Up To Bisimulation – but keep it finite!

Martin Otto
TU Darmstadt

Global Finite Realisations of Local Specifications
examples of local views & specifications

- exploded view of a hypergraph
examples of local views & specifications

- exploded view of a hypergraph

 ... or a watch movement
examples of local views & specifications

- exploded view of a hypergraph
- coordinate charts for manifolds

- decomposition and synthesis of graphs, hypergraphs, ...

- implicit specifications of (macro-)bisimulation types as in guarded extension properties \[\forall x (\theta(x) \rightarrow \exists y \theta'(xy)) \]
the role of hypergraphs

hypergraph: \(\mathcal{A} = (A, S) \) with sets
\[
\begin{align*}
A & \quad \text{of vertices} \\
S & \quad \subseteq \mathcal{P}(A) \quad \text{of hyperedges}
\end{align*}
\]

examples:
- combinatorial patterns of structural decompositions
- hypergraphs of guarded subsets of relational structures
the role of hypergraphs

hypergraph: \(\mathcal{A} = (A, S) \) with sets

\[
\begin{cases}
A \text{ of vertices} \\
S \subseteq \mathcal{P}(A) \text{ of hyperedges}
\end{cases}
\]

examples:
- combinatorial patterns of structural decompositions
- hypergraphs of guarded subsets of relational structures

intersection graph of \(\mathcal{A} \):

\(I(\mathcal{A}) := (S, E) \) where \(E = \{(s, s'): s \neq s', s \cap s' \neq \emptyset\} \)

records pairwise overlaps between hyperedges \(s \in S \)

exploded view of \(\mathcal{A} \) based on \(I(\mathcal{A}) \)

the disjoint union of the hyperedges \(s \in S \)
with partial bijections \(\rho_e \) for \(e = (s, s') \in E \)

\[\rightarrow\text{ format of local overlap specifications}\]
overview

(I) specification & realisation of overlap patterns

(II) reduced products with groupoids (core results)

(III) from local to global symmetries

(IV) applications in modal & guarded logics
incidence pattern $I = (S, (E[s, s'])_{s, s' \in S})$

- multi-graph with vertices $s \in S$ (sorts)
- directed edges $e \in E[s, s']$ from s to s' with $e^{-1} \in E[s', s]$

- fixed bisimulation type for pairwise overlaps

I-graph $H = (V, (V_s)_{s \in S}, (\rho_e)_{e \in E})$

- vertex set V partitioned into sorts V_s for $s \in S$
- ρ_e a partial* bijection between V_s and $V_{s'}$ for $e \in E[s, s']$

- an exploded view of the
desired pairwise overlaps
realisation:

a realisation of $H = (V, (V_s), (\rho_e))$ is a

hypergraph $\mathcal{A} = (A, \tilde{S})$ with projection $\pi: \tilde{S} \rightarrow S$ and an atlas of bijections $\pi_{\tilde{s}}: \tilde{s} \rightarrow V_{\pi(\tilde{s})}$ for $\tilde{s} \in \tilde{S}$ such that...
a realisation of $H = (V, (V_s), (\rho_e))$ is a hypergraph $A = (A, \tilde{S})$ with projection $\pi: \tilde{S} \rightarrow S$ and an atlas of bijections $\pi_\tilde{s}: \tilde{s} \rightarrow V_{\pi(\tilde{s})}$ for $\tilde{s} \in \tilde{S}$ s.t.

- all specified overlaps are realised:
 for $e \in E[s, s']$, ρ_e is realised at every $\tilde{s} \in \pi^{-1}(s)$ by an actual overlap with some $\tilde{s}' \in \pi^{-1}(s')$
a realisation of $H = (V, (V_s), (\rho_e))$ is a hypergraph $A = (A, \tilde{S})$ with projection $\pi: \tilde{S} \rightarrow S$ and an atlas of bijections $\pi_{\tilde{s}}: \tilde{s} \rightarrow V_{\pi(\tilde{s})}$ for $\tilde{s} \in \tilde{S}$ s.t.

