Methods for Deciding Boundedness of Least Fixed Points

Oxford 2009

Martin Otto Technische Universität Darmstadt www.mathematik.tu-darmstadt.de/~otto

compare:

b child of a,	Rab	versus	b descendant of a,	R*ab
diameter	≼ 17		diameter $<\infty$, conr	nectivity
depth	< 17		well-foundedness	

static dynamic

compare:

b child of a, Rab	versus	b descendant of a, R*ab
diameter $\leqslant 17$		diameter $<\infty$, connectivity
depth < 17		well-foundedness
static		dynamic
FO		not FO
		but expressible using
		least fixed points
		of monotone, monadic
		relational FO recursion

	$\int FO \longrightarrow LFF$	
fixed point extensions	$\left\{ \begin{array}{c} ML \longrightarrow L_{\boldsymbol{\mu}} \end{array} \right.$	
	$igl(GF \longrightarrow \mu G$	F

massive boost in expressiveness

 $\label{eq:LFP} \mbox{LFP}: \mbox{all Ptime properties of ordered finite structures (Immerman/Vardi)} \\ \mbox{L}_{\mu}: \mbox{all bisimulation invariant MSO properties of finite transition systems} \\ (Janin–Walukiewicz) \mbox{alukiewicz} \mbox{}$

(monadic) least fixed point induction on $\varphi(X, x)$, positive in X

 $\varphi(X, x)$ induces *monotone* operation on subsets

$$\begin{array}{rcl} \varphi \colon \mathcal{P}(A) & \longrightarrow & \mathcal{P}(A) \\ P & \longmapsto & \varphi[\mathfrak{A}, P] := \{ a \in A \colon \mathfrak{A} \models \varphi[P, a] \} \end{array}$$

(monadic) least fixed point induction on $\varphi(X, x)$, positive in X

 $\varphi(X, x)$ induces *monotone* operation on subsets

$$\begin{array}{rcl} \varphi \colon \mathcal{P}(A) & \longrightarrow & \mathcal{P}(A) \\ P & \longmapsto & \varphi[\mathfrak{A}, P] := \{ a \in A \colon \mathfrak{A} \models \varphi[P, a] \} \end{array}$$

with unique least fixed point

$$(\mu_{\mathsf{X}}\varphi)[\mathfrak{A}] = \bigcup_{\alpha} \mathsf{X}^{\alpha}[\mathfrak{A}]$$

generated from inductive stages

$$\begin{aligned} \mathsf{X}^{0}[\mathfrak{A}] &= \emptyset \\ \mathsf{X}^{\alpha+1}[\mathfrak{A}] &= \varphi[\mathfrak{A},\mathsf{X}^{\alpha}[\mathfrak{A}]] \\ \mathsf{X}^{\lambda}[\mathfrak{A}] &= \bigcup_{\alpha < \lambda} \mathsf{X}^{\alpha}[\mathfrak{A}] \end{aligned}$$

inductive stages:

$$\begin{aligned} \mathsf{X}^{0}[\mathfrak{A}] &= \emptyset \\ \mathsf{X}^{\alpha+1}[\mathfrak{A}] &= \varphi[\mathfrak{A}, \mathsf{X}^{\alpha}[\mathfrak{A}]] \\ \mathsf{X}^{\lambda}[\mathfrak{A}] &= \bigcup_{\alpha < \lambda} \mathsf{X}^{\alpha}[\mathfrak{A}] \\ (\mu_{\mathsf{X}}\varphi)[\mathfrak{A}] &= \bigcup_{\alpha} \mathsf{X}^{\alpha}[\mathfrak{A}] \end{aligned}$$

inductive stages:
$$\begin{aligned} \mathbf{X}^{0}[\mathfrak{A}] &= \emptyset \\ \mathbf{X}^{\alpha+1}[\mathfrak{A}] &= \varphi[\mathfrak{A}, \mathbf{X}^{\alpha}[\mathfrak{A}]] \\ \mathbf{X}^{\lambda}[\mathfrak{A}] &= \bigcup_{\alpha < \lambda} \mathbf{X}^{\alpha}[\mathfrak{A}] \\ (\mu_{\mathbf{X}}\varphi)[\mathfrak{A}] &= \bigcup_{\alpha} \mathbf{X}^{\alpha}[\mathfrak{A}] \end{aligned}$$

