{Symmetry, Logic, Computation}

Symmetry-Preserving Finite Synthesis & Amalgamation

Martin Otto TU Darmstadt Simons Institute Berkeley, Nov. 2016 {Symmetry, Logic, Computation}

Symmetry-Preserving Finite Synthesis & Amalgamation

Martin Otto TU Darmstadt Simons Institute Berkeley, Nov. 2016

- amalgamation: overlap specifications
- local vs. global consistency
- local vs. global symmetry

finite model constructions with a touch of combinatorial geometry and group theory

• synthesis & amalgamation:

hypergraphs & relational structures: (de)composition patterns model theory & algebra: homogeneity, Fraïssé limits geometry: atlases of charts & changes of co-ordinates

• local/partial symmetries:

logic & model theory: partial isomorphisms geometry & algebra: groupoids, inverse semigroups

• local consistency:

logic & combinatorics: constraint satisfaction logic & databases: constraints, dependencies logic & computation: e.g. quantum information

... calling for global solutions, closures, completions

from finite families $(\mathcal{A}_s)_{s\in S}$ of relational structures $(\rho_e: \mathcal{A}_s \xrightarrow{\text{part}} \mathcal{A}_{s'})_{e\in E[s,s']}$ of partial isomorphisms $\}$ (*)

 $\mathbf{I}=(S,E)$

from finite families $(\mathcal{A}_s)_{s\in S}$ of relational structures $(\rho_e: \mathcal{A}_s \xrightarrow{\text{part}} \mathcal{A}_{s'})_{e\in E[s,s']}$ of partial isomorphisms $\}$ (*)

find natural free amalgam of disjoint copies $(\mathcal{A}_s, w) \simeq \mathcal{A}_s$ tagged by walks w in I = (S, (E[s, s'])), with (\mathcal{A}_s, w) and $(\mathcal{A}_{s'}, w \cdot e)$ overlapping according to ρ_e

 $(((\mathcal{A}_s), (\rho_e)) \otimes \mathrm{I}^*) / pprox$

based on multi-sorted monoid I^* of walks in I

from finite families $(\mathcal{A}_{s})_{s \in S} \quad \text{of relational structures}$ $(\rho_{e} \colon \mathcal{A}_{s} \xrightarrow{\text{part}} \mathcal{A}_{s'})_{e \in E[s,s']} \quad \text{of partial isomorphisms}$ (*)

find natural free amalgam of disjoint copies $(\mathcal{A}_s, w) \simeq \mathcal{A}_s$ tagged by walks w in I = (S, (E[s, s'])), with (\mathcal{A}_s, w) and $(\mathcal{A}_{s'}, w \cdot e)$ overlapping according to ρ_e

 $(((\mathcal{A}_s), (\rho_e)) \otimes \mathbf{I}^*) / \thickapprox$

based on multi-sorted monoid I^* of walks in I

- realises the amalgamation pattern (*)
- is free in a universal algebraic sense
- is generic but infinite (unless I is acyclic)

from finite families $(\mathcal{A}_{s})_{s \in S} \quad \text{of relational structures}$ $(\rho_{e} \colon \mathcal{A}_{s} \xrightarrow{\text{part}} \mathcal{A}_{s'})_{e \in E[s,s']} \quad \text{of partial isomorphisms}$ (*)

find natural free amalgam of disjoint copies $(\mathcal{A}_s, w) \simeq \mathcal{A}_s$ tagged by walks w in I = (S, (E[s, s'])), with (\mathcal{A}_s, w) and $(\mathcal{A}_{s'}, w \cdot e)$ overlapping according to ρ_e

 $(((\mathcal{A}_s),(\rho_e))\otimes \mathrm{I}^*)/pprox$

based on multi-sorted monoid I^* of walks in I

- ... finite analoga?
- ... based on what instead of I* ?
- ... equally homogeneous?
- ... of controlled acyclicity?

realisation of $H = ((\mathcal{A}_s), (\rho_e))$ in general:

a relational structure \mathcal{A} with an atlas given by superimposed hypergraph structure $(\mathcal{A}, \tilde{\mathcal{S}})$ of charts $\pi_{\tilde{s}} : \mathcal{A} \upharpoonright \tilde{s} \simeq \mathcal{A}_{\pi(\tilde{s})}$ s.t.

