
Elementary Proof of the van Benthem-RosenCharaterisation TheoremMartin Otto �July 2003; revised May 04AbstratThis note presents an elementary proof of the well-known haraterisation theo-rem that assoiates propositional modal logi with the bisimulation invariant frag-ment of �rst-order logi. The lassial version of this theorem is due to Johann vanBenthem [2℄, its �nite model theory analogue to Eri Rosen [8℄.1 IntrodutionThe present proof of the van Benthem/Rosen haraterisation theorem is uniformlyappliable in both the lassial and in the �nite model theory senario. While it isbroadly based on Rosen's proof, it redues the tehnial input from lassial logi andthe model theory of modal logis stritly to the use of Ehrenfeuht-Fra��ss�e games (for�rst-order, and for the modal variant). Furthermore the proof is onstrutive and themodel onstrutions and aompanying analysis of games in the expressive ompletenessargument yield an optimal bound on the modal nesting depth in terms of the �rst-order quanti�er rank. Despite this strengthening, the material beomes presentable ina highly self-ontained manner, and an be overed even at the level of an introdutoryundergraduate ourse on logi and semanti games that overs the basi Ehrenfeuht-Fra��ss�e tehniques.Elsewhere this approah has been shown to extend and generalise to haraterisationsinvolving striter forms of bisimulation (global and two-way, and to guarded bisimulationequivalene in transition systems) and orresponding extensions of basi modal logi in[6, 7℄. A brief disussion is provided in Setion 4.�Mathematial Logi and Foundations of Computer Siene, Department of Mathematis, DarmstadtUniversity of Tehnology, otto�mathematik.tu-darmstadt.de
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2 Notation & Preliminaries2.1 Kripke strutures and basi modal logi2.1.1 Kripke struturesConsider Kripke strutures or transition systems over a �nite relational voabulary on-sisting (w.l.o.g. for this note) of a single binary relation E and �nitely many unaryprediates P = (P1; : : :). We write A = (A;EA;PA) for a Kripke struture of this type,and typially indiate a distinguished element as in A; a.For a 2 A, let EA[a℄ = �a0 2 A : (a; a0) 2 EAj 	.2.1.2 Basi modal logiDenote as ML, or more spei�ally as ML[E;P℄ propositional modal logi over thisvoabulary. The formulae of ML[E;P℄ are generated from >, ? and the P in P allowingBoolean onnetives and the modal quanti�ers 2 and 3. The semantis is the usualone, with A; a j= 2' i� A; a0 j= ' for all a0 2 EA[a℄;and (dually) A; a j= 3' i� A; a0 j= ' for some a0 2 EA[a℄:We regard ML as a fragment of FO (or indeed FO2, �rst-order logi with just two distintvariable symbols, x and y) via the standard translation based on[2'℄�(x) = 8y�Exy ! ['℄�(y)�;[2'℄�(y) = 8x�Eyx! ['℄�(x)�:We let ML` stand for the fragment of modal logi onsisting of formulae whosenesting depth w.r.t. 2=3 is at most `. Note that the modal nesting depth oinideswith the FO quanti�er rank in terms of the standard translation.2.1.3 Tree strutures and their loal relativesA Kripke struture with distinguished element, A; a, is alled a tree struture if theunderlying graph (A;EA) is a direted tree with root a in the graph theoreti sense: Eis loop-free and every node is reahable from a on a unique E-path.A tree struture is of depth ` if the lengths of paths is bounded by `.As an intermediary between arbitrary (�nite) Kripke strutures and tree strutures,we onsider (�nite) strutures that look like trees up to a ertain depth from the distin-guished node.Generally, in a Kripke struture A let the `-neighbourhood of a 2 A be the set U `(a)of all nodes reahable from a on (direted, forward) E-paths of length up to `; A�U `(a)orrespondingly denotes the substruture indued in restrition to U `(a).We say that A; a is `-loally a tree struture i� A�U `(a); a is a tree struture.2



