Integer Points in Polyhedra

Andreas Paffenholz	TU Berlin
Exercise Sheet 3	Summer 19
	April 26, 2019

- 1.1. Let *P* be a lattice polygon with one interior lattice point, nine boundary lattice points and volume 9/2. Prove that *P* is the triangle $3\Delta_2$ (up to unimodular transformation).
 - Hint: You may assume that we are in the setting of the case we left out in the proof of Scott's Theorem: P is squeezed into a box of height 3 and the intersection with the upper and lower side of the box has total length 3.
- 1.2. By Scott's Theorem all lattice polygons with volume $a, i \ge 1$ interior and b boundary lattice points are either unimodularly equivalent to $3\Delta_2$ or satisfy the inequlities

$$i \ge 1$$
 $b \ge 3$ $b \le 2(i+3)$

Show that any pair (i, b) that satisfies these inequalities comes from a lattice polygon.

1.3. Let $n \ge 1$ and

$$D_n := \left\{ x \in \mathbb{Z}^d \mid \sum_{i=1}^d x_i \text{ is even} \right\}.$$

Show that D_n and, for even n, also $D_n^+ := D_n \cup \left(D_n + \frac{1}{2}\mathbb{1}\right)$ are lattices.

1.4. Let *V* be a vector space and $B := \{b_1, \dots, b_k\} \in V$ linearly independent. Show that

$$\Lambda(B) := \left\{ \sum_{i=1}^{k} \lambda_i b_i \mid \lambda_i \in \mathbb{Z} \right\}$$
(*)

is a lattice.

1.5. Let $B := \{b_1, \dots, b_d\} \in V$ be a basis of a vector space V, $\Lambda(B)$ as in (*) and

$$\Pi(B) := \left\{ \sum_{i=1}^k \lambda_i b_i \mid 0 \le \lambda_i < 1 \right\}.$$

Show that any $u \in V$ has a unique representation as u = a + v for $a \in \Lambda$ and $v \in \Pi(B)$.

1.6. Let $\Lambda \subset \mathbb{R}^d$ be a lattice of rank *d* and

$$\Lambda^* := \{ \alpha \in (\mathbb{R}^d)^* \mid \alpha(u) \in \mathbb{Z} \text{ for all } u \in \Lambda \}.$$

 Λ^* is the *dual lattice* to Λ .

Let u_1, \ldots, u_d be a basis of Λ and $\alpha_1, \ldots, \alpha_d$ the corresponding dual basis (i.e. $\alpha_i(u_j) = 1$ if i = j, and $\alpha_i(u_j) = 0$ otherwise).

- (1) Prove that Λ^* is spanned by $\alpha_1, \ldots, \alpha_d$ as a lattice.
- (2) Prove that $\Lambda^{**} = \Lambda$.
- (3) Prove that $det(\Lambda) det(\Lambda^*) = 1$.
- 1.7. Euler's Formula states that a finite planar graph with v nodes, e edges and f bounded faces satisfies

$$v - e + f = 1$$

Show that this is equivalent to Pick's Formula.