stage/rank of $a \in \mu_X \varphi[\mathfrak{A}]$: $\min_{\alpha} (a \in X^{\alpha}[\mathfrak{A}])$

inductive stages:
$$\begin{aligned} \mathbf{X}^{0}[\mathfrak{A}] &= \emptyset \\ \mathbf{X}^{\alpha+1}[\mathfrak{A}] &= \varphi[\mathfrak{A}, \mathbf{X}^{\alpha}[\mathfrak{A}]] \\ \mathbf{X}^{\lambda}[\mathfrak{A}] &= \bigcup_{\alpha < \lambda} \mathbf{X}^{\alpha}[\mathfrak{A}] \\ (\mu_{\mathbf{X}}\varphi)[\mathfrak{A}] &= \bigcup_{\alpha} \mathbf{X}^{\alpha}[\mathfrak{A}] \end{aligned}$$

stage/rank of $a \in \mu_X \varphi[\mathfrak{A}]$: $\min_{\alpha} (a \in X^{\alpha}[\mathfrak{A}])$

depth of φ -recursion on \mathfrak{A} : closure ordinal $\gamma[\varphi, \mathfrak{A}] = \min_{\alpha} (\mathsf{X}^{\alpha+1}[\mathfrak{A}] = \mathsf{X}^{\alpha}[\mathfrak{A}])$

unbounded in general across all structures

 $\varphi(X, x)$ bounded: $\exists n \in \mathbb{N} \text{ s.t. } \gamma[\varphi, \mathfrak{A}] < n \text{ for all } \mathfrak{A}$ $\varphi(X, x)$ bounded on class C, analogous

boundedness a highly non-trivial semantic property of formula specifying a recursive process

 $\varphi(X, x)$ bounded: $\exists n \in \mathbb{N} \text{ s.t. } \gamma[\varphi, \mathfrak{A}] < n \text{ for all } \mathfrak{A}$ $\varphi(X, x)$ bounded on class C, analogous

boundedness a highly non-trivial semantic property of formula specifying a recursive process

boundedness as a decision problem

for a class \mathcal{F} of X-positive formulae (and class \mathcal{C} of structures):

 $\begin{array}{l} \mathsf{BDD}(\mathcal{F}) \; / \; \mathsf{BDD}(\mathcal{F}, \mathcal{C}) \\ \\ \hline \\ \mathsf{given} \; \varphi(\mathsf{X}, \mathsf{x}) \in \mathcal{F} \\ \\ \mathsf{decide} \; \mathsf{if} \; \varphi \; \mathsf{is \; \mathsf{bounded} \; / \; \mathsf{bounded \; over \; } \mathcal{C} \end{array}$

very few decidable cases, even for monadic recursion

for $\ensuremath{\mathcal{F}}$ with natural closure properties:

 φ bounded ⇒ μ_Xφ uniformly *F*-definable: finite stages definable by substitution-iterates φⁿ(x) ∈ *F*

for $\ensuremath{\mathcal{F}}$ with natural closure properties:

- φ bounded ⇒ μ_Xφ uniformly *F*-definable: finite stages definable by substitution-iterates φⁿ(x) ∈ *F*
- SAT reducible to BDD: guard unbounded $\varphi(X, x)$ by ψ (relativised for non-interference)

for $\ensuremath{\mathcal{F}}$ with natural closure properties:

- φ bounded ⇒ μ_Xφ uniformly *F*-definable: finite stages definable by substitution-iterates φⁿ(x) ∈ *F*
- SAT reducible to BDD: guard unbounded $\varphi(X, x)$ by ψ (relativised for non-interference)
- BDD a generalised SAT problem: compare SAT for (φⁿ⁺¹ ∧ ¬φⁿ)_{n∈N}

for \mathcal{F} with natural closure properties:

- φ bounded ⇒ μ_Xφ uniformly *F*-definable: finite stages definable by substitution-iterates φⁿ(x) ∈ *F*
- SAT reducible to BDD: guard unbounded $\varphi(X, x)$ by ψ (relativised for non-interference)
- BDD a generalised SAT problem: compare SAT for (φⁿ⁺¹ ∧ ¬φⁿ)_{n∈ℕ}
- φ unbounded \Rightarrow all finite increments can be non-trivial for $\varphi \in \text{FO}$ compare SAT for $\bigwedge_n (\varphi^{n+1} \land \neg \varphi^n)$

(with compactness even get $\gamma[arphi,\mathfrak{A}]=\omega$; essential towards B–M thm)

Barwise–Moschovakis theorem

for any X-positive FO formula $\varphi(X, x)$ the following are equivalent:

- (i) φ bounded
- (ii) $\mu_X \varphi$ uniformly FO definable
- (iii) $\mu_X \varphi[\mathfrak{A}]$ FO definable in each \mathfrak{A}

relativises to natural fragments: \forall^* , \exists^* , FO^k, ML, GF, ... relativises to elementary/projective classes: acyclic, treewidth k, ...

compactness!

(BM 78)

undecidability vs. decidability for monadic BDD within FO

undecidable	decidable
$\exists^* \text{ and even } \exists^*_+ \neq)$ existential, positive with inequality	∃ ₊ [Datalog] pure existential positive Cosmadakis, Gaifman,
Gaifman, Mairson, Sagiv, Vardi 87	Kanellakis, Vardi 95
FO ²	ML
two variables	modal
Kolaitis, O_ 98	O_ 98, improved 06
$\forall^* \text{ and even } \forall^*_(=)$ universal, mixed polarities or with equality $O 06$	∀ <u>*</u> pure universal negative O_ 06

can encode tilings in grids

decidable via tree codings

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise-Moschovakis for modal fixed points:

 $\varphi(X) \in \mathsf{ML} \text{ bounded } \Leftrightarrow \ \mu_X \varphi \in \mathsf{ML}$

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise-Moschovakis for modal fixed points:

 $\varphi(X) \in \mathsf{ML} \text{ bounded } \Leftrightarrow \ \mu_X \varphi \in \mathsf{ML}$

by bisimulation invariance & Löwenheim-Skolem:

- restrict attention to (countable) tree-models
- over trees, capture ML-definability by a locality criterion
- crux: to get locality criterion into MSO

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise-Moschovakis for modal fixed points:

 $\varphi(X) \in \mathsf{ML} \text{ bounded } \Leftrightarrow \ \mu_X \varphi \in \mathsf{ML}$

by bisimulation invariance & Löwenheim-Skolem:

- restrict attention to (countable) tree-models
- over trees, capture ML-definability by a locality criterion
- crux: to get locality criterion into MSO
- over regular trees, capture ML-definability by MSO-definable locality criterion
- $\longrightarrow\,$ reduction to Rabin's decidability for MSO over trees

decidability of BDD(ML) and its wider ramifications

decidability proofs based on Barwise–Moschovakis (FO-definability of $\mu_X \varphi$) and (generalised) locality arguments in trees

 modulo some pre-processing the above idea essentially lifts to deciding BDD(∀^{*}_) (O_ LICS 06)

decidability of BDD(ML) and its wider ramifications

decidability proofs based on Barwise–Moschovakis (FO-definability of $\mu_X \varphi$) and (generalised) locality arguments in trees

- modulo some pre-processing the above idea essentially lifts to deciding BDD(∀^{*}_−) (O_− LICS 06)
- with much more sophisticated Gaifman locality arguments:

theorem (Kreutzer, O_, Schweikardt ICALP 07)

BDD(FO, \mathcal{AC}) decidable for the class \mathcal{AC} of all acyclic graph structures

limitations

Barwise-Moschovakis couples boundedness to definability

limitations

Barwise–Moschovakis couples boundedness to definability

at a cost: restriction to elementary classes

e.g., neither applicable to the class of all trees nor the class of all finite acyclic graph structures

