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issues — in logic and combinatorics

e what is modal/graph bisimulation good for?
e how does it generalise from graphs to hypergraphs?
e what is guarded/hypergraph bisimulation good for?

e which features and applications generalise?

— logic vs combinatorial challenges
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organisation in four parts

(1)  fairly classical introduction:
bisimulation and back&forth games
bisimulation as modal Ehrenfeucht—Fraissé

(1)  fairly classical applications:
bisimulation and the finite model theory of modal logics

(111)  combinatorics of finite coverings:
bisimilar coverings for graphs and hypergraphs

(1IV)  more recent applications:
bisimulation and the finite model theory of guarded logics
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I: bisimulation — the quintessential back&forth

on graph-like structures

Kripke structures (possible worlds/accessibility),
transition systems (states/transitions),
game graphs (positions/moves)

capture behavioural equivalence

in the sense of indistinguishability of worlds, states, positions, ...
w.r.t. alternating sequences of accessibility, transitions, moves, ...

core idea: dynamic b&f probing of possibilities

—— dynamic exploration of structures that
are static images of dynamic behaviour
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bisimulation game & bisimulation relations

the game:

player I: challenge

player Il: response

A= (AR PY)
B = (B,R",PP)

2-person game {

play over transition systems {

positions: pairs (a, b) — correspondence between pebbled vertices
single round: challenge/response

I moves pebble in A or B along R-edge

Il must do likewise in opposite structure

Il loses in position (a, b) unless a ~° b (same colours)
I/11 lose when stuck

Champéry, Martin Otto
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bisimulation game & bisimulation relations

winning regions define bisimulation equivalences:
Aa~tBb Il has a winning strategy
for ¢ rounds from (a, b)

A,a~“ B, b Il has a winning strategy
for any finite no. of rounds from (a, b)

A,a~> B, b Il has a winning strategy
for infinite game from (a, b)

winning strategies in relational formalisation:

ZCAXB or bisimulation relations
(Zm € A X B)men with characteristic
(Zm CAX B)m<s b&f requirements
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bisimulation game & bisimulation relations

a bisimulation relation Z C Ax B

with characteristic b&f requirements

(back) for (a,b) € Z and (b, b') € RB there is
ad€Ast (a,a)e R and (d,b) € Z

(forth) for (a,b) € Z and (a,a’) € R4 there is
b' € Bs.t. (b,b) € RE and (d',b) € Z

witnesses existence of winning strategy from (a, b)
in infinite game for any (a, b) € Z

b&f systems (Z,) m<s OF (Zm)men

with stratified b&f conditions
analogously encode winning advice
for m rounds from (a, b) € Z,
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classical motif: Ehrenfeucht—Fraissé

pebble games for FO and FO,

I and Il over relational structures A = (A, R*) and B = (B, R®)
positions: local isomorphisms p: a+— b, p: AJla~ B|b

single round: challenge/response for
extension by one new pebble pair
(p:ar—b) ~~ (p':ad — bb)

Aa~B,b ¢ rounds
A,a~“ B,b finitely many rounds
A,a~>* B,b infinite game

winning regions:
b&f equivalences

linked to levels of indistinguishability in first-order logic FO
and its infinitary variant FO

~° classically known as ~,/partial isomorphy
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Ehrenfeucht—Fraissé

Ehrenfeucht—Fraissé /Karp thms

Aa~Bb < Aa=l Bb"  gfr-depth ¢ FO-equiv.

