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Champéry, 2013
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issues – in logic and combinatorics

• what is modal/graph bisimulation good for?

• how does it generalise from graphs to hypergraphs?

• what is guarded/hypergraph bisimulation good for?

• which features and applications generalise?

−→ logic vs combinatorial challenges
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organisation in four parts

(I) fairly classical introduction:
bisimulation and back&forth games
bisimulation as modal Ehrenfeucht–Fräıssé

(II) fairly classical applications:
bisimulation and the finite model theory of modal logics

(III) combinatorics of finite coverings:
bisimilar coverings for graphs and hypergraphs

(IV) more recent applications:
bisimulation and the finite model theory of guarded logics
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I: bisimulation – the quintessential back&forth

on graph-like structures

Kripke structures (possible worlds/accessibility),
transition systems (states/transitions),
game graphs (positions/moves)

capture behavioural equivalence

in the sense of indistinguishability of worlds, states, positions, . . .
w.r.t. alternating sequences of accessibility, transitions, moves, . . .

core idea: dynamic b&f probing of possibilities

−→ dynamic exploration of structures that
are static images of dynamic behaviour
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bisimulation game & bisimulation relations

the game:

2-person game

{
player I: challenge
player II: response

play over transition systems

{
A = (A,RA,PA)

B = (B,RB,PB)

positions: pairs (a, b) – correspondence between pebbled vertices

single round: challenge/response

I moves pebble in A or B along R-edge

II must do likewise in opposite structure
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II loses in position (a, b) unless a ∼0 b (same colours)
I/II lose when stuck
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bisimulation game & bisimulation relations

winning regions define bisimulation equivalences:

A, a ∼` B, b II has a winning strategy
for ` rounds from (a, b)

A, a ∼ω B, b II has a winning strategy
for any finite no. of rounds from (a, b)

A, a ∼∞ B, b II has a winning strategy
for infinite game from (a, b)

winning strategies in relational formalisation:

Z ⊆ A× B or
(Zm ⊆ A× B)m∈N
(Zm ⊆ A× B)m6`

bisimulation relations
with characteristic
b&f requirements
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bisimulation game & bisimulation relations

a bisimulation relation Z ⊆ A× B

with characteristic b&f requirements

(back) for (a, b) ∈ Z and (b, b′) ∈ RB there is
a′ ∈ A s.t. (a, a′) ∈ RA and (a′, b′) ∈ Z

(forth) for (a, b) ∈ Z and (a, a′) ∈ RA there is
b′ ∈ B s.t. (b, b′) ∈ RB and (a′, b′) ∈ Z

witnesses existence of winning strategy from (a, b)
in infinite game for any (a, b) ∈ Z

b&f systems (Zm)m6` or (Zm)m∈N

with stratified b&f conditions
analogously encode winning advice
for m rounds from (a, b) ∈ Zm
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classical motif: Ehrenfeucht–Fräıssé

pebble games for FO and FO∞

I and II over relational structures A = (A,RA) and B = (B,RB)

positions: local isomorphisms p : a 7→ b, p : A�a ' B �b
single round: challenge/response for

extension by one new pebble pair
(p : a 7→ b)  (p′ : aa′ 7→ bb′)

winning regions:
b&f equivalences


A, a '` B,b ` rounds
A, a 'ω B,b finitely many rounds
A, a '∞ B,b infinite game

linked to levels of indistinguishability in first-order logic FO
and its infinitary variant FO∞

'∞ classically known as 'part/partial isomorphy
Champéry, Martin Otto 8/1



Ehrenfeucht–Fräıssé

Ehrenfeucht–Fräıssé/Karp thms

A, a '` B,b ⇔ A, a ≡`
FO B,b ∗ qfr-depth ` FO-equiv.

A, a 'ω B,b ⇔ A, a ≡FO B,b ∗ full FO equiv.