End of Part I

BDD(\mathcal{F} , all) for interesting fragments \mathcal{F}

versus

BDD(FO, C)

for interesting classes $\ensuremath{\mathcal{C}}$

$\mathsf{BDD}(\mathsf{FO},\mathcal{AC})$

(Kreutzer, O_, Schweikardt ICALP 07)

first major result of the second kind

BDD(\mathcal{F} , all) for interesting fragments \mathcal{F}

versus

BDD(FO, C) for interesting classes C

$\mathsf{BDD}(\mathsf{FO},\mathcal{AC})$

(Kreutzer, O_, Schweikardt ICALP 07)

first major result of the second kind

note potential explanatory power w.r.t. apparent dichotomy

undecidable BDD grids and tilings decidable BDD tree-like models **BDD**(\mathcal{F} , all) for interesting fragments \mathcal{F}

versus

BDD(FO, C) for interesting classes C

$\mathsf{BDD}(\mathsf{FO},\mathcal{AC})$

(Kreutzer, O_, Schweikardt ICALP 07)

first major result of the second kind

note potential explanatory power w.r.t. apparent dichotomy

undecidable BDDdecidable BDDgrids and tilingstree-like models

 $\rightarrow\,$ look to "generalised tree model property for BDD" to explain all known classical decidable cases, & new

nice-model-properties for BDD

BDD(\mathcal{F}) has the \mathcal{C} -model-property if for all $\varphi(X, x) \in \mathcal{F}$: φ bounded $\Leftrightarrow \varphi$ bounded over \mathcal{C}

behaviour on $\ensuremath{\mathcal{C}}$ indicative for BDD

in this case, decidability of $BDD(\mathcal{F}, \mathcal{C})$ implies decidability of $BDD(\mathcal{F}) = BDD(\mathcal{F}, all)$

nice-model-properties for BDD

BDD(\mathcal{F}) has the \mathcal{C} -model-property if for all $\varphi(X, x) \in \mathcal{F}$: φ bounded $\Leftrightarrow \varphi$ bounded over \mathcal{C}

behaviour on $\ensuremath{\mathcal{C}}$ indicative for BDD

in this case, decidability of $BDD(\mathcal{F}, \mathcal{C})$ implies decidability of $BDD(\mathcal{F}) = BDD(\mathcal{F}, all)$

interesting candidates:

• $C = \mathcal{FIN}$ (finite model property for BDD): ML, $\exists_{+}^{*}, \forall_{-}^{*}$ • C = T (tree model property for BDD): ML, L_{μ} • $C = T_{k}$ (btw model property for BDD): ML, $\exists_{+}^{*}, \forall_{-}^{*},$ GF, L_{μ}, μ GF (!)

another leap — from BDD(FO, C) to BDD(MSO, C)

(Blumensath, O_, Weyer ICALP 09) & ongoing

new approach via MSO coding and automata

divorcing boundedness/definability: Barwise-Moschovakis lost

another leap — from BDD(FO, C) to BDD(MSO, C)

(Blumensath, O_, Weyer ICALP 09) & ongoing

new approach via MSO coding and automata

divorcing boundedness/definability: Barwise-Moschovakis lost

key ingredients/ideas:

- coding of fixpoint histories in X-positive MSO-types
- consistent history annotations of \mathfrak{A} , a $(\mathfrak{A} \in \mathcal{C}, a \in (\mu_X \varphi)[\mathfrak{A}])$ recognised by automaton \mathcal{A}_{φ}
- stage of $a \in \mu_X \varphi[\mathfrak{A}]$ corresponds to minimal weight of accepting run of \mathcal{A}_{φ} as a *distance automaton*

another leap — from BDD(FO, C) to BDD(MSO, C)

(Blumensath, O_, Weyer ICALP 09) & ongoing

new approach via **MSO coding and automata**

divorcing boundedness/definability: Barwise-Moschovakis lost

key ingredients/ideas:

- coding of fixpoint histories in X-positive MSO-types
- consistent history annotations of \mathfrak{A} , a $(\mathfrak{A} \in \mathcal{C}, a \in (\mu_X \varphi)[\mathfrak{A}])$ recognised by automaton \mathcal{A}_{φ}
- stage of $a \in \mu_X \varphi[\mathfrak{A}]$ corresponds to minimal weight of accepting run of \mathcal{A}_{φ} as a *distance automaton*