2.2 BisimulationBisimulation equivalene between Kripke strutures with distinguished nodes is denotedas in A; a � B; b. The orresponding approximations to level ` (as indued by the`-round bisimulation game, see below) are denoted as in A; a �` B; b.The bisimulation game is played by players I and II over two Kripke struturesA; a and B; b, whih eah arry a pebble, initially plaed on the distinguished elementsa and b, respetively. In eah round, the hallenger, player I, moves the pebble in oneof the strutures forward along an E-edge, and player II has to respond by moving theother pebble along an E-edge in the opposite struture. It is player II's task to maintainatomi equivalene throughout: II loses as soon as the urrently pebbled nodes fail toagree on all monadi prediates (atomi propositions). Apart from that, players losewhen they annot move, for lak of E-edges. We say that II has a winning strategy inthe (in�nite) bisimulation game on A; a and B; b, if she has a strategy to respond to anyhallenges from I without losing, inde�nitely; II has a winning strategy in the `-roundbisimulation game on A; a and B; b, if she has a strategy to respond to any hallengesfrom I without losing for ` rounds. Then� A; a and B; b are bisimilar,A; a � B; b, i� II has a winning strategy in the (in�nite)bisimulation game on A; a and B; b.� A; a and B; b are `-bisimilar, A; a �` B; b, i� II has a winning strategy in the`-round bisimulation game on A; a and B; b.The standard Ehrenfeuht-Fra��ss�e analysis of the bisimulation game yields the fol-lowing.Lemma 2.1. Over the lass of all Kripke strutures of a �xed �nite relational type:(i) �` has �nite index;(ii) A; a �` B; b i� a in A and b in B are indistinguishable in ML`;(iii) eah �` equivalene lass is de�nable by an ML` formula.A further few simple but useful properties of bisimulation equivalene are sum-marised in the following. In the �rst lemma we refer to the operation of disjoint sums ordisjoint unions of relational strutures: if A and C are strutures of the same relationaltype, we denote as A+C their disjoint sum (union), whose universe is the disjoint unionof the universes and with all relations interpreted as in A and C, respetively. Theseond lemma aptures the loal nature of �`.Lemma 2.2. Bisimulation equivalene is insensitive to disjoint sums. If A;B; C are ofthe same relational type, then A; a � B; b i� A+ C; a � B; b.Lemma 2.3. (i) A; a �` B; b i� A�U `(a); a �` B �U `(b); b.(ii) if A; a and B; b are both tree strutures of depth `, then `-bisimulation oinideswith bisimulation: A; a �` B; b i� A; a � B; b.3



The familiar and intuitive proess of unravelling always guarantees bisimilar om-panions that are tree strutures, albeit typially in�nite ones. If only `-loal tree likenessis required, �nite bisimilar ompanions are easily onstruted for �nite strutures.The tree unravelling A�a of A from a, is obtained as follows. The universe of A�a isthe set of all (direted, forward) E-paths from a in A. E is interpreted in A�a so that foreah m 2 N, eah path of length m+1 is an E-suessor of its initial segment of lengthm. The unary prediates are interpreted in aordane with the projetion � : A�a ! Athat maps eah path to its last node.Lemma 2.4. Let A; a be a Kripke struture with distinguished node a.(i) The tree unravelling of A from a, A�a, is a tree struture that is bisimilar to A viathe natural projetion � : A�a; a � A; a.(ii) For every ` 2 N, the restrition of the tree unravelling A�a to depth `, is a treestruture of depth ` that is `-bisimilar to A; a: � : A�a �U `(a); a �` A; a.(iii) For a �nite Kripke struture A with distinguished node a, and ` 2 N: there isa partial unravelling (to depth `) that yields a �nite bisimilar ompanion that is`-loally a tree struture.Proof. (i) is obvious. For (ii) one may appeal to (i) of the previous lemma.For (iii), take the tree unravelling A�a in restrition to U `(a), and identify eah nodeb� in A�a �U `(a) at distane ` from the root (a leaf in A�a �U `(a)) with the node b = �(b�)in a fresh disjoint isomorphi opy of A.2.2.1 Bisimulation invarianeDe�nition 2.5. A formula '(x) 2 FO[E;P℄ is bisimulation invariant i�, wheneverA; a � B; b then A; a j= ' i� B; b j= '.All formulae of ML are bisimulation invariant; in fat, ' 2 ML` is invariant under�`. This is an immediate onsequene of the modal Ehrenfeuht-Fra��ss�e analysis, orsimply proved diretly by syntati indution on '.2.3 LoalityGaifman's notion of loality [5℄ has been extensively studied in the �rst-order ontext,and in partiular has proved to be a useful tool in �nite model theory [4℄. We here onlyneed to make very limited use of the simple onept of `-loality of a �rst-order formulain one free variable.De�nition 2.6. A property of Kripke strutures with distinguished nodes A; a|or aformula '(x) de�ning suh a property|is `-loal i� whether or not it is satis�ed in A; aonly depends on A�U `(a); a:A; a j= ' , A�U `(a); a j= ':4



