
Methods for
Deciding Boundedness
of Least Fixed Points

Oxford 2009

Martin Otto Technische Universität Darmstadt
www.mathematik.tu-darmstadt.de/˜otto

least fixed points examples

compare:

b child of a, Rab versus b descendant of a, R∗ab

diameter 6 17 diameter <∞, connectivity

depth < 17 well-foundedness

static dynamic

FO not FO
but expressible using
least fixed points
of monotone, monadic
relational FO recursion

least fixed points examples

compare:

b child of a, Rab versus b descendant of a, R∗ab

diameter 6 17 diameter <∞, connectivity

depth < 17 well-foundedness

static dynamic

FO not FO
but expressible using
least fixed points
of monotone, monadic
relational FO recursion

least fixed points — monotone relational recursion

fixed point extensions

FO −→ LFP

ML −→ Lµ

GF −→ µGF

massive boost in expressiveness

LFP : all Ptime properties of ordered finite structures (Immerman/Vardi)
Lµ : all bisimulation invariant MSO properties of finite transition systems

(Janin–Walukiewicz)

least fixed points — monotone relational recursion

(monadic) least fixed point induction
on ϕ(X, x), positive in X

ϕ(X , x) induces monotone operation on subsets

ϕ : P(A) −→ P(A)
P 7−→ ϕ[A,P] := {a ∈ A : A |= ϕ[P, a]}

with unique least fixed point (µXϕ)[A] =
⋃

α Xα[A]

generated from inductive stages X0[A] = ∅
Xα+1[A] = ϕ[A,Xα[A]]

Xλ[A] =
⋃

α<λ Xα[A]

least fixed points — monotone relational recursion

(monadic) least fixed point induction
on ϕ(X, x), positive in X

ϕ(X , x) induces monotone operation on subsets

ϕ : P(A) −→ P(A)
P 7−→ ϕ[A,P] := {a ∈ A : A |= ϕ[P, a]}

with unique least fixed point (µXϕ)[A] =
⋃

α Xα[A]

generated from inductive stages X0[A] = ∅
Xα+1[A] = ϕ[A,Xα[A]]

Xλ[A] =
⋃

α<λ Xα[A]

least fixed points – monotone relational recursion

inductive stages: X0[A] = ∅
Xα+1[A] = ϕ[A,Xα[A]]

Xλ[A] =
⋃

α<λ Xα[A]

(µXϕ)[A] =
⋃

α Xα[A]

stage/rank of a ∈ µXϕ[A]: minα(a ∈ Xα[A])

depth of ϕ-recursion on A:

closure ordinal γ[ϕ,A] = minα

(
Xα+1[A] = Xα[A]

)
unbounded in general across all structures

least fixed points – monotone relational recursion

inductive stages: X0[A] = ∅
Xα+1[A] = ϕ[A,Xα[A]]

Xλ[A] =
⋃

α<λ Xα[A]

(µXϕ)[A] =
⋃

α Xα[A]

stage/rank of a ∈ µXϕ[A]: minα(a ∈ Xα[A])

depth of ϕ-recursion on A:

closure ordinal γ[ϕ,A] = minα

(
Xα+1[A] = Xα[A]

)
unbounded in general across all structures

least fixed points – monotone relational recursion

inductive stages: X0[A] = ∅
Xα+1[A] = ϕ[A,Xα[A]]

Xλ[A] =
⋃

α<λ Xα[A]

(µXϕ)[A] =
⋃

α Xα[A]

stage/rank of a ∈ µXϕ[A]: minα(a ∈ Xα[A])

depth of ϕ-recursion on A:

closure ordinal γ[ϕ,A] = minα

(
Xα+1[A] = Xα[A]

)
unbounded in general across all structures

boundedness

ϕ(X, x) bounded: ∃n ∈ N s.t. γ[ϕ,A] < n for all A

ϕ(X, x) bounded on class C, analogous

boundedness a highly non-trivial semantic property
of formula specifying a recursive process

boundedness as a decision problem

for a class F of X -positive formulae (and class C of structures):