 $\begin{array}{c} \longrightarrow \\ \hline \text{reduction of BDD(MSO, C) to} \\ \hline \\ limitedness \text{ problems for distance automata } \mathcal{A}_{\varphi} \text{ on } \mathcal{C} \end{array}$

some key ideas in sketches

- X-positive types
- histories of X-positive types
- extraction of stage succession from annotation
- stages "counted" by distance automata

some key ideas in sketches

- X-positive types
- histories of X-positive types
- extraction of stage succession from annotation
- stages "counted" by distance automata

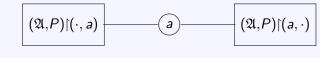
really: some key ideas in over-simplified sketches

X-positive MSO-m-type in variables X, x:

 $\mathsf{t}^{\mathsf{m}}(\mathfrak{A},\mathsf{P},\mathsf{a}) = \{\psi(\mathsf{X},\mathsf{x}) \in \mathsf{MSO}^{\mathsf{m}}(\mathsf{X}^+) \colon \mathfrak{A} \models \psi[\mathsf{P},\mathsf{a}]\}$

X-positive MSO-m-type in variables X, x: $t^{m}(\mathfrak{A}, \mathsf{P}, \mathsf{a}) = \{\psi(\mathsf{X}, \mathsf{x}) \in \mathsf{MSO}^{m}(\mathsf{X}^{+}) \colon \mathfrak{A} \models \psi[\mathsf{P}, \mathsf{a}]\}$

governed by (monotone) MSO-composition rules e.g., in a string graph:



 $t^m(\mathfrak{A}, P, a) =$

 $t^m((\mathfrak{A},P){\upharpoonright}(\cdot,a))\oplus t^m((\mathfrak{A},P){\upharpoonright}\{a\},a)\oplus t^m((\mathfrak{A},P){\upharpoonright}(a,\cdot))$

X-positive MSO-m-type in variables X, x: $t^{m}(\mathfrak{A}, \mathsf{P}, \mathsf{a}) = \{\psi(\mathsf{X}, \mathsf{x}) \in \mathsf{MSO}^{m}(\mathsf{X}^{+}) \colon \mathfrak{A} \models \psi[\mathsf{P}, \mathsf{a}]\}$

governed by (monotone) MSO-composition rules e.g., in a string graph:

$$(\mathfrak{A},P)\restriction(\cdot,a) = (\mathfrak{A},P)\restriction(a,\cdot) = t^m((\mathfrak{A},P)\restriction(\cdot,a)) \oplus t^m((\mathfrak{A},P)\restriction\{a\},a) \oplus t^m((\mathfrak{A},P)\restriction(a,\cdot))$$

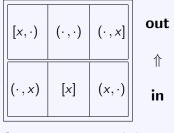
basic idea: annotate $a \in \mathfrak{A}$ with $(t^m(\mathfrak{A}, X^{lpha}, a))_{\alpha \leqslant \gamma[\varphi, \mathfrak{A}]}$

(2) histories of X-positive types

annotation of \mathfrak{A}, a by a history tiling

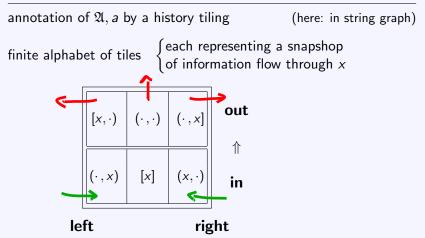
(here: in string graph)

finite alphabet of tiles $\begin{cases} each representing a snapshop \\ of information flow through x \end{cases}$



left right

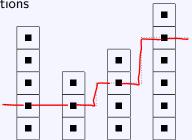
(2) histories of X-positive types

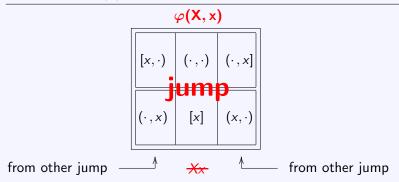


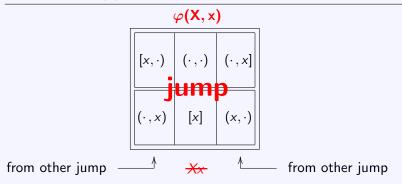
vertical stacking of tiles: succession of stages horizontal matches: communication with neighbours with MSO-composition rules as local consistency conditions

