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examples of local views & specifications

• exploded view of a hypergraph

• •
•

• •
•

• coordinate charts for manifolds

ϕ1

���������
ϕ2

��0000000

ρ ,,

• decomposition and synthesis of graphs, hypergraphs, . . .

• implicit specifications of (macro-)bisimulation types p → 3q

• i.e., guarded extension properties ∀x
(
θ(x)→ ∃yθ′(xy)

)
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local global

atlas of local maps
with changes of coordinates

manifolds

distinguished substructures
with overlap specifications

relational structures

hyperedges
with overlap specifications

hypergraphs

partial isomorphisms
with composition in overlaps

automorphism groups

local specifications? global realisations?
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the role of groupoids/inverse semigroups

two ‘equivalent’ algebraic formats for
composition structure of partial bijections:

• with partial composition (as a total operation)
 inverse semigroups

• with exact composition (as a partial operation)
 groupoids

groups capture global symmetries

groupoids capture local/partial symmetries
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the role of hypergraphs

hypergraph: A = (A,S) with sets

{
A of vertices
S ⊆ P(A) of hyperedges

examples:
• combinatorial patterns of structural decompositions
• hypergraphs of guarded subsets of relational structures

intersection graph of A:

I(A) := (S ,E ) where E = {(s, s ′) : s 6= s ′, s ∩ s ′ 6= ∅}
records pairwise overlaps between hyperedges s ∈ S

exploded view of A based on I(A)

the disjoint union of the hyperedges s ∈ S
with partial bijections ρe for e = (s, s ′) ∈ E

 format of local overlap specifications

s×{s}
• •
•

s′×{s′}• •
•e

OO

e

OO

e

OO
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overview

(I) specification & realisation of overlap patterns

(II) reduced products with groupoids (core results)

(III) from local to global symmetries

(IV) further applications
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(I) abstract specification & realisation

incidence pattern I = (S , (E [s, s ′])s,s′∈S)

multi-graph with vertices s ∈ S (sorts)
directed edges e ∈ E [s, s ′] from s to s ′ with e−1 ∈ E [s ′, s]

• fixed bisimulation type for pairwise overlaps

I-graph H =
(
V , (Vs)s∈S , (ρe)e∈E

)
vertex set V partitioned into sorts Vs for s ∈ S
ρe a partial∗ bijection between Vs and Vs′ for e ∈ E [s, s ′]

• an exploded view of the
desired pairwise overlaps

Vs

Vs′•••

•

••

•
e2

MM
e1

//
e1 --

e2

MM

Martin Otto 2015 (I) specification&realisation (II) groupoids (III) local/global symmetries (IV) applications 7/22



realisation:

a realisation of H = (V , (Vs), (ρe)) is a
hypergraph A = (A, S̃) with projection π : S̃ −→ S
and an atlas of bijections πs̃ : s̃ → Vπ(s̃) for s̃ ∈ S̃ s.t.
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realisation:

a realisation of H = (V , (Vs), (ρe)) is a
hypergraph A = (A, S̃) with projection π : S̃ −→ S
and an atlas of bijections πs̃ : s̃ → Vπ(s̃) for s̃ ∈ S̃ s.t.

• all specified overlaps are realised:
for e ∈ E [s, s ′], ρe is realised at every s̃ ∈ π−1(s)
by an actual overlap with some s̃ ′ ∈ π−1(s ′)

• no further, incidental overlaps occur:
all actual overlaps of I(A) are induced by
compositions ρw of partial bijections ρe in H

Vs Vs′

s̃ s̃ ′

πs̃

		����������

πs̃′

��++++++++++

ρe ((
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		����������

πt̃

��++++++++++

ρw ((
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realisations vs. exploded views

the exploded view of hypergraph A = (A,S)
is an I-graph H(A) w.r.t. I(A) = (S ,E )

A is a realisation of H(A) obtained as a quotient H(A)/≈
w.r.t. ≈ induced by identifications encoded in the ρe of H(A)

in general H/≈ may fail to realise H:
≈ may even collapse individual Vs

idea: try local unfolding in products of H with . . . ?
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(II) reduced products with groupoids