BDD(F) / BDD(F , C)

given ϕ(X, x) ∈ F
decide if ϕ is bounded / bounded over C

very few decidable cases, even for monadic recursion

boundedness

ϕ(X, x) bounded: ∃n ∈ N s.t. γ[ϕ,A] < n for all A

ϕ(X, x) bounded on class C, analogous

boundedness a highly non-trivial semantic property
of formula specifying a recursive process

boundedness as a decision problem

for a class F of X -positive formulae (and class C of structures):

BDD(F) / BDD(F , C)

given ϕ(X, x) ∈ F
decide if ϕ is bounded / bounded over C

very few decidable cases, even for monadic recursion

for F with natural closure properties:

• ϕ bounded ⇒ µXϕ uniformly F-definable:
finite stages definable by substitution-iterates ϕn(x) ∈ F

• SAT reducible to BDD:
guard unbounded ϕ(X , x) by ψ (relativised for non-interference)

• BDD a generalised SAT problem:
compare SAT for (ϕn+1 ∧ ¬ϕn)n∈N

• ϕ unbounded ⇒ all finite increments can be non-trivial
for ϕ ∈ FO compare SAT for

∧
n(ϕ

n+1 ∧ ¬ϕn)

(with compactness even get γ[ϕ,A] = ω ; essential towards B–M thm)

for F with natural closure properties:

• ϕ bounded ⇒ µXϕ uniformly F-definable:
finite stages definable by substitution-iterates ϕn(x) ∈ F

• SAT reducible to BDD:
guard unbounded ϕ(X , x) by ψ (relativised for non-interference)

• BDD a generalised SAT problem:
compare SAT for (ϕn+1 ∧ ¬ϕn)n∈N

• ϕ unbounded ⇒ all finite increments can be non-trivial
for ϕ ∈ FO compare SAT for

∧
n(ϕ

n+1 ∧ ¬ϕn)

(with compactness even get γ[ϕ,A] = ω ; essential towards B–M thm)

for F with natural closure properties:

• ϕ bounded ⇒ µXϕ uniformly F-definable:
finite stages definable by substitution-iterates ϕn(x) ∈ F

• SAT reducible to BDD:
guard unbounded ϕ(X , x) by ψ (relativised for non-interference)

• BDD a generalised SAT problem:
compare SAT for (ϕn+1 ∧ ¬ϕn)n∈N

• ϕ unbounded ⇒ all finite increments can be non-trivial
for ϕ ∈ FO compare SAT for

∧
n(ϕ

n+1 ∧ ¬ϕn)

(with compactness even get γ[ϕ,A] = ω ; essential towards B–M thm)

for F with natural closure properties:

• ϕ bounded ⇒ µXϕ uniformly F-definable:
finite stages definable by substitution-iterates ϕn(x) ∈ F

• SAT reducible to BDD:
guard unbounded ϕ(X , x) by ψ (relativised for non-interference)

• BDD a generalised SAT problem:
compare SAT for (ϕn+1 ∧ ¬ϕn)n∈N

• ϕ unbounded ⇒ all finite increments can be non-trivial
for ϕ ∈ FO compare SAT for

∧
n(ϕ

n+1 ∧ ¬ϕn)

(with compactness even get γ[ϕ,A] = ω ; essential towards B–M thm)

boundedness and definability

Barwise–Moschovakis theorem (BM 78)

for any X -positive FO formula ϕ(X , x)
the following are equivalent:

(i) ϕ bounded

(ii) µXϕ uniformly FO definable

(iii) µXϕ[A] FO definable in each A

relativises to natural fragments: ∀∗, ∃∗, FOk , ML, GF, . . .

relativises to elementary/projective classes:
acyclic, treewidth k, . . .

compactness!