(3) partial extraction of stage succession from sections

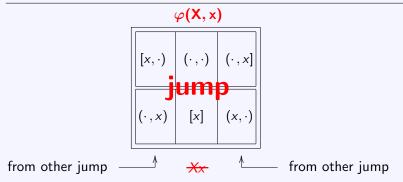
can only reconstruct approximations through synchronisation along consistent sections







• $\gamma[arphi,\mathfrak{A}]$ bounded by lengths of sequences of dependent jumps



• $\gamma[\varphi, \mathfrak{A}]$ bounded by lengths of sequences of dependent jumps

• use **distance automata** to $\begin{cases} \text{check consistency of annotation} \\ \text{count lengths of jump sequences} \\ \text{to marked } a \in \mu_X \varphi[\mathfrak{A}] \end{cases}$

reduction to limitedness of distance automata

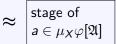
distance automaton \mathcal{A}_{φ} over \mathcal{C} accepting all consistent annotations of \mathfrak{A}, a with $\mathfrak{A} \in \mathcal{C}, a \in \mu_X \varphi[\mathfrak{A}]$ s.t.

 \approx

weights of accepting runs are lengths of jump sequences :

minimal weight of annotation of \mathfrak{A}, a

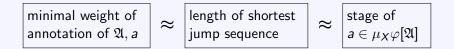
length of shortest jump sequence



reduction to limitedness of distance automata

distance automaton \mathcal{A}_{φ} over \mathcal{C} accepting all consistent annotations of \mathfrak{A}, a with $\mathfrak{A} \in \mathcal{C}, a \in \mu_X \varphi[\mathfrak{A}]$ s.t.

weights of accepting runs are lengths of jump sequences :



then

decidability of limitedness of distance automata:

(A) NFA on finite words		(Hashiguchi 90)
(B) automata on finite trees	(Colco	ombet–Löding CSL 08)
(C) parity automata on infinite	trees	(Colcombet–Löding) announced 09

decidability of limitedness of distance automata:

(A) NFA on finite words		(Hashiguchi 90)
(B) automata on finite trees	(Colo	combet–Löding CSL 08)
(C) parity automata on infinite	trees	(Colcombet–Löding) announced 09

consequences for decidability of BDD

BDD(MSO, C) decidable over these classes C:

- (A) finite string graph structures (BOW ICALP 09) finite words
- (B) finite acyclic graph structures finite trees
- (C) acyclic graph structures

trees

- (1) finite string graph structures
- (2) finite acyclic graph structures
- (3) acyclic graph structures

BDD(MSO, C) decidable over these classes C:

- (1) finite string graph structures
- (2) finite acyclic graph structures
- (3) acyclic graph structures

by robustness of BDD(MSO, C) under MSO interpretations and nice-model-properties for BDD:

- (1) finite string graph structures
- (2) finite acyclic graph structures
- (3) acyclic graph structures
- by robustness of BDD(MSO, C) under MSO interpretations and nice-model-properties for BDD:
- (1) covers GSO over finite structures of fixed finite path width

- (1) finite string graph structures
- (2) finite acyclic graph structures
- (3) acyclic graph structures
- by robustness of BDD(MSO, C) under MSO interpretations and nice-model-properties for BDD:
- (1) covers GSO over finite structures of fixed finite path width
- (2) covers GSO over finite structures of fixed finite tree width, yields decidability of BDD(∃^{*}₊) and BDD(∀^{*}₋)