I-groupoid: G =
(
G , (Gst)s,t∈S , · , (1s)s∈S

)
with

associative compositions Gst × Gtu → Gsu,
neutral elements 1s ∈ Gss , inverses, . . .
designated generators (ge)e∈E

• I-groupoids come with Cayley graphs that are I-graphs

reduced products as candidate realisations:

 H×G natural direct product (of I-graphs)

 H⊗G := (H×G)/≈ reduced product

Vs×{g}

Vs′×{g·e}

ρe

��������

��������

when is this a realisation of H?
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obstructions to simple realisations

• H may fail to be coherent (as seen before):
a lack of path-independence in H, with conflicting
identifications collapsing individual Vs

•
s

•
t

Vs
Vt

a bad cycle in G?
w1 **

w2

55

ρw1 ++

ρw2

66

can be overcome by relatively simple pre-processing
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obstructions to simple realisations

• H and G may fail to be confluent in the product:
causing incidental overlaps (with potential conflicts
at the relational level)

•
s

•
t

Vs

a bad cycle in G?

Vt

w1 **

w2

55

ρw1 ++

ρw2

66

 need substantial acyclicity conditions on G
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an appropriate notion of acyclicity

• not just short cycles in the Cayley graph of G, but short cycles
of cosets gG[α] generated by subsets α ⊆ E

••
αi−1 αi

αi+1
gi gi+1

hi ((

• in particular, need to avoid certain coset cycles of length 2

h1 = wG
1 = h = wG

2 = h−1
2

Vs × {g}
Vt × {gh}ρw1 ))

ρw2

88
α1

α2

• •g
gh

wG
1

��

wG
2

LL
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any degree of acyclicity in finite groupoids

theorem (O 13)

for every N ∈ N and incidence pattern I = (S ,E ) there are
finite I-groupoids G without coset cycles of length up to N
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any degree of acyclicity in finite groupoids

theorem (O 13)

for every N ∈ N and incidence pattern I = (S ,E ) there are
finite I-groupoids G without coset cycles of length up to N

construction by inductive interleaving:
• groupoidal action on I-graphs
• use of amalgamation chains of I[α]-graphs (local unfoldings)

to eliminate short cycles

••

αi−1 αi αi+1

hi //hi−1
// hi+1

//
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any degree of acyclicity in finite groupoids

theorem (O 13)

for every N ∈ N and incidence pattern I = (S ,E ) there are
finite I-groupoids G without coset cycles of length up to N

construction by inductive interleaving:
• groupoidal action on I-graphs
• use of amalgamation chains of I[α]-graphs (local unfoldings)

to eliminate short cycles

••

αi−1 αi αi+1

hi //hi−1
// hi+1

//

cf. constructions of acyclic Cayley graphs (Alon, Biggs)
here lifted to more intricate adaptation for coset cycles
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any degree of acyclicity in symmetric realisations

theorem (O 13)

for any overlap specification H (an I-graph), obtain realisations
H⊗G (as reduced products with finite I-groupoids G) that

• have any desired degree of (local/size-bdd) acyclicity

• admit transitive automorphisms in the second factor
• respect all symmetries of the specification H

symmetric realisations
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any degree of acyclicity in symmetric realisations

theorem (O 13)

for any overlap specification H (an I-graph), obtain realisations
H⊗G (as reduced products with finite I-groupoids G) that

• have any desired degree of (local/size-bdd) acyclicity

• admit transitive automorphisms in the second factor
• respect all symmetries of the specification H

symmetric realisations

corollary

every finite hypergraph admits, for N ∈ N, finite coverings that

• are N-acyclic in the sense that every induced sub-hypergraph
on up to N vertices is acyclic (tree decomposable)

• possess a fibre-transitive automorphism group
that lifts all symmetries of the given hypergraph
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(III) from local to global symmetries

extension property for partial automorphisms (EPPA):
how to extend local symmetries to global symmetries

theorem (Herwig 98, extending Hrushovski 92 for graphs)

every finite relational structure A admits a finite extension B ⊇ A
s.t. every partial isomorphism in A lifts to a full automorphism of B

