Bisimulation and Logics for Knowledge and Information

Martin Otto, Padova, 2023

Padova, MO 2023

I: bisimulation I: modal logic II: finite coverings II: beyond classical

1/38

bisimulation

structures

information

bisimulation — the quintessential back&forth

model theory, not just in classical settings

logics accessing information — in structural representations

with relevant semantics "up to what?"

two main parts

(I) basics: bisimulation and back&forth games

- bisimulation as modal Ehrenfeucht–Fraïssé
- bisimulation as the mother of back&forth
- model theory of modal logics

(II) survey: variations, generalisations & challenges

- bisimilar coverings for graphs and hypergraphs
- classically beyond FO to MSO
- essentially modal variations within FO
- non-classical modal steps beyond FO: team semantic & inquisitive scenarios, modal common knowledge

Padova, MO 2023

I: bisimulation I: modal logic II: finite coverings II: beyond classical

3/38

part I: bisimulation as quintessential back&forth

on graph-like structures

Kripke structures (possible worlds/accessibility), transition systems (states/transitions), game graphs (positions/moves)

capture informational/behavioural/positional equivalence that may not be respected in concrete structural representation (!)

core idea: dynamic back&forth probing of possibilities

 \longrightarrow exploration of what is meant to be represented in these structures & eliminating overhead in concrete structural representations (!)

games in logic: the bigger picture

two distinct model-theoretic traditions:

(1) semantic evaluation games (model checking games):

game protocol to test satisfaction relation: given structure \mathcal{A} and formula $\varphi \in \mathsf{L}$ determine whether $\mathcal{A} \models \varphi$

(2) comparison, equivalence games (back&forth games): game protocol to test L-equivalence/similarity: given structures \mathcal{A} and \mathcal{B} determine to which extent $\mathcal{A} \equiv_{\mathsf{L}} \mathcal{B}$

with bisimulation notions we focus on the second kind (2)but key results link it to the first kind (1)and there is a systematic connection !

I: bisimulation I: modal logic II: finite coverings II: beyond classical Padova, MO 2023

5/38

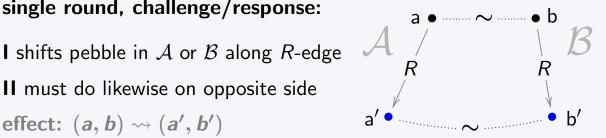
bisimulation game & bisimulation relations

the game: two players: I (challenger), II (defender)

play over two Kripke structures or transition systems $\begin{cases} \mathcal{A} = (\mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{P}^{\mathcal{A}})\\ \mathcal{B} = (\mathcal{B}, \mathcal{R}^{\mathcal{B}}, \mathcal{P}^{\mathcal{B}}) \end{cases}$

positions: pairs (a, b), correspondences between pebbled worlds

single round, challenge/response:



II loses in position (a, b) unless $P^{\mathcal{A}} \upharpoonright a \simeq P^{\mathcal{B}} \upharpoonright b$ (atom equivalence) either player loses when stuck

bisimulation game & bisimulation relations

winning regions for II define bisimulation equivalences:

$\mathcal{A},$ a $\sim^{\ell} \mathcal{B},$ b	II has a winning strategy for ℓ rounds from (a, b)
$\mathcal{A}, {\sf a} \sim ~ \mathcal{B}, {\sf b}$	II has a winning strategy for infinite game from (a, b)

intermediate limit $\sim^{\omega} := (\sim^{\ell} \text{ for all } \ell \in \mathbb{N})$

winning strategies in relational formalisation:

\sim^ℓ : $(Z_m \subseteq A imes B)_{m \leqslant \ell}$	
\sim^{ω} : $(Z_m \subseteq A imes B)_{m \in \mathbb{N}}$	stratified b&f systems, or
$\sim: Z \subseteq A \times B$	single bisimulation relation