- (1) finite string graph structures
- (2) finite acyclic graph structures
- (3) acyclic graph structures
- by robustness of BDD(MSO, C) under MSO interpretations and nice-model-properties for BDD:
- (1) covers GSO over finite structures of fixed finite path width
- (2) covers GSO over finite structures of fixed finite tree width, yields decidability of BDD(∃^{*}₊) and BDD(∀^{*}₋)
- (3) covers GSO over all structures of fixed finite tree width, yields decidability of BDD(FO, \mathcal{AC}) (KOS 07) and of BDD(GF), BDD(L_µ), BDD(µGF) (new)

from case-to-case to a rationale behind perceived dichotomy

Barwise–Moschovakis & locality:

goes some way to explain key positive results where $\mathsf{BDD} = \operatorname{definability}$

MSO & distance automata:

goes much further in explanation of combinatorial/graph theoretic dichotomy

albeit away from definability (and logic?)

+ several new BDD decidability results

from case-to-case to a rationale behind perceived dichotomy

Barwise–Moschovakis & locality:

goes some way to explain key positive results where $\mathsf{BDD} = \operatorname{definability}$

MSO & distance automata:

goes much further in explanation of combinatorial/graph theoretic dichotomy

albeit away from definability (and logic?)

+ several new BDD decidability results

The End

extras:

- decidability via locality in trees: BDD(ML)
- undecidability via dominoes: $BDD(\forall^*)$

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise-Moschovakis for modal fixed points:

 $\varphi(X) \in \mathsf{ML} \text{ bounded } \Leftrightarrow \ \mu_X \varphi \in \mathsf{ML}$

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise-Moschovakis for modal fixed points:

 $\varphi(X) \in \mathsf{ML} \text{ bounded } \Leftrightarrow \ \mu_X \varphi \in \mathsf{ML}$

by bisimulation invariance & Löwenheim-Skolem:

- restrict attention to (countable) tree-models
- over trees, capture ML-definability by a locality criterion
- crux: to get locality criterion into MSO

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise-Moschovakis for modal fixed points:

 $\varphi(X) \in \mathsf{ML} \text{ bounded } \Leftrightarrow \ \mu_X \varphi \in \mathsf{ML}$

by bisimulation invariance & Löwenheim-Skolem:

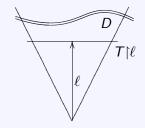
- restrict attention to (countable) tree-models
- over trees, capture ML-definability by a locality criterion
- crux: to get locality criterion into MSO
- over regular trees, capture ML-definability by MSO-definable locality criterion
- $\longrightarrow\,$ reduction to Rabin's decidability for MSO over trees

dfn: tree-locality of $\psi \in \mathsf{MSO}$

 $\exists \ell \in \mathbb{N} \text{ such that} \\ \text{for all trees } T \text{ and for all} \\ \text{initial } D \subseteq T \text{ with } D \supseteq T | \ell : \end{cases}$

 $T \models \psi$ iff $T \upharpoonright D \models \psi$

semantics only depends on bounded initial segment

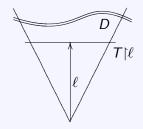


dfn: tree-locality of $\psi \in MSO$

 $\exists \ell \in \mathbb{N} \text{ such that} \\ \text{for all trees } T \text{ and for all} \\ \text{initial } D \subseteq T \text{ with } D \supseteq T | \ell : \end{cases}$

 $T \models \psi$ iff $T \upharpoonright D \models \psi$

semantics only depends on bounded initial segment



for bisimulation invariant $\psi \in MSO$:

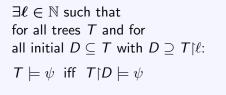
 $\psi(x)$ tree-local (with radius ℓ)

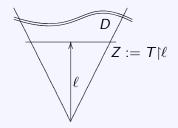
 $\Leftrightarrow \psi(x)$ expressible in ML (at nesting depth ℓ)

with modal Barwise-Moschovakis:

 \Rightarrow locality-testing for $\psi = \mu_X \varphi$ decides boundedness of $\varphi(X, x)$

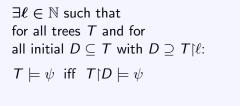
(tree-locality of $\psi \in \mathsf{MSO}$) $\in \mathsf{MSO}$?