- all specified overlaps are realised:
 for $e \in E[s, s']$, ρ_e is realised at every $\tilde{s} \in \pi^{-1}(s)$ by an actual overlap with some $\tilde{s}' \in \pi^{-1}(s')$

- no further, incidental overlaps occur:
 every actual overlap of $I(A)$ is induced by a single composition ρ_w of partial bijections ρ_e in H

$w = e_1 \cdots e_n \in E^*[s, t]$
$\rho_w = \rho_{e_n} \circ \cdots \circ \rho_{e_1}$
realisations vs. exploded views

any hypergraph $\mathcal{A} = (A, S)$ is a realisation of its exploded view

- \mathcal{A} is reconstructed from its exploded view $H(\mathcal{A})$ as a quotient $H(\mathcal{A})/\approx$ w.r.t. \approx induced by the identifications encoded in $H(\mathcal{A})$
realisations vs. exploded views

any hypergraph $\mathcal{A} = (A, S)$ is a realisation of its exploded view

- \mathcal{A} is reconstructed from its exploded view $H(\mathcal{A})$ as a quotient $H(\mathcal{A})/\approx$ w.r.t. \approx induced by the identifications encoded in $H(\mathcal{A})$

- in general H/\approx may fail to realise \approx: \approx may even collapse individual V_s

idea: try local unfolding in products of H with . . . ?
the role of groupoids/inverse semigroups

composition structure of partial bijections:

• with partial composition (as a total operation)
 ⇝ inverse semigroups

• with exact composition (as a partial operation)
 ⇝ groupoids

groups capture global symmetries

groupoids capture local/partial symmetries
reduced products with groupoids

I-groupoid: \(\mathcal{G} = (G, (G_{st})_{s,t \in S}, \cdot, (1_s)_{s \in S}) \) with associative compositions \(G_{st} \times G_{tu} \to G_{su} \), neutral elements \(1_s \in G_{ss} \), inverses, \ldots designated generators \((g_e)_{e \in E} \)
(II) reduced products with groupoids

I-groupoid: \(\mathcal{G} = (G, (G_{st})_{s,t \in S}, \cdot, (1_s)_{s \in S}) \) with

associative compositions \(G_{st} \times G_{tu} \to G_{su} \),
neutral elements \(1_s \in G_{ss} \), inverses, \(\ldots \)

designated generators \((g_e)_{e \in E} \)

reduced products as candidate realisations:

\[\sim \to H \times \mathcal{G} \text{ natural direct product (of I-graphs)} \]

\[\sim \to H \otimes \mathcal{G} := (H \times \mathcal{G})/\sim \text{ reduced product} \]

when is this a realisation of \(H \)?
obstructions to simple realisations

- H may fail to be coherent:
 conflicting identifications collapsing individual V_s

A bad cycle in G?

can be overcome by relatively simple pre-processing
obstructions to simple realisations

- H and G may fail to be *confluent* in the product: incidental overlaps (with potential conflicts at the relational level)

\[V_s \xrightarrow{\rho_{w_1}} V_t \xrightarrow{\rho_{w_2}} \]

\[s \xrightarrow{w_1} t \xrightarrow{w_2} \]

\[\sim \Rightarrow \text{need substantial acyclicity conditions on } G \]
an appropriate notion of acyclicity

- not just short cycles in the Cayley graph of G, but short cycles of cosets $gG[\alpha]$ generated by subsets $\alpha \subseteq E$
an appropriate notion of acyclicity

- not just short cycles in the Cayley graph of G, but short cycles of cosets $gG[\alpha]$ generated by subsets $\alpha \subseteq E$

- in particular, need to avoid certain coset cycles of length 2

$$w_1^G = h = w_2^G$$
any degree of acyclicity in finite groupoids

theorem (O_13)

for every \(N \in \mathbb{N} \) and incidence pattern \(I = (S, E) \) there are finite \(I \)-groupoids \(G \) without coset cycles of length up to \(N \)

idea: in an inductive construction generate \(G \) from (semi)group action on amalgamation chains that unfold short cosets cycles

cf. constructions of acyclic Cayley graphs (Alon, Biggs)
here lifted to more intricate adaptation for coset cycles
any degree of acyclicity in symmetric realisations