A, a '∞ B,b ⇔ A, a ≡∞
FO B,b FO∞ equiv.

observations/proof ingredients:

• the sets Zm :=
{
(p : a 7→ b) : A, a ≡m

FO B,b
}

satisfy b&f conditions

• I can force A, a 6≡m
FO B,b  A, aa′ 6≡m−1

FO B,bb′

• existence of strategy for m rounds in game versus A, a
is FO definable at qfr depth m (nested b&f conditions)∗

∗ for finite relational vocabulary s.t. 'm has finite index
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bisimulation & basic modal logic ML

on graph-like structures

with binary (transition) relations R = (R1, . . .)  modalities 3i/2i

and unary (state) predicates P = (P1, . . .)  basic propositions pi

atomic formulae: ⊥,> and pi
booleans connectives: ∧,∨,¬
modal quantification:

3i ϕ ≡ ∃y
(
Rixy ∧ ϕ(y)

)
2i ϕ ≡ ∀y

(
Rixy → ϕ(y)

)
relativised FO quantification

•

•

•

•

•
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observation

• local bisimulation condition (∼0) matches atomic ML-equiv.
• bisimulation b&f matches modal quantification pattern
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bisimulation — modal Ehrenfeucht–Fräıssé

modal Ehrenfeucht–Fräıssé/Karp thms

A, a ∼` B, b ⇔ A, a ≡`
ML B, b ∗ ML-equiv./nesting depth `

A, a ∼ω B, b ⇔ A, a ≡ML B, b ∗ full ML equiv.

A, a ∼∞ B, b ⇔ A, a ≡∞
ML B, b ML∞ equiv.

classically/modally:
when does 'ω

(
=

⋂
` '`

)
coincide with '∞ / 'part ?

when does ∼ω
(
=

⋂
` ∼`

)
coincide with ∼∞ / ∼ ?

(modal) Hennessy–Milner thm

for suitably saturated A and B: A, a ∼ω B, b ⇒ A, a ∼∞ B, b
• finitely branching

• modal- or ω-saturated

• recursively saturated pairs
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variations

• two-way and global bisimulation ≈
add corresponding move options &
extend challenge/response protocol

• bisimulation in game graphs for other logics

states: admissible assignments
transitions: quantification patterns

all Ehrenfeucht–Fräıssé games are bisimulation games

• hypergraph/guarded bisimulation → parts III/IV
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II: model theory of modal logics

in this section:

• tree model property

• finite model property

• descriptive complexity (fmt)

• expressive completeness (classical and fmt)

modal model theory = bisimulation invariant model theory
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tree unfoldings

tree unfolding Aa = (A,RA,PA, a)  A∗
a = (A∗

a,R
∗
a,P

∗
a, a)

A∗
a: the set of all labelled directed paths w from a in A

with projection π : w 7−→ π(w) ∈ A, the endpoint of w

R∗
a =

{
(w ,wRa′) : (π(w), a′) ∈ RA}

P∗
a = π−1(PA)

π : A∗
a −→ A is an example of a bisimilar covering:

• π is a homomorphism: the forth-property for graph(π)

• π has lifting property: the back-property for graph(π)

a homomorphism inducing a bisimulation
graph(π) = {(w , π(w)) : w ∈ A∗

a}
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tree unfoldings and tree model property

bisimilar unfoldings into tree structures

preservation under bisimulation

}
⇒ tree model property

tree model property

for all ∼-invariant logics ML, . . . , Lµ, . . .ML∞:
every satisfiable formula has a tree model

for ≈-invariant logics analogously: forest model property

of great importance: can employ good model theoretic and
algorithmic properties of trees, MSO on trees, tree automata, . . .
for robust decidability and complexity results for modal logics
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finite (tree) model property

for basic modal logic ML (and some close relatives)
even get finite tree models, hence the

finite model property:

every satisfiable formula of ML has a finite (tree) model

ad-hoc method: for ϕ ∈ ML of nesting depth `,
truncate tree model at depth ` (preserving ∼`)
and prune ∼`-equivalent siblings (finite index!)

more generic method: passage to ∼`-quotient of any
model yields a finite model (usually not a tree model)

this generalises to extensions preserved under levels of ≈
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capturing bisimulation-invariant Ptime

Ptime/∼
{

the class of Ptime and ∼-closed
properties of finite structures

a semantic class

corr. to the undecidable class of Ptime Turing machines M
that accept (encodings of) finite structures A, a and satisfy
A, a ∼ B, b ⇒ ( M[A, a] = 1 ⇔ M[B, b] = 1 )

capturing issue: a logic for Ptime/∼ ?
does this semantic class admit
some syntactic representation?

yes, by straightforward reduction to Immerman–Vardi (O 96)

• use pre-processing A 7−→ A/∼ as a filter to enforce ∼-invariance
• quotients A/∼ carry canonical Ptime ordering of ∼-types . . .

