
Elementary Proof of the van Benthem-RosenChara
terisation TheoremMartin Otto �July 2003; revised May 04Abstra
tThis note presents an elementary proof of the well-known 
hara
terisation theo-rem that asso
iates propositional modal logi
 with the bisimulation invariant frag-ment of �rst-order logi
. The 
lassi
al version of this theorem is due to Johann vanBenthem [2℄, its �nite model theory analogue to Eri
 Rosen [8℄.1 Introdu
tionThe present proof of the van Benthem/Rosen 
hara
terisation theorem is uniformlyappli
able in both the 
lassi
al and in the �nite model theory s
enario. While it isbroadly based on Rosen's proof, it redu
es the te
hni
al input from 
lassi
al logi
 andthe model theory of modal logi
s stri
tly to the use of Ehrenfeu
ht-Fra��ss�e games (for�rst-order, and for the modal variant). Furthermore the proof is 
onstru
tive and themodel 
onstru
tions and a

ompanying analysis of games in the expressive 
ompletenessargument yield an optimal bound on the modal nesting depth in terms of the �rst-order quanti�er rank. Despite this strengthening, the material be
omes presentable ina highly self-
ontained manner, and 
an be 
overed even at the level of an introdu
toryundergraduate 
ourse on logi
 and semanti
 games that 
overs the basi
 Ehrenfeu
ht-Fra��ss�e te
hniques.Elsewhere this approa
h has been shown to extend and generalise to 
hara
terisationsinvolving stri
ter forms of bisimulation (global and two-way, and to guarded bisimulationequivalen
e in transition systems) and 
orresponding extensions of basi
 modal logi
 in[6, 7℄. A brief dis
ussion is provided in Se
tion 4.�Mathemati
al Logi
 and Foundations of Computer S
ien
e, Department of Mathemati
s, DarmstadtUniversity of Te
hnology, otto�mathematik.tu-darmstadt.de
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2 Notation & Preliminaries2.1 Kripke stru
tures and basi
 modal logi
2.1.1 Kripke stru
turesConsider Kripke stru
tures or transition systems over a �nite relational vo
abulary 
on-sisting (w.l.o.g. for this note) of a single binary relation E and �nitely many unarypredi
ates P = (P1; : : :). We write A = (A;EA;PA) for a Kripke stru
ture of this type,and typi
ally indi
ate a distinguished element as in A; a.For a 2 A, let EA[a℄ = �a0 2 A : (a; a0) 2 EAj 	.2.1.2 Basi
 modal logi
Denote as ML, or more spe
i�
ally as ML[E;P℄ propositional modal logi
 over thisvo
abulary. The formulae of ML[E;P℄ are generated from >, ? and the P in P allowingBoolean 
onne
tives and the modal quanti�ers 2 and 3. The semanti
s is the usualone, with A; a j= 2' i� A; a0 j= ' for all a0 2 EA[a℄;and (dually) A; a j= 3' i� A; a0 j= ' for some a0 2 EA[a℄:We regard ML as a fragment of FO (or indeed FO2, �rst-order logi
 with just two distin
tvariable symbols, x and y) via the standard translation based on[2'℄�(x) = 8y�Exy ! ['℄�(y)�;[2'℄�(y) = 8x�Eyx! ['℄�(x)�:We let ML` stand for the fragment of modal logi
 
onsisting of formulae whosenesting depth w.r.t. 2=3 is at most `. Note that the modal nesting depth 
oin
ideswith the FO quanti�er rank in terms of the standard translation.2.1.3 Tree stru
tures and their lo
al relativesA Kripke stru
ture with distinguished element, A; a, is 
alled a tree stru
ture if theunderlying graph (A;EA) is a dire
ted tree with root a in the graph theoreti
 sense: Eis loop-free and every node is rea
hable from a on a unique E-path.A tree stru
ture is of depth ` if the lengths of paths is bounded by `.As an intermediary between arbitrary (�nite) Kripke stru
tures and tree stru
tures,we 
onsider (�nite) stru
tures that look like trees up to a 
ertain depth from the distin-guished node.Generally, in a Kripke stru
ture A let the `-neighbourhood of a 2 A be the set U `(a)of all nodes rea
hable from a on (dire
ted, forward) E-paths of length up to `; A�U `(a)
orrespondingly denotes the substru
ture indu
ed in restri
tion to U `(a).We say that A; a is `-lo
ally a tree stru
ture i� A�U `(a); a is a tree stru
ture.2



