Integer Points in Polyhedra

Andreas Paffenholz	TU Berlin
Exercise Sheet 7	Summer 19
	May 23, 2019

- 7.1. Compute the integer point generating series, Ehrhart series, h*-polynomial and the Ehrhart polynomial for
 - (a) the polytope $P \subseteq \mathbb{R}^2$ spanned by $\mathbf{e}_1, \mathbf{e}_2$ and $-\mathbf{e}_1 \mathbf{e}_2$.
 - (b) the polytope $P \subseteq \mathbb{R}^3$ spanned by $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ and $\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$.
 - (c) the polytope $R := \operatorname{conv}(P \times \{0\}, \mathbf{e}_3, -\mathbf{e}_3) \subseteq \mathbb{R}^3$.

- (a) $\mu(\mathbb{Z}^d) = \sqrt{d}/2$
- (b) $\mu(D_3) = 1$
- (c) $\mu(D_n) = \sqrt{n}/2$ for $n \ge 4$
- 7.3. (a) Let $\alpha \in \mathbb{R}$ and $N \in \mathbb{Z}_{\geq 1}$. Show that there is a positive integer q greater than N (alternatively: infinitely many q) and some integer p (alternatively: one for for each q) such that

$$\left| \alpha - \frac{p}{q} \right| \leq \frac{1}{q^2} \, .$$

Hint: For some $M \in \mathbb{Z}_{\geq 1}$ you may want to consider the set

$$S := \{ (x, y) \in \mathbb{R}^2 \mid |\alpha x - y| \le 1/M, |x| \le M \}.$$

(b) Given α₁,..., α_n ∈ ℝand M ∈ ℤ_{≥1} show that there a positive integer q > M and integers p₁,..., p_n such that for 1 ≤ i ≤ n

$$\left| \alpha_i - \frac{p_i}{q} \right| \leq \frac{1}{q^{1+1/n}}.$$

7.4. Let $\Lambda_0 \subseteq \Lambda \subseteq \mathbb{R}^d$ be lattices. Show that

$$\rho(\Lambda) \leq \rho(\Lambda_0) \leq \left| \Lambda / \Lambda_0 \right| \rho(\Lambda).$$

7.5. Let Λ be a lattice in \mathbb{R}^d with dual lattice Λ^* . Then

$$4\mu(\Lambda) \cdot \rho(\Lambda^{\star}) \geq 1$$

7.6. Finish the exercises of Sheets 1, 2, 3, 4, 5, and 6.