Symmetry-Preserving Finite Synthesis & Amalgamation

Martin Otto TU Darmstadt Simons Institute Berkeley, Nov. 2016

Symmetry-Preserving Finite Synthesis & Amalgamation

Martin Otto TU Darmstadt Simons Institute Berkeley, Nov. 2016

- amalgamation: overlap specifications
- local vs. global consistency
- local vs. global symmetry

finite model constructions with a touch of combinatorial geometry and group theory

amalgamation?

synthesis & amalgamation:

hypergraphs & relational structures: (de)composition patterns model theory & algebra: homogeneity, Fraïssé limits geometry: atlases of charts & changes of co-ordinates

local/partial symmetries:

logic & model theory: partial isomorphisms geometry & algebra: groupoids, inverse semigroups

local consistency:

logic & combinatorics: constraint satisfaction logic & databases: constraints, dependencies logic & computation: e.g. quantum information

... calling for global solutions, closures, completions

from finite families

$$(\mathcal{A}_s)_{s\in\mathcal{S}}$$

 $(\mathcal{A}_s)_{s\in\mathcal{S}}$ of relational structures $\{
ho_e\colon \mathcal{A}_s\stackrel{\mathrm{part}}{\longrightarrow} \mathcal{A}_{s'}\}_{e\in E[s,s']}$ of partial isomorphisms $\}$

$$s \stackrel{e''}{\underset{e'}{\longrightarrow}} s$$

$$I = (S, E)$$

from finite families

$$(\mathcal{A}_s)_{s\in\mathcal{S}}$$
 of relational structures $\{
ho_e\colon \mathcal{A}_s\stackrel{\mathrm{part}}{\longrightarrow} \mathcal{A}_{s'}\}_{e\in E[s,s']}$ of partial isomorphisms $\}$

find natural free amalgam of disjoint copies $(\mathcal{A}_s,w)\simeq\mathcal{A}_s$ tagged by walks w in $\mathbf{I}=(S,(E[s,s']))$, with (\mathcal{A}_s,w) and $(\mathcal{A}_{s'},w\cdot e)$ overlapping according to ρ_e

$$(((\mathcal{A}_s),(
ho_e))\otimes \mathrm{I}^*)\ /pprox$$

based on multi-sorted monoid I* of walks in I

from finite families

$$(\mathcal{A}_s)_{s\in\mathcal{S}}$$
 of relational structures $\{(\rho_e\colon\mathcal{A}_s\stackrel{\mathrm{part}}{\longrightarrow}\mathcal{A}_{s'})_{e\in E[s,s']}$ of partial isomorphisms $\}$

find natural free amalgam of disjoint copies $(\mathcal{A}_s,w)\simeq\mathcal{A}_s$ tagged by walks w in $\mathbf{I}=(S,(E[s,s']))$, with (\mathcal{A}_s,w) and $(\mathcal{A}_{s'},w\cdot e)$ overlapping according to ρ_e

$$(((\mathcal{A}_s),(\rho_e))\otimes \mathrm{I}^*)\ /pprox \qquad \qquad \mathsf{based\ on\ multi-sorted} \ \mathsf{monoid\ I}^*\ \mathsf{of\ walks\ in\ I}$$

- realises the amalgamation pattern (*)
- is free in a universal algebraic sense
- is generic but infinite (unless I is acyclic)

from finite families

$$(\mathcal{A}_s)_{s\in S}$$
 of relational structures $\{
ho_e\colon \mathcal{A}_s\stackrel{\mathrm{part}}{\longrightarrow} \mathcal{A}_{s'}\}_{e\in E[s,s']}$ of partial isomorphisms $\}$

find natural free amalgam of disjoint copies $(\mathcal{A}_s,w)\simeq\mathcal{A}_s$ tagged by walks w in $\mathrm{I}=(S,(E[s,s']))$, with (\mathcal{A}_s,w) and $(\mathcal{A}_{s'},w\cdot e)$ overlapping according to ρ_e

$$(((\mathcal{A}_s),(\rho_e))\otimes \mathrm{I}^*)\ /pprox \qquad \qquad \mathsf{based\ on\ multi-sorted} \ \mathsf{monoid\ I}^*\ \mathsf{of\ walks\ in\ I}$$

- ... finite analoga?
- \dots based on what instead of I^* ?
- ... equally homogeneous?
- ... of controlled acyclicity?

realisation of $H = ((A_s), (\rho_e))$ in general:

a relational structure \mathcal{A} with an atlas given by superimposed hypergraph structure (A, \tilde{S}) of charts $\pi_{\tilde{s}} \colon \mathcal{A} \upharpoonright \tilde{s} \simeq \mathcal{A}_{\pi(\tilde{s})}$ s.t.

