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Finite
Model Constructions

for Guarded Logics

FMT in Les Houches 2012 Martin Otto

• guardedness and guarded logics
• hypergraph/guarded bisimulation
• finite model properties
• expressive completeness
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the hypergraph of guarded subsets

of a relational structure A = (A, (RA)R∈τ ):

H(A) = (A, S[A])

with hyperedges generated by subsets [a] ⊆ A for a ∈ RA, R ∈ τ
closed under subsets & singleton sets

hypergraph terminology:

• H = (A, S), S ⊆ P(A) the set of hyperedges

• G(H) = (A,E), associated graph: hyperedges  cliques

• G(A) = G(H(A)), the Gaifman graph of A

width of H(A) bounded by width of τ
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guarded sets & link structure

relational content vs. hypergraph link structure (topology)
guarded links: local overlaps,

hyperedge incidence
local & global aspects

tuples a ∈ R

• •

• •

different mixes for different purposes, but

• hypergraph ‘topology’ matters

• tree-likeness is good, locally or globally, if available

e.g., in relation to databases or CSP
active domain, conjunctive queries, tgd, . . .
On the desirability of acyclic database schemas

Beeri–Fagin–Maier–Yannakakis 1983
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attention to link structure (topology)

discrete mathematics: analogies between hypergraphs and graphs

logic, model theory: analogies between guarded and modal logics

databases: analogies between databases and transition systems

e.g., tree-decompositions play on such analogies

key question: how far do these analogies carry?

• global acyclicity not usually available in finite unfoldings

• combinatorics and model theory of hypergraphs
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hypergraph acyclicity = tree decomposability

equivalent characterisations:

• H = (A, S) admits reduction H  ∅

through deletion of

{
a if |{s : a ∈ s}| 6 1
s if s  s ′ ∈ S

• H has tree decomposition δ : T → S with bag set S

• H is conformal & chordal (later)

NB: hypergraph tree-decompositions of H(A)
induce special tree-decompositions of A
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guarded logics

guarded subsets/tuples as basic observables

access to links and relational content in various protocols

with different levels of expressive power, e.g.

FO existential & tree-like  acyclic conjunctive queries

general FO existential  conjunctive queries CQ

FO with alternation, link-based  guarded fragment GF

fixpoints  guarded fixpoint logic µGF

second-order  guarded second-order GSO
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guiding idea (A): relational analogues of modal logics

the guarded fragment GF:

atomic formulae of FO, booleans, and

guarded quantification

∃y
(
α(xy) ∧ ϕ(xy)

)
∀y

(
α(xy) → ϕ(xy)

)
with guard atom α s.t.

free(ϕ) ⊆ free(α) = var(α)

example: ∀x(Rx → ∃y(W xy ∧ ¬Qy)) ∼ 2∀(r → 3W¬q)

ML  GF  FO
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guiding idea (B): guard against negation

Barany, ten Cate, Segoufin 2011

the guarded negation fragment GNF:

existential positive FO augmented by

guarded negation ∃y
(
α(xy) ∧ ¬ϕ(x)

)
=: gdd(x) ∧ ¬ϕ(x)

GF ⊆g GNF (for guarded free variables!):

gdd(x) ∧ ∀y
(
α(xy) → ϕ(xy)

)
≡ gdd(x) ∧ ¬∃y

(
α(xy) ∧ ¬ϕ(x)

)
• GF ≡ acycGNF (with acyclic templates)

• GNF ⊇ UNF generalises unary negation (ten Cate, Segoufin)



FMT 2012, Martin Otto guardedness bisimulation finite models: fmp finite models: expressive completeness 9/32

alternative picture (C): variation along three axes

graphs
transition systems

ML
UNF

−→ hypergraphs
general relational structures

GF
GNF

existential positive

∃posFO

−→ ∃/∀ alternation (guarded or full)
based on guarded or full negation

GNF or FO

acyclic templates

acycCQ
GF

−→ general templates

CQ
GNF
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where GF and GNF fit

acyclic

graph-like
FO FO

ML

UNF GNF

GF

∃ML

CQ CQ

acycCQ

full alternation/negation

guarded alt./neg.

no alt./neg.
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bisimulation – the quintessential back&forth

• modal (two-way, global) bisimulation / graph bisimulation

• guarded bisimulation / hypergraph bisimulation

• guarded negation bisimulation / homomorphism bisimulation
protocol mixing local homomorphisms with bisimulation

graph and hypergraph bisimulation:

local matches between local states (nodes or hyperedges)

maintained by player II against

challenge/response w.r.t. links (edges or overlaps)

homomorphism bisimulation:

challenge/response w.r.t. (size-bounded) homomorphisms
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graph and hypergraph bisimulation ∼

challenge/response — in graph and hypergraph bisimulation

•◦

• •

•◦a

b

a′

b′

R
��
�

��
�

R

$$
$

$$
$

∼

∼

s s′

t t′

• •, respecting R • •, respecting partial overlap

with relational content:
replace local bijections by local isomorphisms
to obtain modal and guarded bisimulation

mutatis mutandis: clique guarded bisimulation for CGF
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homomorphism bisimulation ∼hom

local matches: bijections s ↔ s′ between guarded subsets

challenge/response:

• player I proposes subset p ⊆ A (or p′ ⊆ A′)
• player II chooses homomorphism h : p → A′

compatible with s ↔ s ′

h needs to be bijective on guarded subsets:

• player I chooses guarded t ⊆ dom(h)
new t ↔ t ′: the restriction of h to t

k-size-bounded variants (|h| 6 k): (A, S) ∼hom[k] (A′, S′)

with relational content: A ∼gn[k] A′

guarded negation bisimulation
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Ehrenfeucht–Fräıssé and classical characterisations

bismulation invariance: ∼g preserves GF
∼gn[k] preserves GNF[k]

Ehrenfeucht–Fräıssé correspondences, as expected

∼m
g — ≡m

GF

∼m
gn[k]

— ≡m
GNF[k]

for relational structures with guarded tuples

characterisations of expressiveness, classically as expected

FO/∼g ≡g GF

FO/∼gn[k] ≡g GNF[k]

over relational structures with guarded tuples
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bisimulation invariance

generalised tree model properties (Grädel 1999 for GF)

tree-like unfoldings yield special (infinite) models
of bounded treewidth for guarded logics like GF,GNF[k]

of importance for:

−→ automata and model-checking games on trees

−→ via interpretations, reductions to MSO on trees

−→ characterisations of fixpoint extensions (classically)
via reduction to MSO/∼ ≡ Lµ (Janin–Walukiewicz 1996)
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bisimilar covers – of graphs, hypergraphs & structures

graph and hypergraph covers:

π : Ĝ
∼−→ G π : Ĥ

∼−→ H

graph homomorphism
inducing graph bisimulation
of local matches (â, π(â))

hypergraph homomorphism
inducing hypergraph bisimulation
of local bijections ŝ ↔ π(ŝ)

homomorphisms with back-property w.r.t. link pattern

modal and guarded covers:

the same, with relational content

guarded covers are relational homomorphisms with back-property
with induced hypergraph and guarded bisimulations
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tree unfoldings as acyclic covers

observation: natural tree unfoldings w.r.t. link structure
of graphs, hypergraphs & structures
yield acyclic, albeit infinite, acyclic covers

fact: tree unfoldings of cyclic structures are infinite,
all acyclic covers of cyclic structures are infinite

how much acyclicity is possible in finite covers?

combinatorial challenge
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(I) finite model constructions & fmp for guarded logics

• emphasis on hypergraph covers in model construction

• relational Skolemisation + suitable covers = fmp

examples:

(1) conformal covers
(2) covers with forbidden homomorphisms
(3) covers with forbidden cyclic configurations

reap fmp for CGF and GNF through Skolemisation
and the elimination of incidental links

first: finite hypergraphs and degrees of acyclicity
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acyclicity = conformality + chordality

alternative characterisation of hypergraph acylicity:

conformality:

every clique in G(H) guarded

no • • •
•

chordality:

every cycle of length > 4 in G(H) has a chord
no

• •

• •

conformality can be achieved in
finite covers, chordality cannot !
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levels of acyclicity

conformality can be achieved in
finite covers, chordality cannot !
even 1-local chordality may not
be available in finite covers

• •
•
•
��
�

\\\\\\\\\ 33
33

33
3

BB
BB

BBvvvvvv

�������• •
•
•

locally finite cover of
tetrahedron on •, •, •, •

relaxations: N-chordality:
chordality for short cycles (of length 6 N)

N-acyclicity:
acyclicity for small substructures (of size 6 N)
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conformal covers and fmp for CGF

conformal covers (Hodkinson–O 2003)

every finite hypergraph H = (A, S)
admits a finite conformal cover π : (Â, Ŝ)

∼−→ (A, S)

analogously, for finite relational structures A:

finite conformal guarded covers π : Â
∼g−→ A

application: reduction of FINSAT(CGF) to FINSAT(GF)

• expand by guards for required cliques
force positive CGF-assertions

• eliminate incidental cliques in cover
preserve negative CGF-assertions
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covers and forbidden homomorphisms

weakly N-acyclic covers (Barany–Gottlob–O 2010)

every finite hypergraph H = (A, S)
admits finite weakly N-acyclic covers π : (Â, Ŝ)

∼−→ (A, S)

similarly for finite relational structures

weak N-acyclicity:
short cycles (length 6 N) in cover may not be chordal
but acquire chords in projection s.t.

small homomorphic images in cover are acyclic in projection

application: small finite models of ϕ ∈ GF
avoiding given homomorphisms/UCQ
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covers and forbidden cyclic configurations

