Bisimulation and Games: Model-Theoretic Aspects

Martin Otto, TU Darmstadt, 2016

issues in logic, model theory, and combinatorics

bisimulation — the quintessential back&forth

model theory, not just in classical settings, and some combinatorial challenges

organisation in two main parts

- (I) bisimulation and back&forth games
 - bisimulation as modal Ehrenfeucht-Fraïssé
 - bisimulation and the (finite) model theory of modal logics
- (II) combinatorics of finite coverings
 - bisimilar coverings for graphs and hypergraphs
 - bisimulation and the (finite) model theory of guarded logics

part I: bisimulation

the quintessential back&forth

on graph-like structures

Kripke structures (possible worlds/accessibility), transition systems (states/transitions), game graphs (positions/moves)

capture behavioural equivalence

in the sense of indistinguishability of worlds/states/positions w.r.t. alternating sequences of accessibility/transitions/moves

core idea: dynamic b&f probing of possibilities

 \longrightarrow dynamic exploration of structures that are static images of dynamic behaviour

bisimulation game & bisimulation relations

the game: two players: I (challenger), II (defender) play over two transition systems $\begin{cases} \mathcal{A} = (\mathcal{A}, \mathbf{R}^{\mathcal{A}}, \mathbf{P}^{\mathcal{A}}) \\ \mathcal{B} = (\mathcal{B}, \mathbf{R}^{\mathcal{B}}, \mathbf{P}^{\mathcal{B}}) \end{cases}$

positions: pairs (a, b), correspondences between pebbled vertices

single round of challenge/response: $\mathbf{a} \bullet \cdots \bullet \mathbf{b}$ / R I moves pebble in \mathcal{A} or \mathcal{B} along *R*-edge **II** must do likewise in opposite structure effect: $(a, b) \rightsquigarrow (a', b')$

II loses in position (a, b) unless $a \sim^0 b$ (atom equiv.: $\mathbf{P}^{\mathcal{A}} \upharpoonright a \simeq \mathbf{P}^{\mathcal{B}} \upharpoonright b$) either player loses when stuck

R

bisimulation game & bisimulation relations

winning regions for II define bisimulation equivalences:

$\mathcal{A},$ a $\sim^\ell \mathcal{B},$ b	II has a winning strategy for ℓ rounds from (a, b)
$\mathcal{A},$ a $\sim^\omega \mathcal{B},$ b	II has a winning strategy for any finite no. of rounds from (a, b)
$\mathcal{A}, a \sim ~\mathcal{B}, b$	II has a winning strategy for infinite game from (a, b)

winning strategies in relational formalisation:

$$\begin{array}{l} \sim^{\ell} : \ (Z_m \subseteq A \times B)_{m \leqslant \ell} \\ \sim^{\omega} : \ (Z_m \subseteq A \times B)_{m \in \mathbb{N}} \\ \sim : \ Z \subseteq A \times B \end{array}$$

stratified b&f systems, or single bisimulation relation

bisimulation game & bisimulation relations

a single bisimulation relation $Z \subseteq A \times B$ for \sim

with characteristic b&f requirements

(back) for
$$(a, b) \in Z$$
 and $(b, b') \in R^{\mathcal{B}}$ there is
 $a' \in A$ s.t. $(a, a') \in R^{\mathcal{A}}$ and $(a', b') \in Z$

$$\begin{array}{ll} (\textit{forth}) & \textit{for } (a,b) \in Z \textit{ and } (a,a') \in R^{\mathcal{A}} \textit{ there is} \\ & b' \in B \textit{ s.t. } (b,b') \in R^{\mathcal{B}} \textit{ and } (a',b') \in Z \end{array}$$

witnesses winning strategy for **II** in infinite game from any $(a, b) \in Z$

b&f systems $(Z_m)_{m \in \ell}$ or $(Z_m)_{m \in \mathbb{N}}$ encode winning strategies for *m* rounds from any $(a, b) \in Z_m$ with suitably stratified b&f conditions from Z_k into Z_{k-1}