Theorem (O_13)

for any overlap specification \(H \) (an I-graph), obtain realisations \(H \otimes G \) (as reduced products with finite I-groupoids \(G \)) that

- have any desired degree of (local/size-bdd) acyclicity
- admit transitive automorphisms in the second factor
- respect all symmetries of the specification \(H \)
any degree of acyclicity in symmetric realisations

Theorem (O_13)

For any overlap specification \(H \) (an I-graph), obtain realisations \(H \otimes G \) (as reduced products with finite I-groupoids \(G \)) that

- have any desired degree of (local/size-bdd) acyclicity
- admit transitive automorphisms in the second factor
- respect all symmetries of the specification \(H \)

Corollary

Every finite hypergraph admits, for \(N \in \mathbb{N} \), finite coverings that

- are \(N \)-acyclic in the sense that every induced sub-hypergraph on up to \(N \) vertices is acyclic (tree decomposable)
- possess a fibre-transitive automorphism group that lifts all symmetries of the given hypergraph
extension property for partial automorphisms (EPPA): how to extend local symmetries to global symmetries

theorem (Herwig 98, extending Hrushovski 92 for graphs)

every finite relational structure \mathcal{A} admits a finite extension $\mathcal{B} \supseteq \mathcal{A}$ s.t. every partial isomorphism in \mathcal{A} lifts to a full automorphism of \mathcal{B}
extension property for partial automorphisms (EPPA): how to extend local symmetries to global symmetries

Theorem (Herwig 98, extending Hrushovski 92 for graphs)

Every finite relational structure \mathcal{A} admits a finite extension $\mathcal{B} \supseteq \mathcal{A}$ s.t. every partial isomorphism in \mathcal{A} lifts to a full automorphism of \mathcal{B}

Theorem (Herwig–Lascar 00)

Same, as a *finite model property* over any class \mathcal{C} defined by finitely many forbidden homomorphisms

If $\mathcal{A} \in \mathcal{C}_{\text{fin}}$ has any EPPA extension in \mathcal{C} then it also has a finite one in \mathcal{C}_{fin}
new proof of full Herwig–Lascar EPPA

through groupoidal realisations of an overlap specification for \(\mathcal{A} = (\mathcal{A}, R) \) and \(P \subseteq \text{Part}(\mathcal{A}, \mathcal{A}) \)

(i) the incidence pattern \(I(\mathcal{A}, P) \):
multigraph on singleton vertex
with a loop \(e_p \in E \) for each \(p \in P \)

(ii) the overlap specification \(H(\mathcal{A}, P) \):
\(I(\mathcal{A}, P) \)-graph \(H(\mathcal{A}, P) = (\mathcal{A}, (\rho_p)_{p \in P}) \)
needs to be made coherent!
new proof of full Herwig–Lascar EPPA

through groupoidal realisations of an overlap specification
for $\mathcal{A} = (A, R)$ and $P \subseteq \text{Part}(\mathcal{A}, \mathcal{A})$

(i) the incidence pattern $I(\mathcal{A}, P)$:
 multigraph on singleton vertex
 with a loop $e_p \in E$ for each $p \in P$

(ii) the overlap specification $H(\mathcal{A}, P)$:
 $I(\mathcal{A}, P)$-graph $H(\mathcal{A}, P) = (A, (\rho_p)_{p \in P})$
 needs to be made coherent!

(iii) symmetric realisations of $H(\mathcal{A}, P)$ are EPPA extensions!

