Logics for Bisimulation Invariance

Martin Otto TU Darmstadt Simons LSC Seminar September 28, 2016

like •
$$ML \equiv FO/\sim$$
 (van Benthem 83)

- $L_{\mu} \equiv MSO/\sim$ (Janin-Walukiewicz 96)
- $ML \equiv FO/\sim$ (fmt) (Rosen 97)
- ... some others, and a big **?**

bisimulation & bisimulation invariance

bisimulation: $\mathcal{A}, a \sim \mathcal{B}, b$

• b&f equivalence between states in

Kripke structures / transition systems informational (epistemic) equiv. / behavioural equiv.

- infinitary in nature: a strategy in unbounded b&f game with finite approximations \sim^{ℓ} : a strategy for $\ell\text{-rounds}$

\sim -invariance:

- whenever $\mathcal{A}, a \sim \mathcal{B}, b$ then \mathcal{A}, a has \mathcal{P} iff \mathcal{B}, b has \mathcal{P}
- \sim -closed (rather than just \simeq -closed) classes of structures

study \sim -invariant properties and their definability

\sim -invariant properties

 \sim -invariance undecidable (where non-trivial), e.g.:

and yet there can be effective syntax, e.g.:

- $FO/\sim \equiv ML$ (van Benthem 83, and (fmt) Rosen 97)
- Ptime/ $\sim \equiv L^{\omega}_{\mu}$, a logic for \sim -invariant Ptime (0_99)

$\rm FO/{\sim}\equiv \rm ML$

means that t.f.a.e.: (i) $\varphi(x) \in FO$ is \sim -invariant (ii) $\varphi \equiv \psi$ for some $\psi \in ML$

(ii) \Rightarrow (i) direct from modal Ehrenfeucht–Fraïssé:

 $\begin{array}{l} \mathcal{P} \text{ definable in } \mathsf{ML}_{\ell} \Leftrightarrow \\ \mathcal{P} \text{ closed under } \sim^{\ell} \Rightarrow \mathcal{P} \text{ closed under } \sim \\ (\mathsf{i}) \Rightarrow (\mathsf{ii}) \text{ (expressive completeness) is equivalent to} \\ \mathcal{P} \text{ closed under } \sim^{\ell} & \leftarrow \mathcal{P} \text{ closed under } \sim \\ \text{for FO-definable } \mathcal{P} \text{ and suitable finite } \ell(\mathcal{P}) \end{array}$

and has a nice elementary, constructive proof ...

... a more uniform upgrading strategy

for suitable $\ell = \ell(q)$

possible obstructions:

differences w.r.t. (i) small multiplicties

(ii) short cycles

which are not controlled by any level of \sim

- need to avoid both
- can avoid both in products with finite (!) auxiliary structures

some variations obtained this way (Dawar–O_09):

- FO/ \sim over (finite) symmetric frames ($\sim = \sim_{\pm}$)
- FO/ \sim over (finite) rooted frames ($\sim = \sim_{\forall}$)
- FO/ \sim over (finite) multi-agent S5 frames (epistemic frames)

... make essential use of suitable (finite) graph coverings and FO-Gaifman locality

so do other variations not discussed here, for richer notions of bisimulation, like guarded bisimulation & guarded negation bisimulation, also of some interest in database context (e.g., Gottlob–Bárány–O_14, Bárány–tenCate–O_12)

(1) e.g., (finite) multi-agent epistemic S5 frames

 $\mathcal{K} = (W, (E_i), (P_q))$

with equivalence relation E_i for each agent $i \in I$, with classes $[w]_i$ (*i*-edges form disjoint union of cliques, one for each class $[w]_i$)

can be untangled in finite (!) bisimilar coverings

$$egin{array}{cccc} \pi\colon \mathcal{K}^* &\longrightarrow & \mathcal{K} \ w^* &\longmapsto & \pi(w^*) \end{array}$$

with $\mathrm{graph}(\pi)$ as a bisimulation, and s.t. in \mathcal{K}^*

- $|[w^*]_i \cap [u^*]_j| \leqslant 1$ for $i \neq j$
- all non-trivial cycles (of $[w^*]_i$) are long

over such sparse companions, \sim^{ℓ} gives sound advice for \simeq_q

(2) one level up, the inquisitive setting

(Roelofsen-Ciardelli 11, Ciardelli 16)

plain modal S5:

knowledge/information states (of agent *i*) are sets of worlds $[w]_i$

that are equivalent/indistinguishable as far as agent *i* can tell

inquisitive S5: questions/issues (of agent *i*) are sets of sets of worlds described by downward closed collections in $\mathcal{P}([w]_i)$

possible, alternative resolutions from point of view of agent i

while plain modal models work with worlds and relational encodings of set assignments $w \mapsto [w]_i$ to worlds, now need assignments of sets of sets of worlds