→ reduction to capturing Ptime over ordered finite structures
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expressive completeness

. . . relative to first-order logic, a classical theme of FO model theory

FO/∼
{

the class of ∼-closed FO-properties of
(just finite, or all) relational structures

a semantic class

corresponding to the undecidable class of those ϕ(x) ∈ FO
that satisfy A, a ∼ B, b ⇒

(
A, a |= ϕ ⇔ B, b |= ϕ

)
classical ‘preservation thms’, too, respond to the quest for
syntactic representation —mostly without asking the question

in this case, the answer to the unasked question is:

yes, FO/∼ ≡ ML classically, van Benthem

yes, FO/∼ ≡ ML in fmt, Rosen
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expressive completeness: FO/∼ ≡ ML

it suffices to show:

ϕ(x) ∈ FOq/∼ ⇒ ϕ ∈ FO/∼`

for some ` = `(q) (q = qr(ϕ))

∼-invariance implies ∼`-invariance
a compactness property!

then ϕ ≡ ϕ′ ∈ ML`, by Ehrenfeucht–Fräıssé:
finite index of ∼`, ML`-definability of ∼`-classes

NB: two, a priori independent, readings: classical & fmt
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expressive completeness: FO/∼ ≡ ML

a simple, ad-hoc argument (with extra benefits)
using the locality of FO/∼ & Ehrenfeucht–Fräıssé

ϕ(x) ∈ FOq/∼ ⇒ ϕ ∈ FO/∼`

for ` = 2q − 1 (q = qr(ϕ))

show that

A�N`(a)

a |= ϕ

A
⇔

a |= ϕ•

,,,,,,,,,
•

��������� ◦

,,,,,,
•

������
in q-round FO game:
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��������� ◦

,,,,,,,,,

���������︸ ︷︷ ︸
q copies

a′
•

,,,,,,,,,

��������� ◦

,,,,
◦

���� ◦

,,,,
◦

����︸ ︷︷ ︸
q copies

'q
◦

,,,,,,,,,

��������� ◦

,,,,,,,,,

���������︸ ︷︷ ︸
q copies

a′′
•

,,,,,
����� ◦

,,,,
◦

���� ◦

,,,,
◦

����︸ ︷︷ ︸
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expressive completeness

what is generic about the ad-hoc argument for FO/∼?

• necessary & sufficient compactness property
∼-invariance ⇔ (∼`-invariance for some `)

• upgrading ∼`(q)  ≡q
FO

• FO-locality (Gaifman-locality)

what is not? (e.g., compared to FO/≈)

• locality around single distinguished vertex

want more uniform construction: ≈ coverings
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expressive completeness: generic classical approach

∼-invariance ⇒ ∼`-invariance for some `

classical compactness argument allows upgrading along ≡FO-axis
through Hennessy–Milner property for ω-saturated structures

A

4

≡ML B

4
Â ∼ B̂

elegant and smooth, but no information regarding `(q)
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expressive completeness: a constructive approach

∼-invariance ⇒ ∼`-invariance for some `

upgrading along ∼-axis — from ∼`(q) to 'q / ≡q
FO

through bisimulation preserving model transformation (coverings)

A

∼

∼`(q) B

∼
Â ≡q

FO B̂

more constructive, potentially suitable for fmt,
yielding information regarding `(q)
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expressive completeness: a constructive approach

upgrading in A

∼

∼`(q) B

∼

Â ≡q
FO B̂

requires (finite) model transformations A/B 7−→ Â/B̂
• compatible with ∼/≈ (like ≈ coverings)

• suitable to eliminate all obstacles to 'q / ≡q
FO

that are not controlled by any level of ∼`

esp., short cycles & small multiplicities
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products and coverings

