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amalgamation?

• synthesis & amalgamation:
hypergraphs & relational structures: (de)composition patterns
model theory & algebra: homogeneity, Fräıssé limits
geometry: atlases of charts & changes of co-ordinates

• local/partial symmetries:
logic & model theory: partial isomorphisms
geometry & algebra: groupoids, inverse semigroups

• local consistency:
logic & combinatorics: constraint satisfaction
logic & databases: constraints, dependencies
logic & computation: e.g. quantum information

. . . calling for global solutions, closures, completions
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a generic free amalgamation construction

from finite families
(As)s∈S of relational structures

(ρe : As
part−→ As′)e∈E [s,s′] of partial isomorphisms
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a generic free amalgamation construction

from finite families
(As)s∈S of relational structures

(ρe : As
part−→ As′)e∈E [s,s′] of partial isomorphisms

}
(∗)

find natural free amalgam of disjoint copies
(As ,w) ' As tagged by walks w in I = (S , (E [s, s ′])),
with (As ,w) and (As′ ,w ·e) overlapping according to ρe

(
((As), (ρe))⊗ I∗

) /
≈ based on multi-sorted

monoid I∗ of walks in I
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part−→ As′)e∈E [s,s′] of partial isomorphisms

}
(∗)

find natural free amalgam of disjoint copies
(As ,w) ' As tagged by walks w in I = (S , (E [s, s ′])),
with (As ,w) and (As′ ,w ·e) overlapping according to ρe

(
((As), (ρe))⊗ I∗

) /
≈ based on multi-sorted

monoid I∗ of walks in I

• realises the amalgamation pattern (∗)
• is free in a universal algebraic sense

• is generic but infinite (unless I is acyclic)
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a generic free amalgamation construction

from finite families
(As)s∈S of relational structures

(ρe : As
part−→ As′)e∈E [s,s′] of partial isomorphisms

}
(∗)

find natural free amalgam of disjoint copies
(As ,w) ' As tagged by walks w in I = (S , (E [s, s ′])),
with (As ,w) and (As′ ,w ·e) overlapping according to ρe

(
((As), (ρe))⊗ I∗

) /
≈ based on multi-sorted

monoid I∗ of walks in I

. . . finite analoga?

. . . based on what instead of I∗ ?

. . . equally homogeneous?

. . . of controlled acyclicity?
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realisation of H =
(
(As), (ρe)

)
in general:

a relational structure A with an atlas given by superimposed
hypergraph structure (A, S̃) of charts πs̃ : A� s̃ ' Aπ(s̃) s.t.

• locally, all ρe-overlaps are realised:

each π−1s̃ (As) overlaps with some π−1s̃′ (As′) according to ρe

• globally, no incidental overlaps occur:

if s̃ ∩ t̃ 6= ∅, then this is due to a composition of ρei
for some single walk w = e1 · · · em from π(s̃) to π(t̃)

As As′

s̃ s̃ ′

πs̃

		

πs̃′

��
ρe (( As At

s̃ t̃

πs̃

		

πt̃

��ρw ((
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realisation of H =
(
(As), (ρe)

)
in general:

a relational structure A with an atlas given by superimposed
hypergraph structure (A, S̃) of charts πs̃ : A� s̃ ' Aπ(s̃) s.t.

• locally, all ρe-overlaps are realised:

each π−1s̃ (As) overlaps with some π−1s̃′ (As′) according to ρe

• globally, no incidental overlaps occur:

if s̃ ∩ t̃ 6= ∅, then this is due to a composition of ρei
for some single walk w = e1 · · · em from π(s̃) to π(t̃)

NB: the second, “no-nonsense” condition avoids
potential relational inconsistencies for amalgams
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aside: the rôle of groupoids/inverse semigroups

composition structure of partial bijections:

• with partial composition (as a total operation)
 inverse semigroups

• with exact composition (as a partial operation)
 groupoids

groupoids capture local/partial symmetries

. . . just as groups capture global symmetries
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(II) reduced products with groupoids