A�U `(a)a j= 'A a j= '�,,,,,,,,,� ��������� Æ,,,,,,� ������The following is a simple onsequene of `-bisimulation invariane, Lemma 2.1, and(i) in Lemma 2.3.Observation 2.7. Any ' 2 ML` is `-loal.3 The haraterisation theoremThe goal of this note is a simple proof of the following haraterisation theorem whihgoes through uniformly in the sense of �nite model theory and lassially. As an addedbene�t we obtain an optimal quantitative bound on quanti�er ranks involved.Theorem 3.1 (van Benthem/Rosen). The following are equivalent for any '(x) 2FO of quanti�er rank q:(i) '(x) is invariant under bisimulation [in �nite Kripke strutures℄.(ii) '(x) is logially equivalent [over �nite Kripke strutures℄ to a formula of ML`,where ` = 2q � 1.Note that the two readings|one lassial, one �nite model theoreti| really aretwo distint theorems, a priori independent of eah other. 1 Note that bisimulationinvariane in �nite strutures does not imply bisimulation invariane over all strutures:trivial examples are provided by formulae without �nite models that happen not to bebisimulation invariant for in�nite models.Our proof proeeds in three stages. Note that even though we do not make thisimpliit in the statements, eah statement is onsidered in its two readings: lassiallyand in the sense of �nite model theory.Step 1 Any bisimulation invariant '(x) 2 FO is `-loal for ` = 2q � 1 where q =qr('). This is proved with FO Ehrenfeuht-Fra��ss�e games, and as far as bisimulation isonerned rests on Lemma 2.2.Step 2 Any bisimulation invariant '(x) that is `-loal, is even invariant under `-bisimulation equivalene �`. A simple bisimulation argument based on Lemmas 2.3and 2.4 shows this.Step 3 Any property invariant under `-bisimulation equivalene is de�nable in ML`.This is a diret onsequene of the Ehrenfeuht-Fra��ss�e analysis of bisimulation, basedon Lemma 2.1 (iii).1Two-variable �rst-order logi and two-pebble game equivalene illustrate this point. In that ase,the lassial haraterisation theorem does not hold as a theorem of �nite model theory, �nite modelproperty of FO2 notwithstanding. 5



Proof sketh: step 1 Assume that '(x) 2 FO is bisimulation invariant, let q = qr('),and put ` := 2q � 1. To show that '(x) is `-loal, we onsider any A; a and show thatA; a j= ' i� A �U `(a); a j= '. As ' is bisimulation invariant, we may w.l.o.g. assumethat A�U `(a); a j= ' is a tree of depth `. [We may pass to a (�nite partial) unravelling ofA, whih is a bisimilar ompanion of A; a and whose restrition to U `(a) automatiallyis a bisimilar ompanion to A�U `(a); a j= '.℄ Here and in the ore argument we use thefat that, due to bisimulation invariane, we may always replae a struture by somebisimilar ompanion without a�eting (the property expressed by) '.If for some A0; a0 � A; a and A00; a00 � A�U `(a); a, we an show A0; a0 �q A00; a00, weare done. For then A; a j= 'i� A0; a0 j= ' (bisimulation invariane)i� A00; a00 j= ' (�q equivalene)i� A�U `(a); a j= ' (bisimulation invariane)For suitable A0 and A00, the equivalene A0; a0 �q A00; a00 an be established byexhibiting a strategy for player II in the q-round Ehrenfeuht-Fra��ss�e game.As ompanions of A; a and A �U `(a); a, respetively, we hoose strutures that aredisjoint opies of suÆiently many isomorphi opies of A; a and A � U `(a); a. Bothstrutures involved will have q isomorphi opies of both A; a and A�U `(a); a, and onlydistinguish themselves by the nature of the one extra omponent, in whih live a0 and a00,respetively. We indiate the two strutures in the diagram below, with distinguishedelements a0 and a00 marked �; the open ones stand for opies of A, the losed ones foropies of A�U `(a). Clearly the struture on the left is bisimilar to A; a, the one on theright bisimilar to A�U `(a); a, by Lemma 2.2.