Aa~Bb < Aa=,Bb" full FO equiv.
Aa~>*Bb < Aa=xB,b FO equiv.

observations/proof ingredients:

e the sets Z, := {(p: a—> b): A,a =7 B,b}
satisfy b&f conditions

o lcanforce A,a#™ B,b ~ A aa %71 B, bt

e existence of strategy for m rounds in game versus A, a
is FO definable at gfr depth m (nested b&f conditions)”

x for finite relational vocabulary s.t. ~™ has finite index
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bisimulation & basic modal logic ML

on graph-like structures

with binary (transition) relations R = (Ry,...) ~» modalities <;/0;
and unary (state) predicates P = (Py,...) ~+ basic propositions p;

atomic formulae: 1, T and p;
booleans connectives: A,V, -

modal quantification: .
Ri/
Oiv = Jy(Rixy Ao(y)) . \/\'j? *¥
O;e = Vy(R,-xy — go(y)) O
relativised FO quantification ®
observation

e local bisimulation condition (~%) matches atomic ML-equiv.
e bisimulation b&f matches modal quantification pattern
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bisimulation — modal Ehrenfeucht—Fraissé

modal Ehrenfeucht—Fraissé/Karp thms

Aa~Bb & Aa=l, Bb" ML-equiv./nesting depth ¢
Aa~*B,b & Aa=uB b~ full ML equiv.
Aa~>* B b & Aa=y B,b ML equiv.

classically/modally:
when does ~ (=0, =) coincide with ~*° / ~ ., 7
when does ~ (=0, ~*) coincide with ~> / ~ ?

(modal) Hennessy—Milner thm

for suitably saturated A and B: A,a~“ B,b = A,a~*B,b

e finitely branching
e modal- or w-saturated
e recursively saturated pairs
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variations

e two-way and global bisimulation =~

add corresponding move options &
extend challenge/response protocol

e bisimulation in game graphs for other logics

states: admissible assignments
transitions: quantification patterns

all Ehrenfeucht—Fraissé games are bisimulation games

e hypergraph/guarded bisimulation — parts I11/1V
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Il: model theory of modal logics

in this section:

e tree model property

e finite model property

e descriptive complexity (fmt)

e expressive completeness (classical and fmt)

modal model theory = bisimulation invariant model theory

Champéry, Martin Otto
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tree unfoldings

tree unfolding A, = (A, R4, P4 a) ~ A* = (A% R: P a)

A%: the set of all labelled directed paths w from a in A
with projection 7m: w — w(w) € A, the endpoint of w

R: = {(w,wRa): (m(w), d) € R4}
Py =ni(P4)

m: A7 — A is an example of a bisimilar covering:

e 7 is a homomorphism: the forth-property for graph()

e 7 has lifting property: the back-property for graph(m)

a homomorphism inducing a bisimulation
graph(m) = {(w,m(w)): w € A3}
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tree unfoldings and tree model property

bisimilar unfoldings into tree structures
_ o _ = tree model property
preservation under bisimulation

tree model property

for all ~-invariant logics ML, ... ,L,,...MLy:
every satisfiable formula has a tree model

for ~-invariant logics analogously: forest model property

of great importance: can employ good model theoretic and
algorithmic properties of trees, MSO on trees, tree automata, ...
for robust decidability and complexity results for modal logics
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finite (tree) model property

for basic modal logic ML (and some close relatives)
even get finite tree models, hence the

finite model property:

every satisfiable formula of ML has a finite (tree) model

ad-hoc method: for ¢ € ML of nesting depth ¢,
truncate tree model at depth ¢ (preserving ~*)
and prune ~‘-equivalent siblings (finite index!)

more generic method: passage to ~‘-quotient of any
model yields a finite model (usually not a tree model)

this generalises to extensions preserved under levels of ~
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capturing bisimulation-invariant Ptime

the class of Ptime and ~-closed
properties of finite structures

Ptime/~ {

a semantic class

corr. to the undecidable class of Ptime Turing machines M
that accept (encodings of) finite structures A, a and satisfy
A,a~B,b = (M[A,a]=1 < M[B,b]=1)

capturing issue: a logic for Ptime/~ ?

does this semantic class admit
some syntactic representation?