classical motif: Ehrenfeucht–Fraïssé

pebble games for FO and FO_{∞}

I and II over relational structures $\mathcal{A} = (\mathcal{A}, \mathbf{R}^{\mathcal{A}})$ and $\mathcal{B} = (\mathcal{B}, \mathbf{R}^{\mathcal{B}})$ **positions:** local isomorphisms $p: \mathbf{a} \mapsto \mathbf{b}, p: \mathcal{A} \upharpoonright \mathbf{a} \simeq \mathcal{B} \upharpoonright \mathbf{b}$

single round: challenge/response for extension by one new pebble pair $(p: \mathbf{a} \mapsto \mathbf{b}) \rightsquigarrow (p': \mathbf{a}a' \mapsto \mathbf{b}b')$

 $\begin{array}{ll} \mbox{winning regions:} \\ \mbox{b\&f equivalences} \end{array} \left\{ \begin{array}{ll} \mathcal{A}, \mathbf{a} \simeq^{\ell} \mathcal{B}, \mathbf{b} & \ell \mbox{ rounds} \\ \mathcal{A}, \mathbf{a} \simeq^{\omega} \mathcal{B}, \mathbf{b} & \mbox{any finite no. of rounds} \\ \mathcal{A}, \mathbf{a} \simeq^{\infty} \mathcal{B}, \mathbf{b} & \mbox{infinite game} \end{array} \right.$

 \simeq^{∞} classically known as partial isomorphy

Ehrenfeucht-Fraïssé

linking game equivalence to equivalence w.r.t. FO and FO_∞

Ehrenfeucht-Fraïssé/Karp thms

$\mathcal{A},\textbf{a}\simeq^{\ell}\mathcal{B},\textbf{b}$	\Leftrightarrow	$\mathcal{A}, \mathbf{a} \equiv^{\ell}_{\scriptscriptstyle{FO}} \mathcal{B}, \mathbf{b}$ *	FO-equiv. to qfr-depth ℓ
$\mathcal{A}, a \simeq^\omega \mathcal{B}, b$	\Leftrightarrow	$\mathcal{A}, \textbf{a} \equiv_{\scriptscriptstyle FO} \mathcal{B}, \textbf{b} ~^*$	full FO-equiv.
$\mathcal{A},\textbf{a}\simeq^{\infty}\mathcal{B},\textbf{b}$	\Leftrightarrow	$\mathcal{A}, \textbf{a} \equiv^\infty_{{\scriptscriptstyleFO}} \mathcal{B}, \textbf{b}$	FO_∞ -equiv.

observations/proof ingredients:

- the sets $Z_m := \{(p: \mathbf{a} \mapsto \mathbf{b}) : \mathcal{A}, \mathbf{a} \equiv_{FO}^m \mathcal{B}, \mathbf{b}\}$ satisfy b&f conditions
- I can force $\mathcal{A}, \mathbf{a} \not\equiv_{\scriptscriptstyle \mathsf{FO}}^m \mathcal{B}, \mathbf{b} \rightsquigarrow \mathcal{A}, \mathbf{a}\mathbf{a}' \not\equiv_{\scriptscriptstyle \mathsf{FO}}^{m-1} \mathcal{B}, \mathbf{b}\mathbf{b}'$
- equivalence classes $[\mathcal{A}, \mathbf{a}]/{\simeq}^\ell$ are FO-definable at qfr-depth ℓ *

* for finite relational vocabularies

bisimulation & basic modal logic ML

on graph-like structures

with binary (transition) relations $\mathbf{R} = (R_1, ...) \longrightarrow \text{modalities } \diamondsuit_i / \square_i$ and unary (state) predicates $\mathbf{P} = (P_1, ...) \longrightarrow \text{basic propositions } p_i$

atomic formulae: \bot, \top and p_i booleans connectives: \land, \lor, \neg modal quantification:

$$\diamondsuit_i \varphi \equiv \exists y (R_i x y \land \varphi(y))$$

$$\Box_i \varphi \equiv \forall y (R_i x y \rightarrow \varphi(y))$$

relativised FO quantification

observation

- atomic bisimulation condition (\sim^0) matches atomic equiv. \equiv^0_{ML}
- bisimulation b&f matches modal quantification pattern