2.2 BisimulationBisimulation equivalen
e between Kripke stru
tures with distinguished nodes is denotedas in A; a � B; b. The 
orresponding approximations to level ` (as indu
ed by the`-round bisimulation game, see below) are denoted as in A; a �` B; b.The bisimulation game is played by players I and II over two Kripke stru
turesA; a and B; b, whi
h ea
h 
arry a pebble, initially pla
ed on the distinguished elementsa and b, respe
tively. In ea
h round, the 
hallenger, player I, moves the pebble in oneof the stru
tures forward along an E-edge, and player II has to respond by moving theother pebble along an E-edge in the opposite stru
ture. It is player II's task to maintainatomi
 equivalen
e throughout: II loses as soon as the 
urrently pebbled nodes fail toagree on all monadi
 predi
ates (atomi
 propositions). Apart from that, players losewhen they 
annot move, for la
k of E-edges. We say that II has a winning strategy inthe (in�nite) bisimulation game on A; a and B; b, if she has a strategy to respond to any
hallenges from I without losing, inde�nitely; II has a winning strategy in the `-roundbisimulation game on A; a and B; b, if she has a strategy to respond to any 
hallengesfrom I without losing for ` rounds. Then� A; a and B; b are bisimilar,A; a � B; b, i� II has a winning strategy in the (in�nite)bisimulation game on A; a and B; b.� A; a and B; b are `-bisimilar, A; a �` B; b, i� II has a winning strategy in the`-round bisimulation game on A; a and B; b.The standard Ehrenfeu
ht-Fra��ss�e analysis of the bisimulation game yields the fol-lowing.Lemma 2.1. Over the 
lass of all Kripke stru
tures of a �xed �nite relational type:(i) �` has �nite index;(ii) A; a �` B; b i� a in A and b in B are indistinguishable in ML`;(iii) ea
h �` equivalen
e 
lass is de�nable by an ML` formula.A further few simple but useful properties of bisimulation equivalen
e are sum-marised in the following. In the �rst lemma we refer to the operation of disjoint sums ordisjoint unions of relational stru
tures: if A and C are stru
tures of the same relationaltype, we denote as A+C their disjoint sum (union), whose universe is the disjoint unionof the universes and with all relations interpreted as in A and C, respe
tively. These
ond lemma 
aptures the lo
al nature of �`.Lemma 2.2. Bisimulation equivalen
e is insensitive to disjoint sums. If A;B; C are ofthe same relational type, then A; a � B; b i� A+ C; a � B; b.Lemma 2.3. (i) A; a �` B; b i� A�U `(a); a �` B �U `(b); b.(ii) if A; a and B; b are both tree stru
tures of depth `, then `-bisimulation 
oin
ideswith bisimulation: A; a �` B; b i� A; a � B; b.3



The familiar and intuitive pro
ess of unravelling always guarantees bisimilar 
om-panions that are tree stru
tures, albeit typi
ally in�nite ones. If only `-lo
al tree likenessis required, �nite bisimilar 
ompanions are easily 
onstru
ted for �nite stru
tures.The tree unravelling A�a of A from a, is obtained as follows. The universe of A�a isthe set of all (dire
ted, forward) E-paths from a in A. E is interpreted in A�a so that forea
h m 2 N, ea
h path of length m+1 is an E-su

essor of its initial segment of lengthm. The unary predi
ates are interpreted in a

ordan
e with the proje
tion � : A�a ! Athat maps ea
h path to its last node.Lemma 2.4. Let A; a be a Kripke stru
ture with distinguished node a.(i) The tree unravelling of A from a, A�a, is a tree stru
ture that is bisimilar to A viathe natural proje
tion � : A�a; a � A; a.(ii) For every ` 2 N, the restri
tion of the tree unravelling A�a to depth `, is a treestru
ture of depth ` that is `-bisimilar to A; a: � : A�a �U `(a); a �` A; a.(iii) For a �nite Kripke stru
ture A with distinguished node a, and ` 2 N: there isa partial unravelling (to depth `) that yields a �nite bisimilar 
ompanion that is`-lo
ally a tree stru
ture.Proof. (i) is obvious. For (ii) one may appeal to (i) of the previous lemma.For (iii), take the tree unravelling A�a in restri
tion to U `(a), and identify ea
h nodeb� in A�a �U `(a) at distan
e ` from the root (a leaf in A�a �U `(a)) with the node b = �(b�)in a fresh disjoint isomorphi
 