- locally, all ρ_e-overlaps are realised:
 each π⁻¹_s(A_s) overlaps with some π⁻¹_{s'}(A_{s'}) according to ρ_e
- globally, no incidental overlaps occur:

if $\tilde{s} \cap \tilde{t} \neq \emptyset$, then this is due to a composition of ρ_{e_i} for some single walk $w = e_1 \cdots e_m$ from $\pi(\tilde{s})$ to $\pi(\tilde{t})$

realisation of $H = ((\mathcal{A}_s), (\rho_e))$ in general:

a relational structure \mathcal{A} with an atlas given by superimposed hypergraph structure $(\mathcal{A}, \tilde{\mathcal{S}})$ of charts $\pi_{\tilde{s}} : \mathcal{A} \upharpoonright \tilde{s} \simeq \mathcal{A}_{\pi(\tilde{s})}$ s.t.

- locally, all ρ_e-overlaps are realised:
 each π⁻¹_š(A_s) overlaps with some π⁻¹_{š'}(A_{s'}) according to ρ_e
- globally, no incidental overlaps occur:

if $\tilde{s} \cap \tilde{t} \neq \emptyset$, then this is due to a composition of ρ_{e_i} for some single walk $w = e_1 \cdots e_m$ from $\pi(\tilde{s})$ to $\pi(\tilde{t})$

NB: the second, "no-nonsense" condition avoids potential relational inconsistencies for amalgams

aside: the rôle of groupoids/inverse semigroups

composition structure of partial bijections:

- with partial composition (as a total operation)
 → inverse semigroups
- with exact composition (as a partial operation)
 → groupoids

groupoids capture local/partial symmetries

... just as groups capture global symmetries

(II) reduced products with groupoids

I-groupoid: $\mathbb{G} = (G, (G_{st})_{s,t\in S}, \cdot, (1_s)_{s\in S})$ with associative compositions $G_{st} \times G_{tu} \to G_{su}$, neutral elements $1_s \in G_{ss}$, inverses, ... designated generators $(g_e)_{e\in E}$

(II) reduced products with groupoids

I-groupoid: $\mathbb{G} = (G, (G_{st})_{s,t\in S}, \cdot, (1_s)_{s\in S})$ with associative compositions $G_{st} \times G_{tu} \to G_{su}$, neutral elements $1_s \in G_{ss}$, inverses, ... designated generators $(g_e)_{e\in E}$

the potentially finite analogue of the infinite path monoid \mathbf{I}^*

(II) reduced products with groupoids

I-groupoid:
$$\mathbb{G} = (G, (G_{st})_{s,t\in S}, \cdot, (1_s)_{s\in S})$$
 with
associative compositions $G_{st} \times G_{tu} \to G_{su}$,
neutral elements $1_s \in G_{ss}$, inverses, ...
designated generators $(g_e)_{e\in E}$

 \rightsquigarrow reduced products $H\otimes \mathbb{G}$ as candidate realisations

when is this a realisation of H?

obstructions: wrong kind of cycles (1)

violation of path independence for elements

• conflicting identifications may collapse individual A_s

can be overcome by relatively simple pre-processing: replace I by finite covering $\hat{\mathsf{I}}$ that unfolds bad cycles

obstructions: wrong kind of cycles (2)

violations of path independence for tuples

• incidental parallel identifications may cause conflicts at the relational level

→ substantial acyclicity conditions on suitable groupoids

an appropriate notion of acyclicity: control coset cycles

 not just short generator cycles in the Cayley graph of G, but short cycles of *cosets* gG[α] generated by subsets α ⊆ E

an appropriate notion of acyclicity: control coset cycles

not just short generator cycles in the Cayley graph of \mathbb{G} , but short cycles of *cosets* $g\mathbb{G}[\alpha]$ generated by subsets $\alpha \subseteq E$

• in particular, need to avoid certain coset cycles of length 2

bad coset cycles & obstruction no. (2)

... in particular, need to avoid certain coset cycles of length 2:

bad coset cycles & obstruction no. (2)

... in particular, need to avoid certain coset cycles of length 2:

 α_1 : generators carrying a_1 α_2 : generators carrying a_2

want $h = w^{\mathbb{G}}$ for $w \in \langle \alpha_1 \cap \alpha_2 \rangle$ so that w carries both a_1 and a_2

bad coset cycles & obstruction no. (2)