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������� Æ,,,,,,Æ ������ Æ,,,,,,Æ ������| {z }q opiesIt suÆes now to exhibit a strategy for player II in q rounds of the game on thesestrutures. The game is started in the on�guration with a single pebble in positionsmarked � in eah of the two strutures. The desription of the strategy makes refereneto a ritial distane dm, whose value for round m isdm = 2q�m:Starting with value d1 = 2q�1 = d`=2e in the �rst round, this ritial distane dereasesby a fator 1=2 in eah round. Under the proposed strategy, II will always play aording6



to loal ontext if I's move goes to an element within the ritial distane from anyalready marked element; if I's move is further than the ritial distane away from allpreviously marked elements, we let II respond by marking the same element in one ofthe isomorphi opies of A or A�` that has not yet been touhed by the game. (Thereare q many opies of eah on eah side, hene fresh ones are always available.)The idea of loal ontext works as follows. We think of the pebbles as belonging todisjoint lusters; initially we have just one single luster onsisting of the single elementswith pebbles � on eah side.A pebble that is newly plaed in round m joins an existing luster if it is at mostdistane dm away from one of the members of that luster. Note that beause of theshrinking dm, no two lusters an ever be joined. Any elements of di�erent lusters afterround m are more than dm apart.Our strategy for II will have her maintain the ondition that after ompletion ofround many two orresponding lusters are linked by an isomorphism that extendsto all points within distane dm of the members of the lusters.If in roundm, I plaes a new pebble further than dm away from all previously markedelements, it forms a new luster on its own, and II's response into a new omponentmakes sure that the same happens on the other side. If I plaes a new pebble to joinone of the existing lusters, then II uses the isomorphism that omes with that lusterto respond with a mathing element to join the orresponding luster on the other side.One heks that the above invariant is satis�ed initially, and that the presriptionsfor II's moves are suh that it is maintained in round m through all m = 1 : : : ; q.After q rounds, the loal isomorphisms between lusters still guarantee that II wins.Proof sketh: step 2 Let '(x) be `-loal and bisimulation invariant. Suppose A; a �`B; b and A; a j= '. We need to show that then also B; b j= '. Without loss of generality,we may assume that A and B are `-loally tree strutures. [If they are not, pass to(�nite partial) unravellings, Lemma 2.4℄By `-loality, A; a j= ' i� A � U `(a); a j= '. Now A; a �` B; b i� A � U `(a); a �`B � U `(b); b i� (as both strutures are now trees of depth `) A � U `(a); a � B � U `(a);Lemma 2.3.Hene A�U `(a); a j= ' i� B �U `(b); b j= '. Therefore B; b j= ', by `-loality again.Proof sketh: step 3 If ' is invariant under�`, we may use the ML` formulae that de�ne�` equivalene lasses, aording to Lemma 2.1 (iii). Let �`;A;a 2 ML` be the formulathat de�nes the �` equivalene lass of A; a. Then ' is equivalent to the disjuntion' � _A;aj='�`;A;a;whih is equivalent to a �nite disjuntion as �` has �nite index.This �nishes the proof of the haraterisation theorem.7