Padova, MO 2023

I: bisimulation I: modal logic II: finite coverings II: beyond classical

7/38

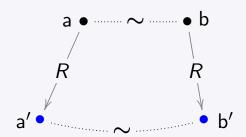
bisimulation game & bisimulation relations

a single bisimulation relation $Z \subseteq A \times B$ for \sim

with characteristic b&f requirements

- $\begin{array}{ll} (\textit{back}) & \text{for } (a,b) \in Z \text{ and } (b,b') \in R^{\mathcal{B}} \text{ there is} \\ a' \in A \text{ s.t. } (a,a') \in R^{\mathcal{A}} \text{ and } (a',b') \in Z \end{array}$
- $\begin{array}{ll} (\textit{forth}) & \text{for } (a,b) \in Z \text{ and } (a,a') \in R^{\mathcal{A}} \text{ there is} \\ b' \in B \text{ s.t. } (b,b') \in R^{\mathcal{B}} \text{ and } (a',b') \in Z \end{array}$

witnesses winning strategy for II in infinite game from any $(a, b) \in Z$



classical motif: Ehrenfeucht-Fraïssé

pebble games for FO and FO $_{\infty}$

I and II over relational structures $\mathcal{A} = (\mathcal{A}, \mathcal{R}^{\mathcal{A}})$ and $\mathcal{B} = (\mathcal{B}, \mathcal{R}^{\mathcal{B}})$ **positions:** local isomorphisms $p: a \mapsto b$, $p: A \upharpoonright a \simeq B \upharpoonright b$ single round: challenge/response for extension by one new pebble pair $(p: \boldsymbol{a} \mapsto \boldsymbol{b}) \rightsquigarrow (p': \boldsymbol{a} a' \mapsto \boldsymbol{b} b')$

winning regions: $\begin{cases} \mathcal{A}, \mathbf{a} \simeq^{\ell} \mathcal{B}, \mathbf{b} & \ell \text{ rounds} \end{cases}$ **b&f equivalences** $\mathcal{A}, \mathbf{a} \simeq^{\infty} \mathcal{B}, \mathbf{b}$ infinite game

 \simeq^{∞} classically known as partial isomorphy, intermediate level \simeq^{ω} as finite isomorphy

I: bisimulation I: modal logic II: finite coverings II: beyond classical Padova, MO 2023

Ehrenfeucht–Fraïssé

linking game equivalence to equivalence w.r.t. FO and FO_{∞}

Ehrenfeucht–Fraïssé/Karp thms

 $\mathcal{A}, \boldsymbol{a} \simeq^{\ell} \mathcal{B}, \boldsymbol{b} \quad \Leftrightarrow \quad \mathcal{A}, \boldsymbol{a} \equiv^{\ell}_{\scriptscriptstyle \mathsf{FO}} \mathcal{B}, \boldsymbol{b}^{*} \qquad \mathsf{FO-equiv. to qfr-depth} \ \ell$ $\mathcal{A}, \boldsymbol{a} \simeq^{\infty} \mathcal{B}, \boldsymbol{b} \iff \mathcal{A}, \boldsymbol{a} \equiv_{FO}^{\infty} \mathcal{B}, \boldsymbol{b}$ FO_{∞} -equiv.

* for finite relational vocabularies where \simeq^{ℓ} has finite index

proof ingredients:

- $(Z_m := \{ (p: \boldsymbol{a} \mapsto \boldsymbol{b}) : \mathcal{A}, \boldsymbol{a} \equiv_{FO}^m \mathcal{B}, \boldsymbol{b} \})_{m \in \mathbb{N}}$ satisfies stratified b&f conditions
- I wins according to $\mathcal{A}, \boldsymbol{a} \neq_{FO}^{m} \mathcal{B}, \boldsymbol{b} \rightsquigarrow \mathcal{A}, \boldsymbol{a} a' \neq_{FO}^{m-1} \mathcal{B}, \boldsymbol{b} b'$
- equivalence classes $[\mathcal{A}, \boldsymbol{a}]/{\simeq}^m$ are FO-definable at qfr-depth m

9/38

recall: the bigger picture w.r.t. games & logic

(1) semantic evaluation game (model checking game):
checking A, a ⊨ φ
in dialogue game between verifier & refuter
(2) equivalence game (back&forth game):
checking whether (A, a ⊨ φ ⇔ B, b ⊨ φ) for all φ ∈ L_ℓ
in back&forth game

for many logics like guarded fragment GF, k-variable fragments FO^k, ...

```
can typically relate levels \equiv_{L}^{\ell} of L-equivalence in (2)
to \sim^{\ell} between the game graphs
of the L-evaluation game (1)
```