opy of A.2.2.1 Bisimulation invarian
eDe�nition 2.5. A formula '(x) 2 FO[E;P℄ is bisimulation invariant i�, wheneverA; a � B; b then A; a j= ' i� B; b j= '.All formulae of ML are bisimulation invariant; in fa
t, ' 2 ML` is invariant under�`. This is an immediate 
onsequen
e of the modal Ehrenfeu
ht-Fra��ss�e analysis, orsimply proved dire
tly by synta
ti
 indu
tion on '.2.3 Lo
alityGaifman's notion of lo
ality [5℄ has been extensively studied in the �rst-order 
ontext,and in parti
ular has proved to be a useful tool in �nite model theory [4℄. We here onlyneed to make very limited use of the simple 
on
ept of `-lo
ality of a �rst-order formulain one free variable.De�nition 2.6. A property of Kripke stru
tures with distinguished nodes A; a|or aformula '(x) de�ning su
h a property|is `-lo
al i� whether or not it is satis�ed in A; aonly depends on A�U `(a); a:A; a j= ' , A�U `(a); a j= ':4



A�U `(a)a j= 'A a j= '�,,,,,,,,,� ��������� Æ,,,,,,� ������The following is a simple 
onsequen
e of `-bisimulation invarian
e, Lemma 2.1, and(i) in Lemma 2.3.Observation 2.7. Any ' 2 ML` is `-lo
al.3 The 
hara
terisation theoremThe goal of this note is a simple proof of the following 
hara
terisation theorem whi
hgoes through uniformly in the sense of �nite model theory and 
lassi
ally. As an addedbene�t we obtain an optimal quantitative bound on quanti�er ranks involved.Theorem 3.1 (van Benthem/Rosen). The following are equivalent for any '(x) 2FO of quanti�er rank q:(i) '(x) is invariant under bisimulation [in �nite Kripke stru
tures℄.(ii) '(x) is logi
ally equivalent [over �nite Kripke stru
tures℄ to a formula of ML`,where ` = 2q � 1.Note that the two readings|one 
lassi
al, one �nite model theoreti
| really aretwo distin
t theorems, a priori independent of ea
h other. 1 Note that bisimulationinvarian
e in �nite stru
tures does not imply bisimulation invarian
e over all stru
tures:trivial examples are provided by formulae without �nite models that happen not to bebisimulation invariant for in�nite models.Our proof pro
eeds in three stages. Note that even though we do not make thisimpli
it in the statements, ea
h statement is 
onsidered in its two readings: 
lassi
allyand in the sense of �nite model theory.Step 1 Any bisimulation invariant '(x) 2 FO is `-lo
al for ` = 2q � 1 where q =qr('). This is proved with FO Ehrenfeu
ht-Fra��ss�e games, and as far as bisimulation is
on
erned rests on Lemma 2.2.Step 2 Any bisimulation invariant '(x) that is `-lo
al, is even invariant under `-bisimulation equivalen
e �`. A simple bisimulation argument based on Lemmas 2.3and 2.4 shows this.Step 3 Any property invariant under `-bisimulation equivalen
e is de�nable in ML`.This is a dire
t 
onsequen
e of the Ehrenfeu
ht-Fra��ss�e analysis of bisimulation, basedon Lemma 2.1 (iii).1Two-variable �rst-order logi
 and two-pebble game equivalen
e illustrate this point. In that 
ase,the 
lassi
al 
hara
terisation theorem does not hold as a theorem of �nite model theory, �nite modelproperty of FO2 notwithstanding. 5



Proof sket
h: step 1 Assume that '(x) 2 FO is bisimulation invariant, let q = qr('),and put ` := 2q � 1. To show that '(x) is `-lo
al, we 
onsider any A; a and show thatA; a j= ' i� A �U `(a); a j= '. As ' is bisimulation invariant, we may w.l.o.g. assumethat A�U `(a); a j= ' is a tree of depth `. [We may pass to a (�nite partial) unravelling ofA, whi
h is a bisimilar 
ompanion of A; a and whose restri
tion to U `(a) automati
allyis a bisimilar 
ompanion to A�U `(a); a j= '.℄ Here and in the 
ore argument we use thefa
t that, due to bisimulation invarian
e, we may always repla
e a stru
ture by somebisimilar 
ompanion without a�e
ting (the property expressed by) '.If for some A0; a0 � A; a and A00; a00 � A�U `(a); a, we 
an show A0; a0 �q A00; a00, weare done. For then A; a j= 'i� A0; a0 j= ' (bisimulation invarian
e)i� A00; a00 j= ' (�q equivalen
e)i� A�U `(a); a j= ' (bisimulation invarian
e)For suitable A0 and A00, the equivalen
e A0; a0 �q A00; a00 
an be established byexhibiting a strategy for player II in the q-round Ehrenfeu
ht-Fra��ss�e game.As 
ompanions of A; a and A �U `(a); a, respe
tively, we 
hoose stru
tures that aredisjoint 
opies of suÆ
iently many isomorphi
 