N-acyclic covers (O 2010)

every finite hypergraph H = (A, S)
admits finite N-acyclic covers π : (Â, Ŝ)

∼−→ (A, S)

similarly for finite relational structures

N-acyclicity:
all small induced sub-configurations are acyclic
→ interesting structure theory

based on local convex hulls

application: finite models of ϕ ∈ GF
avoiding given set of cyclic substructures
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fmp for GF

• Grädel 1999, based on Herwig’s EPPA
Hrushovski–Herwig–Lascar . . .

extension of partial isomorphisms to automorphisms
after relational Skolemisation ( guarded ∀∃)
from finite part of regular infinite model

• Barany–Gottlob–O 2010, based on weakly N-acyclic covers
from pre-model: finite quotient of regular (infinite) model
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summary of applications (so far)

positive link requirements covered by guarded ∀∃ conditions
— after relational Skolemisation with extra guards

finite models for CGF

conformal covers break up false cliques

finite models for GNF and for GF avoiding UCQ

weakly N-acyclic covers break up false positives for CQ

small finite models and Ptime canonisation for GF

weakly N-acyclic covers break up relational inconsistencies

finite models for GF avoiding given cyclic configurations

N-acyclic covers break up false cyclic positives for CQ
without ruling out acyclic positives !



FMT 2012, Martin Otto guardedness bisimulation finite models: fmp finite models: expressive completeness 26/32

(II) finite covers & expressive completeness/FO

expressive completeness thms: FO/∼L ≡ L (fmt)

where ∼L is full L-bisimulation equivalence
partial L-isomorphy

∼m
L corresponds to Lm-equivalence

L-Ehrenfeucht–Fräıssé

crux: a compactness property

if, for ϕ ∈ FO there is m ∈ N such that

ϕ ∼L-invariant ⇒ ϕ ∼m
L -invariant,

then FO/∼L ≡ L follows

focus here on GF and GNF
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compactness property for expressive completeness

to show ϕ ∼L-invariant ⇒ ϕ ∼m
L -invariant for ϕ ∈ FOq

upgrade ∼m
L to ≡q in ∼L-equivalent finite companions:

A B

A∗ B∗

∼m
L

∼L ∼L

≡q

A 7→ A∗ / B 7→ B∗

special constructions
to break obstacles to ≡q

while preserving ∼L-type

obtacles: small multiplicities, small cliques, and short cycles
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expressive completeness for GF

thm: FO/∼g ≡g GF (fmt)

• upgrading uses N-acyclic covers and finitary saturation
both based on highly acyclic Cayley groups

• over these richly branching covers: E–F game analysis
based on structure theory of N-acyclic hypergraphs

two core ingredients:

Cayley groups that have no short cycles even
w.r.t. non-trivial transitions between cosets

size-bounded local convex hulls of small configurations
so that GF determines isomorphism types, due to acyclicity
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expressive completeness for GNF

thm: FO/∼gn[k] ≡g GNF[k] (fmt)

new obtacle for upgrading: non-isomorphic realisations of CQ

◦ ◦
◦

•
◦
◦

•
????

����

????
����• local saturation w.r.t. distinct

isomorphism types of small CQ

• relational Skolemisation to force
positive CQ requirements

• N-acyclic covers to break false positives for CQ

upgrading through ∼m
gn[k]
 ∼m

g  ≡q

intricate reduction to GF:
currently with detour through infinite tree-like models
+ fmp for GNF from Barany–ten Cate–Segoufin 2011
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Skolemisation and upgrading for GNF

obeservation (for GF)

• finitely saturated, N-acyclic covers
can serve as finite analogues
of infinite ω-tree-unfoldings

finite cover tree unfolding

A

Aω∗Â

∞
∼g

NNNNNN

NNNNN∼g
��

��

≡q

• use ω-unfoldings that branch on
isomorphism types of small CQ ∞

• fmp for GNF (with Skolemisation for small CQ)
generates finite pre-model, then N-acyclic covers . . .
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expressive completeness for GNF

a glimpse of the complications:

core: upgrading in finite covers that behave like trees

A B
Aω∗,R Bω∗,R

fmp fmp

∞ ∞

Â0,R B̂0,R

Â B̂

∼m
gn[k]

∼gn[k] ∼gn[k]

≡q

eeeeeeeeeee
YYYYYYYYYYYY

�� ��
covereee

eeee
coverYYY

YYYYY

∼m
g

∼m
g
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summary & outlook

model-theoretic and algorithmic well-behavedness
of guarded logics

nice model properties

expressive completeness
through upgrading

approximations/counterparts
of tree-like unfoldings

finite hypergraph constructions
especially finite bisimilar covers

interesting problems, regarding
new methods, constructions, applications

−→ work with Vince and Balder (GN Datalog), . . .
−→ new dedicated project (DFG)

discrete mathematics – combinatorics – logic – and . . .