• products with reflexive cliques:
boost multiplicities

• products with generic graphs of large girth:
avoid short cycles

products: direct synchronous products of A = (A,E )

• with reflexive n-clique Kn:

Â = (Â, Ê ) = A⊗ Kn

Â = A× [n]

Ê = {((a, i), (a′, i ′)) : (a, a′) ∈ E}
projection homomorphism π : (a, i) 7→ a

• •
a a′

•
•

• •

•
•
OOOOOOOO

oooooooo oooooooo

����������
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are bisimilar coverings (in the sense of ≈)
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products and coverings

• products with reflexive cliques:
boost multiplicities

• products with generic graphs of large girth:
avoid short cycles

products: direct synchronous products of A = (A,E )

• with Cayley graph G = (G , (Re)e∈E )

Â = (Â, Ê ) = A⊗ G

Â = A× G

Ê = {((a, g), (a′, g ·e)) : e = (a, a′) ∈ E}
projection homomorphism π : (a, g) 7→ a

• •
a a′e

ê

•
•

(a, g)

(a′, g ·e)oooooooo

are bisimilar coverings (in the sense of ≈)
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III: the combinatorics of finite coverings

in this section:

• graph coverings (review)

• local acyclicity in finite direct products
with Cayley graphs of large girth

• hypergraph coverings (new)

• degrees of acyclicity in hypergraphs

• acyclicity in finite reduced products
with Cayley graphs of groupoids
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graph coverings

w.l.o.g. consider directed loop-free graphs A = (A,E )

definition: ≈-bisimilar coverings

π : Â −→ A a covering of A = (A,E ) by Â = (Â, Ê ):

(forth) π : Â −→ A homomorphism

(back) π lifts edges/paths from a ∈ A to any â ∈ π−1(a)

examples of simple/unbranched coverings:

• two-way tree (forest) unfoldings

• direct products of A with suitable graphs
that are rich enough to simulate all A-transitions

• especially: products with Cayley graphs generated by edge set E
that serve as universal E-simulators
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avoiding short cycles in finite coverings

NB: finite coverings of cyclic A must have cycles

N-acyclic coverings:
no (undirected) cycles of length up to N in covering

Cayley groups/graphs:

• group G = (G , · , 1) with generators e ∈ E

• associated Cayley graph has e-coloured edges from g to g ·e

highly symmetric, regular & homogeneous objects

Cayley groups of large girth (girth > N):

no short generator cycles: e1 · e2 · · · en 6= 1 for n 6 N

products A ⊗ G with such G are N-acyclic coverings

Champéry, Martin Otto 29/1



Cayley graphs of large girth

no short generator cycles: e1 · e2 · · · en 6= 1 for small n

construction (after Biggs)

find G as subgroup G = 〈πe : e ∈ E 〉 ⊆ Sym(V )
generated by permutations πe of
deterministically E -coloured graph (V , (Re))

• e //
πe

44 •

lemma

let H = (V , (Re)) be deterministically E -coloured such that
every colour sequence w = e1 · · · en ∈ E6N labels some path

v0
e1 // v1 . . . vn−1

en // vn 6= v0 in H;

then πe1 · · · πen 6= 1 in G ⊆ Sym(V ) and G has girth > N
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locally acyclic graph coverings

thm (O 04)

every finite graph admits, for every N ∈ N,
simple/unbranched N-acyclic finite coverings
by products with Cayley graphs of large girth

• uniform construction, which preserves all symmetries

• adaptable to many special frame classes → Dawar–O 05/09

construction idea for Cayley graphs extends to
stronger notions of acyclicity in groups and in groupoids
that are useful towards hypergraph constructions
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more than just large girth

much stronger notion of acyclicity in Cayley groups/graphs:
avoid not just short generator cycles but short coset cycles

coset cycles (in Cayley group G with generator set E )

(giG [αi ])i6n
cosets w.r.t. subgroups generated by αi ⊆ E
s.t. the transitions hi := g−1

i · gi+1 ∈ G [αi ] satisfy:

hi 6∈ G [αi ∩ αi−1] · G [αi ∩ αi+1]