yes, by straightforward reduction to Immerman—Vardi (O_ 96)

e use pre-processing A — A/~ as a filter to enforce ~-invariance
e quotients A/~ carry canonical Ptime ordering of ~-types ...
— reduction to capturing Ptime over ordered finite structures
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expressive completeness

... relative to first-order logic, a classical theme of FO model theory

the class of ~-closed FO-properties of
(just finite, or all) relational structures

Fo/~ {

a semantic class

corresponding to the undecidable class of those ¢(x) € FO
that satisfy A,a~ B,b = (A,a Ep < B,b'ch)

classical ‘preservation thms’, too, respond to the quest for
syntactic representation —mostly without asking the question

in this case, the answer to the unasked question is:
yes, FO/~ = ML classically, van Benthem
yes, FO/~ = ML in fmt, Rosen
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expressive completeness: FO/~ = ML

it suffices to show:

¢(x) € FO/~ = € FO/~!
for some ¢ = {¢(q) (g = qr(¥))

~-invariance implies ~‘-invariance

a compactness property!
then o = ¢’ € MLy, by Ehrenfeucht—Fraissé:

finite index of ~f, ML,-definability of ~‘-classes

NB: two, a priori independent, readings: classical & fmt

Champéry, Martin Otto 19/1



expressive completeness: FO/~ = ML

a simple, ad-hoc argument (with extra benefits)
using the locality of FO/~ & Ehrenfeucht—Fraissé

o(x) € FO4/~ = p € FO/NZ
for £=29—-1 (g =qr(y))

Al N(a)

A
show that RN v in g-round FO game:
afEy aly

7 -V Ve

—_————
4 =

q copies q copies q copies q copies

Champéry, Martin Otto
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expressive completeness

what is generic about the ad-hoc argument for FO/~7?

e necessary & sufficient compactness property
~-invariance < (~‘-invariance for some ¢)

e upgrading ~H9) ~ =g
e FO-locality (Gaifman-locality)
what is not? (e.g., compared to FO/~)

e |ocality around single distinguished vertex

want more uniform construction: = coverings

Champéry, Martin Otto



expressive completeness: generic classical approach

~-invariance = ~‘invariance for some /

classical compactness argument allows upgrading along =qo-axis
through Hennessy—Milner property for w-saturated structures

A =wmL B
R N
A ~ B

elegant and smooth, but no information regarding ¢(q)
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expressive completeness: a constructive approach

L

~-invariance = ~*-invariance for some ¢

upgrading along ~-axis — from ~(9) to ~4 / =5
through bisimulation preserving model transformation (coverings)

A ~Aa) B
2 ¢

A =/ B

more constructive, potentially suitable for fmt,
yielding information regarding ¢(q)

Champéry, Martin Otto



expressive completeness: a constructive approach

upgrading in A—— ~49) B
2 ¢
A = B

requires (finite) model transformations A/B —s A/B

e compatible with ~ /= (like ~ coverings)

e suitable to eliminate all obstacles to ~9 / =7,
that are not controlled by any level of ~*

esp., short cycles & small multiplicities

Champéry, Martin Otto
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products and coverings

e products with reflexive cliques:
boost multiplicities

e products with generic graphs of large girth:
avoid short cycles

products: direct synchronous products of A = (A, E)

e with reflexive n-clique K:
A=(AE)=A®K,
A=Ax|[n|
E={((a,),(d,1"): (a,d) € E}

projection homomorphism 7: (a,i) — a

are bisimilar coverings (in the sense of =)