Padova, MO 2023

I: bisimulation I: modal logic II: finite coverings II: beyond classical

11/38

back to bisimulation & basic modal logic ML

on graph-like structures

with binary accessibility relations $\mathbf{R} = (R_1, ...) \longrightarrow \text{modalities } \diamondsuit_i / \Box_i$ and unary predicates $\mathbf{P} = (P_1, ...) \longrightarrow \text{basic propositions } p_i$

atomic formulae: \bot, \top and p_i booleans connectives: \land, \lor, \neg modal quantification:

$$\diamondsuit_{i} \varphi \equiv \exists y (R_{i} \times y \land \varphi(y))$$

$$\square_{i} \varphi \equiv \forall y (R_{i} \times y \rightarrow \varphi(y))$$

relativised FO quantification

observation

- 0-bisimulation condition \sim^0 matches atomic equiv. $\equiv^0_{\scriptscriptstyle \mathsf{ML}}$
- bisimulation b&f matches modal quantification pattern

bisimulation — modal Ehrenfeucht-Fraïssé

modal Ehrenfeucht-Fraïssé/Karp thms

in full analogy with classical picture:

 $\begin{array}{lll} \mathcal{A}, \boldsymbol{a} \simeq^{\ell} \mathcal{B}, \boldsymbol{b} & \Leftrightarrow & \mathcal{A}, \boldsymbol{a} \equiv^{\ell}_{\mathsf{FO}} \mathcal{B}, \boldsymbol{b}^{*} & \mathsf{FO}\text{-equiv. to qfr-depth } \ell \\ \mathcal{A}, \boldsymbol{a} \simeq^{\infty} \mathcal{B}, \boldsymbol{b} & \Leftrightarrow & \mathcal{A}, \boldsymbol{a} \equiv^{\infty}_{\mathsf{FO}} \mathcal{B}, \boldsymbol{b} & \mathsf{FO}_{\infty}\text{-equiv.} \end{array}$

corollary

- the semantics of $ML \subseteq ML_{\infty}$ is invariant under bisimulation
- the semantics of ML-formulae of depth ℓ is invariant under \sim^ℓ

Padova, MO 2023I: bisimulationI: modal logicII: finite coveringsII: beyond classical13/38where \simeq^{ℓ} has finite index

variations & the quintessential nature of bisimulation

• bisimulation in game graphs for other logics

states: admissible assignments transitions: quantification patterns

"all Ehrenfeucht-Fraïssé games are bisimulation games"

close to original (basic modal) bisimulation:

two-way and global bisimulation ≈
 with extended challenge/response options
 (backward moves & jumps) for corresponding modalities

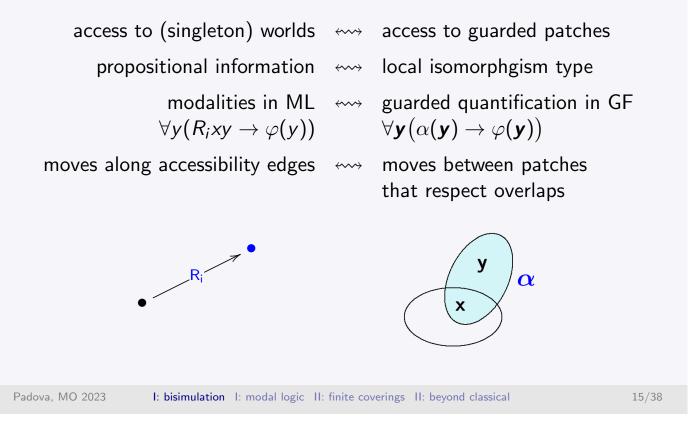
qualitatively different:

• guarded bisimulation

from graphs to hypergraphs, with moves respecting overlaps

guarded bisimulation: ... hypergraph of visible patches

as an example of the systematic variability and relationship between games (1) & (2)



bisimulation — modal Ehrenfeucht-Fraïssé

typical example of a bisimulation issue and its FO counterpart:

when does \equiv_{ML} (\sim^{ω}) coincide with full bisimulation \sim ? when does \equiv_{FO} (\simeq^{ω}) coincide with partial isomorphy \simeq^{∞} ?