undecidability vs. decidability for monadic BDD within FO

undecidable decidable

∃∗ and even ∃∗
+(6=)

existential, positive
with inequality

Gaifman, Mairson, Sagiv, Vardi 87

∃∗
+ [Datalog]

pure existential positive

Cosmadakis, Gaifman,
Kanellakis, Vardi 95

FO2

two variables
Kolaitis, O 98

ML
modal
O 98, improved 06

∀∗ and even ∀∗
−(=)

universal, mixed polarities
or with equality O 06

∀∗
−

pure universal negative
O 06

can encode tilings in grids decidable via tree codings

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise–Moschovakis for modal fixed points:

ϕ(X) ∈ ML bounded ⇔ µXϕ ∈ ML

by bisimulation invariance & Löwenheim–Skolem:

• restrict attention to (countable) tree-models

• over trees, capture ML-definability by a locality criterion

• crux: to get locality criterion into MSO

• over regular trees, capture ML-definability
by MSO-definable locality criterion

−→ reduction to Rabin’s decidability for MSO over trees

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise–Moschovakis for modal fixed points:

ϕ(X) ∈ ML bounded ⇔ µXϕ ∈ ML

by bisimulation invariance & Löwenheim–Skolem:

• restrict attention to (countable) tree-models

• over trees, capture ML-definability by a locality criterion

• crux: to get locality criterion into MSO

• over regular trees, capture ML-definability
by MSO-definable locality criterion

−→ reduction to Rabin’s decidability for MSO over trees

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise–Moschovakis for modal fixed points:

ϕ(X) ∈ ML bounded ⇔ µXϕ ∈ ML

by bisimulation invariance & Löwenheim–Skolem:

• restrict attention to (countable) tree-models

• over trees, capture ML-definability by a locality criterion

• crux: to get locality criterion into MSO

• over regular trees, capture ML-definability
by MSO-definable locality criterion

−→ reduction to Rabin’s decidability for MSO over trees

decidability of BDD(ML) and its wider ramifications

decidability proofs
based on Barwise–Moschovakis (FO-definability of µXϕ)

and (generalised) locality arguments in trees

• modulo some pre-processing the above idea
essentially lifts to deciding BDD(∀∗−) (O LICS 06)

• with much more sophisticated Gaifman locality arguments:

theorem (Kreutzer, O , Schweikardt ICALP 07)

BDD(FO,AC) decidable
for the class AC of all acyclic graph structures

decidability of BDD(ML) and its wider ramifications

decidability proofs
based on Barwise–Moschovakis (FO-definability of µXϕ)

and (generalised) locality arguments in trees

• modulo some pre-processing the above idea
essentially lifts to deciding BDD(∀∗−) (O LICS 06)

• with much more sophisticated Gaifman locality arguments:

theorem (Kreutzer, O , Schweikardt ICALP 07)

BDD(FO,AC) decidable
for the class AC of all acyclic graph structures

limitations

Barwise–Moschovakis couples boundedness to definability

at a cost: restriction to elementary classes

e.g., neither applicable to the class of all trees
nor the class of all finite acyclic graph structures

End of Part I

limitations

Barwise–Moschovakis couples boundedness to definability

at a cost: restriction to elementary classes

e.g., neither applicable to the class of all trees
nor the class of all finite acyclic graph structures

End of Part I

the crucial change of perspective Part II

BDD(F , all)
for interesting fragments F versus

BDD(FO, C)
for interesting classes C

BDD(FO,AC)
(Kreutzer, O , Schweikardt ICALP 07)

first major result of the second kind

note potential explanatory power w.r.t. apparent dichotomy

undecidable BDD
grids and tilings

decidable BDD
tree-like models

→ look to “generalised tree model property for BDD”
to explain all known classical decidable cases, & new

the crucial change of perspective Part II

BDD(F , all)
for interesting fragments F versus

BDD(FO, C)
for interesting classes C

BDD(FO,AC)
(Kreutzer, O , Schweikardt ICALP 07)

first major result of the second kind

note potential explanatory power w.r.t. apparent dichotomy

undecidable BDD
grids and tilings

decidable BDD
tree-like models

→ look to “generalised tree model property for BDD”
to explain all known classical decidable cases, & new

the crucial change of perspective Part II

BDD(F , all)
for interesting fragments F versus

BDD(FO, C)
for interesting classes C

BDD(FO,AC)
(Kreutzer, O , Schweikardt ICALP 07)