Exerise 3.1. The exponential gap between the �rst-order quanti�er rank q and modalquanti�er rank ` = 2q � 1 annot be avoided in general, as the example of formulaeexpressing that \there is an element satisfying p within distane 2q � 1" shows. Showthat this is expressible in FOq, but not by any formula in MLm for m < 2q � 1. [It anbe expressed in modal quanti�er rank 2q � 1.℄Observation 3.2. There is an exponential suintness gap between FO and ML, inexpressing bisimulation invariant properties.4 Rami�ationsIn essene the tehnique outlined for basi modal logi above extends to other settings.We mention three distint lines of variations and extensions.Firstly, the lassial statement of the theorem relativises to FO-de�nable lasses ofstrutures (as is lear also from the lassial proof); but both the lassial and the �nitemodel theoreti versions also relativise to arbitrary bisimulation-losed lasses.Seondly, one an treat stronger variants of bisimulation equivalene, and in partiu-lar global forms of bisimulation, with a orresponding shift to tehnially more demand-ing loality arguments that need to apply uniformly aross the entire struture ratherthan in a neighbourhood of the distinguished node.Thirdly, one may want to onsider other natural, more restrited lasses of strutures,rather than the lass of all (or all �nite) Kripke strutures. Natural ases of interestinlude in partiular lasses of frames de�ned in terms of onnetivity onstraints, andin terms of lasses of frames orresponding to lassial modal theories.4.1 Straightforward relativisationsLet C be a lass of Kripke strutures with distinguished elements. The notions of bisimu-lation invariane and of de�nability in ML give rise to orresponding notion in restritionto C. For instane, '(x) is bisimulation invariant over C if for any two strutures A; aand B; b from C, A; a � B; b implies that A; a j= ' i� B; b j= '. The lassial proof ofvan Benthem's theorem uses ompatness and saturation properties to establish indi-retly that bisimulation invariane of '(x) 2 FO implies invariane `-bisimulation forsome `. This argument learly relativises to work within any lass C de�ned by an FOtheory.The game oriented proof we gave above, on the other hand, is easily seen to work inrestrition to (the �nite strutures within) any lass C that is itself bisimulation losed.Corollary 4.1. Let C be losed under bisimulation, C�n the lass of �nite strutureswithin C. Then '(x) is invariant under bisimulation over C [over C�n℄ i� '(x) is logiallyequivalent over C [over C�n℄ to a formula of ML`, where ` = 2q � 1.4.2 Stronger forms of bisimulationVariations of this kind have been studied in [6, 7℄. The following strengthenings of basibisimulation equivalene are treated (desribed here in terms of the modi�ations in the8



orresponding bisimulation games):(i) two-way bisimulation: I also has the option to move bakward along E-edges, inwhih ase II has to respond likewise.(ii) global bisimulation: I an opt to move the pebble to a fresh start node anywherein the struture, as an II in her response to suh a move.(iii) two-way and global bisimulation, �: both of the above.It is entirely straightforward to adapt (the lassial proof of) the lassial hara-terisation theorem of van Benthem's to over these variations. One naturally �nds thatthese re�ned notions of bisimulation haraterise within FO the following extensions ofbasi modal logi:(i) two-way bisimulation: ML�, ML with bakward (past) modalities like 3�'(x) �9y(Eyx ^ '(y)).(ii) global bisimulation: ML8, ML with a global modality, orresponding to unre-strited universal/existential quanti�ation as in 9x'(x) where ' 2 ML.(iii) two-way and global bisimulation, �: ML�8, the ombined extension by both ofthe above.The global variants are tehnially interesting, beause they require non-trivial loal-ity arguments. We disuss the key ase of � invariane (global two-way bisimulation).On the one hand, the given FO formula '(x) is analysed in terms of Gaifman's loalitytheorem for FO, [5℄. This allows us to determine loality parameters `;m; q from ' suhthat whenever A; a and B; b agree{ on FO properties of quanti�er rank q in the `-neighbourhoods of a and b, respe-tively;{ on the quanti�er rank q FO properties of systems of up to m many disjoint `-neighbourhoods anywhere within A or B, respetively;then A; a j= ' i� B; b j= '.In order to show the analogue of the ruial step 2, that