opies of A; a and A � U `(a); a. Bothstru
tures involved will have q isomorphi
 
opies of both A; a and A�U `(a); a, and onlydistinguish themselves by the nature of the one extra 
omponent, in whi
h live a0 and a00,respe
tively. We indi
ate the two stru
tures in the diagram below, with distinguishedelements a0 and a00 marked �; the open 
ones stand for 
opies of A, the 
losed 
ones for
opies of A�U `(a). Clearly the stru
ture on the left is bisimilar to A; a, the one on theright bisimilar to A�U `(a); a, by Lemma 2.2.
Æ,,,,,,,,,,,,

������������ Æ,,,,,,,,,,,,

������������| {z }q 
opies a0�
,,,,,,,,,,,,

������������ Æ,,,,,,Æ ������ Æ,,,,,,Æ ������| {z }q 
opies �q Æ,,,,,,,,,,,,

������������ Æ,,,,,,,,,,,,

������������| {z }q 
opies a00�,,,,,,,

������� Æ,,,,,,Æ ������ Æ,,,,,,Æ ������| {z }q 
opiesIt suÆ
es now to exhibit a strategy for player II in q rounds of the game on thesestru
tures. The game is started in the 
on�guration with a single pebble in positionsmarked � in ea
h of the two stru
tures. The des
ription of the strategy makes referen
eto a 
riti
al distan
e dm, whose value for round m isdm = 2q�m:Starting with value d1 = 2q�1 = d`=2e in the �rst round, this 
riti
al distan
e de
reasesby a fa
tor 1=2 in ea
h round. Under the proposed strategy, II will always play a

ording6



to lo
al 
ontext if I's move goes to an element within the 
riti
al distan
e from anyalready marked element; if I's move is further than the 
riti
al distan
e away from allpreviously marked elements, we let II respond by marking the same element in one ofthe isomorphi
 
opies of A or A�` that has not yet been tou
hed by the game. (Thereare q many 
opies of ea
h on ea
h side, hen
e fresh ones are always available.)The idea of lo
al 
ontext works as follows. We think of the pebbles as belonging todisjoint 
lusters; initially we have just one single 
luster 
onsisting of the single elementswith pebbles � on ea
h side.A pebble that is newly pla
ed in round m joins an existing 
luster if it is at mostdistan
e dm away from one of the members of that 
luster. Note that be
ause of theshrinking dm, no two 
lusters 
an ever be joined. Any elements of di�erent 
lusters afterround m are more than dm apart.Our strategy for II will have her maintain the 
ondition that after 
ompletion ofround many two 
orresponding 
lusters are linked by an isomorphism that extendsto all points within distan
e dm of the members of the 
lusters.If in roundm, I pla
es a new pebble further than dm away from all previously markedelements, it forms a new 
luster on its own, and II's response into a new 
omponentmakes sure that the same happens on the other side. If I pla
es a new pebble to joinone of the existing 
lusters, then II uses the isomorphism that 
omes with that 
lusterto respond with a mat
hing element to join the 
orresponding 
luster on the other side.One 
he
ks that the above invariant is satis�ed initially, and that the pres
riptionsfor II's moves are su
h that it is maintained in round m through all m = 1 : : : ; q.After q rounds, the lo
al isomorphisms between 
lusters still guarantee that II wins.Proof sket
h: step 2 Let '(x) be `-lo
al and bisimulation invariant. Suppose A; a �`B; b and A; a j= '. We need to show that then also B; b j= '. Without loss of generality,we may assume that A and B are `-lo
ally tree stru
tures. [If they are not, pass to(�nite partial) unravellings, Lemma 2.4℄By `-lo
ality, A; a j= ' i� A � U `(a); a j= '. Now A; a �` B; b i� A � U `(a); a �`B � U `(b); b i� (as both stru
tures are now trees of depth `) A � U `(a); a � B � U `(a);Lemma 2.3.Hen
e A�U `(a); a j= ' i� B �U `(b); b j= '. Therefore B; b j= ', by `-lo
ality again.Proof sket
h: step 3 If ' is invariant under�`, we may use the ML` formulae that de�ne�` equivalen
e 
lasses, a

ording to Lemma 2.1 (iii). Let �`;A;a 2 ML` be the formulathat de�nes the �` equivalen
e 
lass of A; a. Then ' is equivalent to the disjun
tion' � _A;aj='�`;A;a;whi
h is equivalent to a �nite disjun
tion as �` has �nite index.This �nishes the proof of the 
hara
terisation theorem.7