first major result of the second kind

note potential explanatory power w.r.t. apparent dichotomy

undecidable BDD
grids and tilings

decidable BDD
tree-like models

→ look to “generalised tree model property for BDD”
to explain all known classical decidable cases, & new

nice-model-properties for BDD

BDD(F) has the C-model-property
if for all ϕ(X , x) ∈ F :
ϕ bounded ⇔ ϕ bounded over C

behaviour on C
indicative for BDD

in this case, decidabilty of BDD(F , C)
implies decidabilty of BDD(F) = BDD(F , all)

interesting candidates:

• C = FIN (finite model property for BDD): ML, ∃∗
+, ∀∗

−

• C = T (tree model property for BDD): ML, Lµ

• C = Tk (btw model property for BDD): ML, ∃∗
+, ∀∗

−,

GF, Lµ, µGF (!)

nice-model-properties for BDD

BDD(F) has the C-model-property
if for all ϕ(X , x) ∈ F :
ϕ bounded ⇔ ϕ bounded over C

behaviour on C
indicative for BDD

in this case, decidabilty of BDD(F , C)
implies decidabilty of BDD(F) = BDD(F , all)

interesting candidates:

• C = FIN (finite model property for BDD): ML, ∃∗
+, ∀∗

−

• C = T (tree model property for BDD): ML, Lµ

• C = Tk (btw model property for BDD): ML, ∃∗
+, ∀∗

−,

GF, Lµ, µGF (!)

another leap — from BDD(FO, C) to BDD(MSO, C)

(Blumensath, O , Weyer ICALP 09) & ongoing

new approach via
MSO coding and automata

divorcing boundedness/definability: Barwise–Moschovakis lost

key ingredients/ideas:

• coding of fixpoint histories in X -positive MSO-types

• consistent history annotations of A, a (A ∈ C, a ∈ (µXϕ)[A])
recognised by automaton Aϕ

• stage of a ∈ µXϕ[A] corresponds to minimal weight
of accepting run of Aϕ as a distance automaton

−→ reduction of BDD(MSO, C) to
limitedness problems for distance automata Aϕ on C

another leap — from BDD(FO, C) to BDD(MSO, C)

(Blumensath, O , Weyer ICALP 09) & ongoing

new approach via
MSO coding and automata

divorcing boundedness/definability: Barwise–Moschovakis lost

key ingredients/ideas:

• coding of fixpoint histories in X -positive MSO-types

• consistent history annotations of A, a (A ∈ C, a ∈ (µXϕ)[A])
recognised by automaton Aϕ

• stage of a ∈ µXϕ[A] corresponds to minimal weight
of accepting run of Aϕ as a distance automaton

−→ reduction of BDD(MSO, C) to
limitedness problems for distance automata Aϕ on C

another leap — from BDD(FO, C) to BDD(MSO, C)

(Blumensath, O , Weyer ICALP 09) & ongoing

new approach via
MSO coding and automata

divorcing boundedness/definability: Barwise–Moschovakis lost

key ingredients/ideas:

• coding of fixpoint histories in X -positive MSO-types

• consistent history annotations of A, a (A ∈ C, a ∈ (µXϕ)[A])
recognised by automaton Aϕ

• stage of a ∈ µXϕ[A] corresponds to minimal weight
of accepting run of Aϕ as a distance automaton

−→ reduction of BDD(MSO, C) to
limitedness problems for distance automata Aϕ on C

some key ideas in sketches

• X -positive types

• histories of X -positive types

• extraction of stage succession from annotation

• stages “counted” by distance automata

really: some key ideas in over-simplified sketches

some key ideas in sketches

• X -positive types

• histories of X -positive types

• extraction of stage succession from annotation

• stages “counted” by distance automata

really: some key ideas in over-simplified sketches

Martin Otto
Bleistift

(1) X-positive types

X-positive MSO-m-type in variables X, x:

tm(A,P, a) = {ψ(X, x) ∈ MSOm(X+) : A |= ψ[P, a]}

governed by (monotone) MSO-composition rules
e.g., in a string graph:

(A,P)�(·, a) ?>=<89:;a (A,P)�(a, ·)

tm(A,P, a) =

tm((A,P)�(·, a)) ⊕ tm((A,P)�{a}, a) ⊕ tm((A,P)�(a, ·))

basic idea: annotate a ∈ A with
(
tm(A,Xα, a)

)
α6γ[ϕ,A]

(1) X-positive types

X-positive MSO-m-type in variables X, x:

tm(A,P, a) = {ψ(X, x) ∈ MSOm(X+) : A |= ψ[P, a]}

governed by (monotone) MSO-composition rules
e.g., in a string graph:

(A,P)�(·, a) ?>=<89:;a (A,P)�(a, ·)

tm(A,P, a) =

tm((A,P)�(·, a)) ⊕ tm((A,P)�{a}, a) ⊕ tm((A,P)�(a, ·))

basic idea: annotate a ∈ A with
(
tm(A,Xα, a)

)
α6γ[ϕ,A]

(1) X-positive types

X-positive MSO-m-type in variables X, x:

tm(A,P, a) = {ψ(X, x) ∈ MSOm(X+) : A |= ψ[P, a]}

governed by (monotone) MSO-composition rules
e.g., in a string graph:

(A,P)�(·, a) ?>=<89:;a (A,P)�(a, ·)

tm(A,P, a) =

tm((A,P)�(·, a)) ⊕ tm((A,P)�{a}, a) ⊕ tm((A,P)�(a, ·))

basic idea: annotate a ∈ A with
(
tm(A,Xα, a)

)
α6γ[ϕ,A]

Martin Otto
Bleistift

Martin Otto
Bleistift

(2) histories of X-positive types

annotation of A, a by a history tiling (here: in string graph)

finite alphabet of tiles

{
each representing a snapshop
of information flow through x

[x , ·) (· , ·) (· , x]

(· , x) [x] (x , ·)

out

⇑

in

left right

vertical stacking of tiles: succession of stages

horizontal matches: communication with neighbours
with MSO-composition rules as local consistency conditions

(2) histories of X-positive types

annotation of A, a by a history tiling (here: in string graph)

finite alphabet of tiles

{
each representing a snapshop
of information flow through x

[x , ·) (· , ·) (· , x]

(· , x) [x] (x , ·)

out

⇑

in

left right

vertical stacking of tiles: succession of stages

horizontal matches: communication with neighbours
with MSO-composition rules as local consistency conditions

Martin Otto
Bleistift

Martin Otto
Bleistift

Martin Otto
Bleistift

(3) partial extraction of stage succession from sections

finite alphabet,
finite no. of tiles

⇒ histories recorded
without duplicates

⇒ desynchronisation

can only reconstruct approximations through
synchronisation along consistent sections

Martin Otto
Bleistift

Martin Otto
Bleistift

(4) stages from dependent sequences of jumps

ϕ(X, x)

OO
from other jump from other jump

OO
Xx

[x , ·) (· , ·) (· , x]

(· , x) [x] (x , ·)

jump

• γ[ϕ,A] bounded by lengths of sequences of dependent jumps

• use distance automata to

check consistency of annotation

count lengths of jump sequences
to marked a ∈ µXϕ[A]

(4) stages from dependent sequences of jumps

ϕ(X, x)

OO
from other jump from other jump

OO
Xx

[x , ·) (· , ·) (· , x]

(· , x) [x] (x , ·)

jump

• γ[ϕ,A] bounded by lengths of sequences of dependent jumps

• use distance automata to

check consistency of annotation

count lengths of jump sequences
to marked a ∈ µXϕ[A]

(4) stages from dependent sequences of jumps

ϕ(X, x)

OO
from other jump from other jump

OO
Xx

[x , ·) (· , ·) (· , x]