G[αi−1]
G[αi ]

G[αi+1]

•

• •
•

hi /o/o/o/o/o
hi−1

77pppppppp

hi+1

))RRRRRRR

G is N-acyclic if it admits no coset cycles of length up to N

and such objects do exist
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N-acyclic Cayley groups

thm (O 10)

for every finite set E and N ∈ N there are Cayley groups with
generators e ∈ E that admit no coset cycles of length up to N

inductively interleave
• amalgamation of chains of Cayley graphs of small subgroups
• group action on deterministically coloured graphs

to avoid coset cycles in increasing no.s of generators
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from graphs to hypergraphs

hypergraphs: structures A = (A,S) with vertex set A,
and set of hyperedges S ⊆ P(A)

idea: clusters and their link structure

example: hypergraph of guarded subsets
of a relational structure A = (A,RA)

H(A) = (A, S[A])

with hyperedges generated by subsets [a] ⊆ A for a ∈ RA, R ∈ R
closed under subsets & singleton sets

relational structure = hypergraph link structure (topology)
+ local relational content

 hypergraph bisimulations/coverings take care of
the combinatorial part of guarded bisimulations/coverings
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hypergraphs

hypergraph terminology

• H = (A, S), S ⊆ P(A) the set of hyperedges

• G(H) = (A,E), associated Gaifman graph
hyperedges  cliques

• G(A) = G(H(A)), the Gaifman graph of A

issues:

• degrees of acyclicity and their algorithmic
and model-theoretic relevance (→ guarded logics, part IV)

• hypergraph coverings: reproduce link structure locally;
smooth out global link structure (e.g., regarding cycles)
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hypergraph coverings

definition: bisimilar coverings

π : Â −→ A a covering of A = (A,S) by Â = (Â, Ŝ):

(forth) π : Â −→ A homomorphism

i.e., π � ŝ : ŝ → π(ŝ) = s ∈ S bijective for all ŝ ∈ Ŝ

(back) π lifts overlaps s ∩ s ′ 6= ∅ from A to any ŝ ∈ Ŝ above s

π
oo

examples of natural hypergraph coverings:

• tree (forest) unfoldings

• reduced products with suitable groups/groupoids (→ below)
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degrees of hypergraph acyclicity

hypergraph acyclicity; 3 equivalent definitions:

• tree-decomposable with hyperedges as bags

associate hyperedges of A with nodes of tree T s.t.
every a ∈ A is represented in connected subgraph of T

• decomposable through elementary deletion steps (Graham)

– delete simply covered vertices
– delete subset-hyperedges

• conformality and chordality (of associated Gaifman graph)

– no bad cliques in Gaifman graph
– no bad cycles in Gaifman graph
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hypergraph terminology

for hypergraph H = (A,S) and associated Gaifman graph

G(H) = (A,E ) =
⋃

s∈S K [s] (a clique for each s ∈ S)

• conformality: every clique in G(H) is
contained in some s ∈ S

no • • •
•

• chordality: every cycle of length > 3
in G(H) has a chord

no
• •

• •

N-acyclicity = N-conformality + N-chordality:

acyclicity of induced sub-configurations of size up to N
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example: the combinatorial challenge

the facets of the 3-simplex/tetrahedron

uniform width 3 hypergraph on 4 vertices

• •

•
•
��
��
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•
•

• chordal but not conformal

• finite coverings cannot be 1-locally acyclic

• admits locally finite coverings without short chordless cycles

• also admits simple finite 5-acyclic covering
in which every induced sub-configuration on
up to 5 vertices is acyclic
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example: the combinatorial challenge

a locally finite covering of the tetrahedron

• •

•
•
��
��

\\\\\\\\\\\\\ 33
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•
•

conformal; shortest chordless cycles have length 12
here by regular triangulation of the hyperbolic plane
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reduced products with Cayley groups/groupoids

plain reduced product A ⊗ G

between hypergraph A = (A,S) and group/groupoid
with generators e ∈ E associated with subsets d(e) ∈ S ↓

A ⊗ G :


quotient (A× G)