Exer
ise 3.1. The exponential gap between the �rst-order quanti�er rank q and modalquanti�er rank ` = 2q � 1 
annot be avoided in general, as the example of formulaeexpressing that \there is an element satisfying p within distan
e 2q � 1" shows. Showthat this is expressible in FOq, but not by any formula in MLm for m < 2q � 1. [It 
anbe expressed in modal quanti�er rank 2q � 1.℄Observation 3.2. There is an exponential su

in
tness gap between FO and ML, inexpressing bisimulation invariant properties.4 Rami�
ationsIn essen
e the te
hnique outlined for basi
 modal logi
 above extends to other settings.We mention three distin
t lines of variations and extensions.Firstly, the 
lassi
al statement of the theorem relativises to FO-de�nable 
lasses ofstru
tures (as is 
lear also from the 
lassi
al proof); but both the 
lassi
al and the �nitemodel theoreti
 versions also relativise to arbitrary bisimulation-
losed 
lasses.Se
ondly, one 
an treat stronger variants of bisimulation equivalen
e, and in parti
u-lar global forms of bisimulation, with a 
orresponding shift to te
hni
ally more demand-ing lo
ality arguments that need to apply uniformly a
ross the entire stru
ture ratherthan in a neighbourhood of the distinguished node.Thirdly, one may want to 
onsider other natural, more restri
ted 
lasses of stru
tures,rather than the 
lass of all (or all �nite) Kripke stru
tures. Natural 
ases of interestin
lude in parti
ular 
lasses of frames de�ned in terms of 
onne
tivity 
onstraints, andin terms of 
lasses of frames 
orresponding to 
lassi
al modal theories.4.1 Straightforward relativisationsLet C be a 
lass of Kripke stru
tures with distinguished elements. The notions of bisimu-lation invarian
e and of de�nability in ML give rise to 
orresponding notion in restri
tionto C. For instan
e, '(x) is bisimulation invariant over C if for any two stru
tures A; aand B; b from C, A; a � B; b implies that A; a j= ' i� B; b j= '. The 
lassi
al proof ofvan Benthem's theorem uses 
ompa
tness and saturation properties to establish indi-re
tly that bisimulation invarian
e of '(x) 2 FO implies invarian
e `-bisimulation forsome `. This argument 
learly relativises to work within any 
lass C de�ned by an FOtheory.The game oriented proof we gave above, on the other hand, is easily seen to work inrestri
tion to (the �nite stru
tures within) any 
lass C that is itself bisimulation 
losed.Corollary 4.1. Let C be 
losed under bisimulation, C�n the 
lass of �nite stru
tureswithin C. Then '(x) is invariant under bisimulation over C [over C�n℄ i� '(x) is logi
allyequivalent over C [over C�n℄ to a formula of ML`, where ` = 2q � 1.4.2 Stronger forms of bisimulationVariations of this kind have been studied in [6, 7℄. The following strengthenings of basi
bisimulation equivalen
e are treated (des
ribed here in terms of the modi�
ations in the8