Champéry, Martin Otto




products and coverings

e products with reflexive cliques:
boost multiplicities

e products with generic graphs of large girth:
avoid short cycles

products: direct synchronous products of A = (A, E)

e with Cayley graph G = (G, (Re)ecE)
A=(AE)=A®G

A=AxG
E={((a,8),(d.g¢€)): e=(a,d) € E}
projection homomorphism 7: (a,g) — a 2 e 3

are bisimilar coverings (in the sense of =)
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l1l: the combinatorics of finite coverings

in this section:
e graph coverings (review)

e local acyclicity in finite direct products
with Cayley graphs of large girth

e hypergraph coverings (new)
e degrees of acyclicity in hypergraphs

e acyclicity in finite reduced products
with Cayley graphs of groupoids

Champéry, Martin Otto
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graph coverings

w.l.0.g. consider directed loop-free graphs A = (A, E)

definition: =-bisimilar coverings

m: A— A a covering of A= (A E) by A= (A E):

(forth) m: A — A homomorphism

(back)  lifts edges/paths from a € A to any 3 € 7 1(a)

examples of simple/unbranched coverings:
e two-way tree (forest) unfoldings

e direct products of A with suitable graphs
that are rich enough to simulate all .A-transitions

e especially: products with Cayley graphs generated by edge set E
that serve as universal E-simulators

Champéry, Martin Otto
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avoiding short cycles in finite coverings

NB: finite coverings of cyclic A must have cycles

N-acyclic coverings:
no (undirected) cycles of length up to N in covering

Cayley groups/graphs:
e group G = (G, -, 1) with generators e € E

e associated Cayley graph has e-coloured edges from g to g-e

highly symmetric, regular & homogeneous objects

Cayley groups of large girth (girth > N):

no short generator cycles: e;-e --- e, #1 for n< N

products A ® G with such G are N-acyclic coverings

Champéry, Martin Otto
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Cayley graphs of large girth

no short generator cycles: e; - e --- e, # 1 for small n

construction (after Biggs)

find G as subgroup G = (m.: e € E) C Sym(V)

generated by permutations 7, of A e ~

L —
deterministically E-coloured graph (V, (Re)) Te
lemma

let H=(V,(Re)) be deterministically E-coloured such that
every colour sequence w = e1---¢e, € E<N |abels some path

€1 € o
Vo —=V1 ... Vpo1—"sv,# vy IinH;

then 1, -+ me, #1in G C Sym(V) and G has girth > N

Champéry, Martin Otto
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locally acyclic graph coverings

thm (0_04)

every finite graph admits, for every N € N,
simple/unbranched N-acyclic finite coverings

by products with Cayley graphs of large girth

e uniform construction, which preserves all symmetries

e adaptable to many special frame classes — Dawar—O__05/09

construction idea for Cayley graphs extends to
stronger notions of acyclicity in groups and in groupoids
that are useful towards hypergraph constructions

Champéry, Martin Otto

31/



more than just large girth

much stronger notion of acyclicity in Cayley groups/graphs:
avoid not just short generator cycles but short coset cycles

coset cycles (in Cayley group G with generator set E)

(8iGleil)in
cosets w.r.t. subgroups generated by a; C E
s.t. the transitions h; := gfl - gi+1 € Glaj] satisfy:

hi € Glai Naj_1] - Gloj N ajqa] @

Glay]
Glevi—1] Glevit1]

G is N-acyclic if it admits no coset cycles of length up to N

and such objects do exist

Champéry, Martin Otto

32



N-acyclic Cayley groups

thm (0_ 10)

for every finite set E and N € N there are Cayley groups with
generators e € E that admit no coset cycles of length up to N

inductively interleave

e amalgamation of chains of Cayley graphs of small subgroups
e group action on deterministically coloured graphs

to avoid coset cycles in increasing no.s of generators
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from graphs to hypergraphs

hypergraphs: structures A = (A, S) with vertex set A,
and set of hyperedges S C P(A)

idea: clusters and their link structure
example: hypergraph of guarded subsets
of a relational structure A = (A, R4)
H(A) = (A,S[A])

with hyperedges generated by subsets [a] C A for a € R4, R € R
closed under subsets & singleton sets

relational structure = hypergraph link structure (topology)
+ local relational content

~ hypergraph bisimulations/coverings take care of
the combinatorial part of guarded bisimulations/coverings