... where MSO enters locally (Ciardelli–O_ytbd):

upgrading \sim^{ℓ} to \simeq_q in two-sorted relational encodings of (finite) inquisitive S5 models

sort 1: states/worlds as usual

sort 2: information states at w, sets of worlds from individual $[w]_i$

with \in and inquisitive assignments as mixed-sorted relations

uses combination of

- global pre-processing w.r.t. $[w]_i$ -structure as before
- local post-processing within individual [w]_i

to control FO-game + local MSO-game over sort 1 (which is the FO-game over mixed sorts)

 $\rightsquigarrow~\sim\text{-invariance}~\Rightarrow~\sim^{\ell}\text{-invariance}$ for \ldots

(3) aside on results for transitive frames (Dawar–O_09):

where MSO enters globally, in a tame manner

 $R = R^*$ (or R^+) makes accessible *future lightcone* in one step \rightsquigarrow look at rooted transitive frames ($\sim = \sim_{\forall}$)

rooted, transitive, (wellfounded, Löb and Gregorczyk), ... form non-elementary frame classes, in classical setting

R-related pairs of worlds \rightsquigarrow connecting paths/words q-tuples of worlds \rightsquigarrow connecting tree FO-analysis \rightsquigarrow MSO-decomposition techniques

allowing reflexivity adds non-trivial structure: local clusters/cliques \rightsquigarrow in fmt (only!), FO/ \sim calls for a nonstandard modality \diamondsuit^*/\Box^*

in crucial finite/wellfounded scenarios: ${\bf FO}/{\sim}\equiv {\bf ML}^*\equiv {\bf MSO}/{\sim}$

(4) common knowledge epistemic S5 (with Felix Canavoi)

common knowledge modality: a fixpoint construct for reachability along paths accessible to groups of agents

 \square_{α}^* : "*i*₁ knows that *i*₂ knows that *i*₃ knows", for all $i_j \in \alpha$, captures the idea of common knowledge among agents in α ,

its dual \diamondsuit_{α}^* is based on the *transitive closure* of $\bigcup_{i \in \alpha} E_i$

clearly not first-order, not amenable to classical techniques, even in the classical setting

but $(\bigcup_{i \in \alpha} E_i)^*$ is all that's missing, to put $\Box_{\alpha}^*, \diamondsuit_{\alpha}^*$ in FO: look at FO*: FO with access to $(\bigcup_{i \in \alpha} E_i)^*$, or FO over models that interpret new relations E_{α}^* as $(\bigcup_{i \in \alpha} E_i)^*$

a non-elementary class of models

(4) common knowledge epistemic S5 (with Felix Canavoi)

FO^{*}: FO over CK-models with relations $E^*_{\alpha} = (\bigcup_{i \in \alpha} E_i)^*$

theorem: ML[CK] \equiv FO*/ \sim (classically and fmt)

uses upgrading of \sim^{ℓ} to \simeq_q in the class of (finite) CK-models

based on (finite coverings by) Cayley groups

- generated by involutions $(g_{i,m})_{i \in I, 1 \leqslant m \leqslant M}$
- without short cycles formed by cosets of subgroups of the form ⟨g_{i,m}: i ∈ α⟩

these cosets are the E_{α}^* -classes (!), and M is for multiplicity: can control FO-game by (dual) game on coset hypergraph

 $\rightsquigarrow~\sim\text{-invariance}~\Rightarrow~\sim^{\ell}\text{-invariance}$ for \ldots

other results on $\sim\text{-invariance}$ between FO and MSO

mostly quite different techniques, and not fmt!

- Hafer–Thomas 87: monadic path logic / CTL^* on binary trees
- Moller-Rabinovich 03: monadic path logic / CTL* on trees
- Carreiro 15: weak generalised monadic path logic / PDL
- (with Colin Hirsch 00): MSO on regular trees / L_{μ}

- ... and some even beyond MSO (but also not fmt)
- Grädel–Hirsch–O_02: GSO/ $\sim_{g} \equiv \mu$ G ("guarded J–W")