bisimulation — modal Ehrenfeucht-Fraïssé

modal Ehrenfeucht-Fraïssé/Karp thms

$\mathcal{A},$ a $\sim^\ell \mathcal{B},$ b	\Leftrightarrow	$\mathcal{A}, \textit{a} \equiv^{\ell}_{ML} \mathcal{B}, \textit{b}$ *	ML-equiv. to depth ℓ
$\mathcal{A},$ a $\sim^\omega \mathcal{B},$ b	\Leftrightarrow	$\mathcal{A}, a \equiv_{\scriptscriptstyle{ML}} \mathcal{B}, b$ *	full ML-equiv.
$\mathcal{A},$ a $\sim^\infty \mathcal{B},$ b	\Leftrightarrow	$\mathcal{A}, \textit{a} \equiv^{\infty}_{ML} \mathcal{B}, \textit{b}$	ML_∞ -equiv.

in full analogy with classical picture:

 $\begin{array}{lll} \mathcal{A}, \mathbf{a} \simeq^{\ell} \mathcal{B}, \mathbf{b} & \Leftrightarrow & \mathcal{A}, \mathbf{a} \equiv_{\mathsf{FO}}^{\ell} \mathcal{B}, \mathbf{b} & \mathsf{FO}\text{-equiv. to qfr-depth } \ell \\ \mathcal{A}, \mathbf{a} \simeq^{\omega} \mathcal{B}, \mathbf{b} & \Leftrightarrow & \mathcal{A}, \mathbf{a} \equiv_{\mathsf{FO}} \mathcal{B}, \mathbf{b} & \text{full FO-equiv.} \\ \mathcal{A}, \mathbf{a} \simeq^{\infty} \mathcal{B}, \mathbf{b} & \Leftrightarrow & \mathcal{A}, \mathbf{a} \equiv_{\mathsf{FO}}^{\infty} \mathcal{B}, \mathbf{b} & \mathsf{FO}_{\infty}\text{-equiv.} \\ \begin{array}{c} \mathsf{corollary} \end{array}$

- the semantics of ML and ML_∞ is invariant under bisimulation
- the semantics of ML-formulae of depth ℓ is invariant under \sim^ℓ

variations & the quintessential nature of bisimulation

• bisimulation in game graphs for other logics

states: admissible assignments transitions: quantification patterns

all Ehrenfeucht-Fraïssé games are bisimulation games

close to original (basic modal) bisimulation:

- two-way and global bisimulation pprox

with extended challenge/response options (backward moves & jumps) for corresponding modalities

• hypergraph/guarded bisimulation \rightarrow part II

bisimulation — modal Ehrenfeucht-Fraïssé

typical example of a bisimulation issue and classical counterpart:

when does \equiv_{ML} (\sim^{ω}) coincide with full bisimulation \sim ? when does \equiv_{FO} (\simeq^{ω}) coincide with partial isomorphy \simeq^{∞} ?

Hennessy–Milner thm (the modal answer)

over suitably saturated models, $\sim^\omega (\equiv_{\scriptscriptstyle \sf ML})$ coincides with $\sim (\equiv_{\scriptscriptstyle \sf ML}^\infty)$

- finitely branching
- modally or ω -saturated (ω -saturation is good also for $\simeq^{\omega}/\simeq^{\infty}$)
- recursively saturated pairs (also good for $\simeq^{\omega}/\simeq^{\infty}$)

crucial in classical model-theoretic arguments for modal logics

modal model theory = bisimulation invariant model theory

here briefly look at:

- tree model property
- finite model property
- expressive completeness (classical and fmt)

tree unfoldings

tree unfolding \mathcal{A} into \mathcal{A}_a^*

based on the set of labelled directed paths w rooted at a in ${\cal A}$ with natural projection onto the endpoints as a homomorphism

that induces a bisimulation $\mathcal{A}^*_{a}, a \sim \mathcal{A}, a$

 $\pi\colon \mathcal{A}^*_{\mathsf{a}} \longrightarrow \mathcal{A}$ is an example of a bisimilar covering:

- π is a homomorphism: the forth-property for its graph
- π has lifting property: the back-property for its graph

inducing a bisimulation relation $\{(w, \pi(w)): w \in A_a^*\}$

tree unfoldings and tree model property

bisimilar unfoldings into tree structures preservation under bisimulation $\}$ \Rightarrow tree model property

tree model property

for all \sim -invariant logics ML, ..., L_µ, ... ML_∞: every satisfiable formula has a tree model

for \approx -invariant logics analogously: a forest model property

of great importance: can employ good model theoretic and algorithmic properties of trees, MSO on trees, tree automata. ... for robust decidability and complexity results for modal logics

finite (tree) model property

for basic modal logic ML (and some close relatives) even get finite tree models, hence the

finite model property:

every satisfiable formula of ML has a finite (tree) model

ad-hoc method: for $\varphi \in ML$ of depth ℓ , truncate tree model at depth ℓ (preserving \sim^{ℓ}) and prune \sim^{ℓ} -equivalent siblings (finite index!)

more generic method: passage to \sim^{ℓ} -quotient of any model yields a finite model (usually not a tree model) generalises to extensions preserved under levels of \approx

expressive completeness of modal logics

... relative to FO, a classical theme of FO model theory

 $FO/\sim \begin{cases} \text{the classes of } \sim\text{-invariant FO-properties of} \\ (just finite, or all) relational structures \end{cases}$

semantic classes

corresponding to the undecidable classes of those $\varphi(x) \in \text{FO}$ that satisfy $\mathcal{A}, a \sim \mathcal{B}, b \Rightarrow (\mathcal{A}, a \models \varphi \Leftrightarrow \mathcal{B}, b \models \varphi)$

classical 'preservation thms', too, respond to the quest for syntactic representation — mostly without asking the question

in this case, the answer to the unasked question is 'yes', twice: $FO/\sim \equiv ML$ classically, van Benthem $FO/\sim \equiv ML$ in fmt, Rosen

expressive completeness: $FO/\sim \equiv ML$

it suffices to show, for $\varphi(x) \in FO$: ~-invariance implies \sim^{ℓ} -invariance for some finite level $\ell \in \mathbb{N}$

a compactness property (!)

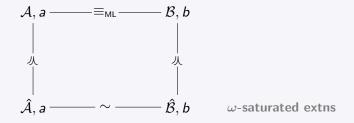
then $\varphi \equiv \varphi' \in ML$ by Ehrenfeucht–Fraïssé: ML-definability of \sim^{ℓ} -classes & finite index

NB: two, a priori independent, readings: classical & fmt

expressive completeness: generic classical approach

~-invariance $\Rightarrow \sim^{\ell}$ -invariance for some $\ell \mid (*)$

classical compactness argument with upgrading along $\equiv_{\rm FO}$ -axis through Hennessy–Milner property for ω -saturated structures

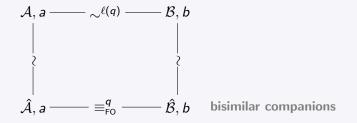


elegant and smooth, but no information regarding target ℓ and not an option for fmt version

expressive completeness: a constructive approach

 \sim -invariance $\Rightarrow \sim^{\ell}$ -invariance for some ℓ

upgrading along ~-axis of $\sim^{\ell(q)} (\equiv^{\ell}_{ML})$ to $\simeq^{q} (\equiv^{q}_{FO})$ through bisimulation preserving model transformations

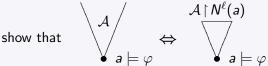


more constructive, potentially suitable for fmt, also yielding information regarding $\ell(q)$

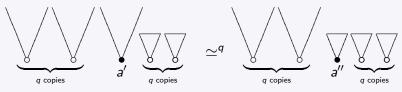
$FO/\sim \equiv ML$: an elementary proof with added value