Champéry, Martin Otto
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hypergraphs

hypergraph terminology
e H=(A,S), S CP(A) the set of hyperedges

e G(H) = (A, E), associated Gaifman graph
hyperedges ~~ cliques

e G(A) = G(H(A)), the Gaifman graph of A

issues:

e degrees of acyclicity and their algorithmic
and model-theoretic relevance (— guarded logics, part V)

e hypergraph coverings: reproduce link structure locally;
smooth out global link structure (e.g., regarding cycles)
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hypergraph coverings

definition: bisimilar coverings

m: A— A a covering of A= (A,S) by A=(A,S):

(forth) m: A — A homomorphism
i.e., m[5: 5 — m(58) =s € S bijective for all s € S

(back)  lifts overlaps sN's’ # ) from A to any 8 € S above s

7 - Fe5T

examples of natural hypergraph coverings:
e tree (forest) unfoldings

e reduced products with suitable groups/groupoids (— below)

Champéry, Martin Otto



degrees of hypergraph acyclicity

hypergraph acyclicity; 3 equivalent definitions:

e tree-decomposable with hyperedges as bags
associate hyperedges of A with nodes of tree T s.t.
every a € A is represented in connected subgraph of T
e decomposable through elementary deletion steps (Graham)
— delete simply covered vertices
— delete subset-hyperedges
e conformality and chordality (of associated Gaifman graph)

— no bad cliques in Gaifman graph
— no bad cycles in Gaifman graph

Champéry, Martin Otto

37/1



hypergraph terminology

for hypergraph H = (A, S) and associated Gaifman graph
G(H) = (A, E) = U,es K[s]  (a clique for each s € S)

e conformality: every clique in G(H) is
contained in some s € S

e chordality: every cycle of length > 3
in G(H) has a chord

N-acyclicity = N-conformality 4+ N-chordality:

acyclicity of induced sub-configurations of size up to N

Champéry, Martin Otto
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example: the combinatorial challenge

the facets of the 3-simplex/tetrahedron

uniform width 3 hypergraph on 4 vertices

e chordal but not conformal
e finite coverings cannot be 1-locally acyclic
e admits locally finite coverings without short chordless cycles

e also admits simple finite 5-acyclic covering
in which every induced sub-configuration on
up to 5 vertices is acyclic

Champéry, Martin Otto
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example: the combinatorial challenge

a locally finite covering of the tetrahedron

| £ ) Y
\ 7 =
""_“‘ l»f_w"‘

""f-ll\“ntm s

conformal; shortest chordless cycles have length 12
here by regular triangulation of the hyperbolic plane
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reduced products with Cayley groups/groupoids

plain reduced product A ® G

between hypergraph A = (A, S) and group/groupoid
with generators e € E associated with subsets d(e) € S|

quotient (A x G)/~

A®G: | (a,g)~(ag) if g g €Glay)
fora;,={ec E: ac d(e)}

intuition: e-transitions in G glue layers of A X G
through identification in d(e)

d(e)x{g-e}

d(e)x{g}

>
e
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reduced products with Cayley groups/groupoids

unfolded reduced product A' ® G

of incidence representation of A = (A, S) and group/groupoid
with generators e = (s, s’) € E associated with
subsets d(e) =sNs' forsNs’ #(

quotient (S x G)/~

A ®G: { (a,5,8)~ (a5, g e) ifglg €Gla
as={e=(s,s)€E:aesns'}

intuition: e-transitions in G for e = (s, s’) glue
copies of s and s’ in appropriate layers

C O dexdee
At O D

Champéry, Martin Otto
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new methods: Cayley graphs of groupoids

theorem

e plain reduced products with N-acyclic Cayley groups G
preserve N-acyclicity of A