Hennessy–Milner thm (the modal answer)

over suitably saturated models, \sim^ω ($\equiv_{\scriptscriptstyle{\sf ML}}$) coincides with \sim ($\equiv^\infty_{\scriptscriptstyle{\sf ML}}$)

- finitely branching
- modally or ω -saturated (ω -saturation is good also for $\simeq^{\omega}/\simeq^{\infty}$)
- recursively saturated pairs (also good for $\simeq^{\omega}/\simeq^{\infty}$)

crucial in classical model-theoretic arguments for modal logics

model theory of modal logics

thesis: information-theoretically, Kripke structures are meant to represent bisimulation types

just as transition systems stand for possible system behaviours

modal model theory = bisimulation invariant model theory

here briefly look at:

- tree unfoldings
- tree model property & finite model property
- expressive completeness (classical and fmt)

Padova, MO 2023 I: bisimulation I: r

I: bisimulation I: modal logic II: finite coverings II: beyond classical

17/38

tree unfoldings (cf. game trees)

tree unfolding: unfolding \mathcal{A} into \mathcal{A}_a^*

based on the set of labelled directed paths σ rooted at a in A with natural projection to endpoints as a homomorphism

$$\begin{array}{ccccc} \pi \colon \mathcal{A}_{\mathbf{a}}^* & \longrightarrow & \mathcal{A} \\ \sigma & \longmapsto & \pi(\sigma) \end{array}$$

that induces a bisimulation $\mathcal{A}_{\textit{a}}^{*}, \textit{a} \sim \mathcal{A}, \textit{a}$

 $\pi \colon \mathcal{A}^*_a \longrightarrow \mathcal{A}$ is an example of a bisimilar covering:

- π is a homomorphism: the forth-property
- π has lifting property: the back-property

for its graph $\{(\sigma, \pi(\sigma)) : \sigma \in A_a^*\}$: a bisimulation relation

tree unfoldings and tree model property

bisimilar unfoldings into tree structures		
preservation under bisimulation	$\succ \Rightarrow$	tree model property

tree model property:

for all \sim -invariant logics $ML, \ldots, L_{\mu}, \ldots ML_{\infty}$: every satisfiable formula has a tree model

important: can employ good model-theoretic and algorithmic properties of trees, MSO on trees, tree automata, ... for robust decidability and complexity results for modal logics

Padova, MO 2023 I: bisimulation I: modal logic II: finite coverings II: beyond classical

```
19/38
```

finite (tree) model property

for basic modal logic ML (and some close relatives) even get finite tree models, hence the

finite model property:

every satisfiable formula of ML has a finite (tree) model

```
more generic method: passage to \sim^{\ell}-quotient of any model yields a finite model (usually not a tree model)
```

generalises to some extensions but not, in this simple form, e.g. to GF $(\rightarrow$ Grädel, 1999)

expressive completeness of modal logics

... relative to FO, consider

$$\mathbf{FO}/\sim := \begin{cases} \text{the classes of } \sim \text{-invariant FO-properties of} \\ (\text{just finite, or all}) \text{ ptd Kripke structures} \end{cases}$$

remark:

semantic classes corresponding to undecidable conditions like \sim -invariance are at the heart of classical 'preservation theorems', which really concern the quest for **syntactic representation**

in this case, the positive answer underpins the role of ML, twice:

 $FO/\sim \equiv ML$ classically, van Benthem (1983) $FO/\sim \equiv ML$ in fmt, Rosen (1997)

Padova, MO 2023 I: bisimulation I: modal logic II: finite coverings II: beyond classical

21/38

expressive completeness: $FO/\sim \equiv ML$

it suffices to show that for $\varphi(x) \in \mathsf{FO}$

 \sim -invariance implies \sim^{ℓ} -invariance for some finite level $\ell \in \mathbb{N}$

a non-classical compactness property (!)

then $\varphi \equiv \varphi' \in ML$ by Ehrenfeucht–Fraïssé: ML-definability of \sim^{ℓ} -classes & finite index