then ' atually is invariantunder �`, one an onstrut, for arbitrary A; a �` B; b, fully � equivalent ompanionstrutures A�; a � A; a and B�; b � B; b that agree loally for `;m; q in the above sense.In the lassial ase, in�nite ompanions A� and B� are admissible, and one anresort to bisimilar tree models obtained as suitable two-way unravellings, over whih`-two-way-bisimilarity then enfores loal �rst-order equivalene.In the �nite model theory instane of the argument, one similarly seeks ompanionstrutures that are, at least `-loally tree-like (ayli), but at the same time need tobe kept �nite. This an be ahieved with a onstrution of loally ayli bisimilaroverings as developed in [6, 7℄. These tehniques have also been shown to extend toguarded bisimulation equivalene and to a haraterisation of the guarded fragment GFof �rst-order logi, [1℄, over relational strutures of width 2.The general ase for guarded bisimulation and the guarded fragment GF in relationalstrutures with prediates of higher arities is the theme of ongoing investigations. Infat, it is urrently open, whether the haraterisation of GF as the guarded bisimulationinvariant fragment of FO, due to Andr�eka, van Benthem and N�emeti [1℄, also obtains in9



the ontext of �nite model theory. For this it would seem to be neessary to lift essentialfeatures of the onstrution of �nite loally ayli overs from the graph theoreti settingof bisimulations to the hypergraph theoreti setting of guarded bisimulations.Further rami�ations urrently under investigation onern ounting bisimulations(where the number of available suessors of a ertain kind matters) and modal logiswith graded modalities.4.3 Other natural lasses of framesThese variations look at haraterisation theorems for modal logis, of the above kind,over still more restrited lasses of (�nite) Kripke strutures. Of partiular interest froma transition system point of view are onneted systems, as the existene of disonnetedomponents (unreahable states) is often ounterintuitive. Consider, for instane, thelass of Kripke strutures A; a that are onneted in the sense that eah node is reah-able on some (forward, direted) E-path from a. In restrition to suh onneted frames,bisimulation equivalene oinides with global bisimulation equivalene, and orrespond-ingly one expets a haraterisation of the following kind.Proposition 4.2. The following are equivalent for every '(x) 2 FO, both lassiallyand in the sense of �nite model theory:(i) ' is invariant under bisimulation over the lass of all [�nite℄ onneted Kripkestrutures.(ii) ' is invariant under global bisimulation over the lass of all [�nite℄ onnetedKripke strutures.(iii) ' is equivalent to a formula of ML8 over the lass of all [�nite℄ onneted Kripkestrutures.Indeed, the onstrutive approah outlined above adapts to these settings to provethis proposition, as well as several other natural haraterisation theorem of this kind.Interestingly, there seems to be no straightforward lassial proof along the standardlines, as the underlying lass of onneted Kripke strutures is not an elementary lass,and ompatness arguments are not diretly available.A number of other rami�ations related to, for instane, frame onditions dealingwith symmetry or transitivity requirements are being onsidered in ongoing joint workwith A. Dawar [3℄. Transitivity in partiular is interesting from a tehnial point ofview, as loality annot be used in a straightforward manner.Referenes1. H. Andr�eka, J. van Benthem, and I. N�emeti, Modal languages and bounded fragmentsof prediate logi, Journal of Philosophial Logi, 27 (1998), pp. 217{274.2. J. van Benthem, Modal Logi and Classial Logi, Bibliopolis, Napoli, 1983.3. A. Dawar and M. Otto, Modal Charaterisation Theorems over Conneted Frames, inpreparation/unpublished note, 2003. 10
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