Amalgamation and Local-To-Global in the Finite with Suitable Groupoids

Martin Otto TU Darmstadt Mülheim 2016

Global Finite Realisations of Local Specifications

a generic amalgamation construction

given families

 $\begin{array}{c} (\mathcal{A}_s)_{s \in S} & \text{of relational structures} \\ (\rho_e \colon \mathcal{A}_s \xrightarrow{\text{part}} \mathcal{A}_{s'})_{e \in E[s,s']} & \text{of partial isomorphisms} \end{array} \right\} \ (*)$

- use the free monoidal structure I* of walks in the multigraph I = (S, E), with generators $e \in E := \bigcup_{s,s' \in S} E[s, s']$
- construct a natural free amalgam of disjoint copies $(\mathcal{A}_s, w) \simeq \mathcal{A}_s$ tagged by walks w terminating in swith identifications between (\mathcal{A}_s, w) and $(\mathcal{A}_{s'}, w \cdot e)$ according to ρ_e

obtain structure $((\mathcal{A}_s) \otimes \mathbf{I}^*) / \thickapprox$

"realising" the overlap pattern specified in (*), "free" in a universal algebraic sense & typically infinite

finite realisations? to be based on ...?

 \rightsquigarrow the infinite structure of I^{*} (walks in the multigraph (S, E)): a multi-sorted monoid w.r.t. partial concatenation of walks

NB: can only concatenate (walks to s) × (walks from s), for $s \in S$ partiality

analogies:

- I* vs. free monoid E^* generated by ${\it E}$
- partial vs. global operations (and symmetries)
- groupoids (or inverse semigroups) vs. groups

realisation of $((\mathcal{A}_s), (\rho_e))$ in general:

a relational structure \mathcal{A} with an "atlas" given by superimposed hypergraph structure $(\mathcal{A}, \tilde{\mathcal{S}}), \ \tilde{\mathcal{S}} \subseteq \mathcal{P}(\mathcal{A}),$ with "charts" $\pi_{\tilde{s}} : \mathcal{A} \upharpoonright \tilde{s} \simeq \mathcal{A}_{\pi(\tilde{s})}$ s.t.

• locally, all ρ_e -overlaps are realised:

each $\pi_{\tilde{s}}^{-1}(\mathcal{A}_s)$ overlaps with some $\pi_{\tilde{s}'}^{-1}(\mathcal{A}_{s'})$ according to ρ_e

• globally, no incidental overlaps occur:

if $\tilde{s} \cap \tilde{t} \neq \emptyset$, then this is due to $\rho_w = \rho_{e_m} \circ \cdots \circ \rho_{e_1}$ for some *single* walk $w = e_1 \cdots e_m$ from $\pi(\tilde{s})$ to $\pi(\tilde{t})$

NB: the second, "no-nonsense" condition avoids potential relational inconsistencies for amalgams

(trivial yet instructive) example

every hypergraph (A, S) realises its **exploded view** based on disjoint \emptyset -structures $((s \times \{s\})_{s \in S} \text{ and } \rho_e \text{ for } e = (s, s')$ representing non-empty intersections $s \cap s'$ in (A, S)

this realisation is obtained from disjoint sum of tagged copies of the \mathcal{A}_s as quotient w.r.t. \approx induced by the ρ_e

- → cannot work in general, but compare generic (infinite) free construction $((A_s) \otimes I^*) / \approx$
- → use product with suitable groupoids \mathbb{G} for "local unfolding" to overcome obstructions in the finite, and more ... $((\mathcal{A}_s) \otimes \mathbb{G}) / \approx$

groupoids (algebraic format)

to deal with $((\mathcal{A}_s), (\rho_e))$ with "incidence pattern" I = (S, E), use:

I-groupoids
$$\mathbb{G} = ((\mathsf{G}_{st}), \cdot, (\mathbf{1}_s), -\mathbf{1})$$
:

generated by the $e \in E$, with partial composition $G_{st} \times G_{tu} \longrightarrow G_{su}$, inverses, and neutrals $1_s \in G_{ss}$

 \rightsquigarrow suitable for natural reduced products $\left((\mathcal{A}_{\mathfrak{s}})\otimes \mathbb{G}\right)$ $/{\approx}$

NB: can also view groupoid as category with bijective morphisms

obstructions

- simple (& overcome by pre-processing): conflicting ρ_{e1}, ρ_{e2} for e1, e2 ∈ E[s, s']
- substantial (& pointing to non-trvial acyclicity requirements): non-confluent ρ_{w1}, ρ_{w2} for w1, w2 ∈ I*[s, t] violating "no-nonsense" condition

suitable groupoids: coset acyclicity

theorem 1

for every $N \in \mathbb{N}$ and incidence pattern I = (S, E) there are finite I-groupoids \mathbb{G} without *coset cycles* of length up to N