 $\begin{array}{l} Z \text{ initial and for all I and all initial } D: \\ Z \subseteq D \longrightarrow \left(\psi[\mathbf{I}] \leftrightarrow \psi[\mathbf{I} \upharpoonright D] \right) \end{array} \right\} \ \eta(\mathbf{Z}) \in \mathsf{MSO}$

(tree-locality of $\psi \in \mathsf{MSO}$) $\in \mathsf{MSO}$?



$$Z := T | \ell$$

 $\begin{array}{l} Z \text{ initial and for all I and all initial } D: \\ Z \subseteq D \longrightarrow \left(\psi[\mathbf{I}] \leftrightarrow \psi[\mathbf{I} \upharpoonright D] \right) \end{array} \right\} \quad \eta(\mathbf{Z}) \in \mathsf{MSO}$

 ψ tree-local iff $\mathbf{T}_{\omega} \models \exists \mathsf{Z} (\begin{bmatrix} \mathsf{Z} \text{ bounded} \land \eta(\mathsf{Z}) \\ \mathsf{not} \mathsf{MSO} \end{bmatrix}$

König's lemma for regular expansions of T_{ω}

for regular (T_{ω}, Z) (regular: finite no. of subtrees up to \simeq) with initial $Z \subseteq T_{\omega}$ t.f.a.e.:

- (i) **Z path-finite** (no infinite path within *Z*)
- (ii) **Z** bounded $(Z \subseteq T | \ell \text{ for some } \ell \in \mathbb{N})$

König's lemma for regular expansions of T_{ω}

for regular (T_{ω}, Z) (regular: finite no. of subtrees up to \simeq) with initial $Z \subseteq T_{\omega}$ t.f.a.e.:

- (i) **Z path-finite** (no infinite path within *Z*)
- (ii) **Z** bounded $(Z \subseteq T | \ell \text{ for some } \ell \in \mathbb{N})$

corollary

tree-locality decidable for $\psi(x) \in \mathsf{MSO}$

hence: BDD(ML) decidable

in fact, the inclusion " $ML \subseteq L_{\mu}$ " is thus decidable

example: undecidability via tiling for $BDD(\forall^*)$

reduction of the tiling problem for tiling systems \mathcal{D} to (un)boundedness of $\varphi^{\mathcal{D}}(X, x)$ in \forall_{-}^{*} with equality

 $\varphi^{\mathcal{D}}(\mathsf{X},\mathsf{x}) = \varphi^{\mathcal{D}}_0 \land \varphi_1(\mathsf{X},\mathsf{x})$

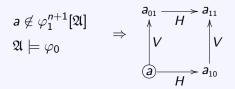
 $\varphi_0^{\mathcal{D}}$: *H* and *V* the graphs of commuting partial functions, colours $(P_d)_{d\in\mathcal{D}}$ compatible with tiling constraints

 $\varphi_1(\mathbf{X}, \mathbf{x}) \text{ s.t. } a \notin X^n[\mathfrak{A}] \Rightarrow \exists h: (n \times n) \text{-grid} \xrightarrow{\text{hom}} (A, H, V)$ (0,0) $\longmapsto a$

then \mathcal{D} tiles $\mathbb{N} \times \mathbb{N}$ -grid

 $\begin{array}{ll} \Leftrightarrow & \mathcal{D} \text{ tiles arbitrarily large } (n \times n) \text{-grids} & \text{K\"onig's lemma} \\ \Leftrightarrow & \varphi^{\mathcal{D}} \text{ unbounded} \end{array}$

 $\varphi_1(\mathsf{X}) := \Box_\mathsf{H}\mathsf{X} \lor \Box_\mathsf{V}\mathsf{X} \lor \Box_\mathsf{H}\Box_\mathsf{V}\mathsf{X} \lor \Box_\mathsf{V}\Box_\mathsf{H}\mathsf{X}$



overlapping homomorphisms h_{ij} of $(n \times n)$ -grids at a_{ij} glued to get a homomorphism of $((n + 1) \times (n + 1))$ -grid at a

compatibility guaranteed by φ_{0}

for some $a_{10}, a_{01}, a_{11}
ot\in arphi_1^n[\mathfrak{A}]$