~> local-global construction of finite N-acyclic coverings
from locally finite N-acyclic coverings (O_ 10)
e unfolded reduced products with N-acyclic Cayley groupoids G

produce N-acyclic coverings of A

~+ direct construction of finite N-acyclic coverings (new)

. and N-acyclic groups/groupoids can be constructed by
very similar group action & amalgamation ideas

Champéry, Martin Otto
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further (new) results

reduced product constructions with N-acyclic groupoids yield

generic solutions for finite closures/realisations of
e abstract specifications of local overlap patterns
e abstract specifications of complete GF-types — part IV

e extension properties for partial isomorphisms
(in the sense of Hrushovski/Herwig/Lascar) — part IV

these highly regular & symmetric constructions
are compatible with automorphisms of the given data

(preserve symmetries of the sepecification)

and why groupoids?

Champéry, Martin Otto
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groupoids vs. groups

groupoids: think of ‘many-sorted’ groups with
partial (sort-sensitive) operation

G = (G, (Gst)s,t659 ) (15)5657 _1)

with operation Gg X Gy, — Ggy
examples: bijective morphisms in a category; change of co-ordinates
why groupoids are more suitable in hypergraph constructions

e transitions between hyperedges
behave like local changes of co-ordinates
— with non-trivial compositions

e (reduced) products with groupoids can offer
just the right transitions at the right place

unlike the graph/group situation

Champéry, Martin Otto
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IV: finite model theory of guarded logics

in this section:
e guarded logics and guarded bisimulation

generalised tree model property

finite model properties

descriptive complexity

e expressive completeness

Champéry, Martin Otto
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the guarded fragment GF

Andréka—van Benthem—Németi 98

model-theoretic motivation: reflection on ML C FO
from graph-like structures to general relational format
key idea: relativise quantification to guarded clusters

hypergraph of guarded subsets H(.A) = (A, S[A])
generated by [a] for a € R4

guarded quantification:
3y (a(xy) A p(xy))
vy (a(xy) = ¢(xy))
guard atom a: free(p) C var(«)

guantification relativised
to guarded tuples

Champéry, Martin Otto
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GF and guarded bisimulation

guarded bisimulation A,a~g A'ya’ and A,a~i A

e bisimulation of hypergraphs of guarded subsets
that locally respects relations

e FO pebble game with guarded pebble configurations

two equivalent views (Gradel-Hirsch-O_ 02)

the guarded Ehrenfeucht—Fraissé thm

Aa ~t Aad o Aa=l Ad (GF-equiv./depth ¢)

the guarded Karp thm

Aja ~y A & Aa=x A d (inf. equiv. in GF)

Champéry, Martin Otto
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GF and guarded bisimulation/coverings

in striking analogy with modal model theory, based on
invariance/preservation under guarded bisimulation:

e generalised tree model property
tree/forest unfoldings (Gradel 99):
acyclic hypergraph coverings

e finite model properties (and decidability)
via Herwig extensions (Gradel 99)
succinct hypergraph coverings (Barany—Gottlob—O_ 10)

e capturing result for ~g-invariant Ptime
succinct hypergraph coverings (Bardny—Gottlob—O_ 10)

e classical/fmt expressive completeness results
compactness&saturation/upgrading in coverings
(Andréka—van Benthem—Németi 98/0_ 10)

Champéry, Martin Otto
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finite model properties

finite models from Herwig extensions (Gradel 99)

from infinite A |= ¢ obtain finite model as
Herwig-extension B O A of sufficiently rich finite 4 C A

Hrushovski—Herwig—Lascar EPPA:

for finite A find finite extension B O A that extends
every partial isomorphism of A to an automorphism of B

P B w.l.o.g. R* generates R
PO
A if A represents AOO/N(’;
then B Ng A
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more on EPPA & fmp for GF