(iv) N-acyclic EPPA extensions are N-free:
 admit N-local homomorphisms into every (finite or infinite)
 EPPA extension due to their N-local tree-decomposability
(IV) applications in modal/guarded logics

- characterisation theorems (fmt)
 for guarded logics and relatives
 using finite coverings of controlled acyclicity

- finite model properties & finite controllability
 for guarded logics and constraints
 using finite coverings of controlled acyclicity
 and/or Herwig–Lascar extension properties

\[O(LICS10&JACM13) \]
\[O(APAL13) \]
\[Bárány–Gottlob–O(LICS10&LMCS14) \]
\[Bárány–ten Cate–O(VLDB12) \]
\[O(LICS13&arXiv14/15) \]
characterisation theorems (fmt & classical)

Theorem (O_10)

\[GF \equiv \text{FO}/\sim_g \quad \text{and} \quad GF \equiv_{\text{fin}} \text{FO}/\sim_g \]
characterisation theorems (fmt & classical)

Theorem (O_10)

\[GF \equiv FO / \sim_g \quad \text{and} \quad GF \equiv_{\text{fin}} FO / \sim_g \]

Idea: show that \(\sim_g \)-invariance of \(\varphi \in FO^m \) implies \(\sim_{\ell} \)-invariance for some \(\ell = \ell(m) \) such that over suitable locally sufficiently acyclic (finite) structures, \(\sim_{\ell} \) refines \(\equiv_{FO}^m \)

\[
\begin{array}{ccc}
A & \sim_{\ell} & B \\
\downarrow \sim_g & & \downarrow \sim_g \\
A^* & \equiv_{FO}^m & B^*
\end{array}
\]

Adaptations: guarded negation fragment (O_13) common knowledge extensions of ML (??)
finite model properties & finite controllability

Theorem (Bárány–Gottlob–O_10/Rosati06)

finite controllability for union of conjunctive queries Q w.r.t. constraint $\alpha \in GF$:

$$\alpha \models Q \iff \alpha \models_{\text{fin}} Q \quad (\dagger)$$

Idea 1: via "treeification" Q^* of Q s.t. $Q \equiv \text{acyc} Q^* \in GF$ and locally sufficiently acyclic (finite) unfoldings to show $\alpha \models_{\text{fin}} Q \Rightarrow \alpha \models Q^* \iff \alpha \models_{\text{fin}} Q^* \Rightarrow \alpha \models Q$.

Idea 2: view (\dagger) as an fmp for $\alpha \in GF$ within $C = \text{Mod}(\neg Q)$, which follows from Herwig–Lascar EPPA (!).
finite model properties & finite controllability

Theorem (Bárány–Gottlob–O_10/Rosati06)

finite controllability for union of conjunctive queries Q w.r.t. constraint $\alpha \in GF$:

$$\alpha \models Q \iff \alpha \models_{\text{fin}} Q \quad (\dagger)$$

Idea 1: via “treeification” Q^* of Q s.t. $Q \equiv_{\text{acyc}} Q^* \in GF$ and locally sufficiently acyclic (finite) unfoldings to show

$$\alpha \models_{\text{fin}} Q \Rightarrow \alpha \models_{\text{fin}} Q^* \iff \alpha \models Q^* \Rightarrow \alpha \models Q.$$

Idea 2: view (\dagger) as a fmp for $\alpha \in GF$ within $\mathcal{C} = \text{Mod}(\neg Q)$, which follows from Herwig–Lascar EPPA (!)
guarded fmp (in \(C = \text{Mod}(\neg Q) \)) & EPPA

following an idea of Erich Grädel for GF, see (Grädel–O₁₄)

after relational Skolemisation use EPPA to obtain finite model
as finite closure of finite substructure of infinite model
w.r.t. guarded \(\forall \exists \)-requirements
guarded fmp (in $\mathcal{C} = \text{Mod}(-Q)$) & EPPA

following an idea of Erich Grädel for GF, see (Grädel–O_14)

after relational Skolemisation use EPPA to obtain finite model as finite closure of finite substructure of infinite model w.r.t. guarded $\forall\exists$-requirements

Herwig–Lascar EPPA yields finite controllability for UCQ fmp within $\mathcal{C} = \text{Mod}(-Q)$ as a qualitative result
summary

- a generic construction of highly acyclic finite groupoids
- a universal & generic route to the synthesis of finite realisations (and coverings) in reduced products
- symmetry and acyclicity of realisations supports extensions of local to global symmetry
- further applications in finite model theory

Finite Groupoids, Finite Coverings & Symmetries in Finite Structures (arXiv 2015 (v4))