(· , x) [x] (x , ·)

jump

• γ[ϕ,A] bounded by lengths of sequences of dependent jumps

• use distance automata to

check consistency of annotation

count lengths of jump sequences
to marked a ∈ µXϕ[A]

reduction to limitedness of distance automata

distance automaton Aϕ over C
accepting all consistent annotations of A, a
with A ∈ C, a ∈ µXϕ[A] s.t.

weights of accepting runs are lengths of jump sequences :

minimal weight of
annotation of A, a

≈ length of shortest
jump sequence

≈ stage of
a ∈ µXϕ[A]

then

L(A) limited
(weight bounded)

iff ϕ bounded on C

reduction to limitedness of distance automata

distance automaton Aϕ over C
accepting all consistent annotations of A, a
with A ∈ C, a ∈ µXϕ[A] s.t.

weights of accepting runs are lengths of jump sequences :

minimal weight of
annotation of A, a

≈ length of shortest
jump sequence

≈ stage of
a ∈ µXϕ[A]

then

L(A) limited
(weight bounded)

iff ϕ bounded on C

decidability of limitedness of distance automata:

(A) NFA on finite words (Hashiguchi 90)

(B) automata on finite trees (Colcombet–Löding CSL 08)

(C) parity automata on infinite trees (Colcombet–Löding)
announced 09

consequences for decidability of BDD

BDD(MSO, C) decidable over these classes C:

(A) finite string graph structures (BOW ICALP 09) finite words

(B) finite acyclic graph structures finite trees

(C) acyclic graph structures trees

decidability of limitedness of distance automata:

(A) NFA on finite words (Hashiguchi 90)

(B) automata on finite trees (Colcombet–Löding CSL 08)

(C) parity automata on infinite trees (Colcombet–Löding)
announced 09

consequences for decidability of BDD

BDD(MSO, C) decidable over these classes C:

(A) finite string graph structures (BOW ICALP 09) finite words

(B) finite acyclic graph structures finite trees

(C) acyclic graph structures trees

consequences for decidability of BDD

BDD(MSO, C) decidable over these classes C:

(1) finite string graph structures

(2) finite acyclic graph structures

(3) acyclic graph structures

by robustness of BDD(MSO, C) under MSO interpretations
and nice-model-properties for BDD:

(1) covers GSO over finite structures of fixed finite path width

(2) covers GSO over finite structures of fixed finite tree width,
yields decidability of BDD(∃∗

+) and BDD(∀∗
−)

(3) covers GSO over all structures of fixed finite tree width,
yields decidability of BDD(FO,AC) (KOS 07)

and of BDD(GF), BDD(Lµ), BDD(µGF) (new)

consequences for decidability of BDD

BDD(MSO, C) decidable over these classes C:

(1) finite string graph structures

(2) finite acyclic graph structures

(3) acyclic graph structures

by robustness of BDD(MSO, C) under MSO interpretations
and nice-model-properties for BDD:

(1) covers GSO over finite structures of fixed finite path width

(2) covers GSO over finite structures of fixed finite tree width,
yields decidability of BDD(∃∗

+) and BDD(∀∗
−)

(3) covers GSO over all structures of fixed finite tree width,
yields decidability of BDD(FO,AC) (KOS 07)

and of BDD(GF), BDD(Lµ), BDD(µGF) (new)

consequences for decidability of BDD

BDD(MSO, C) decidable over these classes C:

(1) finite string graph structures

(2) finite acyclic graph structures

(3) acyclic graph structures

by robustness of BDD(MSO, C) under MSO interpretations
and nice-model-properties for BDD:

(1) covers GSO over finite structures of fixed finite path width

(2) covers GSO over finite structures of fixed finite tree width,
yields decidability of BDD(∃∗

+) and BDD(∀∗
−)

(3) covers GSO over all structures of fixed finite tree width,
yields decidability of BDD(FO,AC) (KOS 07)

and of BDD(GF), BDD(Lµ), BDD(µGF) (new)

consequences for decidability of BDD

BDD(MSO, C) decidable over these classes C:

(1) finite string graph structures

(2) finite acyclic graph structures

(3) acyclic graph structures

by robustness of BDD(MSO, C) under MSO interpretations
and nice-model-properties for BDD:

(1) covers GSO over finite structures of fixed finite path width

(2) covers GSO over finite structures of fixed finite tree width,
yields decidability of BDD(∃∗

+) and BDD(∀∗
−)

(3) covers GSO over all structures of fixed finite tree width,
yields decidability of BDD(FO,AC) (KOS 07)

and of BDD(GF), BDD(Lµ), BDD(µGF) (new)

consequences for decidability of BDD

BDD(MSO, C) decidable over these classes C:

(1) finite string graph structures

(2) finite acyclic graph structures

(3) acyclic graph structures

by robustness of BDD(MSO, C) under MSO interpretations
and nice-model-properties for BDD:

(1) covers GSO over finite structures of fixed finite path width

(2) covers GSO over finite structures of fixed finite tree width,
yields decidability of BDD(∃∗

+) and BDD(∀∗
−)

(3) covers GSO over all structures of fixed finite tree width,
yields decidability of BDD(FO,AC) (KOS 07)

and of BDD(GF), BDD(Lµ), BDD(µGF) (new)

summary

from case-to-case to a rationale behind perceived dichotomy

Barwise–Moschovakis & locality:
goes some way to explain key positive results
where BDD = definability

MSO & distance automata:
goes much further in explanation of
combinatorial/graph theoretic dichotomy

albeit away from definability (and logic?)

+ several new BDD decidability results

The End

summary

from case-to-case to a rationale behind perceived dichotomy

Barwise–Moschovakis & locality:
goes some way to explain key positive results
where BDD = definability

MSO & distance automata:
goes much further in explanation of
combinatorial/graph theoretic dichotomy

albeit away from definability (and logic?)

+ several new BDD decidability results

The End

extras:

• decidability via locality in trees: BDD(ML)

• undecidability via dominoes: BDD(∀∗)

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise–Moschovakis for modal fixed points:

ϕ(X) ∈ ML bounded ⇔ µXϕ ∈ ML

by bisimulation invariance & Löwenheim–Skolem:

• restrict attention to (countable) tree-models

• over trees, capture ML-definability by a locality criterion

• crux: to get locality criterion into MSO

• over regular trees, capture ML-definability
by MSO-definable locality criterion

−→ reduction to Rabin’s decidability for MSO over trees

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise–Moschovakis for modal fixed points:

ϕ(X) ∈ ML bounded ⇔ µXϕ ∈ ML

by bisimulation invariance & Löwenheim–Skolem:

• restrict attention to (countable) tree-models

• over trees, capture ML-definability by a locality criterion

• crux: to get locality criterion into MSO

• over regular trees, capture ML-definability
by MSO-definable locality criterion

−→ reduction to Rabin’s decidability for MSO over trees

example: decidability via MSO on trees, for BDD(ML)

core: Barwise–Moschovakis & locality + MSO-coding in trees

recall Barwise–Moschovakis for modal fixed points:

ϕ(X) ∈ ML bounded ⇔ µXϕ ∈ ML

by bisimulation invariance & Löwenheim–Skolem:

• restrict attention to (countable) tree-models

• over trees, capture ML-definability by a locality criterion

• crux: to get locality criterion into MSO

• over regular trees, capture ML-definability
by MSO-definable locality criterion

−→ reduction to Rabin’s decidability for MSO over trees

dfn: tree-locality of ψ ∈ MSO

∃` ∈ N such that
for all trees T and for all
initial D ⊆ T with D ⊇ T�`:

T |= ψ iff T�D |= ψ

semantics only depends on
bounded initial segment

D

////////////////////

��������������������

T�`
OO

`

for bisimulation invariant ψ ∈ MSO:

ψ(x) tree-local (with radius `)

⇔ ψ(x) expressible in ML (at nesting depth `)

with modal Barwise–Moschovakis:
⇒ locality-testing for ψ = µXϕ decides boundedness of ϕ(X , x)

dfn: tree-locality of ψ ∈ MSO

∃` ∈ N such that
for all trees T and for all
initial D ⊆ T with D ⊇ T�`:

T |= ψ iff T�D |= ψ

semantics only depends on
bounded initial segment

D

////////////////////

��������������������

T�`
OO

`

for bisimulation invariant ψ ∈ MSO:

ψ(x) tree-local (with radius `)

⇔ ψ(x) expressible in ML (at nesting depth `)

with modal Barwise–Moschovakis:
⇒ locality-testing for ψ = µXϕ decides boundedness of ϕ(X , x)

(tree-locality of ψ ∈ MSO) ∈ MSO ?