- locally, all ρ_e -overlaps are realised: each $\pi_{\tilde{s}}^{-1}(\mathcal{A}_s)$ overlaps with some $\pi_{\tilde{s}'}^{-1}(\mathcal{A}_{s'})$ according to ρ_e
- globally, no incidental overlaps occur:

if $\tilde{s} \cap \tilde{t} \neq \emptyset$, then this is due to a composition of ρ_{e_i} for some *single* walk $w = e_1 \cdots e_m$ from $\pi(\tilde{s})$ to $\pi(\tilde{t})$

realisation of $H = ((A_s), (\rho_e))$ in general:

a relational structure \mathcal{A} with an atlas given by superimposed hypergraph structure (A, \tilde{S}) of charts $\pi_{\tilde{s}} \colon \mathcal{A} \upharpoonright \tilde{s} \simeq \mathcal{A}_{\pi(\tilde{s})}$ s.t.

- locally, all ρ_e -overlaps are realised: each $\pi_{\vec{s}}^{-1}(\mathcal{A}_s)$ overlaps with some $\pi_{\vec{s}'}^{-1}(\mathcal{A}_{s'})$ according to ρ_e
- globally, no incidental overlaps occur:

if $\tilde{s} \cap \tilde{t} \neq \emptyset$, then this is due to a composition of ρ_{e_i} for some *single* walk $w = e_1 \cdots e_m$ from $\pi(\tilde{s})$ to $\pi(\tilde{t})$

NB: the second, "no-nonsense" condition avoids potential relational inconsistencies for amalgams

aside: the rôle of groupoids/inverse semigroups

composition structure of partial bijections:

- with partial composition (as a total operation)
 inverse semigroups

groupoids capture local/partial symmetries... just as groups capture global symmetries

(II) reduced products with groupoids

I-groupoid: $\mathbb{G} = (G, (G_{st})_{s,t \in S}, \cdot, (1_s)_{s \in S})$ with associative compositions $G_{st} \times G_{tu} \to G_{su}$, neutral elements $1_s \in G_{ss}$, inverses, ... designated generators $(g_e)_{e \in E}$

(II) reduced products with groupoids

I-groupoid:
$$\mathbb{G} = (G, (G_{st})_{s,t \in S}, \cdot, (1_s)_{s \in S})$$
 with associative compositions $G_{st} \times G_{tu} \to G_{su}$, neutral elements $1_s \in G_{ss}$, inverses, . . . designated generators $(g_e)_{e \in E}$

the potentially finite analogue of the infinite path monoid I^*

(II) reduced products with groupoids

I-groupoid:
$$\mathbb{G} = (G, (G_{st})_{s,t \in S}, \cdot, (1_s)_{s \in S})$$
 with associative compositions $G_{st} \times G_{tu} \to G_{su}$, neutral elements $1_s \in G_{ss}$, inverses, . . . designated generators $(g_e)_{e \in E}$

 $\stackrel{\leadsto}{\sim} \ \, \text{reduced products} \,\, H \otimes \mathbb{G}$ as candidate realisations

when is this a realisation of H?

obstructions: wrong kind of cycles (1)

violation of path independence for elements

ullet conflicting identifications may collapse individual A_s

can be overcome by relatively simple pre-processing: replace I by finite covering Î that unfolds bad cycles

obstructions: wrong kind of cycles (2)

violations of path independence for tuples

 incidental parallel identifications may cause conflicts at the relational level

→ substantial acyclicity conditions on suitable groupoids

an appropriate notion of acyclicity: control coset cycles

• not just short generator cycles in the Cayley graph of \mathbb{G} , but short cycles of *cosets* $g\mathbb{G}[\alpha]$ generated by subsets $\alpha\subseteq E$

an appropriate notion of acyclicity: control coset cycles

• not just short generator cycles in the Cayley graph of \mathbb{G} , but short cycles of cosets $g\mathbb{G}[\alpha]$ generated by subsets $\alpha\subseteq E$

• in particular, need to avoid certain coset cycles of length 2

$$w_1^{\mathbb{G}} = h = w_2^{\mathbb{G}}$$

in reduced product

bad coset cycles & obstruction no. (2)

... in particular, need to avoid certain coset cycles of length 2:

$$w_1^{\mathbb{G}} = h = w_2^{\mathbb{G}}$$

in reduced product

bad coset cycles & obstruction no. (2)

... in particular, need to avoid certain coset cycles of length 2:

 $w_1^{\mathbb{G}} = h = w_2^{\mathbb{G}}$

in reduced product

 α_1 : generators carrying a_1 α_2 : generators carrying a_2

want $h = w^{\mathbb{G}}$ for $w \in \langle \alpha_1 \cap \alpha_2 \rangle$ so that w carries both a_1 and a_2

bad coset cycles & obstruction no. (2)

... in particular, need to avoid certain coset cycles of length 2:

 $w_1^{\mathbb{G}} = h = w_2^{\mathbb{G}}$

in reduced product

 α_1 : generators carrying a_1 α_2 : generators carrying a_2

want $h = w^{\mathbb{G}}$ for $w \in \langle \alpha_1 \cap \alpha_2 \rangle$ so that w carries both a_1 and a_2

 $\langle \alpha_1 \rangle \cap \langle \alpha_2 \rangle = \langle \alpha_1 \cap \alpha_2 \rangle$ avoiding a coset 2-cycle

theorem (O_13)

for every $N \in \mathbb{N}$ and incidence pattern I = (S, E) there are finite I-groupoids \mathbb{G} without coset cycles of length up to N

theorem (O_13)

for every $N \in \mathbb{N}$ and incidence pattern I = (S, E) there are finite I-groupoids G without coset cycles of length up to N

idea: in an inductive construction generate G from (semi)group action on amalgamation chains that unfold short cosets cycles

> cf. constructions of acyclic Cayley graphs (Alon, Biggs) here lifted to more intricate adaptation for coset cycles

theorem (O_13)

for every $N \in \mathbb{N}$ and incidence pattern I = (S, E) there are finite I-groupoids \mathbb{G} without coset cycles of length up to N

corollary

for any $\mathrm{H}=\big((\mathcal{A}_s),(\rho_e)\big)$ obtain realisations $\mathrm{H}\otimes\mathbb{G}$ that

- respect all symmetries of H (genericity)
- have any desired degree of (local) acyclicity

```
with an atlas of charts onto the (A_s) forming an N-acyclic hypergraph with changes of co-ordinates generated by the (\rho_e)
```

theorem (O_13)

for every $N \in \mathbb{N}$ and incidence pattern I = (S, E) there are finite I-groupoids \mathbb{G} without coset cycles of length up to N

corollary

for any $H = \big((\mathcal{A}_s), (\rho_e) \big)$ obtain realisations $H \otimes \mathbb{G}$ that

- respect all symmetries of H (genericity)
- have any desired degree of (local) acyclicity

with an atlas of charts onto the (A_s) forming an N-acyclic hypergraph with changes of co-ordinates generated by the (ρ_e)

generic & locally free finite realisations of any finite amalgamation pattern

applications (1): hypergraph coverings

corollary

every finite hypergraph admits, for $N \in \mathbb{N}$, finite coverings that

- are N-acyclic in the sense that every induced sub-hypergraph on up to N vertices is acyclic (tree decomposable, α -acyclic)
- possess a fibre-transitive automorphism group that lifts all symmetries of the given hypergraph

idea: generic *N*-acyclic finite realisations of the overlap pattern corresponding to the "exploded view" of the given hypergraph

applications (2): lifting local to global symmetries

EPPA: extension properties for partial automorphisms

Hrushovski 92 (graphs)
Herwig 98 (relational structures)
Herwig-Lascar 00 (fmp w.r.t. forbidden homomorphisms)

applications (2): lifting local to global symmetries

EPPA: extension properties for partial automorphisms

Hrushovski 92 (graphs) Herwig 98 (relational structures) Herwig-Lascar 00 (fmp w.r.t. forbidden homomorphisms)

here, as a corollary

for finite $\mathcal A$ and collection of partial automorphisms (ρ_p) find finite EPPA extension $\mathcal B\supseteq\mathcal A$ as generic realisation of pattern of self-overlaps of $\mathcal A$ induced by the ρ_p

- ullet with atlas of ${\mathcal A}$ -charts forming ${\mathcal N}$ -acyclic hypergraph on ${\mathcal B}$
- hence, locally free & universal w.r.t. homomorphisms

which implies full Herwig-Lascar result

applications (3): various uses in modal/guarded logics

- finite model properties & finite controllability for guarded logics and constraints
 - using finite coverings of controlled acyclicity and/or Herwig–Lascar extension properties
- characterisation theorems (fmt & classical) for the guarded fragment GF and relatives using finite coverings of controlled acyclicity
- characterisation theorems (fmt & classical) for (modal) common knowledge logic
 new, with Felix Canavoi, using (finite) S5-frames over Cayley groups with controlled coset-acyclicity

some related references

Bárány–Gottlob–O_(LMCS 2014, arXiv:1309.5822): Querying the guarded fragment

Bárány–ten Cate–O_(VLDB 2012, arXiv:1203.0077): Queries with guarded negation

Grädel–O_(2014): The freedoms of (guarded) bisimulation

Hodkinson–O_(BSL 2003): Finite conformal hypergraph covers and Gaifman cliques in finite structures

Herwig–Lascar (Transactions of the AMS 2000): Extending partial isomorphisms and the profinite topology on free groups

O_(Journal of the ACM 2012): Highly acyclic groups, hypergraph covers and the guarded fragment

O_(arXiv:1404.4599): Finite groupoids, finite coverings and symmetries in finite structures

→ http://www.mathematik.tu-darmstadt.de/~otto/