A
B

p **

f
''
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(III) from local to global symmetries

extension property for partial automorphisms (EPPA):
how to extend local symmetries to global symmetries

theorem (Herwig 98, extending Hrushovski 92 for graphs)

every finite relational structure A admits a finite extension B ⊇ A
s.t. every partial isomorphism in A lifts to a full automorphism of B

theorem (Herwig–Lascar 00)

same, as a finite model property over any class C
defined by finitely many forbidden homomorphisms

if A ∈ Cfin has any EPPA extension in C
then it also has a finite one in Cfin
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a “naive” idea towards EPPA for single p

for a single partial isomorphism p of A = (A,R) find

a free infinite EPPA extension as a reduced product (A× Z)/≈
where ≈ is induced by the partial bijections

ρi ,i−1
p : A× {i} −→ A× {i − 1}

(a, i) 7−→ (p(a), i − 1)

p in A ' A× {0} extends to the automorphism
induced by the shift ∗ : (a, i) 7−→ (a, i + 1)

A×{0}

A×{1}ρp

p ,,

p ,,
∗vvvv

;;vvvv ������

������

���

���
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���

���

and from that a finite EPPA extension as a quotient
(A× Zn)/≈ for any n > 3 such that pn = ids
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and from that a finite EPPA extension as a quotient
(A× Zn)/≈ for any n > 3 such that pn = ids

groupoidal realisations can do the trick for several p (!)
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new proof of full Herwig–Lascar EPPA

through groupoidal realisations of an overlap specification
for A = (A,R) and P ⊆ Part(A,A)

(i) the incidence pattern I(A, P):
multigraph on singleton vertex
with a loop ep ∈ E for each p ∈ P

• epee

(ii) the overlap specification H(A, P):
I(A,P)-graph H(A,P) = (A, (ρp)p∈P)
needs to be made coherent!

A
ρp

88

(iii) symmetric realisations of H(A, P) are EPPA extensions !

(iv) N-acyclic EPPA extensions are N-free:
admit N-local homomorphisms into every (finite or infinite)
EPPA extension due to their N-local tree-decomposability
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(IV) applications in algorithmic model theory

• characterisation theorems (fmt)
for guarded logics and relatives

using finite coverings of controlled acyclicity

• finite model properties & finite controllability
for guarded logics and constraints

using finite coverings of controlled acyclicity
and/or Herwig–Lascar extension properties

−→ O (LICS10&JACM13)
O (APAL13)
Bárány–Gottlob–O (LICS10&LMCS14)
Bárány–ten Cate–O (VLDB12)
O (LICS13&arXiv14/15)
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characterisation theorems (fmt)

theorem (O 10)

GF ≡ FO/∼g and GF ≡fin FO/∼g

idea: show that ∼g-invariance of ϕ ∈ FOm implies ∼`g-invariance
for some ` = `(m) such that over suitable locally sufficiently
acyclic (finite) structures, ∼`g refines ≡m

FO

A

∼g

∼`g B

∼g

A∗ ≡m
FO B∗
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finite model properties & finite controllability

theorem (Bárány–Gottlob–O 10/Rosati06)

finite controllability for union of conjunctive queries Q
w.r.t. constraint α ∈ GF:

α |= Q ⇔ α |=fin Q (†)

idea 1: detour via “treeification” Q∗ ∈ GF of Q for which

Q∗ |= Q and Q |=acyc Q∗;

use locally sufficiently acyclic (finite) unfoldings to show that also

α |=fin Q ⇒ α |=fin Q∗.

idea 2: view (†) as a fmp for α ∈ GF within C = Mod(¬Q),
which follows from Herwig–Lascar EPPA (!)
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summary

• a generic construction of
highly acyclic finite groupoids

• a universal & generic route to the synthesis of
finite realisations (and coverings) in reduced products

• symmetry and acyclicity of realisations supports
extensions of local to global symmetry

• further applications in finite model theory

−→ Finite Groupoids, Finite Coverings
& Symmetries in Finite Structures (arXiv 2015 (v4))
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