orresponding bisimulation games):(i) two-way bisimulation: I also has the option to move ba
kward along E-edges, inwhi
h 
ase II has to respond likewise.(ii) global bisimulation: I 
an opt to move the pebble to a fresh start node anywherein the stru
ture, as 
an II in her response to su
h a move.(iii) two-way and global bisimulation, �: both of the above.It is entirely straightforward to adapt (the 
lassi
al proof of) the 
lassi
al 
hara
-terisation theorem of van Benthem's to 
over these variations. One naturally �nds thatthese re�ned notions of bisimulation 
hara
terise within FO the following extensions ofbasi
 modal logi
:(i) two-way bisimulation: ML�, ML with ba
kward (past) modalities like 3�'(x) �9y(Eyx ^ '(y)).(ii) global bisimulation: ML8, ML with a global modality, 
orresponding to unre-stri
ted universal/existential quanti�
ation as in 9x'(x) where ' 2 ML.(iii) two-way and global bisimulation, �: ML�8, the 
ombined extension by both ofthe above.The global variants are te
hni
ally interesting, be
ause they require non-trivial lo
al-ity arguments. We dis
uss the key 
ase of � invarian
e (global two-way bisimulation).On the one hand, the given FO formula '(x) is analysed in terms of Gaifman's lo
alitytheorem for FO, [5℄. This allows us to determine lo
ality parameters `;m; q from ' su
hthat whenever A; a and B; b agree{ on FO properties of quanti�er rank q in the `-neighbourhoods of a and b, respe
-tively;{ on the quanti�er rank q FO properties of systems of up to m many disjoint `-neighbourhoods anywhere within A or B, respe
tively;then A; a j= ' i� B; b j= '.In order to show the analogue of the 
ru
ial step 2, that then ' a
tually is invariantunder �`, one 
an 
onstru
t, for arbitrary A; a �` B; b, fully � equivalent 
ompanionstru
tures A�; a � A; a and B�; b � B; b that agree lo
ally for `;m; q in the above sense.In the 
lassi
al 
ase, in�nite 
ompanions A� and B� are admissible, and one 
anresort to bisimilar tree models obtained as suitable two-way unravellings, over whi
h`-two-way-bisimilarity then enfor
es lo
al �rst-order equivalen
e.In the �nite model theory instan
e of the argument, one similarly seeks 
ompanionstru
tures that are, at least `-lo
ally tree-like (a
y
li
), but at the same time need tobe kept �nite. This 
an be a
hieved with a 
onstru
tion of lo
ally a
y
li
 bisimilar
overings as developed in [6, 7℄. These te
hniques have also been shown to extend toguarded bisimulation equivalen
e and to a 
hara
terisation of the guarded fragment GFof �rst-order logi
, [1℄, over relational stru
tures of width 2.The general 
ase for guarded bisimulation and the guarded fragment GF in relationalstru
tures with predi
ates of higher arities is the theme of ongoing investigations. Infa
t, it is 
urrently open, whether the 
hara
terisation of GF as the guarded bisimulationinvariant fragment of FO, due to Andr�eka, van Benthem and N�emeti [1℄, also obtains in9



the 
ontext of �nite model theory. For this it would seem to be ne
essary to lift essentialfeatures of the 
onstru
tion of �nite lo
ally a
y
li
 
overs from the graph theoreti
 settingof bisimulations to the hypergraph theoreti
 setting of guarded bisimulations.Further rami�
ations 
urrently under investigation 
on
ern 
ounting bisimulations(where the number of available su

essors of a 
ertain kind matters) and modal logi
swith graded modalities.4.3 Other natural 
lasses of framesThese variations look at 
hara
terisation theorems for modal logi
s, of the above kind,over still more restri
ted 
lasses of (�nite) Kripke stru
tures. Of parti
ular interest froma transition system point of view are 
onne
ted systems, as the existen
e of dis
onne
ted
omponents (unrea
hable states) is often 
ounterintuitive. Consider, for instan
e, the
lass of Kripke stru
tures A; a that are 
onne
ted in the sense that ea
h node is rea
h-able on some (forward, dire
ted) E-path from a. In restri
tion to su
h 
onne
ted frames,bisimulation equivalen
e 
oin
ides with global bisimulation equivalen
e, and 
orrespond-ingly one expe
ts a 
hara
terisation of the following kind.Proposition 4.2. The following are equivalent for every '(x) 2 FO, both 
lassi
allyand in the sense of �nite model theory:(i) ' is invariant under bisimulation over the 
lass of all [�nite℄ 
onne
ted Kripkestru
tures.(ii) ' is invariant under global bisimulation over the 
lass of all [�nite℄ 
onne
tedKripke stru
tures.(iii) ' is equivalent to a formula of ML8 over the 
lass of all [�nite℄ 
onne
ted Kripkestru
tures.Indeed, the 
onstru
tive approa
h outlined above adapts to these settings to provethis proposition, as well as several other natural 
hara
terisation theorem of this kind.Interestingly, there seems to be no straightforward 
lassi
al proof along the standardlines, as the underlying 
lass of 
onne
ted Kripke stru
tures is not an elementary 
lass,and 
ompa
tness arguments are not dire
tly available.A number of other rami�
ations related to, for instan
e, frame 
onditions dealingwith symmetry or transitivity requirements are being 
onsidered in ongoing joint workwith A. Dawar [3℄. Transitivity in parti
ular is interesting from a te
hni
al point ofview, as lo
ality 
annot be used in a straightforward manner.Referen
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