames defined in terms of connectivity constraints, and
in terms of classes of frames corresponding to classical modal theories.

4.1 Straightforward relativisations

Let C be a class of Kripke structures with distinguished elements. The notions of bisimu-
lation invariance and of definability in ML give rise to corresponding notion in restriction
to C. For instance, ¢(z) is bisimulation invariant over C if for any two structures A, a
and B,b from C, A,a ~ B,b implies that A,a |= ¢ iff B,b = ¢. The classical proof of
van Benthem’s theorem uses compactness and saturation properties to establish indi-
rectly that bisimulation invariance of ¢(z) € FO implies invariance ¢-bisimulation for
some £. This argument clearly relativises to work within any class C defined by an FO
theory.

The game oriented proof we gave above, on the other hand, is easily seen to work in
restriction to (the finite structures within) any class C that is itself bisimulation closed.

Corollary 4.1. Let C be closed under bisimulation, Cys, the class of finite structures
within C. Then @(x) is invariant under bisimulation over C [over Cg,] iff ¢(x) is logically
equivalent over C [over Cg,| to a formula of MLy, where £ =27 — 1.

4.2 Stronger forms of bisimulation

Variations of this kind have been studied in [6, 7]. The following strengthenings of basic
bisimulation equivalence are treated (described here in terms of the modifications in the



corresponding bisimulation games):

(i) two-way bisimulation: I also has the option to move backward along F-edges, in
which case IT has to respond likewise.

(ii) global bisimulation: I can opt to move the pebble to a fresh start node anywhere
in the structure, as can IT in her response to such a move.

(iii) two-way and global bisimulation, ~: both of the above.

It is entirely straightforward to adapt (the classical proof of) the classical charac-
terisation theorem of van Benthem’s to cover these variations. One naturally finds that
these refined notions of bisimulation characterise within FO the following extensions of
basic modal logic:

(i) two-way bisimulation: ML, ML with backward (past) modalities like G~ p(z) =
Fy(Byz A o(y))-

(ii) global bisimulation: MLY, ML with a global modality, corresponding to unre-
stricted universal/existential quantification as in Jzp(z) where p € ML.

(iii) two-way and global bisimulation, ~: ML™Y, the combined extension by both of
the above.

The global variants are technically interesting, because they require non-trivial local-
ity arguments. We discuss the key case of ~ invariance (global two-way bisimulation).
On the one hand, the given FO formula () is analysed in terms of Gaifman’s locality
theorem for FO, [5]. This allows us to determine locality parameters £, m, ¢ from ¢ such
that whenever A, a and B, b agree

— on FO properties of quantifier rank ¢ in the /-neighbourhoods of a and b, respec-

tively;

— on the quantifier rank ¢ FO properties of systems of up to m many disjoint ¢-

neighbourhoods anywhere within A or B, respectively;
then A, a = ¢ iff B,b = .

In order to show the analogue of the crucial step 2, that then ¢ actually is invariant
under =y, one can construct, for arbitrary A,a =y B, b, fully = equivalent companion
structures A*,a =~ A, a and B*,b ~ B, b that agree locally for £, m, ¢ in the above sense.

In the classical case, infinite companions A* and B* are admissible, and one can
resort to bisimilar tree models obtained as suitable two-way unravellings, over which
/-two-way-bisimilarity then enforces local first-order equivalence.

In the finite model theory instance of the argument, one similarly seeks companion
structures that are, at least ¢-locally tree-like (acyclic), but at the same time need to
be kept finite. This can be achieved with a construction of locally acyclic bisimilar
coverings as developed in [6, 7]. These techniques have also been shown to extend to
guarded bisimulation equivalence and to a characterisation of the guarded fragment GF
of first-order logic, [1], over relational structures of width 2.

The general case for guarded bisimulation and the guarded fragment GF in relational
structures with predicates of higher arities is the theme of ongoing investigations. In
fact, it is currently open, whether the characterisation of GF as the guarded bisimulation
invariant fragment of FO, due to Andréka, van Benthem and Németi [1], also obtains in



the context of finite model theory. For this it would seem to be necessary to lift essential
features of the construction of finite locally acyclic covers from the graph theoretic setting
of bisimulations to the hypergraph theoretic setting of guarded bisimulations.

Further ramifications currently under investigation concern counting bisimulations
(where the number of available successors of a certain kind matters) and modal logics
with graded modalities.

4.3 Other natural classes of frames

These variations look at characterisation theorems for modal logics, of the above kind,
over still more restricted classes of (finite) Kripke structures. Of particular interest from
a transition system point of view are connected systems, as the existence of disconnected
components (unreachable states) is often counterintuitive. Consider, for instance, the
class of Kripke structures A, a that are connected in the sense that each node is reach-
able on some (forward, directed) E-path from a. In restriction to such connected frames,
bisimulation equivalence coincides with global bisimulation equivalence, and correspond-
ingly one expects a characterisation of the following kind.

Proposition 4.2. The following are equivalent for every o(xz) € FO, both classically
and in the sense of finite model theory:

(i) ¢ is invariant under bisimulation over the class of all [finite] connected Kripke
structures.

(ii) ¢ is invariant under global bisimulation over the class of all [finite] connected
Kripke structures.

(iii) ¢ is equivalent to a formula of MLY over the class of all [finite] connected Kripke
structures.

Indeed, the constructive approach outlined above adapts to these settings to prove
this proposition, as well as several other natural characterisation theorem of this kind.
Interestingly, there seems to be no straightforward classical proof along the standard
lines, as the underlying class of connected Kripke structures is not an elementary class,
and compactness arguments are not directly available.

A number of other ramifications related to, for instance, frame conditions dealing
with symmetry or transitivity requirements are being considered in ongoing joint work
with A. Dawar [3]. Transitivity in particular is interesting from a technical point of
view, as locality cannot be used in a straightforward manner.
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