3 steps in a coset cycle:

idea: in an inductive construction generate $\mathbb G$ from (semi)group action on amalgamation chains that unfold short cosets cycles

cf. constructions of acyclic Cayley graphs (Alon, Biggs) here lifted to more intricate adaptation for coset cycles \rightarrow O_10 (JACM 13) for groups

any degree of acyclicity in symmetric realisations

theorem 2

for any overlap specification $((\mathcal{A}_s), (\rho_e))$, obtain realisations of the form $((\mathcal{A}_s) \otimes \mathbb{G}) / \approx$ for suitable finite groupoids \mathbb{G} , that

- have any desired degree of (local/size-bdd) acyclicity
- admit transitive automorphisms in the second factor
- respect all symmetries of the specification $((\mathcal{A}_s), (\rho_e))$

symmetric realisations

EPPA: from local to global symmetries

extension property for partial automorphisms (EPPA): how to extend local symmetries to global symmetries

theorem (Herwig 98, extending Hrushovski 92 for graphs)

every finite relational structure \mathcal{A} admits a finite extension $\mathcal{B} \supseteq \mathcal{A}$ s.t. every partial isomorphism in \mathcal{A} lifts to a full automorphism of \mathcal{B}

theorem (Herwig–Lascar 00)

same, as a *finite model property* over any class C

new proof of Herwig–Lascar EPPA

through groupoidal realisations of an overlap specification for $\mathcal{A} = (\mathcal{A}, \mathcal{R})$ and $\mathcal{P} \subseteq \operatorname{Part}(\mathcal{A}, \mathcal{A})$

(i) **the incidence pattern** I(A, P): multigraph on singleton vertex with a loop $e_p \in E$ for each $p \in P$

(ii) the overlap specification $((\mathcal{A}), (\rho_p))$: after pre-processing, $((\mathcal{A}_s), (\rho_e))$ turns non-trivially groupoidal (!)

- (iii) symmetric realisations of $((\mathcal{A}), (\rho_p))$ are EPPA extensions
- (iv) N-acyclic EPPA extensions are N-free:
 admit N-local homomorphisms into every (finite or infinite)
 EPPA extension due to their N-local tree-decomposability

the EPPA extensions we get for (\mathcal{A}, P) :

 $\mathcal{B}\supseteq \mathcal{A}$

with superimposed hypergraph structure (B, S), $S \subseteq \mathcal{P}(B)$, and projections $(\pi_s)_{s \in S}$ such that:

• $\mathcal{B} = igcup_{s \in S} \mathcal{A}_s$ where $\mathcal{A}_s := \mathcal{B} {\upharpoonright} s$

•
$$(\pi_s: \mathcal{A}_s \simeq \mathcal{A})_{s \in S}$$
 an "atlas" for \mathcal{B}

 overlaps between "charts" A_s and A_t induced by compositions w ∈ P*

• up to any desired threshold N, each $\bigcup_{i=1}^{N} A_{s_i} \subseteq B$ is a free amalgam (and acyclic)

further applications

applying theorem 2 (finite realisations of any degree of acyclicity) to overlap specification of a given hypergraph (its exploded view):

corollary

every finite hypergraph admits, for $\mathsf{N}\in\mathbb{N},$ finite coverings that

- are N-acyclic in the sense that every induced sub-hypergraph on up to N vertices is acyclic (tree decomposable)
- possess a fibre-transitive automorphism group that lifts all symmetries of the given hypergraph

with further applications in guarded logics:

• expressive completeness results classical & in finite model theory

• finite model properties also linked to Herwig–Lascar EPPA

some related references

Bárány–Gottlob–O_(LMCS 2014, arXiv:1309.5822): Querying the guarded fragment

Bárány-ten Cate-O_(VLDB 2012, arXiv:1203.0077): Queries with guarded negation

Grädel-O_(2014): The freedoms of (guarded) bisimulation

Hodkinson–O_(BSL 2003): Finite conformal hypergraph covers and Gaifman cliques in finite structures

Herwig–Lascar(Transactions of the AMS 2000): Extending partial isomorphisms and the profinite topology on free groups

 $\mathbf{O}_{-}(\text{Journal of the ACM 2012}):$ Highly acyclic groups, hypergraph covers and the guarded fragment

 $\mathbf{O}_(arXiv:1404.4599,\ 2015):$ Finite groupoids, finite coverings and symmetries in finite structures