Herwig—Lascar EPPA

within classes C defined in terms of
finitely many forbidden homomorphisms:

if A has an infinite EPPA-extension A C B>® € C,
then there is a finite EPPA-extension A C Bi* € C

corollary
fmp for GF in restriction to any class C defined in terms of
finitely many forbidden homomorphisms

first obtained (with feasible size bounds) in Barany—Gottlob—O_ 10
using succinct weakly N-acyclic covers
~+ 'Rosati-covers’ & ‘finite controllability’ of UCQ/GF

Champéry, Martin Otto
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more on hypergraph constructions & EPPA

new application of reduced products w.r.t. N-acyclic groupoids:

e new combinatorial proof of Herwig—Lascar EPPA theorem
based on finite, symmetric realisations of overlap specifications
between isomorphic copies of A

related task: model (re-)construction from
abstract specification of complete GF-types

e Barany—Gottlob—O_ 10: good bounds, unclear symmetries
~~ capturing bisimulation-invariant Ptime

e new groupoidal constructions: generic & fully symmetric,
no feasible bounds (?)
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expressive completeness: FO/~, = GF

crux (as in modal case): compactness property

¢ € FO ~g-invariant = Ng—invariance for some /¢

e classical compactness argument allows upgrading along
=ro-axis, by use of w-saturated elementary extensions

A =cF B
N N
A ~g B

Champéry, Martin Otto

58

1



expressive completeness: FO/~, = GF

crux (as in modal case): compactness property

¢ € FO ~g-invariant = Ng—invariance for some /¢

e constructive upgrading along ~g-axis
uses rich N-acyclic (finite) coverings

Y
A Ng(CI) B
~g ~g
A = B

Champéry, Martin Otto
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beyond GF: guarded negation

Bardny—ten Cate-Segoufin 11

idea: consider benign nature of GF (and ML) in light of
restricted negation rather than restricted quantification

e start from existential FO (UCQ)
e allow negation just on formulae with
explicitly guarded free variables

GF C GNF C FO

appropriate notion of bisimulation combines
(local) homomorphisms with (guarded) b&f

allows to lift many results from GF

largely by non-trivial reductions to GF over
classes with forbidden homomorphisms

Champéry, Martin Otto
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summary: bisimulation & link structure

combinatorics, discrete geometry/topology

analogies and generalisations: modal ~~ guarded

discrete mathematics: graphs ~~ hypergraphs
databases: transition systems ~~ relational databases

logic/model theory: modal ~~ guarded logics

e.g., tree-decompositions and tree unfoldings
& finite coverings with control over cycles

how far do the analogies carry?

Champéry, Martin Otto
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summary: how far do bisimulation analogies carry?

infinite tree unfoldings as fully acyclic coverings:
a complete analogy, good for most classical purposes

e finite coverings meet different combinatorial challenges
w.r.t. control of cycles and local-global-distinctions

e gain considerable extensions of the analogies between
graphs/hypergraphs & modal/guarded logics

e especially through new hypergraph constructions
via reduced products with suitable groupoids

the end

Champéry, Martin Otto



some pointers

H. Andréka, J. van Benthem, |. Németi: Modal languages and bounded
fragments of predicate logic, Journal of Philosophical Logic, 1998.

E. Gradel: On the restraining power of guards, Journal of Symbolic
Logic, 1999.

B. Herwig and D. Lascar: Extending partial isomorphisms and the
profinite topology on free groups, Transactions of the AMS, 2000.

M. Otto: Modal and guarded characterisation theorems over finite
transition systems, Annals of Pure and Applied Logic, 2004.

A. Dawar and M. Otto: Modal characterisation theorems over special
classes of frames, Annals of Pure and Applied Logic, 2009.

M. Otto: Highly acyclic groups, hypergraph covers and the guarded
fragment, Journal of the ACM, 2012.

V. Bérany, G. Gottlob, M. Otto: Querying the guarded fragment, to
appear in Logical Methods in Computer Science, 2013.

M. Otto: Groupoids and hypergraphs, arXiv, 2012

Champéry, Martin Otto