∃` ∈ N such that
for all trees T and for
all initial D ⊆ T with D ⊇ T�`:

T |= ψ iff T�D |= ψ

D

////////////////////

��������������������

Z := T�`
OO

`

Z initial and for all I and all initial D:
Z ⊆ D −→

(
ψ[I] ↔ ψ[I�D]

) }
η(Z) ∈ MSO

ψ tree-local iff Tω |= ∃Z
(

Z bounded

not MSO

∧ η(Z)
)

(tree-locality of ψ ∈ MSO) ∈ MSO ?

∃` ∈ N such that
for all trees T and for
all initial D ⊆ T with D ⊇ T�`:

T |= ψ iff T�D |= ψ

D

////////////////////

��������������������

Z := T�`
OO

`

Z initial and for all I and all initial D:
Z ⊆ D −→

(
ψ[I] ↔ ψ[I�D]

) }
η(Z) ∈ MSO

ψ tree-local iff Tω |= ∃Z
(

Z bounded

not MSO

∧ η(Z)
)

König’s lemma for regular expansions of Tω

for regular (Tω,Z) (regular: finite no. of subtrees up to ')
with initial Z ⊆ Tω t.f.a.e.:

(i) Z path-finite (no infinite path within Z)

(ii) Z bounded (Z ⊆ T�` for some ` ∈ N)

corollary

tree-locality decidable for ψ(x) ∈ MSO

hence: BDD(ML) decidable

in fact, the inclusion “ML ⊆ Lµ” is thus decidable

König’s lemma for regular expansions of Tω

for regular (Tω,Z) (regular: finite no. of subtrees up to ')
with initial Z ⊆ Tω t.f.a.e.:

(i) Z path-finite (no infinite path within Z)

(ii) Z bounded (Z ⊆ T�` for some ` ∈ N)

corollary

tree-locality decidable for ψ(x) ∈ MSO

hence: BDD(ML) decidable

in fact, the inclusion “ML ⊆ Lµ” is thus decidable

example: undecidability via tiling for BDD(∀∗)

reduction of the tiling problem for tiling systems D
to (un)boundedness of ϕD(X , x) in ∀∗− with equality

ϕD(X, x) = ϕD
0 ∧ ϕ1(X, x)

ϕD
0 : H and V the graphs of commuting partial functions,

colours (Pd)d∈D compatible with tiling constraints

ϕ1(X, x) s.t. a 6∈ X n[A] ⇒ ∃ h : (n × n)-grid
hom−→ (A,H,V)

(0, 0) 7−→ a

then D tiles N× N-grid

⇔ D tiles arbitrarily large (n × n)-grids König’s lemma

⇔ ϕD unbounded

example: undecidability via tiling for BDD(∀∗) ctd.

ϕ1 can be chosen in universal ML ⊆ ∀∗−:

ϕ1(X) := 2HX ∨ 2VX ∨ 2H2VX ∨ 2V2HX

a 6∈ ϕn+1
1 [A]

A |= ϕ0

⇒

'&%$!"#a a10

a01 a11

//
H

OO

V

//
H OO

V
for some a10, a01, a11 6∈ ϕn

1[A]

overlapping homomorphisms
hij of (n × n)-grids at aij

glued to get a homomorphism
of ((n + 1)× (n + 1))-grid at a

'&%$!"#a a10

a01 a11 _______

�
�
�
�
�
�
� �

�
�
�
�
�
�_ _ _ _ _ _ _

compatibility guaranteed by ϕ0