I-groupoid: G =
(
G , (Gst)s,t∈S , · , (1s)s∈S

)
with

associative compositions Gst × Gtu → Gsu,
neutral elements 1s ∈ Gss , inverses, . . .
designated generators (ge)e∈E

Martin Otto 2016 (I) amalgamation (II) groupoids (III) applications 6/15
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I-groupoid: G =
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G , (Gst)s,t∈S , · , (1s)s∈S

)
with

associative compositions Gst × Gtu → Gsu,
neutral elements 1s ∈ Gss , inverses, . . .
designated generators (ge)e∈E

the potentially finite analogue of the infinite path monoid I∗
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(II) reduced products with groupoids

I-groupoid: G =
(
G , (Gst)s,t∈S , · , (1s)s∈S

)
with

associative compositions Gst × Gtu → Gsu,
neutral elements 1s ∈ Gss , inverses, . . .
designated generators (ge)e∈E

 reduced products H⊗ G
as candidate realisations

As×{g}

As′×{g·e}

ρe

when is this a realisation of H?
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obstructions: wrong kind of cycles (1)

violation of path independence for elements

• conflicting identifications may collapse individual As

•
s

•
t

As
At

a bad cycle?
w1 **

w2

55

ρw1 ++

ρw2

66

can be overcome by relatively simple pre-processing:

replace I by finite covering Î that unfolds bad cycles
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obstructions: wrong kind of cycles (2)

violations of path independence for tuples

• incidental parallel identifications may cause
conflicts at the relational level

•
s

•
t

As

a bad cycle?

At

w1 **

w2

55

ρw1 ++

ρw2

66
OO

��

 substantial acyclicity conditions on suitable groupoids
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an appropriate notion of acyclicity: control coset cycles

• not just short generator cycles in the Cayley graph of G,
but short cycles of cosets gG[α] generated by subsets α ⊆ E

••
α α′

g g ′
h ((

• in particular, need to avoid certain coset cycles of length 2

wG
1 = h = wG

2

a1

a2

As × {g}
b1

b2

At × {gh}
ρw1 ''

ρw2

::

in reduced product in G

α1

α2

• •g gh

wG
1

��

wG
2

MM
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bad coset cycles & obstruction no. (2)

. . . in particular, need to avoid certain coset cycles of length 2:

wG
1 = h = wG

2

a1

a2

As × {g}
b1

b2

At × {gh}
ρw1 ''

ρw2

::

in reduced product in G

α1

α2

• •g gh

wG
1

��

wG
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bad coset cycles & obstruction no. (2)

. . . in particular, need to avoid certain coset cycles of length 2:

wG
1 = h = wG

2

a1

a2

As × {g}
b1

b2

At × {gh}
ρw1 ''

ρw2

::

in reduced product in G

α1

α2

• •g gh

wG
1

��

wG
2

MM

α1: generators carrying a1

α2: generators carrying a2

}
want h = wG for w ∈ 〈α1 ∩ α2〉
so that w carries both a1 and a2
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bad coset cycles & obstruction no. (2)

. . . in particular, need to avoid certain coset cycles of length 2:

wG
1 = h = wG

2

a1

a2

As × {g}
b1

b2

At × {gh}
ρw1 ''

ρw2

::

in reduced product in G

α1

α2

• •g • gh

wG
1

��

wG
2

MM

α1: generators carrying a1

α2: generators carrying a2

}
want h = wG for w ∈ 〈α1 ∩ α2〉
so that w carries both a1 and a2

〈α1〉 ∩ 〈α2〉 = 〈α1 ∩ α2〉
avoiding a coset 2-cycle

no hole here!
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any degree of acyclicity in finite groupoids

theorem (O 13)

for every N ∈ N and incidence pattern I = (S ,E ) there are
finite I-groupoids G without coset cycles of length up to N
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any degree of acyclicity in finite groupoids

theorem (O 13)

for every N ∈ N and incidence pattern I = (S ,E ) there are
finite I-groupoids G without coset cycles of length up to N

idea: in an inductive construction generate G from (semi)group
action on amalgamation chains that unfold short cosets cycles

cf. constructions of acyclic Cayley graphs (Alon, Biggs)
here lifted to more intricate adaptation for coset cycles
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any degree of acyclicity in finite groupoids

theorem (O 13)

for every N ∈ N and incidence pattern I = (S ,E ) there are
finite I-groupoids G without coset cycles of length up to N

corollary

for any H =
(
(As), (ρe)