~-invariance $\Rightarrow \sim^{\ell}$ -invariance for $\ell = 2^q - 1$

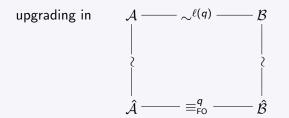
simple, ad-hoc argument (good classically & fmt) using the locality of FO/ \sim & Ehrenfeucht–Fraïssé:



in *q*-round FO game on:



back to generic constructive approach



requires (finite) model transformations $\mathcal{A}/\mathcal{B} \longmapsto \hat{\mathcal{A}}/\hat{\mathcal{B}}$ that are

- compatible with bisimulation: ideally want ≈ coverings (for symmetry & homogeneity)
- suitable to eliminate all obstacles for ≃^q (≡^q_{FO}) that are *not controlled* by any level of ∼^ℓ:

want to avoid short cycles & small multiplicities

part II: the combinatorics of finite coverings

in this part (shortened):

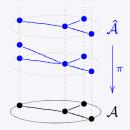
- bisimilar graph coverings: graph acyclicity in finite direct products with Cayley graphs of large girth
- bisimilar hypergraph coverings hypergraph acyclicity in finite reduced products with Cayley graphs of groups & groupoids of more than just large girth
- hypergraph bisimulation & guarded bisimulation for guarded logics & other applications

graph coverings

definition: \approx -bisimilar coverings

$$\pi \colon \hat{\mathcal{A}} \longrightarrow \mathcal{A}$$
 a covering of $\mathcal{A} = (\mathcal{A}, \mathcal{E})$ by $\hat{\mathcal{A}} = (\hat{\mathcal{A}}, \hat{\mathcal{E}})$:

(forth) $\pi: \hat{\mathcal{A}} \longrightarrow \mathcal{A}$ surjective homomorphism (back) π lifts edges/paths from $a \in \mathcal{A}$ to any \hat{a} in its fibre



• boost multiplicities in products with large cliques K:

put *K*-fibre $K \times \{a\}$ for every *a*

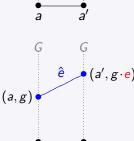
avoid short cycles

 in products with Cayley graphs of large girth:
 for A = (A, E) use Cayley group/graph
 G with generators e for e ∈ E

$$\hat{\mathcal{A}} = \mathcal{A} \otimes G = (\mathcal{A} \times G, \hat{E})$$

 $\hat{E} = \{((a,g), (a',g \cdot e)) \colon e = (a,a') \in E\}$

these are (finite) \approx -bisimilar coverings!



a e

avoiding short cycles in finite coverings

in products with Cayley groups of large girth

Cayley groups/graphs:

- group $G = (G, \cdot, 1)$ with generators $e \in E$
- associated Cayley graph has *e*-coloured edges from g to $g \cdot e$

highly symmetric, regular & homogeneous objects

Cayley groups/graphs of girth > N:

no non-trivial generator cycles $e_1 \cdot e_2 \cdot \cdot \cdot e_n = 1$ for $n \leqslant N$

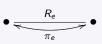
products $\mathcal{A}\otimes G$ with such G are N-acyclic coverings useful for upgrading \sim^ℓ to \simeq^q

Cayley graphs of large girth

goal: no non-trivial generator cycles $e_1 \cdot e_2 \cdot \cdot \cdot e_n = 1$ for small n

aside on construction (after Biggs)

find G as subgroup $G = \langle \pi_e \colon e \in E \rangle \subseteq \text{Sym}(V)$ generated by permutations π_e of undirected deterministically *E*-coloured graph $(V, (R_e))$



lemma

if $H = (V, (R_e))$ is deterministically *E*-coloured s.t. every colour sequence $w = e_1 \cdots e_n$ labels some non-cyclic path

$$v_0 \xrightarrow{e_1} v_1 \cdots v_{n-1} \xrightarrow{e_n} v_n \neq v_0$$
 in H ,

then
$$\pi_{e_1} \cdots \pi_{e_n} \neq 1$$

so that $G = \langle \pi_e : e \in E \rangle \subseteq \operatorname{Sym}(V)$ has girth $> N$

thm

(APAL 04)

every finite graph admits, for every $N \in \mathbb{N}$, simple/unbranched *N*-acyclic finite coverings by products with Cayley graphs of large girth