... in particular, need to avoid certain coset cycles of length 2:

in reduced product

 α_1 : generators carrying a_1 α_2 : generators carrying a_2

want $h = w^{\mathbb{G}}$ for $w \in \langle \alpha_1 \cap \alpha_2 \rangle$ so that w carries both a_1 and a_2

$$\langle \alpha_1 \rangle \cap \langle \alpha_2 \rangle = \langle \alpha_1 \cap \alpha_2 \rangle$$

avoiding a coset 2-cycle

theorem (O_13)

for every $N \in \mathbb{N}$ and incidence pattern I = (S, E) there are finite I-groupoids \mathbb{G} without coset cycles of length up to N

theorem (O_13)

for every $N \in \mathbb{N}$ and incidence pattern I = (S, E) there are finite I-groupoids \mathbb{G} without coset cycles of length up to N

idea: in an inductive construction generate $\mathbb G$ from (semi)group action on amalgamation chains that unfold short cosets cycles

cf. constructions of acyclic Cayley graphs (Alon, Biggs) here lifted to more intricate adaptation for coset cycles

theorem (O_13)

for every $N \in \mathbb{N}$ and incidence pattern I = (S, E) there are finite I-groupoids \mathbb{G} without coset cycles of length up to N

corollary

for any $\mathrm{H}=\big((\mathcal{A}_{s}),(\rho_{e})\big)$ obtain realisations $\mathrm{H}\otimes\mathbb{G}$ that

- respect all symmetries of H (genericity)
- have any desired degree of (local) acyclicity

with an atlas of charts onto the (\mathcal{A}_s) forming an *N*-acyclic hypergraph with changes of co-ordinates generated by the (ρ_e)

theorem (O_13)

for every $N \in \mathbb{N}$ and incidence pattern I = (S, E) there are finite I-groupoids \mathbb{G} without coset cycles of length up to N

corollary

for any $\mathrm{H}=\big((\mathcal{A}_{s}),(\rho_{e})\big)$ obtain realisations $\mathrm{H}\otimes\mathbb{G}$ that

- respect all symmetries of H (genericity)
- have any desired degree of (local) acyclicity

with an atlas of charts onto the (A_s) forming an *N*-acyclic hypergraph with changes of co-ordinates generated by the (ρ_e)

generic & locally free finite realisations of any finite amalgamation pattern

applications (1): hypergraph coverings

corollary

every finite hypergraph admits, for $\mathsf{N}\in\mathbb{N},$ finite coverings that

- are N-acyclic in the sense that every induced sub-hypergraph on up to N vertices is acyclic (tree decomposable, α -acyclic)
- possess a fibre-transitive automorphism group that lifts all symmetries of the given hypergraph

idea: generic *N*-acyclic finite realisations of the overlap pattern corresponding to the "exploded view" of the given hypergraph

applications (2): lifting local to global symmetries

EPPA: extension properties for partial automorphisms

Hrushovski 92 (graphs) Herwig 98 (relational structures) Herwig–Lascar 00 (fmp w.r.t. forbidden homomorphisms)

applications (2): lifting local to global symmetries

EPPA: extension properties for partial automorphisms

Hrushovski 92 (graphs) Herwig 98 (relational structures) Herwig–Lascar 00 (fmp w.r.t. forbidden homomorphisms)

here, as a corollary

for finite \mathcal{A} and collection of partial automorphisms (ρ_p) find finite EPPA extension $\mathcal{B} \supseteq \mathcal{A}$ as generic realisation of pattern of self-overlaps of \mathcal{A} induced by the ρ_p

- with atlas of \mathcal{A} -charts forming N-acyclic hypergraph on B
- hence, locally free & universal w.r.t. homomorphisms

which implies full Herwig-Lascar result

applications (3): various uses in modal/guarded logics

• finite model properties & finite controllability for guarded logics and constraints

using finite coverings of controlled acyclicity and/or Herwig–Lascar extension properties

- characterisation theorems (fmt & classical) for the guarded fragment GF and relatives using finite coverings of controlled acyclicity
- characterisation theorems (fmt & classical) for (modal) common knowledge logic

new, with Felix Canavoi, using (finite) S5-frames over Cayley groups with controlled coset-acyclicity

some related references

Bárány–Gottlob–O_(LMCS 2014, arXiv:1309.5822): Querying the guarded fragment

Bárány-ten Cate-O_(VLDB 2012, arXiv:1203.0077): Queries with guarded negation

Grädel-O_(2014): The freedoms of (guarded) bisimulation

Hodkinson–O_(BSL 2003): Finite conformal hypergraph covers and Gaifman cliques in finite structures

Herwig–Lascar (Transactions of the AMS 2000): Extending partial isomorphisms and the profinite topology on free groups

 $\mathbf{O}_{-}(\text{Journal of the ACM 2012}):$ Highly acyclic groups, hypergraph covers and the guarded fragment

O_(arXiv:1404.4599): Finite groupoids, finite coverings and symmetries in finite structures

 \rightarrow http://www.mathematik.tu-darmstadt.de/~otto/