)
obtain realisations H⊗G that

• respect all symmetries of H (genericity)

• have any desired degree of (local) acyclicity

with an atlas of charts onto the (As)
forming an N-acyclic hypergraph
with changes of co-ordinates generated by the (ρe)
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any degree of acyclicity in finite groupoids

theorem (O 13)

for every N ∈ N and incidence pattern I = (S ,E ) there are
finite I-groupoids G without coset cycles of length up to N

corollary

for any H =
(
(As), (ρe)

)
obtain realisations H⊗G that

• respect all symmetries of H (genericity)

• have any desired degree of (local) acyclicity

with an atlas of charts onto the (As)
forming an N-acyclic hypergraph
with changes of co-ordinates generated by the (ρe)

generic & locally free finite realisations
of any finite amalgamation pattern
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applications (1): hypergraph coverings

corollary

every finite hypergraph admits, for N ∈ N, finite coverings that

• are N-acyclic in the sense that every induced sub-hypergraph
on up to N vertices is acyclic (tree decomposable, α-acyclic)

• possess a fibre-transitive automorphism group
that lifts all symmetries of the given hypergraph

idea: generic N-acyclic finite realisations of the overlap pattern

corresponding to the “exploded view” of the given hypergraph
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applications (2): lifting local to global symmetries

EPPA: extension properties for partial automorphisms

Hrushovski 92 (graphs)
Herwig 98 (relational structures)
Herwig–Lascar 00 (fmp w.r.t. forbidden homomorphisms)

A
B

p **

f
''
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applications (2): lifting local to global symmetries

EPPA: extension properties for partial automorphisms

Hrushovski 92 (graphs)
Herwig 98 (relational structures)
Herwig–Lascar 00 (fmp w.r.t. forbidden homomorphisms)

here, as a corollary

for finite A and collection of partial automorphisms (ρp) find
finite EPPA extension B ⊇ A as generic realisation of pattern
of self-overlaps of A induced by the ρp

• with atlas of A-charts forming N-acyclic hypergraph on B

• hence, locally free & universal w.r.t. homomorphisms

which implies full Herwig–Lascar result
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applications (3): various uses in modal/guarded logics

• finite model properties & finite controllability
for guarded logics and constraints

using finite coverings of controlled acyclicity
and/or Herwig–Lascar extension properties

• characterisation theorems (fmt & classical)
for the guarded fragment GF and relatives

using finite coverings of controlled acyclicity

• characterisation theorems (fmt & classical)
for (modal) common knowledge logic

new, with Felix Canavoi, using (finite) S5-frames
over Cayley groups with controlled coset-acyclicity
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some related references

Bárány–Gottlob–O (LMCS 2014, arXiv:1309.5822): Querying
the guarded fragment

Bárány–ten Cate–O (VLDB 2012, arXiv:1203.0077): Queries
with guarded negation

Grädel–O (2014): The freedoms of (guarded) bisimulation

Hodkinson–O (BSL 2003): Finite conformal hypergraph covers
and Gaifman cliques in finite structures

Herwig–Lascar (Transactions of the AMS 2000): Extending
partial isomorphisms and the profinite topology on free groups

O (Journal of the ACM 2012): Highly acyclic groups, hypergraph
covers and the guarded fragment

O (arXiv:1404.4599): Finite groupoids, finite coverings and
symmetries in finite structures

→ http://www.mathematik.tu-darmstadt.de/˜otto/
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