NB: two, a priori independent, readings: classical & fmt

expressive completeness: generic classical approach \sim -invariance $\Rightarrow \sim^{\ell}$ -invariance for some ℓ (*)classical compactness argument with upgrading along \equiv_{FO} -axis
through Hennessy-Milner property for ω -saturated structures $\mathcal{A}, a \longrightarrow \mathcal{B}, b$ \downarrow \downarrow \downarrow \downarrow \downarrow \uparrow $\hat{\mathcal{A}}, a \longrightarrow \mathcal{C}, \hat{\mathcal{B}}, b$ ω -saturated extns

Padova, MO 2023 I: bisimulation I: modal logic II: finite coverings II: beyond classical 23/38

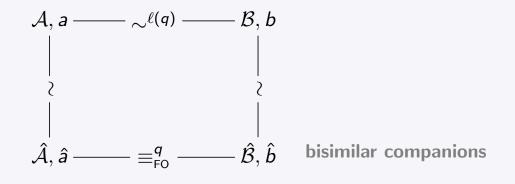
and not an option for fmt version

expressive completeness: a constructive approach

elegant and smooth, but no information regarding target ℓ

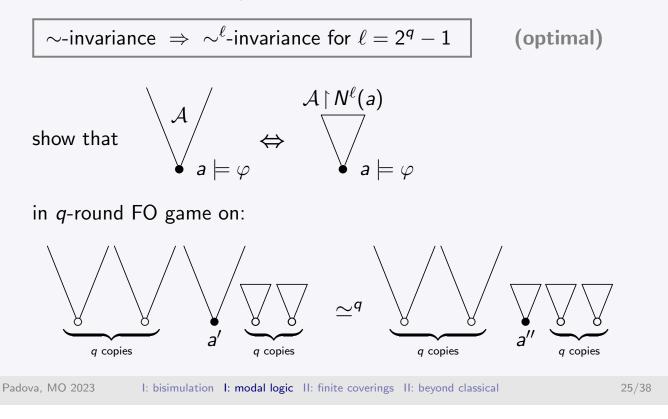
~-invariance $\Rightarrow \sim^{\ell}$ -invariance for some ℓ

upgrading along \sim -axis of $\sim^{\ell(q)} (\equiv^{\ell}_{ML})$ to $\simeq^{q} (\equiv^{q}_{FO})$ through \sim -preserving model transformations



expressive completeness: $\mathrm{FO}/{\sim}\equiv\mathrm{ML}$

a simple argument (good classically & fmt) using the locality of FO/ \sim & Ehrenfeucht–Fraïssé



a more generic constructive approach

upgrading in $\mathcal{A}, \boldsymbol{a} \longrightarrow \mathcal{A}^{\ell(q)} \longrightarrow \mathcal{B}, \boldsymbol{b}$ $\begin{vmatrix} & & & \\ & & & & \\ & & & & \\ & & & \\$

requires (finite) model transformations $\mathcal{A}/\mathcal{B}\longmapsto \hat{\mathcal{A}}/\hat{\mathcal{B}}$ that are

- compatible with bisimulation:
 ideally want ≈ coverings (for symmetry & homogeneity)
- suitable to eliminate all obstacles for $\simeq^q (\equiv_{FO}^q)$ that are *not controlled* by any level of \sim^{ℓ} :

need to avoid short cycles & small multiplicities

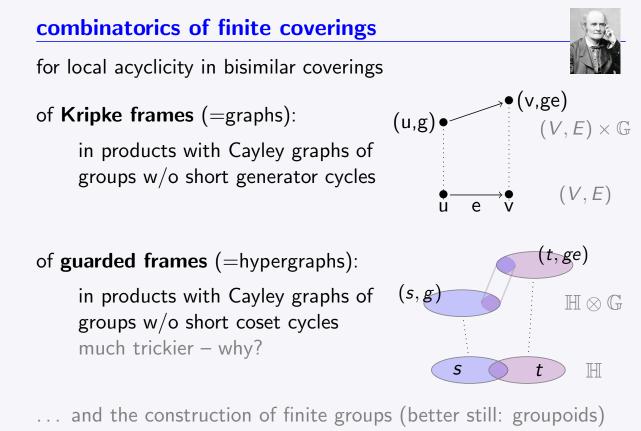
part II: variations, generalisations & challenges

in this part (survey style):

 technical variations: finite bisimilar coverings avoiding short cycles in graph & hypergraph coverings in products with finite Cayley graphs ... for dealing with global and guarded bisimulation
 classically beyond FO to MSO: Janin–Walukiewicz ... and a big ? in finite model theory
 essentially modal variations, within & beyond FO: ... team & inqusitive semantics, common knowledge

