Integer Points in Polyhedra

Andreas Paffenholz	TU Berlin
Exercise Sheet 4	Summer 19
	May 2, 2019

• 4.1. For a field k let L := k[t₁^{±1},...,t_d^{±1}] be the *Laurent polynomial ring* of polynomials whose monomials have the form x^a := x₁^{a₁} · x₂<sup>a₂</sub> ··· x_m^{a_m} for some a₁, a₂,..., a_m ∈ Z. We consider the L-module L^f := k[[t₁^{±1},...,t_d^{±1}]] of *formal Laurent series*, *i.e.* formal (possibly infinite) sums of Laurent monomials.
</sup>

A formal series $G \in L^{f}$ is *summable* if there are $g, f \in L$ such that f := gG. Let L^{sum} be the set of summable series.

- (a) Show that L^{sum} is an L-submodule of L^{f} , *i.e.*, show that for $f \in L$ and $G, H \in L^{\text{sum}}$ also $f \cdot G$ and G + H are summable.
- (b) Let $R := \Bbbk(x_1, ..., x_m)$ be the field of rational functions of *L* and define a map

$$\phi: \mathsf{L}^{\mathrm{sum}} \longrightarrow R$$
$$G \longmapsto f/g$$

Show that this is a homomorphism from summable series to rational functions, *i.e.*, show that for $f \in L$ and $G, H \in L^{\text{sum}}$ we have $\phi(f \cdot G) = f \phi(G)$ and $\phi(G + H) = \phi(G) + \phi(H)$.

◦ 4.2. Let $C := \text{cone}(\mathbf{v}_1, ..., \mathbf{v}_m) \subseteq \mathbb{R}^d$ be a polyhedral cone. We say that a vector $\xi \in \mathbb{R}^d$ is *generic* with respect to *C* if *ξ* is not in the linear hull of any (*d*−1)-dimensional face of *C*.

The *half-open cone* C^{ξ} with respect to a generic ξ is

$$C^{\xi} := \{ \mathbf{y} \in C : \mathbf{y} + \varepsilon \xi \in C \text{ for all } \varepsilon > 0 \text{ small enough} \}.$$

(a) Show that

$$C^{\xi} = \left\{ \mathbf{y} \in C : (1 - \varepsilon)\mathbf{y} + \varepsilon \in C \text{ for all } \varepsilon > 0 \text{ small enough} \right\}.$$

In plain words, the half-open cone contains all faces *not* visible from ξ .

(b) Show that, if *C* is simplicial and ξ generic, then in the unique representation $\xi = \sum \lambda_i \mathbf{v}_i$ all coefficients are non-zero and

$$C^{\xi} := \left\{ \sum \mu_i \mathbf{v}_i : \mu_i \ge 0 \text{ for } i \in I_+(x) \text{ and } \mu_i > 0 \text{ for } i \in I_-(x) \right\}$$

for
$$I_+(\xi) := \{i : \lambda_i > 0\}$$
 and $I_-(\xi) := \{i : \lambda_i < 0\}.$

(c) If $\xi \in C$ and generic, then $C^{\xi} = C$ and $C^{-\xi} = \text{int } C$.

Now let \mathscr{T} be a triangulation of a polyhedral cone *C* and ξ generic with respect to all cones in \mathscr{T} . Let \mathscr{T}_d be the set of maximal cones in \mathscr{T} .

(d) Show that we have a *disjoint* union

$$C^{\xi} = \bigsqcup_{D \in \mathscr{T}_d} D^{\xi}.$$

In particular

$$C = \bigsqcup_{D \in \mathcal{T}_d} D^{\xi}$$
 and $\operatorname{int} C = \bigsqcup_{D \in \mathcal{T}_d} D^{-\xi}.$

- 4.3. Let *C* be a pointed *affine* polyhedral cone, *i.e.* there is $\mathbf{t} \in \mathbb{Z}^d$ such that $C' := C \mathbf{t}$ is a pointed polyhedral cone with apex in the origin.
 - (a) Write down an integer point generating function for *C* using one for C'.
 - (b) Do this explicitely for the cones $\{x \in \mathbb{R} \mid x \ge 0\}$ and $\{x \in \mathbb{R} \mid x \le 3\}$.
 - (c) Add the two generating functions and rewrite them as a series. What do you observe? Check your oberservation for some polygon, *e.g.* a square.
- 4.4. (a) Let $\Delta_k := \operatorname{conv}(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d)$ be the standard simplex in the lattice \mathbb{Z}^d . Prove that the number of lattice points in the *k*-th multiple of Δ_d for $k \in \mathbb{Z}_{\geq 1}$ is

$$\left|k\Delta_d \cap \mathbb{Z}^d\right| = \begin{pmatrix} d+k\\ d \end{pmatrix}.$$

Hint: You may want to construct a bijection to the *k*-combinations with repetition from the set with d + 1 elements.

(b) Show that

$$\sum_{k=0}^{\infty} \binom{d+k}{d} x^k = \frac{1}{(1-x)^{d+1}}.$$

- Hint: You may want to use the bijection for the first part again to count ways to write x^n as a product of monomials.
- 4.5. Finish the exercises of Sheets 1, 2, and 3.