Integer Points in Polyhedra

Andreas Paffenholz	TU Berlin
Exercise Sheet 3	Summer 19
	April 26, 2019

• 3.1. Let Λ' be a sublattice of Λ and rank $\Lambda = d$. Then there is a lattice basis $\mathbf{u}_1, \dots, \mathbf{u}_d \in \Lambda$ of Λ and $s_1, \dots, s_d \in \mathbb{Z}_{\geq 0}$ with $s_1 | s_2 | \dots | s_d$ such that $s_1 \mathbf{v}_1, \dots, s_k \mathbf{v}_k$ is a basis of Λ' , where $k = \max(i | s_i \neq 0)$.

Deduce that for a basis $\mathbf{u}_1, \ldots, \mathbf{u}_d$ of Λ' we have

$$\left|\Lambda/\Lambda'\right| = \left|\Pi(\mathbf{u}_1,\ldots,\mathbf{u}_d) \cap \Lambda\right| = \frac{\det \Lambda'}{\det \Lambda}$$

Hint: For the first part write the bases in coordinates with respect to Λ and use the Smith normal form S = LAR in the transformation $AR = L^{-1}S$.

- \circ 3.2. Show that any lattice polytope *P* has a regular triangulation using only the vertices of *P*.
 - Recall: A *subdivision* \mathscr{T} of a polytope *P* is a pure polyhedral complex such that the union of the cells is *P*. The set $V(\mathscr{T})$ of vertices of \mathscr{T} is the union of the vertices all its cells. \mathscr{T} is a *triangulation* if all cells are simplices.

 \mathcal{T} is *regular* if there is a weight function $w : V(\mathcal{T}) \to \mathbb{R}$ such that all cells are obtained as the projection onto the first *d* coordinates of the lower hull of

 $Q := \operatorname{conv}((\mathbf{v}, w(\mathbf{v})) : \mathbf{v} \in V),$

where the lower hull are those facets of Q whose facet normal has negative last coordinate.

- 3.3. Give an example that shows that not all triangulations of a lattice polytope are regular.
- 3.4. Let *P* ⊆ \mathbb{R}^d be a *d*-dimensional lattice polytope (or any convex body) Show that there is a simplex *S* ⊆ *P* with vertices $\mathbf{v}_0, \ldots, \mathbf{v}_d$ such that

$$P \subseteq (-d)(S-\mathbf{x}) + \mathbf{x} = (-d)S + (d+1)\mathbf{x}$$
(1)

and

$$P \subseteq (d+2)(S-\mathbf{x}) - \mathbf{x} = (d+2)S - (d+1)\mathbf{x}$$
(2)

where

$$\mathbf{x} := \frac{1}{d+1} \sum_{i=0}^{d} \mathbf{v}_i$$

is the centroid of S.

Hint: Choose $S := \operatorname{conv}(\mathbf{v}_0, \dots, \mathbf{v}_d) \subseteq P$ with maximal volume in *P*.

For any $0 \le i \le d$ let H_i be the facet hyperplane of the facet of *S* not containing \mathbf{v}_i , $r_i := \text{dist}(\mathbf{v}_i, H_i)$ and $R_i := {\mathbf{x} : \text{dist}(\mathbf{x}, H_i) \le r_i}$.

Show that $P \subseteq R_i$ for $0 \le i \le d$.

Express $\bigcap_{i=0}^{d} R_i$, $(-d)(S-\mathbf{x}) + \mathbf{x}$, and $(d+2)(S-\mathbf{x}) - \nu x$ in barycentric coordinates with respect to $\mathbf{v}_0, \ldots, \mathbf{v}_d$ and compare.

★ 3.5. Let $\Gamma \subseteq \mathbb{R}^d$ be a lattice or rank *d*. Construct a *d*-dimensional lattice polytope *P* ⊂ \mathbb{R}^d and a face *F* where

 $\mathrm{aff}\, F\cap\Lambda\,\neq\,\mathrm{aff}\, F\cap\Lambda(P\cap\Gamma)\,\neq\,\mathrm{aff}\, F\cap\Lambda(F\cap\Gamma)\,.$

- * 3.6. Show that any subdivision S of a polygon P such that V(S) = V(P) is regular.
 - 3.7. Finish the exercises of Sheet 2.