Padova, MO 2023 I:

I: bisimulation I: modal logic II: finite coverings II: beyond classical



that avoid certain patterns (equalities, relations) is a non-trivial algebraic-combinatorial challenge (with further applications)

from FO to MSO

theorem (Janin–Walukiewicz, 1996)

$MSO/\sim \equiv L_{\mu}$

modal μ -calculus L_{μ} is expressively complete for the class of all \sim -invariant MSO-definable properties of pointed Kripke structures

proof based on

(1) tree model property (for any \sim -invariant phenomenon!)

(2) analysis of MSO model-checking by tree automata

$\ensuremath{\textbf{OPEN:}}$ status in finite model theory

where neither (1) nor (2) applies, so that known finite coverings do not seem to help

Padova, MO 2023 I: bisimulation I: modal logic II: finite coverings II: beyond classical

29/38

from MSO to GSO

joint work with Achim Blumensath & Erich Grädel

via analysis of game trees for guarded bisimulation, guarded tree unfoldings, and reduction to Janin–Walukiewicz get

 \rightsquigarrow GSO/ $\sim_g \equiv \mu$ GF

over the class of all guarded structures

```
again: classical setting only!
```

essentially modal variations within FO (1)

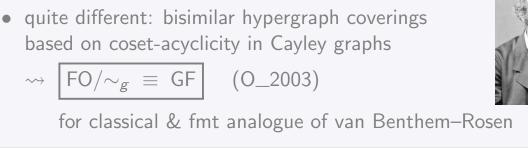
joint work with Anuj Dawar

• global finite coverings allow for local acyclicity (and finitely boosted branching) throughout

$$\Rightarrow |\mathsf{FO}/\approx \equiv \mathsf{ML}[\forall,-]|$$

for classical & fmt analogue of van Benthem-Rosen

• restrictions to several relevant classes of (finite) frames: reflexive, irreflexive, symmetric ... as you would expect



Padova, MO 2023

I: bisimulation I: modal logic II: finite coverings II: beyond classical

31/38

essentially modal variations within FO (2)

joint work with Anuj Dawar

- over rooted transitive frames (which defeat locality):
 - \rightsquigarrow FO/~ \equiv ML[*] \equiv MSO/~

over finite or wellfounded rooted transitive frames

(finite) Löb and Grzegorczyk frames also motivated by information & proof theory

• through global finite coverings for multi-agent S5-frames:

 $\rightarrow FO/\sim \equiv ML$ over (finite) multi-agent epistemic S5 models

motivated by knowledge representation

non-classically beyond FO (1): team semantic ML

treat sets X of worlds in Kripke structures as information states arbitrary rather than relationally encoded subsets X

- bisimulation \rightsquigarrow team bisimulation (element-wise match of sets)
- basic team ML (with team disjunction & just nnf negation) is "flat" with standard translations ∀x(x ∈ X → φ(x)),

hence too weak to cover all \sim -invariant team properties that are FO-definable in the form $\psi(X)$ (FO^T-definable)

• augmented by strict negation, get ML[non] with

$$\Rightarrow$$
 FO^T/ $\sim \equiv$

 $\sim~\equiv~{\sf ML[non]}$

full team-semantic analogue of van Benthem-Rosen with 'constructive' proof lifted to (scattered) teams

Padova, MO 2023 I: bisimulation I: modal logic II: finite coverings II: beyond classical

33/38

non-classically beyond FO (2): inquisitive ML

joint work with Ivano

inquisitive Kripke frames give worlds access to sets of information states rather than sets of worlds