/
≈

(a, g) ≈ (a, g ′) if g−1 ·g ′ ∈ G[αa]
for αa = {e ∈ E : a ∈ d(e)}

intuition: e-transitions in G glue layers of A × G
through identification in d(e)

guiding example:

E = {(s, s ′) : s ∩ s ′ 6= ∅}
with d(s, s ′) = s ∩ s ′

d(e)×{g ·e}

d(e)×{g}
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reduced products with Cayley groups/groupoids

unfolded reduced product Aι ⊗ G

of incidence representation of A = (A,S) and group/groupoid
with generators e = (s, s ′) ∈ E associated with
subsets d(e) = s ∩ s ′ for s ∩ s ′ 6= ∅

Aι ⊗ G :


quotient (

⋃̇
S × G)

/
≈

(a, s, g) ≈ (a, s ′, g · e) if g−1 ·g ′ ∈ G[αa]
αa = {e = (s, s ′) ∈ E : a ∈ s ∩ s ′}

intuition: e-transitions in G for e = (s, s′) glue
copies of s and s′ in appropriate layers

guiding example:

E = {(s, s ′) : s ∩ s ′ 6= ∅}
with d(s, s ′) = s ∩ s ′

d(e)×{g ·e}

d(e)×{g}
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new methods: Cayley graphs of groupoids

theorem

• plain reduced products with N-acyclic Cayley groups G
preserve N-acyclicity of A

 local–global construction of finite N-acyclic coverings
from locally finite N-acyclic coverings (O 10)

• unfolded reduced products with N-acyclic Cayley groupoids G
produce N-acyclic coverings of A

 direct construction of finite N-acyclic coverings (new)

. . . and N-acyclic groups/groupoids can be constructed by
very similar group action & amalgamation ideas
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further (new) results

reduced product constructions with N-acyclic groupoids yield

generic solutions for finite closures/realisations of

• abstract specifications of local overlap patterns

• abstract specifications of complete GF-types → part IV

• extension properties for partial isomorphisms
(in the sense of Hrushovski/Herwig/Lascar) → part IV

these highly regular & symmetric constructions
are compatible with automorphisms of the given data

(preserve symmetries of the sepecification)

. . . and why groupoids?
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groupoids vs. groups

groupoids: think of ‘many-sorted’ groups with
partial (sort-sensitive) operation

G =
(
G, (Gst)s,t∈S, · , (1s)s∈S,

−1
)

with operation Gst × Gtu
·−→ Gsu

examples: bijective morphisms in a category; change of co-ordinates

why groupoids are more suitable in hypergraph constructions

• transitions between hyperedges
behave like local changes of co-ordinates
– with non-trivial compositions

• (reduced) products with groupoids can offer
just the right transitions at the right place

. . . unlike the graph/group situation
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IV: finite model theory of guarded logics

in this section:

• guarded logics and guarded bisimulation

• generalised tree model property

• finite model properties

• descriptive complexity

• expressive completeness
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the guarded fragment GF

Andréka–van Benthem–Németi 98

model-theoretic motivation: reflection on ML ⊆ FO
from graph-like structures to general relational format

key idea: relativise quantification to guarded clusters

hypergraph of guarded subsets H(A) = (A,S [A])
generated by [a] for a ∈ RA

guarded quantification:

∃y
(
α(xy) ∧ ϕ(xy)

)
∀y

(
α(xy) → ϕ(xy)

)
guard atom α: free(ϕ) ⊆ var(α)

quantification relativised
to guarded tuples

ML  GF  FO
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GF and guarded bisimulation

guarded bisimulation A, a ∼g A′, a′ and A, a ∼`
g A′, a′

• bisimulation of hypergraphs of guarded subsets
that locally respects relations

• FO pebble game with guarded pebble configurations

two equivalent views (Grädel–Hirsch–O 02)

the guarded Ehrenfeucht–Fräıssé thm

A, a ∼`
g A′, a′ ⇔ A, a ≡`

GF A′, a′ (GF`-equiv./depth `)

the guarded Karp thm

A, a ∼g A′, a′ ⇔ A, a ≡∞
GF A′, a′ (inf. equiv. in GF∞)
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GF and guarded bisimulation/coverings

in striking analogy with modal model theory, based on
invariance/preservation under guarded bisimulation:

• generalised tree model property
tree/forest unfoldings (Grädel 99):
acyclic hypergraph coverings

• finite model properties (and decidability)
via Herwig extensions (Grädel 99)
succinct hypergraph coverings (Bárány–Gottlob–O 10)

• capturing result for ∼g-invariant Ptime
succinct hypergraph coverings (Bárány–Gottlob–O 10)

• classical/fmt expressive completeness results
compactness&saturation/upgrading in coverings
(Andréka–vanBenthem–Németi 98/O 10)
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finite model properties

finite models from Herwig extensions (Grädel 99)

from infinite A∞ |= ϕ obtain finite model as
Herwig-extension B ⊇ A of sufficiently rich finite A ⊆ A∞

Hrushovski–Herwig–Lascar EPPA:

for finite A find finite extension B ⊇ A that extends
every partial isomorphism of A to an automorphism of B

w.l.o.g. RA generates RB

if A represents A∞/∼`
g

then B ∼`
g A∞
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more on EPPA & fmp for GF

Herwig–Lascar EPPA

within classes C defined in terms of
finitely many forbidden homomorphisms:

if A has an infinite EPPA-extension A ⊆ B∞ ∈ C,
then there is a finite EPPA-extension A ⊆ Bfin ∈ C

corollary

fmp for GF in restriction to any class C defined in terms of
finitely many forbidden homomorphisms

first obtained (with feasible size bounds) in Bárány–Gottlob–O 10
using succinct weakly N-acyclic covers
 ‘Rosati-covers’ & ‘finite controllability’ of UCQ/GF
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more on hypergraph constructions & EPPA

new application of reduced products w.r.t. N-acyclic groupoids:

• new combinatorial proof of Herwig–Lascar EPPA theorem
based on finite, symmetric realisations of overlap specifications
between isomorphic copies of A

related task: model (re-)construction from
abstract specification of complete GF-types

• Bárány–Gottlob–O 10: good bounds, unclear symmetries
 capturing bisimulation-invariant Ptime

• new groupoidal constructions: generic & fully symmetric,
no feasible bounds (?)
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expressive completeness: FO/∼g ≡ GF

crux (as in modal case): compactness property

ϕ ∈ FO ∼g-invariant ⇒ ∼`
g-invariance for some `

• classical compactness argument allows upgrading along
≡FO-axis, by use of ω-saturated elementary extensions

A

4

≡GF B

4
Â ∼g B̂
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expressive completeness: FO/∼g ≡ GF

crux (as in modal case): compactness property

ϕ ∈ FO ∼g-invariant ⇒ ∼`
g-invariance for some `

• constructive upgrading along ∼g-axis
uses rich N-acyclic (finite) coverings

A

∼g

∼`(q)
g B

∼g

Â ≡q
FO B̂
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beyond GF: guarded negation

Bárány–ten Cate–Segoufin 11

idea: consider benign nature of GF (and ML) in light of
restricted negation rather than restricted quantification

• start from existential FO (UCQ)
• allow negation just on formulae with

explicitly guarded free variables

GF ⊆ GNF ⊆ FO

appropriate notion of bisimulation combines
(local) homomorphisms with (guarded) b&f

allows to lift many results from GF

largely by non-trivial reductions to GF over
classes with forbidden homomorphisms
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summary: bisimulation & link structure

combinatorics, discrete geometry/topology

analogies and generalisations: modal  guarded

discrete mathematics: graphs  hypergraphs

databases: transition systems  relational databases

logic/model theory: modal  guarded logics

e.g., tree-decompositions and tree unfoldings
& finite coverings with control over cycles

how far do the analogies carry?

Champéry, Martin Otto 56/1



summary: how far do bisimulation analogies carry?

• infinite tree unfoldings as fully acyclic coverings:
a complete analogy, good for most classical purposes

• finite coverings meet different combinatorial challenges
w.r.t. control of cycles and local-global-distinctions

• gain considerable extensions of the analogies between
graphs/hypergraphs & modal/guarded logics

• especially through new hypergraph constructions
via reduced products with suitable groupoids

the end
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