- uniform construction, which preserves all symmetries
- adaptable to many special frame classes (\rightarrow APAL 09) FO/ $\sim \equiv$ ML on many natural (finite) frame classes

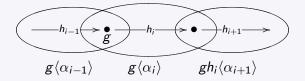
construction idea for Cayley graphs extends to much stronger notions of acyclicity in groups and in groupoids that are useful towards hypergraph constructions

more than just large girth

avoid not just short generator cycles but even short coset cycles

coset cycles:

steps in a coset chain are based on cosets $g_i \langle \alpha_i \rangle$ w.r.t. generator subsets $\alpha_i \subseteq E$ in $G = \langle E \rangle$



G is N-c-acyclic if it has no coset cycles of length up to N

N-c-acyclic Cayley groups

G is *N*-c-acyclic if it has no coset cycles of length up to *N* and such objects do exist!

thm

(JACM 10)

can find finite N-c-acyclic Cayley groups for every finite set E of generators and $N \in \mathbb{N}$

 → extend bisimilar unfolding idea from graphs to hypergraphs and, in logical terms, from modal to guarded scenarios

construction uses intricate interleaving of amalgamations and group actions

from graphs to hypergraphs

hypergraphs: structures $\mathcal{A} = (A, S)$ with vertex set A, and set of hyperedges $S \subseteq \mathcal{P}(A)$

idea: clusters and their link structure

example: hypergraph of guarded subsets of a relational structure $\mathcal{A} = (\mathcal{A}, \mathbb{R}^{\mathcal{A}})$ $H(\mathcal{A}) = (\mathbb{A}, \mathbb{S}[\mathcal{A}])$ with hyperedges generated by subsets $[\mathbf{a}] \subseteq \mathcal{A}$ for $\mathbf{a} \in \mathbb{R}^{\mathcal{A}}$, $\mathbb{R} \in \mathbb{R}$ closed under subsets & singleton sets

relational structure = hypergraph link structure (topology) + local relational content

the logical motivation: from modal to guarded logics

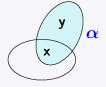
the guarded fragment GF (Andréka-van Benthem-Németi 98)

key idea: relativise quantification to guarded clusters

recall hypergraph $H(\mathcal{A}) = (\mathcal{A}, S[\mathcal{A}])$ of guarded subsets generated by **[a]** for $\mathbf{a} \in R^{\mathcal{A}}$

guarded quantification:

 $\exists \mathbf{y} (\alpha(\mathbf{x}\mathbf{y}) \land \varphi(\mathbf{x}\mathbf{y})) \\ \forall \mathbf{y} (\alpha(\mathbf{x}\mathbf{y}) \rightarrow \varphi(\mathbf{x}\mathbf{y})) \\ \text{guard atom } \alpha: \text{ free}(\varphi) \subseteq \text{ var}(\alpha)$



quantification relativised to guarded tuples

$\mathsf{ML}\varsubsetneq\mathsf{GF}\subsetneq\mathsf{FO}$

model-theoretic motivation: reflection on $\mathsf{ML}\subseteq\mathsf{FO}$ in extension from graph-like structures to general relational format

the logical motivation: GF and guarded bisimulation

guarded bisimulation

$$\sim^\ell_{\rm g}/\sim^\omega_{\rm g}/\sim_{\rm g}$$

- bisimulations of hypergraphs of guarded subsets that locally respect relational content (~⁰_g : A ↾ a ≃ B ↾ b)
- FO pebble game restricted to guarded pebble configurations

the guarded Ehrenfeucht-Fraïssé/Karp thms

issues in logic & combinatorics:

- **degrees of acyclicity** and their algorithmic and model-theoretic relevance for guarded logics
- hypergraph coverings: reproduce link structure locally; smooth out global link structure (e.g., regarding cycles)

3 equivalent definitions of hypergraph acyclicity:

- tree-decomposable with hyperedges as bags
- decomposable via elementary deletion steps (Graham)
- conformality and chordality (of associated Gaifman graph)

hypergraph acyclicity

• conformality and chordality:

conformality: every Gaifman clique is contained in some $s \in S$

chordality: every Gaifman cycle of length > 3 has a chord

N-acyclicity: sub-configurations up to size N are acyclic conformality & chordality just up to size N

hypergraph bisimulation & coverings

definition: bisimilar coverings

$$\pi: \hat{\mathcal{A}} \longrightarrow \mathcal{A} \text{ a covering of } \mathcal{A} = (\mathcal{A}, \mathcal{S}) \text{ by } \hat{\mathcal{A}} = (\hat{\mathcal{A}}, \hat{\mathcal{S}}):$$

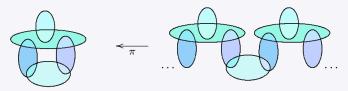
$$(forth) \quad \pi: \hat{\mathcal{A}} \longrightarrow \mathcal{A} \text{ homomorphism}$$

$$i.e., \ \pi \upharpoonright \hat{s}: \hat{s} \rightarrow \pi(\hat{s}) = s \in S \text{ bijective for all } \hat{s} \in \hat{\mathcal{S}}$$

$$(back) \quad \pi \text{ lifts overlaps } s \cap s' \neq \emptyset \text{ from } \mathcal{A} \text{ to any } \hat{s} \in \hat{\mathcal{S}} \text{ above } s$$

examples of natural hypergraph coverings:

- tree- and forest-like unfoldings (typically infinite)
- reduced products with suitable groups/groupoids (more below)



the combinatorial challenge: an example

the facets of the 3-simplex/tetrahedron

the uniform width 3 hypergraph on 4 vertices

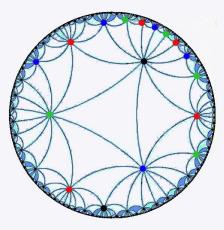
- chordal but not conformal
- finite coverings cannot be 1-locally acyclic
- admits locally finite coverings without short chordless cycles

Question: can extend ideas from graph coverings?

the combinatorial challenge: an example

a locally finite covering

of the tetrahedron



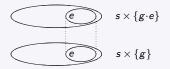
conformal; shortest chordless cycles have length 12 here by regular triangulation of the hyperbolic plane

reduced products with Cayley groups

plain reduced product $\mathcal{A}\otimes G$

between hypergraph $\mathcal{A} = (A, S)$ and group G with generators e associated with subsets $e \subseteq s \in S$

 $\mathcal{A} \otimes \mathbf{G}: \left\{ \begin{array}{l} \text{quotient of } \mathcal{A} \times G \text{ w.r.t. glueing} \\ \text{layer}(g) \text{ and } \text{layer}(g \cdot e) \text{ in } e \subseteq s \end{array} \right.$



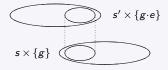
e-transitions in G glue layers of $\mathcal{A}\times G$ through identification in e

reduced products with Cayley groups

unfolded reduced product $\mathcal{A}^!\otimes G$

of exploded view $\mathcal{A}^!$ of $\mathcal{A} = (A, S)$ and group G with generators e associated with non-trivial intersections $e = s \cap s'$

 $\mathcal{A}^! \otimes \mathbf{G}: \left\{ \begin{array}{l} \text{quotient of } \dot{\bigcup} S \times G \text{ w.r.t. glueing} \\ \text{layer}(g) \text{ and } \text{layer}(g \cdot e) \text{ to overlap just in } s \cap s' \end{array} \right.$



e-transitions in G for e = (s, s') glue copies of s and s' in e-related layers

extending the scope: groupoids vs. groups

groupoids: like 'many-sorted' groups with sort-sensitive partial operation

$$\mathbf{G} = \left(\mathbf{G}, (\mathbf{G}_{st})_{s,t\in S}, \cdot, (1_s)_{s\in S}, {}^{-1}\right)$$

with operation $G_{st} \times G_{tu} \xrightarrow{\longrightarrow} G_{su}$

examples: bijective morphisms in a category, changes of co-ordinates in manifolds

why groupoids are more suitable in hypergraph constructions:

- overlaps of hyperedges (in exploded view) behave like local changes of co-ordinates
- (reduced) products with groupoids can offer just the right transitions at the right place
 - ... unlike the graph/group situation

extending the scope: products with groups/groupoids

main results

- plain reduced products with N-c-acyclic Cayley groups preserve N-acyclicity of *A*
- → local–global construction of finite N-acyclic coverings from locally finite N-acyclic coverings (JACM 12)
- unfolded reduced products with N-c-acyclic Cayley groupoids produce N-acyclic coverings of A
- → direct construction of finite N-acyclic coverings (arXiv 15)
- N-c-acyclic groupoids can be constructed by similar group action & amalgamation ideas

back to the (finite) model theory of guarded logics

in striking analogy with ML find, for instance:

- generalised tree model property
- finite model property
- expressive completeness: $FO/\sim_g \equiv GF$ (classical and fmt)

GF and guarded bisimulation/coverings

in striking analogy with modal model theory, based on invariance/preservation under guarded bisimulation:

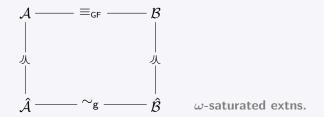
- generalised tree model property tree/forest unfoldings (Grädel 99): acyclic hypergraph coverings
- finite model properties (and decidability)
 via Herwig extensions (Grädel 99), and small models
 via succinct coverings (Bárány–Gottlob–O_LMCS 13)
- classical/fmt expressive completeness results compactness&saturation (Andréka–van Benthem–Németi 98) upgrading in coverings (O_JACM 12)
- also: new proof of Herwig–Lascar EPPA theorem based on realisations of overlaps between copies of A groupoidal products & coverings (O_arXiv 15)

expressive completeness: $FO/\sim_g \equiv GF$

crux (as in modal case): compactness property

 $\varphi \in \mathsf{FO} \sim_{\mathsf{g}} \text{-invariant} \ \Rightarrow \ \sim_{\mathsf{g}}^{\ell} \text{-invariance for some } \ell$

• classical compactness argument allows upgrading along $\equiv_{\rm FO}$ -axis, by use of ω -saturated elementary extensions

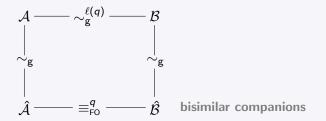


expressive completeness: $FO/\sim_g \equiv GF$

crux (as in modal case): compactness property

 $\varphi \in \mathsf{FO} \sim_{\mathsf{g}} \text{-invariant} \ \Rightarrow \ \sim_{\mathsf{g}}^{\ell} \text{-invariance for some } \ell$

 constructive upgrading along ∼_g-axis uses rich N-acyclic (finite) coverings



summary: how far do bisimulation analogies carry?

- infinite tree unfoldings as fully acyclic coverings: a complete analogy, good for most classical purposes analogy with freeness & richness of ω-saturated extns
- finite coverings meet different combinatorial challenges w.r.t. control of cycles and local-global-distinctions
- gain considerable extensions of the analogies between graphs/hypergraphs & modal/guarded logics
- especially through new hypergraph constructions via reduced products with suitable groupoids

the end

some pointers

H. Andréka, J. van Benthem, I. Németi: Modal languages and bounded fragments of predicate logic, Journal of Philosophical Logic, 1998.

E. Grädel: On the restraining power of guards, Journal of Symbolic Logic, 1999.

B. Herwig and D. Lascar: Extending partial isomorphisms and the profinite topology on free groups, Transactions of the AMS, 2000.

M. Otto: Modal and guarded characterisation theorems over finite transition systems, Annals of Pure and Applied Logic, 2004.

A. Dawar and M. Otto: Modal characterisation theorems over special classes of frames, Annals of Pure and Applied Logic, 2009.

M. Otto: Highly acyclic groups, hypergraph covers and the guarded fragment, Journal of the ACM, 2012.

V. Bárány, G. Gottlob, M. Otto: Querying the guarded fragment, Logical Methods in Computer Science, 2013.

M. Otto: Finite groupoids, finite coverings and symmetries in finite structures, arXiv, 2015