 \rightsquigarrow one level up & akin with team semantic concepts

- inquisitive modal logic INQML extends basic (team) ML and defines persistent state properties that are (obviously!) invariant under the inquisitive variant of bisimulation
- natural 2-sorted relational encodings of models give FO access to some MSO-features, and in this context
 - \rightsquigarrow $|FO^{\downarrow}/\sim \equiv INQML$

over (finite) relational inquisitive models

full inquisitive analogue of van Benthem-Rosen over non-elementary classes of relational structures, on FO/MSO borderline esp. in the epistemic S5 version (!)

non-classically beyond FO (3): common knowledge

joint work with Felix Canavoi

common knowledge logic ML[CK]:

multi-modal S5 with 'common knowledge' modalities \Box_{α} for sets α of agents

intuition: "among α , everybody knows that everybody knows that everybody knows that ..." (ad infinitum)

• the new \Box_{α} is the box modality for $R_{\alpha} = \mathsf{TC}(\bigcup_{i \in \alpha} R_i)$

beyond FO due to non-elementary nature of TC (!)

but with the usual standard translation into FO over the richer non-elementary class of CK-frames with the new R_{α}

Padova, MO 2023

I: bisimulation I: modal logic II: finite coverings II: beyond classical

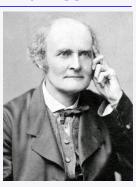
35/38

non-classically beyond FO (3): ML over CK-frames

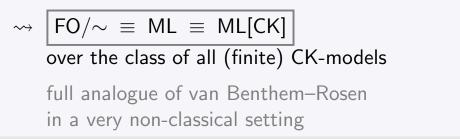
ML[CK] is just ML over CK-frames: S5-frames with induced equivalences R_{α}

which really seem to defeat locality!

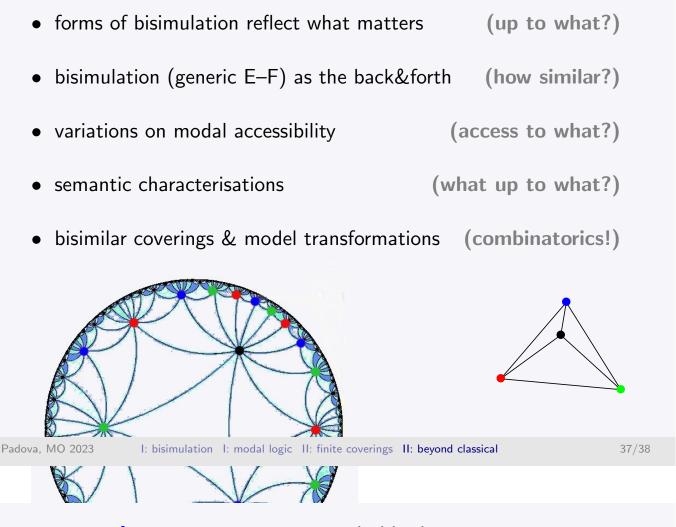
where once more Cayley helps a lot



- need tractable forms of local acyclicity, simultaneously at all levels α (at nested levels of granularity)
- using finite bisimilar coverings in products with Cayley graphs of finite groups w/o short coset cycles, can show:



kind of a summary



some pointers

my hobby horses

V. Goranko and M. Otto: Model theory of modal logics. In: Handbook of Modal Logic, 2006

M. Otto: Elementary proof of the van Benthem-Rosen characterisation theorem, TUD preprint, 2004

M. Otto: Bisimulation invariance and finite structures.

In: LNL, Logic Colloquium 02, 2006

M. Otto: Modal and guarded characterisation theorems over finite transition systems, Annals of Pure and Applied Logic, 2004

A. Dawar and M. Otto: Modal characterisation theorems over special classes of frames, Annals of Pure and Applied Logic, 2009

E. Grädel and M. Otto: The freedoms of (guarded) bisimulation. In: Johan van Benthem on Logic and Information Dynamics, 2014

I. Ciardelli and M. Otto: Inquisitive bisimulation, J. Symbolic Logic, 2021

M. Otto: Highly acyclic groups, hypergraph covers and the guarded fragment, Journal of the ACM, 2012

M. Otto: Acyclicity in finite groups and groupoids, arXiv, 2022